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Abstract
Sublinear circuits are generalizations of the affine circuits in matroid theory, and they
arise as the convex-combinatorial core underlying constrained non-negativity certificates of
exponential sums and of polynomials based on the arithmetic-geometric inequality. Here,
we study the polyhedral combinatorics of sublinear circuits for polyhedral constraint sets.
We give results on the relation between the sublinear circuits and their supports and provide
necessary as well as sufficient criteria for sublinear circuits. Based on these characteri-
zations, we provide some explicit results and enumerations for two prominent polyhedral
cases, namely the non-negative orthant and the cube [−1, 1]n.
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1 Introduction

Let A be a non-empty finite subset of R
n and R

A denote the set of real vectors whose
components are indexed by the set A. For β ∈ A, write

Nβ =
{

ν ∈ R
A : ν\β ≥ 0,

∑
α∈A

να = 0

}

for the cone of vectors in R
A whose entries sum to 0 and which may only have a negative

entry in component β. Here, ν\β abbreviates the vector in R
A\{β} which consists of all the

components of ν except the component indexed with β.
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In the context of non-negative polynomials and non-negative exponential sums, Murray
and the authors [17] have recently introduced the following generalization of the simplicial
circuits of an affine matroid. A non-zero vector ν∗ ∈ Nβ is called a sublinear circuit of A
with respect to a given convex set X (for short, X-circuit) if

(1) supx∈X((−Aν∗)T x) < ∞,
(2) if ν �→ supx∈X((−Aν)T x) is linear on a two-dimensional cone in Nβ , then ν∗ is not

in the relative interior of that cone.

Here, A is treated as a linear operator A : RA → R
n, ν �→ ∑

α∈A ανα .
In the special case X = R

n, the first condition is equivalent to Aν∗ = 0, which together
with the second condition tells us that ν∗ is a circuit of the affine matroid with ground set
A ⊂ R

n (see, for example, [7, 19]). Note that these R
n-circuits are uniquely determined

(up to scaling) by their supports. Moreover, the condition ν∗ ∈ Nβ enforces that the convex
hull of the support supp ν∗ := {α : ν∗

α 	= 0} forms a simplex (possibly of dimension
less than n) and exactly one element in supp ν∗ is contained in the relative interior of this
simplex. By the identification of circuits ν with their supports, it is customary to call a
subset A ⊂ A a simplicial circuit if its convex hull conv(A) forms a simplex and the relative
interior relint conv(A) contains exactly one element of A. See Fig. 1.

Sublinear circuits appear naturally in the study of non-negative polynomials and, more
generally, of non-negative exponential sums

∑
α∈A cα exp(αT x). In the framework of

exponential sums, Murray, Chandrasekaran and Wierman [16] have shown that the set of
exponential sums (also denoted as signomials)

∑
α∈A

cα exp(αT x)

which have at most one negative term and which are non-negative on X can be characterized
in terms of a relative entropy program. Sums of such exponential sums are non-negative as
well. The cone of exponential sums which admit such a non-negativity certificate is called
the X-SAGE cone (or conditional SAGE cone) supported on A and is denoted CX(A). Here,
the acronym SAGE stands for Sums of Arithmetic-Geometric Exponentials [3]. This cone
yields non-negativity certificates for a subclass of polynomials and signomials and thus

Fig. 1 An R
2-circuit

λ =
(

1
3 ,−1, 1

3 , 1
3

)
of an affine

matroid supported on
A = {(0, 0)T , (2, 2)T , (2, 4)T ,

(4, 2)T } visualized in terms of its
support
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provides a complement to non-negativity certificates based on sums of squares. It is possible
to combine these techniques, see [11].

The introduction and the study of sublinear circuits is motivated by the following guiding
questions:

(1) For f ∈ CX(A), there is often more than one way to write f as a sum of exponential
sums which have only one negative term and which are non-negative on X. Are there
distinguished representations among them?

(2) Can the X-SAGE cone be naturally decomposed as a Minkowski sum of smaller
subcones?

(3) How can the convex geometric properties, such as the extremal rays, of the X-SAGE
cone be characterized?

Here, the second and the third question can be seen as geometric viewpoints of the first ques-
tion. By [17], the conditional SAGE cone CX(A) can be decomposed as a Minkowski sum,
where each non-trivial summand refers to the X-SAGE exponentials induced by a sublinear
circuit (see Proposition 2.6 for a formal statement). Therefore, the sublinear circuits can be
seen as a convex-combinatorial core underlying the conditional SAGE cone. In the uncon-
strained setting, the circuit viewpoint has been used prominently in the works of Reznick
[21], Iliman and de Wolff [9] as well as Pantea, Koeppl and Craciun [20] on non-negative
polynomials.

One step further, a reducibility concept for sublinear circuits provides a non-redundant
decomposition of the conditional SAGE cone in terms of reduced circuits. This reducibility
notion generalizes the reducibility notion for the unconstrained situation which was intro-
duced in [12], see also [7]. The reduced R

n-circuits are the key concept to characterize
the extremal rays of the unconstrained SAGE cone, since the reduced R

n-circuits induce
extremal rays. In generalization of this, the reduced sublinear circuits facilitate to study the
extremal rays of the X-SAGE cone [17], see Proposition 2.8 for a formal statement.

From a more general point of view, sublinear circuits generalize the combinatorial con-
cepts known from an affine matroid, by taking additionally into account a convex constraint
set X. As such, sublinear circuits enlarge the tool set of convex-combinatorial techniques in
algebraic geometry and algebraic optimization, see [2, 4, 10, 13, 22] for general background
on the rich connections between these disciplines.

In the current paper, we study sublinear circuits for the situation that X is polyhedral. In
this setting, the sublinear circuits can be exactly characterized in terms of the normal fan
of a certain polyhedron, see Proposition 2.2. This induces a rich polyhedral-combinatorial
structure and makes these sublinear circuits amenable to effective computations. For poly-
hedral X, the number of sublinear circuits is finite, and this gives decompositions of the
X-SAGE cones into finitely many summands referring to the X-SAGE exponentials induced
by a sublinear circuit.

Among the class of polyhedra, polyhedral cones exhibit particularly nice properties and
were in the focus of attention in earlier treatments. Note that, as a very particular case, the
unconstrained setting X = R

n, which is treated in [7, 12, 15], also falls into the class of
polyhedral cones. The univariate case R+ was studied in detail in [17]. Moreover, every
univariate case can be transformed to one of the two conic cases R (unconstrained case),
R+ (one-sided infinity interval), or to the non-conic [−1, 1] (compact interval). In the mul-
tivariate case, the polyhedra R

n (unconstrained case), Rn+ (non-negative orthant) and the
cube [−1, 1]n provide prominent examples. In contrast to the unconstrained case and to the
non-negative orthant, the cube [−1, 1]n provides a non-conic case.
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The goal of the current paper is to develop techniques for handling sublinear circuits,
which also provide an access towards approaching non-conic polyhedral sets.

Contributions

1. We reveal some precise connections between sublinear circuits and their supports, see
Lemma 3.3. In particular, we show that in general sublinear circuits are not uniquely
determined by their supports, see Example 3.2.

2. We develop necessary and sufficient conditions for identifying X-circuits based on
support conditions. See Theorems 4.1 and 4.5.

3. We give conditions for identifying reduced X-circuits which generalize the known
characterizations for the unconstrained case. See Theorems 6.2 and 6.4.

4. Building upon the criteria for sublinear circuits, we study the prominent cases of the
non-negative orthant Rn+ and the cube [−1, 1]n in detail, in particular the planar case
and with regard to small support sets. Specifically, for A = {(i, j) : 1 ≤ i, j ≤ 3} ⊂ R

2

and X = [−1, 1]2, there are 132 circuits and 24 reduced X-circuits, which we classify.
See Sections 5 and 6.

5. As a specific consequence, we can exactly determine the extreme rays of the univariate
[−1, 1]-SAGE cone, see Theorem 6.6.

For further recent work on the techniques for certifying non-negativity of signomials and
polynomials based on the SAGE cone and its variants, see [1, 5, 18, 23, 24].

