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Abstract

Given a log base space (Y, S), parameterizing a smooth family of complex projective
varieties with semi-ample canonical line bundle, we briefly recall the construction of the
deformation Higgs sheaf and the comparison map on (Y, S) made in the work by Viehweg—
Zuo. While almost all hyperbolicities in the sense of complex analysis such as Brody,
Kobayashi, big Picard and Viehweg hyperbolicities of the base U = Y \ S (under some
technical assumptions) follow from the negativity of the kernel of the deformation Higgs
bundle we pose a conjecture on the topological hyperbolicity on U. In order to study the
rigidity problem we then introduce the notions of the length and characteristic varieties of
a family f : X — Y, which provide an infinitesimal characterization of products of sub
log pairs in (Y, S) and an upper bound for the number of subvarieties appearing as factors
in such a product. We formulate a conjecture on a characterization of non-rigid families of
canonically polarized varieties.

Keywords Moduli space - Hyperbolicity

Mathematics Subject Classification (2010) 14J10 - 32G13 - 32C18

1 Introduction

Let U be a complex quasi-projective manifold and ¥ = U U § a smooth compactification.
Hodge theory plays a fundamental role in studying the geometry of U. We are particularly
interested on U as a base space f : V — U parameterizing smooth projective varieties.
The powerful theory on variation of Hodge structures developed by P. Griffiths [11-13]
suggests certain negativity of the sheaf of logarithmic holomorphic vector fields of the log
pair (¥, S). We detail here the resulting program of the complex hyperbolicity of U in its
various aspects as well as the program motivated by the original Shafarevich conjecture.
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528 K. Zuo

In Section 2, we summarize all these relevant properties for a base admitting a locally
injective Torelli map. C. Simpson [25] has introduced a basic notion in nonabelian Hodge
theory, the so-called graded Higgs bundle or the system of Hodge bundles (E, 0) as the grad-
ing of a polarized variation of Hodge structures (PVHS). These Oy -linear objects are better
understandable in algebraic geometry and enjoy a crucial property in complex geometry:
The kernel of the Kodaira—Spencer map (the Higgs field) ker(0) is semi-negative.

In Section 3, we discuss the work by Viehweg—Zuo on families without the assump-
tion of local injective Torelli maps. We emphasize the following crucial new ingredients in
Viehweg—Zuo’s construction:

— The deformation Higgs bundle arising from the Kodaira—Spencer theory. One notes
that if the family has maximal variation then the Kodaira—Spencer map is generically
injective.

— Constructing a comparison map between the deformation Higgs bundle and a Higgs
bundle of geometric origin.

With the help of this comparison map, the negativity of the kernel of the Higgs field
mentioned in Section 2 is transformed into that of the kernel of Kodaira—Spencer map on
the deformation Higgs bundle. However we do not achieve all known negativity proper-
ties which are enjoyed by families admitting locally injective Torelli map. We pose several
questions and conjectures. In particular, we raise a conjecture on the topological hyperbol-
icity of the base space, which is motivated by a question asked by Jiirgen Jost some years
ago on the negativity of Riemannian sectional curvature of a base space admitting a locally
injective Torelli map.

In Section 4 we consider the rigidity problem of families, or equivalently products of
subvarieties of the base space. The original Shafarevich program asked for the so-called
finiteness of the set H of isomorphic classes of families over a fixed log base. The finiteness
is decomposed into two basic problems:

—  The boundedness of H.
—  The rigidity of points in H.

The boundedness has been proven by various people. For example, for semi-stable families
of abelian varieties over a base curve Faltings [9] has shown the boundedness. Jost and Yau
[16] have used Yau’s form of Schwarz inequality and given another proof of the bounded-
ness for families of abelian varieties over curves. In general, Viehweg and Zuo [29] have
shown the boundedness for families of varieties with semi-ample canonical line bundles
over a base curve without requiring the existence of a locally injective Torelli map. Finally,
Kovics, Lieblich [18] have shown the boundedness for families over a higher dimensional
base.

The rigidity problem is subtle. In fact, there exists non-rigid families of higher dimen-
sional varieties. So characterizing non-rigid families will be important for Shafarevich
program for families of higher dimension varieties. In Section 4.1 we introduce the notion
of the length of a family, which generalizes the rank of a bounded symmetric domain. In
Section 4.2 we define the characteristic varieties of a family, which gives an infinitesimal
characterization of products of subvarieties of the base space. The characteristic varieties has
been introduced by N. Mok originally for bounded symmetric domain for studying the met-
ric rigidity problems. Motivated by Mok’s work, M. Sheng and the author have constructed
characteristic varieties for PVHS of Calabi—Yau type. With help of such new invariants we
hope to get a better understanding of the Arakelov rigidity problem for families of higher
dimensional varieties.
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On the Negativity of Moduli Spaces for Polarized Manifolds 529

Very recently, Javanpeykar, Sun and Zuo [15] proved a new version of the Shafarevich
conjecture, the so-called finiteness of pointed families f : X — Y of A-dimensional polar-
ized varieties. A log map from a log curve ¢ : (C, Sc) — (Y, S) has only the trivial
deformation ¢y if ¢, fixes no less than %(h — 1)deg .Qé (log S¢) number of points in C \ Sc.
We remark that the slop of the ample vector bundle fiw} /C satisfies the following Arakelov
inequality

hv
fawy e < —-deg 2¢(log Sc).

2 Semi-negativity of the Kernel of Logarithmic Higgs Field and Bigness
of Logarithmic Differential Forms on Base Space Admitting Locally
Injective Torelli Map

Let (Y, S) be a smooth log pair and (V, V, Fil*, ¥) a polarized variation of complex Hodge
structures on U := ¥ \ § with quasi-unipotent local monodromy around S. Let (E, 6) be
the grading of the quasi-canonically extended filtered de Rham bundle, which is originally
observed by C. Simpson in non-abelian Hodge theory. It is a graded logarithmic Higgs
bundle, or a system of logarithmic Hodge bundles called by Simpson. Comparing with the
connections on the de Rham bundle, the Higgs field 6 is Oy-linear and seems to be better
understood in algebraic geometry and complex geometry. Let K C E be the kernel of the
Higgs map 6 : E — E ® £2;(log S). Based on the Griffiths curvature formula for the
Hodge metric on E and the asymptotic behavior of the Hodge metric on the quasi-canonical
extension on S due to Cattani—Kaplan—Schmid [3], one shows that the curvature current of
the Hodge metric on K is semi negative. In the same way, using the polarized variation of
mixed Hodge structures