The paper is structured as follows. After collecting relevant concepts of sublinear circuits
and non-negative signomials in Section 2, we study the connection of X-circuits and their
supports in Section 3. Section 4 deals with necessary and sufficient conditions for sublinear
circuits, and Section 5 focuses on the case of the cube [−1, 1]n. In Section 6, we provide
criteria for reduced sublinear circuits, which gives as a consequence the characterization of
the extreme rays of the [−1, 1]-SAGE cone. Section 7 concludes the paper.

2 Preliminaries

Throughout the paper, the symbol 0 denotes the zero vector, 1 denotes the all-ones vector
and [m] abbreviates the set {1, . . . , m} for m ∈ N. For a given convex subset X ⊂ R

n,
denote by σX(y) = sup{yT x : x ∈ X} its support function.

2.1 X-Circuits

For a non-empty convex set X and finite A ⊂ R
n, we consider X-circuits as defined in the

Introduction, where we note that the two defining conditions can also be expressed in terms
of the support function: then (1) becomes the condition σX(−Aν�) < ∞ and in (2), the
mapping ν �→ σX(−Aν) occurs.

A sublinear circuit λ ∈ Nβ is called normalized if λβ = −1, in which case the condition
1T λ = 0 in the definition of Nβ implies

∑
α 	=β λα = 1. For normalized X-circuits, we

usually employ the symbol λ, whereas we use the symbol ν for X-circuits which are not
necessarily normalized. For X ⊂ R

n, denote by ΛX(A, β) the set of normalized X-circuits
of A with negative entry corresponding to β ∈ A and by ΛX(A) := ⋃

β∈A ΛX(A, β)
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the set of all normalized X-circuits of A. For example, in the univariate case X = R with
A = {α1, . . . , αm} ⊂ R, the normalized X-circuits are

λ = αk − αj

αk − αi

e(i) − e(j) + αj − αi

αk − αi

e(k) for i < j < k, (2.1)

where e(i) denotes the i-th unit vector in R
m. It is possible that a given support set A ⊂ R

n

has no R
n-circuits, but then every α ∈ A is an extreme point of convA.

Example 2.1 In the context of the conditional SAGE cone, we can assume without loss of
generality, that the convex set X is closed. In the one-dimensional case, up to translation
and additive inversion, each closed, convex set is of the form X(1) = R, X(2) = R+ or
X(3) = [−1, 1]. For the support set A = {0, 1, 2}, it is instructive to list the sublinear
circuits with respect to the three sets X(1), X(2) and X(3). The set Λ(1) of X(1)-circuits is
R+(1, −2, 1)T , which is a special case of (2.1). The set Λ(2) of X(2)-circuits is

Λ(2) = Λ(1) ∪ R+(0, −1, 1)T ∪ R+(−1, 0, 1)T ∪ R+(−1, 1, 0)T ,

and this is a special case of Proposition 2.3 below. In particular, the element (−1, 1, 0)T is
not an X(1)-circuit, because

σX(1)

(
−A(−1, 1, 0)T

)
= σX(1) (−1) = sup

x∈R
(−x) = ∞.

The set Λ(3) of X(3)-circuits is

Λ(3) = Λ(2) ∪ R+(0, 1, −1)T ∪ R+(1, 0, −1)T ∪ R+(1,−1, 0)T ,

which is a special case of Proposition 3.1 proven in Section 3. Note that, for example, the
element (1, −1, 0)T is not an X(2)-circuit, as

σX(2)

(
−A(1, −1, 0)T

)
= σX(2) (1) = sup

x≥0
x = ∞.

For polyhedral X, the sublinear circuits can be characterized in terms of normal fans
of polyhedra. We refer the reader for background on normal fans to [25, Chapter 7] (for
the bounded case of polytopes), [8, Section 5.4] or [22, Chapter 2]. For each face F of a
polyhedron P , let

NP (F ) =
{
w : zT w = σP (w) ∀ z ∈ F

}
be the associated outer normal cone.

The support function σP of a polyhedron P is linear on every outer normal cone, and the
linear representation may be given by σP (w) = zT w for any z ∈ F . The outer normal fan
of P is the collection of all outer normal cones,

O(P ) = {NP (F ) : F is a face of P }.
For a convex cone K ⊂ R

n, denote by K∗ := {c ∈ R
n : cT x ≥ 0 for all x ∈ K} the

dual cone and by K◦ := −K∗ the polar. For a set S ⊂ R
n, let rec(S) := {t : ∃s ∈

S such that s+λt ∈ S ∀ λ ≥ 0} denote its recession cone. Using these notations, the support
of O(P ) coincides with rec(P )◦. The full-dimensional linearity domains of the support
function σP are the outer normal cones of the vertices of P (see also [6, Section 1]).

Proposition 2.2 [17] Let X be a polyhedron. Then ν ∈ Nβ \ {0} is an X-circuit if and
only if cone{ν} is a ray inO(−AT X + N◦

β). As a consequence, there are only finitely many
normalized X-circuits.
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If X is a polyhedral cone, the situation simplifies, because the support function σX(−Aν)

of a circuit ν can only attain the values zero and infinity. Namely, since O(−AT X+N◦
β) =

(AT X)∗ ∩ Nβ and

(AT X)∗ = {ν : νT y ≥ 0 ∀y ∈ AT X} = {ν : (Aν)T x ≥ 0 ∀x ∈ X}
= {ν : σX(−Aν) ≤ 0},

the X-circuits ν ∈ Nβ are precisely the edge generators of the polyhedral cone {ν ∈ Nβ :
σX(−Aν) ≤ 0}.

In the univariate case with A = {α1, . . . , αm} ⊂ R, the sublinear circuits for the
univariate cone [0, ∞) have been determined in [17]:

Proposition 2.3 For X = [0, ∞) and A = {α1, . . . , αm} ⊂ R with α1 < · · · < αm, the
normalized X-circuits λ ∈ R

m are the vectors either of the form λ = e(k) − e(j) for j < k

or of the form

λ = αk − αj

αk − αi

e(i) − e(j) + αj − αi

αk − αi

e(k) for i < j < k.

Note that the X-circuits of the second form are exactly the R-circuits from (2.1).

Remark 2.4 By Proposition 2.2, the X-circuits of A are the outer normal vectors to facets of
polyhedra P = −AT X +N◦

β (for some β). As Nβ is pointed, P is always full-dimensional.

Example 2.5 If X is a convex cone, then the second condition in the definition of X-circuits
simplifies, because the support function evaluates to 0 whenever it is finite. Consider the
conic sets X(1) = R

2 and X(2) = R
2+ with respect to the support set A = {(0, 0)T , (0, 4)T ,

(4, 0)T , (1, 1)T }, as illustrated in Fig. 2. Three points of A are vertices of the convex hull
of A, and the point (1, 1)T is contained in the relative interior of the convex hull of A. The
set Λ(1) of X(1)-circuits is R+(2, 1, 1, −4)T , and the set Λ(2) of X(2)-circuits is

Λ(2) = Λ(1) ∪ R+(0, 3, 1, −4)T ∪ R+(0, 1, 3, −4)T .

Similar to the arguments for the one-dimensional-cases in Example 2.1, the X(2)-circuit
(0, 1, 3, −4)T is not an X(1)-circuit, as the resulting support function with respect to X(1) is
not finite anymore: σR2(−A(0, 1, 3, −4)) = supx1∈R −8x1 = ∞.

2.2 Non-negativity of Signomials

We consider the cone CX(A) of X-SAGE signomials supported on A [16], which was
informally introduced in the Introduction. For β ∈ A, set

CX(A, β) =
{

f : f =
∑
α∈A

cα exp(αT x) is non-negative on X, c\β ≥ 0

}
,

called the X-AGE cone supported on A with respect to β. By [16], CX(A) decomposes as
CX(A) = ∑

β∈A CX(A, β).
Given a vector λ ∈ Nβ with λβ = −1, the λ-witnessed AGE cone CX(A, λ) is defined as

CX(A, λ) =
⎧⎨
⎩

∑
α∈A

cα exp(αT x) :
∏

α∈λ+

(
cα

λα

)λα

≥ −cβ exp (σX(−Aλ)) , c\β ≥ 0

⎫⎬
⎭ .
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Fig. 2 The sets X(1) = R
2 and X(2) = R

2+ and the support set A = {(0, 0)T , (0, 4)T , (4, 0)T , (1, 1)T }

All signomials in CX(A, λ) are non-negative over X. Moreover, for polyhedral X, the con-
ditional SAGE cone can be naturally decomposed into the Minkowski sum of a finite set of
λ-witnessed cones, where λ runs over the normalized X-circuits.

Proposition 2.6 [17] Let X ⊂ R
n be a polyhedron and ΛX(A) be non-empty. Then, the

conditional SAGE cone CX(A) decomposes as the finite Minkowski sum

CX(A) =
∑

λ∈ΛX(A)

CX(A, λ).

2.3 Reduced Circuits and Non-negativity of Signomials

In general, the representation in Proposition 2.6 can include redundancies. Using a
reducibility concept of circuits, which takes into account the value σX(−Aν) of an X-circuit
ν, an irredundant representation can be given. The extended form of an X-circuit ν ∈ R

A is
defined as (ν, σX(−Aν)) ∈ R

A × R. The set

GX(A) = cone({(ν, σX(−Aν)) : λ ∈ ΛX(A)} ∪ {(0, 1)})

is called the circuit graph of (A, X). Whenever we consider the circuit graph or the
reduced sublinear circuits defined subsequently, we will tacitly assume that the functions
x �→ exp(αT x), α ∈ A, are linearly independent on X. Then the set GX(A) is pointed and
closed (see [17]).

Definition 2.7 An X-circuit ν is called reduced if its extended form generates an extreme
ray of GX(A). Denote by Λ�

X(A) the set of normalized reduced X-circuits.

For polyhedral X, the conditional SAGE cone CX(A) can be decomposed into the
Minkowski sum of a finite set of λ-witnessed cones, where λ runs over the reduced
X-circuits.
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Proposition 2.8 [17] Let X ⊂ R
n be a polyhedron and ΛX(A) be non-empty. Then, the

conditional SAGE cone CX(A) decomposes as the finite Minkowski sum

CX(A) =
∑

λ∈Λ�
X(A)

CX(A, λ).

Moreover, there does not exist a proper subset Λ � Λ�
X(A) with

CX(A) =
∑
λ∈Λ

CX(A, λ).

In the univariate case with A = {α1, . . . , αm} sorted ascendingly, we have

Λ�
R
(A) =

{(
αi+1 − αi

αi+1 − αi−1

)
e(i−1) − e(i) +

(
αi − αi−1

αi+1 − αi−1

)
e(i+1) : 2 ≤ i ≤ m − 1

}
and Λ�

[0,∞)(A) = Λ�
R
(A) ∪ {e(2) − e(1)}.

See [7] for Λ�
R
(A) and [17] for Λ�

[0,∞)(A).

3 X-Circuits and Their Supports

In this section, we study the relationship between X-circuits and their supports. We begin
with a study of the compact univariate case [−1, 1]. This complements the known cases R
from the Introduction and [0, ∞) from Proposition 2.3.

Proposition 3.1 Let X = [−1, 1] and A = {α1, . . . , αm} ⊂ R with α1 < · · · < αm. An
element λ ∈ ⋃

β∈A Nβ is a normalized X-circuit if and only if it is of the following form:

(1) λ = e(j) − e(i) for i 	= j , or

(2) λ = αk − αj

αk − αi

e(i) − e(j) + αj − αi

αk − αi

e(k) for i < j < k.

Proof Fix j ∈ [n] and write Nj := N(αj ) for short. By Proposition 2.2, the X-circuits are
the vectors spanning the rays in the outer normal cone of the polyhedron

P = −AT X + N◦
j

= conv
{
(α1, . . . , αm)T ,−(α1, . . . , αm)T

}
+ R · 1 −

∑
i 	=j

pos e(i)

=
{
θ(α1, . . . , αm)T + μ1 : −1 ≤ θ ≤ 1, μ ∈ R

}
−

∑
i 	=j

pos e(i).

Hence, a point w is contained in P if and only if

wi ≤ θαi + μ for i 	= j and wj = θαj + μ for θ ∈ [−1, 1] and μ ∈ R.

By eliminating μ, this is equivalent to

wj − wi + θ(αi − αj ) ≥ 0 for all i ∈ [m] \ {j}, − 1 ≤ θ ≤ 1.

Eliminating θ then gives

wj − wi

αj − αi

{ ≤ θ ≤ 1 if αi > αj ,

≥ θ ≥ −1 if αi < αj ,
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which yields
wj −wi

αj −αi
≥ wk−wj

αk−αj
for all i, k ∈ [m] with i < j < k and wi − wj ≤ |αi − αj |

for all i ∈ [m] \ {j}. Hence,

P = {
w ∈ R

m : wi − wj ≤ |αi − αj | for i ∈ [m] \ {j} and (3.1)

wi(αk−αj )−wj(αk−αi)+wk(αj −αi) ≤ 0 for i, k ∈ [m] with i <j <k
}

. (3.2)

We claim that none of the inequalities in the definition of P is redundant. Namely, for each
inequality

wi(αk − αj ) − wj(αk − αi) + wk(αj − αi) ≤ 0

in (3.2), the point e(i) + e(j) + e(k) satisfies this particular inequality with equality and all of
the other inequalities strictly. Similarly, for the inequalities in (3.1), it suffices to consider
the point αj e

(i) + αie
(j) in case i < j and αie

(i) + αj e
(j) in case i > j . By Remark 2.4,

the polyhedron P is full-dimensional.
Hence, by Proposition 2.2, the normalized X-circuits in Nj are exactly the ones given in

the statement of the theorem.

The supports of X -circuits. As stated in the Introduction, in the classical case of affine
circuits, the normalized circuits are uniquely determined by their supports. Moreover, as
a consequence of Theorem 3.1, in the case X = [−1, 1], the normalized X-circuits
are uniquely determined by their signed supports. As explained in the following, this
phenomenon does not extend to sublinear circuits for arbitrary sets.

In the case of sublinear circuits supported on two elements, the two non-zero entries
are additive inverses of each other, so that, for a given β and a given support, indeed this
signed support uniquely determines the circuit up to a positive factor. In order to exhibit the
mentioned phenomenon, we present a counterexample with support size 3.

Example 3.2 Let A = {α1, α2, α3} = {(0, 0)T , (1, 0)T , (0, 1)T } ⊂ R
2. We show that for

β := α1, there are two non-proportional circuits which are supported on all three elements
of A. Specifically, we construct an example, in which

ν(1) := (−2, 1, 1)T and ν(2) := (−3, 1, 2)T

are sublinear circuits. Note that both of them have the same signed support, but they are not
multiples of each other. Observe that

−Aν(1) = (−1, −1)T , −Aν(2) = (−1, −2)T .

We set up X in such a way that (−1, −1)T and (−1, −2)T are normal vectors of X. For
example, choose X as the cone in R

2 spanned by (−1, 1)T and (2, −1)T . We obtain

−AT X = pos

⎧⎨
⎩−

⎛
⎝ 0 0

1 0
0 1

⎞
⎠( −1

1

)
,−

⎛
⎝ 0 0

1 0
0 1

⎞
⎠(

2
−1

)⎫⎬
⎭ = pos

⎧⎨
⎩

⎛
⎝ 0

1
−1

⎞
⎠ ,

⎛
⎝ 0

−2
1

⎞
⎠

⎫⎬
⎭ .

Since N◦
β = N◦

(0,0) = R · (1, 1, 1)T +R×R≤0 ×R≤0, it can be verified (for example, using

a computer calculation) that ν(1) and ν(2) are indeed sublinear circuits, and they are the only
ones having a negative component νβ up to scaling by a positive factor.

In the example, the two distinct sublinear circuits ν(i), 1 ≤ i ≤ 2, with identical signed
supports, have different expressions Aν(i), that is, Aν(1) 	= Aν(2). By the following state-
ment, it is not possible to have two distinct sublinear circuits with the same signed support
and identical non-zero values of Aν(i).
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Lemma 3.3 Let ν(1) and ν(2) be sublinear circuits with the same signed support and such
that Aν(1) = Aν(2). Then ν(1) and ν(2) are proportional, and in case Aν(1) = Aν(2) 	= 0,
the equality ν(1) = ν(2) holds.

Proof Let ν(1) and ν(2) have the same signed support with Aν(1) = Aν(2). Set β as the
index of the negative component of ν(1) and ν(2).

Assuming ν(1) 	= ν(2), the precondition supp ν(1) = supp ν(2) implies that for sufficiently
small ε > 0, the vectors

ν′ := ν(1) − εν(2) and ν′′ := ν(1) + εν(2)

are contained in Nβ\{0} as well. Observe that σX(−Aν′) = σX(−Aν(1))−εσX(−Aν(2)) <

∞ and σX(−Aν′′) = σX(−Aν(1)) + εσX(−Aν(2)) < ∞. Moreover, ν(1) is a convex
combination ν(1) = 1

2ν′ + 1
2ν′′ for which ν �→ σX(−Aν) is linear on [ν′, ν′′].

Since Aν(1) = Aν(2), the vectors ν(1) and ν(2) are not proportional or we have Aν(1) =
Aν(2) = 0. In both cases, if ν(1) and ν(2) are non-proportional, then this contradicts that
ν(1) is a sublinear circuit.

4 Necessary and Sufficient Conditions

In this section, we obtain some criteria for elements ν ∈ ⋃
β∈A Nβ to be X-circuits of

some fixed set X. These criteria only involve the supports rather than the exact values of the
coefficients.

For an X-circuit ν, let ν+ := {α : να ≥ 0} and ν− denote the single index β with νβ < 0.
First recall that in the classical case of affine matroids, any simplicial circuit ν supported on
at least three elements has no other support point except ν− contained in the relative interior
of the convex hull of all its support points, and the coefficients of ν+ are positive multiples
of the barycentric coordinates of β, i.e., relint conv(supp ν) ∩ ν+ = ∅ and Aν = 0 (see,
e.g., [7]). In the following theorem, we give a generalization of this property to the case of
X-circuits.

Theorem 4.1 Let λ ∈ ΛX(A, β) for some β ∈ A. Then relint conv(supp λ) ∩ λ+ = ∅.
Moreover, if β ∈ conv(λ+), thenAλ = 0.

Proof For the first statement, suppose there exists ᾱ ∈ λ+ such that ᾱ ∈ relint conv(supp λ).
Hence, there exist θα ∈ [0, 1) for α ∈ (λ+ \ {ᾱ}) ∪ {β} such that∑

α∈λ+\{ᾱ}
θα + θβ = 1 and

∑
α∈λ+\{ᾱ}

θαα + θββ = ᾱ.

Let τ ∈ (0, 1] be maximal such that τθαλᾱ ≤ λα for α ∈ (λ+\{ᾱ})∪{β} and (1+τ)λᾱ < 1.
As λᾱ < 1, this does indeed exist. The two vectors ν(1) and ν(2) defined by

ν(1)
α =

{
λα + τθαλᾱ for α ∈ (λ+ \ {ᾱ}) ∪ {β},
(1 − τ)λᾱ for α = ᾱ

and ν(2)
α =

{
λα − τθαλᾱ for α ∈ (λ+ \ {ᾱ}) ∪ {β},
(1 + τ)λᾱ for α = ᾱ
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(and 0 outside of λ+ ∪ {β}) are non-proportional elements of Nβ with (ν(i))+ ⊂ λ+ for
i = 1, 2. Moreover, Aν(i) = Aλ for i = 1, 2 and λ ∈ relint[ν(1), ν(2)], which contradicts
the X-circuit property of λ.

For the second statement, suppose β ∈ conv(λ+) and Aλ 	= 0. Then, there exists a
normalized element λ′ ∈ Nβ with λ+ = (λ′)+ and Aλ′ = 0. Let τ be the maximal real
number such that ν(1) := λ − τλ′ ∈ Nβ . That maximum clearly exists, and, since (λ′)+ =
λ+, the number τ is positive. Moreover, since λ and λ′ are normalized, we have τ ≤ 1.

The sublinear circuit ν(2) := λ + τλ′ is clearly contained in Nβ as well. Since λ, λ′
are non-proportional and τ > 0, the sublinear circuits ν(1) and ν(2) are non-proportional.
Furthermore, since ν(1) + ν(2) = 2λ, we see that λ can be written as a convex combination
of the two non-proportional elements ν(1) ∈ Nβ and ν(2) ∈ Nβ . Due to Aλ′ = 0, we obtain
σX(−Aν(1)) = σX(−Aν(2)) = σX(−Aλ) and thus

σX(−Aλ) = 1

2

(
σX(−Aν(1)) + σX(−Aν(2))

)
.

Hence, λ /∈ ΛX(A, β).

We can provide the following two cases of the converse direction of Theorem 4.1. In
particular, both cases will be applicable for X = [−1, 1]n. We can assume that β ∈
conv(λ+)− rec(X)∗ since otherwise any λ ∈ Nβ \ {0} will have σX(−Aλ) = ∞ and hence,
violate condition (1) in the definition of an X-circuit.

Lemma 4.2 Given β ∈ A, let λ ∈ Nβ \ {0} be normalized with β ∈ conv(λ+) − rec(X)∗
and such that λ+ consists of affinely independent vectors.

(1) If |supp λ| = 2 or
(2) if X is full-dimensional, β ∈ conv(λ+),Aλ = 0,

then λ ∈ ΛX(A, β).

Note that, since in the theorem λ+ consists of affinely independent vectors, we have
relint conv(λ+) ∩ λ+ = ∅.

Remark 4.3 If the property of full-dimensionality is omitted in the second condition, the
statement is not true anymore. As a counterexample, let X be the singleton set X = {1} and
let A = {1, 2, 3}. Then λ = 1

2 (1,−2, 1)T is not an X-circuit, because λ = 1
2λ(1) + 1

2λ(2)

with λ(1) = (1, −1, 0)T and λ(2) = (0, −1, 1)T and ν �→ σX(−Aν) is linear on [λ(1), λ(2)].
Note that the functions x �→ exp(αT x), α ∈ A are not linearly independent on X.

Proof For the first statement, suppose there exist ν(1), ν(2) ∈ Nβ decomposing λ. Then
supp(ν(i)) ⊆ supp λ for i ∈ {1, 2}, because the cancellation of terms not contained in supp λ

is not possible, as the negative term always corresponds to β. Since ν
(1)
β < 0 and ν

(2)
β < 0

and |supp λ| = 2, both ν(1) and ν(2) are proportional to λ.
Now consider the second condition. Since the property of being an X-circuit is invariant

under translation of X, we can assume without loss of generality that 0 ∈ int X. Suppose that
there exist non-proportional, normalized λ(1), λ(2) ∈ Nβ and θ1, θ2 ∈ (0, 1) with θ1+θ2 = 1
such that

2∑
i=1

θi

(
λ(i), σX(−Aλ(i))

)
= (λ, σX(−Aλ)).
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We distinguish two cases. If Aλ(1) = 0, then Aλ(2) = − θ1
θ2
Aλ(1) = 0. Hence, the unique-

ness of the barycentric coordinates with respect to a given affinely independent ground set
implies λ(1) = λ(2), which is a contradiction to their non-proportionality.

If Aλ(1) 	= 0, then, as the argument above states that Aλ(2) = 0 implies Aλ(1) = 0,
we have Aλ(2) = − θ1

θ2
Aλ(1) 	= 0 as well. Then 0 ∈ int X implies σX(−Aλ(1)) > 0 and

σX(−Aλ(2)) > 0. Since σX(−Aλ) = −σX(0) = 0, the mapping ν �→ σX(−Aν) cannot be
linear on [λ(1), λ(2)].
X-circuits of polyhedral cones X . As discussed after Proposition 2.2, in the case of poly-
hedral cones X we always have σX(−Aλ) = 0 whenever this value is finite. Since we will
reduce the determination of the sublinear circuits ΛX(A) for a cone X in some prominent
cases to the classical affine circuits ΛRn(A) (which of course is also a case of a polyhedral
cone), we first look at an example for the latter case.

In the following, we examine sublinear circuits for various sets X ⊂ R
n (for some n ∈ N)

and support sets of the form A = {(i, j) : 1 ≤ i, j ≤ k}, k ∈ N. In these situations, we
can write a sublinear circuit ν as a matrix M(ν) ∈ R

k×k such that M
(ν)
i,j = ν(i,j) for all

(i, j) ∈ A.

Example 4.4 For X = R
2 and support A = {(i, j) : 1 ≤ i, j ≤ 3}, there are 16 sublinear

circuits (up to multiples). Namely, there are 8 sublinear circuits with support size 3 (all of
them have non-zero entries 1, −2, 1; they appear in the three rows, the three columns and
the two diagonals of the 3×3-matrix). Moreover, there are the following 8 sublinear circuits
of support size 4. Here, the upper left entry of the matrices refers to the support point (1, 1):⎛

⎝ 1 0 1
0 −4 0
0 2 0

⎞
⎠ ,

⎛
⎝ 0 1 0

1 −3 0
0 0 1

⎞
⎠ (4.1)

as well as the 90-degree, 180-degree and 270-degree rotations about the (2, 2)-element of
these matrices. As 0 ∈ intR2 and rec(R2)∗ = {0}, this reflects in particular the statements
of Theorem 4.1 and Lemma 4.2.

Next we consider the sublinear circuits of the non-negative orthant Rn+. For a non-empty
subset S ⊂ [n] and a support point α ∈ A ⊂ R

n, we write αS for the projection of α onto
the components of S, i.e., αS := (αs)s∈S . We also set AS := {αS : α ∈ A} and for a matrix
M with n rows, we set MS as the submatrix of M defined by the rows with indices in S,
which in particular yields MSλ = (Mλ)S .

Theorem 4.5 Let n ≥ 2 and X = R
n+ and β ∈ A. A normalized element λ ∈ Nβ with

|λ+| ≥ 2 is contained in ΛX(A, β) if and only if there exists a non-empty subset S ⊂ [n]
with |{αS : α ∈ supp λ}| = |supp λ| such that λ is an R|S|-circuit for the support setAS and
(Aλ)[n]\S > 0.

Remark 4.6 The latter condition in Theorem 4.5 implies βS = (Aλ+)S and, hence, βS ∈
relint conv((λ+)S), and β[n]\S ∈ conv((λ+)[n]\S) − R

[n]\S
+ .

Proof of Theorem 4.5 Let λ ∈ ΛX(A, β) with |λ+| ≥ 2. Hence, Aλ ≥ 0. For every s ∈ [n]
with (Aλ){s} > 0, we observe that λ is also an R

n−1+ -circuit for A[n]\{s}. The X-circuit
property of λ and |λ+| ≥ 2 imply that there exists at least one s ∈ [n] with (Aλ){s} = 0;
otherwise, choosing a vector ν supported on a two-element subset of λ+ with entries ε and

458 H. Naumann, T. Theobald



−ε for sufficiently small ε > 0 would give a non-trivial decomposition λ = ( 1
2λ − ν) +

( 1
2λ + ν).

Let S be the inclusion-maximal subset S ⊂ [n] with (Aλ)S = 0. By the initial con-
siderations, S 	= ∅ and λ is an R

|S|-circuit of AS . This implies the cardinality statement
|{αS : α ∈ supp λ}| = |supp λ|. By the definition of S, we have (Aλ)[n]\S > 0.

Conversely, let ∅ 	= S ⊂ [n] with |{αS : α ∈ supp λ}| = |supp λ| such that λ is an R
|S|-

circuit of AS and (Aλ)[n]\S > 0. Then λ is an R
|S|
+ -circuit for AS and, further, an X-circuit

for A.

Theorem 4.5 can be used in the reduction of the enumeration of all X-circuits to the
enumeration of all classical affine circuits.

Example 4.7 For X = R
2+ and the support set A = {(i, j) : 1 ≤ i, j ≤ 3}, there are 65

normalized sublinear circuits. Namely, by Theorem 4.5, there are

(1) 27 normalized sublinear circuits of cardinality 2: λ = −e(i1,j1) + e(i2,j2) for 1 ≤ i1 ≤
i2 ≤ 3, 1 ≤ j1 ≤ j2 ≤ 3; that is, the entry “1” appears in “lower right” quadrant of the
entry “−1”.

(2) 16 normalized sublinear circuits in which the entries 1
2 ,−1, 1

2 appear in columns 1,2,3,
respectively, such that the entry −1 appears above the line through the two entries 1

2 .
(3) 16 normalized sublinear circuits in which the entries 1

2 appear in rows 1,2,3, respec-
tively, such that the −1 appears left to the line containing the two entries 1

2 .
(4) 8 R

2-circuits of cardinality 4, which are the normalized versions of the ones from
Example 4.4.

Since the diagonal and the anti-diagonal are counted both in cases (2) and (3), we have to
subtract 2, which gives 27 + 16 + 16 + 8 − 2 = 65. The following table shows in row i and
column j the number of sublinear circuits with ν− = {(i, j)}.

1 2 3

1 8 14 2
2 14 21 2
3 2 2 0

Exemplarily, for the case ν− = {(1, 2)}, there are five circuits of type (1) as well as
the following nine (in the subsequent list not normalized) sublinear circuits ν with ν− =
{(1, 2)}, i.e., the component with index (1, 2) is the negative component. As before, the
upper left entry of the matrices refer to the support point (1, 1):⎛

⎝ 1 −2 1
0 0 0
0 0 0

⎞
⎠ ,

⎛
⎝ 1 −2 0

0 0 1
0 0 0

⎞
⎠ ,

⎛
⎝ 1 −2 0

0 0 0
0 0 1

⎞
⎠ ,

⎛
⎝ 0 −2 1

1 0 0
0 0 0

⎞
⎠ ,

⎛
⎝ 0 −2 0

1 0 1
0 0 0

⎞
⎠ ,

⎛
⎝ 0 −2 0

1 0 0
0 0 1

⎞
⎠ ,

⎛
⎝ 0 −2 1

0 0 0
1 0 0

⎞
⎠ ,

⎛
⎝ 0 −2 0

0 0 1
1 0 0

⎞
⎠ ,

⎛
⎝ 0 −2 0

0 0 0
1 0 1

⎞
⎠ .

The following theorem characterizes the connection between the X-circuits and the R
n-

circuits for more general polyhedral cones X.
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Theorem 4.8 Let X = pos{v(1), . . . , v(k)} be an n-dimensional polyhedral cone spanned
by the vectors v(1), . . . , v(k), where k ≥ n. Then

{λ ∈ ΛX(A) : Aλ = 0} = ΛRn(A). (4.2)

Proof Fix β ∈ A and denote by W the k × n-matrix whose rows are the transposed vectors
(v(1))T , . . . , (v(k))T . Hence, X∗ = {x ∈ R

n : Wx ≥ 0}. The set ΛX(A, β) is the set of
normalized vectors spanning the extreme rays of the cone

KX = {ν ∈ Nβ : σX(−Aν) ≤ 0} = {ν ∈ Nβ : Aν ∈ X∗}
= {ν ∈ Nβ : WAν ≥ 0}

and the set Λn
R
(A, β) is the set of normalized vectors spanning the extreme rays of the cone

KRn = {ν ∈ Nβ : σRn(−Aν) ≤ 0} = {ν ∈ Nβ : Aν = 0}.
Since the matrix W has rank n, the linear mapping x �→ Wx is injective, and thus its kernel
is {0}. Hence, KRn = {ν ∈ Nβ : WAν = 0}. The cone KRn is contained in the cone KX. As
a consequence, if λ ∈ Nβ is not contained in the right-hand side of (4.2), it is not contained
in the left-hand side.

Conversely, let λ ∈ Nβ be contained in the right-hand side of (4.2). Then Aλ = 0 and
WAλ = 0. Assume there exists a decomposition into a convex combination λ = θ1λ

(1) +
θ2λ

(2) with WAλ(1) 	= 0. Since WAλ = 0 and WAλ(1) ≥ 0, at least one component of
WA(λ − θ1λ

(1)) = WAθ2λ
(2) is smaller than zero. This is a contradiction. Hence, λ is

contained in the left-hand side of (4.2).

5 The n-Dimensional Cube X = [−1, 1]n

We discuss the sublinear circuits of the n-dimensional cube [−1, 1]n, which is a prominent
case of a compact polyhedron. Throughout the section, we assume X = [−1, 1]n for some
fixed n ∈ N and A ⊂ R

n non-empty and finite. We can already apply some of the former
statements to gain knowledge of the structure of X-circuits. For example, as rec(X)∗ =
R

n = −rec(X)∗, Lemma 4.2 implies that every element supported on exactly two points
is an X-circuit. Hence, we examine the structure of those X-circuits λ ∈ ΛX(A) that have
more than two support points. We begin with a necessary criterion.

Lemma 5.1 Let λ ∈ Nβ with λβ = −1 for some β ∈ A and |supp λ| ≥ 3. If for all j ∈ [n](
αj ≤ βj for all α ∈ λ+)

or
(
αj ≥ βj for all α ∈ λ+)

, (5.1)

then λ /∈ ΛX(A).

Note that the precondition expresses that there exists a vertex v of [−1, 1]n such that for
all α ∈ λ+, the maximal face of the function x �→ (β − α)T x contains v.

Proof We can assume β /∈ relint (conv(λ+)), since otherwise the preconditions imply β =
α for all α ∈ λ+, violating |supp λ| ≥ 3. Hence, we have Aλ 	= 0 and the supremum of
x �→ (−Aν)T x is attained at some vertex of [−1, 1]n.

Now assume λ ∈ ΛX(A). In order to come up with a contradiction, we construct a
decomposition of λ = ∑

α∈λ+ ν(α) with supports supp {ν(α)} = {α, β} of cardinality 2 by
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setting

θαν(α)
α := λα and θαν

(α)
β := −θαν(α)

α = −λα for all α ∈ λ+.

We observe that ν(α) ∈ Nβ for all α ∈ λ+ and (θα)α∈λ+ can be chosen with the property∑
α∈λ+ θα = 1. Moreover,

∑
α∈λ+ θαν(α) = λ and

∑
α∈λ+

θασX(−Aν(α)) =
∑
α∈λ+

θα

n∑
j=1

∣∣∣ν(α)
α (αj − βj )

∣∣∣ =
∑
α∈λ+

n∑
j=1

∣∣λα(αj − βj )
∣∣

(5.1)=
n∑

j=1

∣∣∣∣∣∣
∑
α∈λ+

λα(αj − βj )

∣∣∣∣∣∣ = σX(−Aλ).

By distinguishing the cases αj = βj and αj 	= βj , it is straightforward to see that this
expression in terms of a convex combination is locally linear. Hence, λ cannot be an X-
circuit, which is the contradiction.

We provide a slightly more general version of Lemma 5.1, whose proof is analogous.

Lemma 5.2 Let λ ∈ Nβ with λβ = −1 for some β ∈ A, and |supp λ| ≥ 3. Further suppose
that for J (λ) := {j : βj = ∑

α∈A λααj }, the support can be disjointly decomposed into the
two sets

A(1) = {α : αj = βj for all j /∈ J (λ)} and A(2) = {α : αj = βj for all j ∈ J (λ)} 	= ∅
such that for all j ∈ [n] \ J (λ) we have(

αj ≤ βj for all α ∈ A(2)
)

or
(
αj ≥ βj for all α ∈ A(2)

)
.

Then λ is not an X-circuit ofA.

Example 5.3 The planar case [−1, 1]2. For the case of the planar square X = [−1, 1]2 we
provide some explicit descriptions of the sublinear circuits for support sets located on a grid
{(i, j) : 1 ≤ i, j ≤ k} for some k ∈ N.

If λ is a normalized [−1, 1]2-circuit, then, due to rec([−1, 1]2)∗ = −rec([−1, 1]2)∗ =
R

2, there is no restriction on the location of the negative coordinate. However, using The-
orem 4.1, we can exclude potential sublinear circuits λ ∈ Nβ for some β ∈ A, where
relint conv(supp λ) ∩ λ+ 	= ∅ and those where β ∈ conv(λ+) but Aλ 	= 0; in particu-
lar, the latter situation excludes the case β ∈ conv(λ+) \ relint conv(λ+). Moreover, using
Lemma 5.1, we can exclude all those potential [−1, 1]2-circuits where |supp λ| ≥ 3 and
(αj ≤ βj for all α ∈ λ+) or (αj ≥ βj for all α ∈ λ+).

For the case k = 3, i.e., the support set A = {(i, j) : 1 ≤ i, j ≤ 3}, the structural
statements facilitate to obtain the exact set of sublinear circuits. Up to multiples, there are
132 X-circuits:

(1) 72 sublinear circuits supported on two elements: e(i1,j1) − e(i2,j2) for 1 ≤
i1, i2, j1, j2 ≤ 3 with (i1, j1) 	= (i2, j2).

(2) 27 sublinear circuits in which the entries 1
2 ,−1, 1

2 appear in columns 1,2,3, respec-
tively.

(3) 27 sublinear circuits in which the entries 1
2 , −1, 1

2 appear in rows 1,2,3, respectively.
(4) 8 sublinear circuits supported on 4 elements.
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Since the diagonal and the anti-diagonal are counted both in cases 2 and 3, this gives 72 +
27 + 27 + 8 − 2 = 132 sublinear circuits. The following table shows in row i and column
j the number of normalized sublinear circuits λ with λ− = {(i, j)}.

1 2 3

1 8 17 8
2 17 32 17
3 8 17 8

The subsequent list gives the 17 (not necessarily normalized) X-circuits ν with ν− =
{(1, 2)}, i.e., the component with index (1, 2) is the negative component. As before, the
upper left entry of the matrices refer to the support point (1, 1):⎛

⎝ 1 −1 0
0 0 0
0 0 0

⎞
⎠ ,

⎛
⎝ 0 −1 0

1 0 0
0 0 0

⎞
⎠ ,

⎛
⎝ 0 −1 0

0 0 0
1 0 0

⎞
⎠ ,

⎛
⎝ 0 −1 0

0 1 0
0 0 0

⎞
⎠ ,

⎛
⎝ 0 −1 0

0 0 0
0 1 0

⎞
⎠ ,

⎛
⎝ 0 −1 1

0 0 0
0 0 0

⎞
⎠ ,

⎛
⎝ 0 −1 0

0 0 1
0 0 0

⎞
⎠ ,

⎛
⎝ 0 −1 0

0 0 0
0 0 1

⎞
⎠ ,

⎛
⎝ 1 −2 1

0 0 0
0 0 0

⎞
⎠ ,

⎛
⎝ 0 −2 1

1 0 0
0 0 0

⎞
⎠ ,

⎛
⎝ 0 −2 1

0 0 0
1 0 0

⎞
⎠ ,

⎛
⎝ 1 −2 0

0 0 1
0 0 0

⎞
⎠ ,

⎛
⎝ 0 −2 0

1 0 1
0 0 0

⎞
⎠ ,

⎛
⎝ 0 −2 0

0 0 1
1 0 0

⎞
⎠ ,

⎛
⎝ 1 −2 0

0 0 0
0 0 1

⎞
⎠ ,

⎛
⎝ 0 −2 0

1 0 0
0 0 1

⎞
⎠ ,

⎛
⎝ 0 −2 0

0 0 0
1 0 1

⎞
⎠ .

The case k = 4. In the case A = {(i, j) : 1 ≤ i, j ≤ 4}, a computer calculation shows that
there are 980 normalized X-circuits, which come in the following classes with regard to λ−:

1 2 3 4

1 15 47 47 15
2 47 136 136 47
3 47 136 136 47
4 15 47 47 15

Note that in this case, the criteria of this and the previous section are not sufficient to
determine the set of sublinear circuits solely from these criteria.

6 Reducibility and Extremality

By Proposition 2.8, the reduced sublinear circuits provide an irredundant decomposition of
conditional SAGE cones. In this section, we discuss some criteria and key examples for
reduced sublinear circuits. As an application of the criteria, we will determine the extremals
of the [−1, 1]-SAGE cone in Theorem 6.6.

For the classical case of affine circuits supported on a finite set A, the following exact
characterization in terms of the support is known.
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Proposition 6.1 ([12, Corollary 4.7], [7, Theorem 3.2]) A vector ν is a reduced R
n-circuit

if and only if
A ∩ relint conv ν+ = {ν−}.

For example, with regard to the two matrices in (4.1) of Example 4.4, the left one is not
reduced, but the right one is. The following theorem gives a generalization for the necessary
direction of Proposition 6.1 to the constrained situation, where X is a non-empty, convex
set in R

n.

Theorem 6.2 Let λ ∈ ΛX(A, β). If there exists β ′ ∈ A \ supp λ and some normalized
λ′ ∈ Nβ ′ where (λ′)+ ⊂ supp(λ) andAλ′ = γAλ for some γ ≥ 0, then λ is not reduced.

Before providing the proof within this section, we discuss its consequences.

Corollary 6.3 Let λ ∈ ΛX(A, β). If (conv(supp λ)∩A)\supp λ 	= ∅, then λ is not reduced.
Consequently,

{λ ∈ Λ�
X(A) : Aλ = 0} ⊂ Λ�

Rn(A).

Proof The first statement follows by applying Theorem 6.2 with β ′ ∈ conv(supp λ)\supp λ,
(λ′)+ are the vertices of supp λ and γ = 0. The second one is a direct consequence of
Proposition 6.1 and the fact that for X = R

n all X-circuits λ have the property Aλ = 0.

Using this corollary, we can provide an analogon to Theorem 4.8.

Theorem 6.4 Let X = pos{v(1), . . . , v(k)} be an n-dimensional polyhedral cone spanned
by the vectors v(1), . . . , v(k), where k ≥ n. Then{

λ ∈ Λ�
X(A) : Aλ = 0

} = Λ�
Rn(A).

Proof By Corollary 6.3, every λ ∈ Λ�
X(A) is contained in Λ�

Rn (A). Suppose there exists
some λ ∈ Λ�

Rn (A) that is not contained in Λ�
X(A). By Theorem 4.8, λ ∈ ΛX(A). As

λ /∈ Λ�
X(A), there exist m ∈ N and X-circuits ν(1), . . . , ν(m) which are non-proportional to

λ and which satisfy
∑

i≤m(ν(i), σX(−Aν(i))) = (λ, σX(−Aλ)). Since σX(−Aλ) = 0 and
σX(y) ∈ {0, ∞} for all y ∈ R

n, we have σX(−Aν(i)) = 0 for all i ∈ [m].
As in Theorem 4.8, denote by W the k ×n-matrix whose rows are the transposed vectors

(v(1))T , . . . , (v(k))T . Again,

σX(−y) < ∞ if and only if Wy ≥ 0.

Since Aλ = WAλ = 0, we obtain WAν(i) = 0 and, as the kernel of W is {0}, further
Aν(i) = 0 for all i ∈ [m]. Hence, ν(i) ∈ Λ�

Rn(A) and therefore λ /∈ Λ�
Rn (A), which is a

contradiction.

We illustrate the applicability of Theorem 6.2 in determining the reduced sublin-
ear circuits by returning to the univariate example X = [−1, 1], which was started in
Proposition 3.1.

Theorem 6.5 Let X = [−1, 1] and A = {α1, . . . , αm} sorted ascendingly, where m ≥ 3.
Then, Λ�

X(A) consists of the following sublinear circuits:

(1) λ = e(2) − e(1) or λ = e(m−1) − e(m), or
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(2) λ = αi−1 − αi

αi−1 − αi+1
e(i−1) − e(i) + αi−1 − αi

αi−1 − αi+1
e(i+1) for some i ∈ {2, . . . , m − 1}.

Note that this gives, in particular,

Λ�
X(A) ∩

⎧⎨
⎩λ ∈

⋃
β∈A

Nβ : |supp λ| = 3

⎫⎬
⎭ = Λ�

R
(A).

Proof of Theorem 6.5 By Proposition 3.1 and Corollary 6.3, the only candidates for nor-
malized reduced X-circuits are

(1) λ = e(i) − e(i±1) or

(2) λ = αi − αi+1

αi−1 − αi+1
e(i−1) − e(i) + αi−1 − αi

αi−1 − αi+1
e(i+1) for some i ∈ {2, . . . , m − 1}.

For every X-circuit e(i+1) − e(i) with i > 1, the X-circuit e(i+1) − e(1) satisfies the pre-
condition of Theorem 6.2 and for every X-circuit e(i−1) − e(i) with i < m, the X-circuit
e(i−1) − e(m) satisfies the precondition of Theorem 6.2. Hence, all those X-circuits are not
reduced.

We see that for all i ∈ [m], there is precisely one normalized X-circuit λ that appears
in the listed set of possible reduced X-circuits. As rec(X)∗ = R, there exists at least one
X-AGE signomial where the i-th coefficient is negative, hence CX(A, αi) 	= ∅ for all
i ∈ [m]. As CX(A, αi) is the union of several λ-witnessed X-AGE cones and those cones
can be solely represented by reduced X-circuits (compare [17], Sections 4 and 5), for every
i ∈ [m] there exists at least one reduced X-circuit in CX(A, αi). With this, the statement
follows.

Proof of Theorem 6.2 Since λ and λ′ are normalized elements in Nβ and Nβ ′ , we have∑
α∈λ+

λα = 1 and λβ = −1, λα ≥ 0 for α ∈ A \ {β},
∑

α∈(λ′)+
λ′

α = 1 and λ′
β ′ = −1, λ′

α ≥ 0 for α ∈ A \ {β ′}.

Let τ be the maximal real number in [0, 1/γ ] (with the convention 1/γ := ∞ if γ = 0)
such that ν(1) := λ − τλ′ ∈ Nβ . That maximum clearly exists, and, since (λ′)+ ⊂ supp λ,
the number τ is positive. Moreover, since λ and λ′ are normalized and distinct, we have
τ < 1.

Similarly, let τ ′ be the maximal real number in [0, γ ] with ν(2) := λ′ − τ ′λ ∈ Nβ ′ .
Here, we have 0 ≤ τ ′ ≤ 1 (and, in particular, τ ′ = 0 if γ = 0 or (λ′)+ � λ+). Hence,
ν(1) ∈ Nβ, ν(2) ∈ Nβ ′ and 1 − ττ ′ ∈ (0, 1].

Since ν(1) + τν(2) = λ − τλ′ + τλ′ − ττ ′λ = (1 − ττ ′)λ, we see that λ can be written
as a conic combination of the two non-proportional (not necessarily normalized) elements
ν(1) ∈ Nβ and ν(2) ∈ Nβ ′ . Due to Aλ′ = γAλ and as both, 1 − τγ ≥ 0 and γ − τ ′ ≥ 0, we
obtain

σX(−Aν(1)) = σX(−Aλ + τAλ′) = σX(−Aλ + τγAλ)

= (1 − τγ )σX(−Aλ) = σX(−Aλ) − τσX(−Aλ′),
σX(−Aν(2)) = σX(−Aλ′ + τ ′Aλ) = σX(−γAλ + τ ′Aλ)

= (γ − τ ′)σX(−Aλ) = σX(−Aλ′) − τ ′σX(−Aλ)
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and further

σX(−Aλ) = 1

1 − ττ ′
(
σX (−Aλ) − τσX

(−Aλ′) + τσX

(−Aλ′) − ττ ′σX (−Aλ)
)

= 1

1 − ττ ′
(
σX

(
−Aν(1)

)
+ τσX

(
−Aν(2)

))
,

which shows that (λ, σX(−Aλ)) does not generate an extreme ray in GX(A). By the
definition of a reduced sublinear circuit, λ ∈ Λ�

X(A).

As a consequence of the results in this section, we can give an exact characterization of
the extreme rays of the [−1, 1]-SAGE cone.

Theorem 6.6 LetX = [−1, 1] andA = {α1, . . . , αm} be sorted ascendingly, wherem ≥ 3.
The extremal rays of CX(A) are the following:

(1) R+ · (exp(α2x) − exp(α1 − α2) exp(α1x)),
(2) R+ · (exp(αm−1x) − exp(αm−1 − αm) exp(αmx)),
(3) R+ · {ci−1 exp(αi−1x) + ci exp(αix) + ci+1 exp(αi+1x)}, with

ci−1 > 0, ci+1 > 0 and ci = −
(

ci−1

λi−1

)λi−1
(

ci+1

λi+1

)λi+1

,

where

λi−1 = αi+1 − αi

αi+1 − αi−1
, λi+1 = αi − αi−1

αi+1 − αi−1
and

αi−1 − αi+1 ≤ ln
ci−1λi+1

ci+1λi−1
≤ αi+1 − αi−1.

We first deal with the atomic extreme rays, that is, extreme rays which are supported on
a single element. These extreme rays are not captured by the X-circuit view.

Lemma 6.7 (Atomic extreme rays of CX(A) for compact sets X) LetX ⊂ R
n be a compact

set andA ⊂ R
n finite with |A| ≥ 2. Then, there are no atomic extreme rays of CX(A).

Proof As in Lemma 4.2, we use invariance of the X-circuits under translation of X and can
w.l.o.g. assume 0 ∈ X. Let α 	= β ∈ A arbitrary. Assume that f = cα exp(αT x) with
cα > 0 is extremal. We observe that λ ∈ Nβ with λα = 1 = −λβ is an X-circuit inducing
the ray

R+ ·
(

exp(αT x) − 1

exp(s)
exp(βT x)

)
,

where s ≥ 0 is finite and such that σX(−Aλ)) = s. Hence, the X-AGE signomials

f (1) = cα exp(αT x) − cα

exp(s)
exp(βT x), f (2) = cα

exp(s)
exp(βT x)

sum to f , contradicting the extremality of f .

Proof of Theorem 6.6 Let A = {α1, . . . , αm} be sorted ascendingly. By Lemma 6.7, there
are no atomic extreme rays, and by Theorem 6.5 and Proposition 2.8, all the extreme rays
are supported on two or three elements.

We start by considering the 2-term case. By Lemma 6.5, the only candidates for the
extreme rays are the ones given in the cases (1) and (2). Since these cases are symmetric, it
suffices to consider case (1), i.e., f (x) = exp(α2x) − exp(α1 − α2) exp(α1x). Any conic
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combination of 3-term AGE functions and of functions of case (2) has a lowest-exponent
term with positive coefficient. Hence, f cannot be written as a convex combination of 3-
term AGE functions and of functions of case (2). Thus, f indeed is extremal.

Now consider the 3-term case. By Lemma 6.5, the only candidates for extreme rays are of
the form f (x) = ci−1 exp(αi−1x)+ci exp(αix)+ci+1 exp(αi+1x) with ci−1 > 0, ci+1 > 0
and ci < 0. The proof in [17, Theorem 6.1] shows that f must have a zero in [−1, 1] and
that the location x∗ of the zero is

x∗ = ln

(
ci−1λi+1

ci+1λi−1

)
/(αi+1 − αi−1),

where λi−1 and λi+1 are defined as in case (3) of the theorem. This gives the defining
condition for ci as well as the inequality conditions in case (3).

Any decomposition of f cannot involve a 2-term AGE function. For x∗ ∈ (−1, 1),
this follows from the strict positivity of the 2-term AGE functions of type (1) and (2). For
the boundary situations x∗ ∈ {−1, 1}, we can additionally use the derivative condition
f ′(x∗) = 0 to exclude the 2-term AGE functions.

It remains to show that the 3-term AGE function f cannot be decomposed in terms of
3-term AGE functions. However, since f has a zero in [−1, 1] and thus in R, it induces
an extremal ray of the cone CR(A) and cannot be decomposed using only 3-term AGE
functions by [12, Proposition 4.4].

Example 6.8 The reduced sublinear circuits for the cube [−1, 1]2. We consider again the
support A = {(i, j) : 1 ≤ i, j ≤ k} for some k ∈ N. In the case k = 3, there are 24
normalized reduced X-circuits, which come in the following classes:

(1) 12 sublinear circuits with entries 1,−1, namely,

(a) 8 with entry −1 in a corner and entry +1 beside or below the corner,
(b) 4 with entry −1 in a non-corner boundary entry and entry +1 in the central,

interior entry,

(2) 8 sublinear circuits, where the sequence 1
2 ,−1, 1

2 appears in a row (3 possibilities), in
a column (3 possibilities) or on the diagonal or the antidiagonal,

(3) 4 sublinear circuits supported on 4 elements, namely⎛
⎝ 0 1/3 0

1/3 −1 0
0 0 1/3

⎞
⎠

as well as the 90-degree, 180-degree and 270-degree rotation of this matrix.
Note that, when starting from the set of all sublinear circuits λ for [−1, 1]2, Theo-

rem 6.2 is applicable to rule out that λ is reduced in a number of cases. For example,
the matrices ⎛

⎝ 0 0 1/2
1/2 −1 0

0 0 0

⎞
⎠ ,

⎛
⎝ 0 0 1/2

1/2 0 0
0 −1 0

⎞
⎠

represent sublinear circuits λ and λ′ with Aλ = (−1/2, 0)T and Aλ′ = (−3/2, 0)T ,
to which Theorem 6.2 can be applied in order to show that λ is not reduced.

Also note that all reduced R
2-circuits for the support set A are also reduced

[−1, 1]2-circuits. Namely, since for all other [−1, 1]2-circuits λ, we have σX(−Aλ) 	=
0, those circuits cannot be used to decompose an R

2-circuit (which has σX(−Aλ) =
0).
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In the case k = 4 with 16 support points, a computer calculation shows that there are 72
reduced sublinear circuits.

7 Conclusion and Outlook

We have studied the connection of sublinear circuits and their supports and the sublinear
circuits for polyhedral sets X. Since for polyhedral sets, the number of X-circuits is finite,
this allows to apply polyhedral and combinatorial techniques. In particular the X-SAGE
cones can be decomposed into a finite number of power cones, which arise from the reduced
sublinear circuits.

For non-polyhedral sets X, in general the number of X-circuits is not finite anymore.
It remains a future task to study necessary and sufficient criteria for sublinear circuits of
structured non-polyhedral sets, such as sets with symmetry; for recent work on symmetric
SAGE-based optimization see [14]. In a different direction, Forsgård and de Wolff [7] have
characterized the boundary of the SAGE cone through a connection between circuits and
tropical geometry. It also remains for future work to establish a generalization of this, aiming
at connecting the conditional SAGE cone and sublinear circuits to tropical geometry.
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Determinants. Birkhäuser, Boston (1994)

467Sublinear Circuits for Polyhedral Sets

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10208-021-09496-x
http://arxiv.org/abs/1905.04776


9. Iliman, S., de Wolff, T.: Amoebas, nonnegative polynomials and sums of squares supported on circuits.
Res. Math. Sci. 3, 9 (2016)

10. Joswig, M., Theobald, T.: Polyhedral and Algebraic Methods in Computational Geometry. Springer,
London (2013)

11. Karaca, O., Darivianakis, G., Beuchat, P., Georghiou, A., Lygeros, J.: The REPOP Toolbox: Tackling
Polynomial Optimization Using Relative Entropy Relaxations. In: 20th IFAC World Congress, IFAC
Papersonline, vol. 50, pp. 11652–11657. Elsevier (2017)

12. Katthän, L., Naumann, H., Theobald, T.: A unified framework of SAGE and SONC polynomials and its
duality theory. Math. Comput. 90, 1297–1322 (2021)

13. Michałek, M., Sturmfels, B.: Invitation to Nonlinear Algebra. Amer. Math. Soc., Providence (2021)
14. Moustrou, P., Naumann, H., Riener, C., Theobald, T., Verdure, H.: Symmetry reduction in AM/GM-

based optimization. arXiv:2102.12913 (2021)
15. Murray, R., Chandrasekaran, V., Wierman, A.: Newton polytopes and relative entropy optimization.

Found. Comput Math. https://doi.org/10.1007/s10208-021-09497-w (2021)
16. Murray, R., Chandrasekaran, V., Wierman, A.: Signomial and polynomial optimization via relative

entropy and partial dualization. Math. Program. Comput. 13, 257–295 (2021)
17. Murray, R., Naumann, H., Theobald, T.: Sublinear circuits and the constrained signomial nonnegativity

problem. arXiv:2006.06811 (2020)
18. Naumann, H., Theobald, T.: The S-cone and a primal-dual view on second-order representability. Beitr.

Algebra Geom. 62, 229–249 (2021)
19. Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (2006)
20. Pantea, C., Koeppl, H., Craciun, G.: Global injectivity and multiple equilibria in uni- and bi-molecular

reaction networks. Discret. Contin. Dyn. Syst. Ser. B 17, 2153–2170 (2012)
21. Reznick, B.: Forms derived from the arithmetic-geometric inequality. Math. Ann. 283, 431–464 (1989)
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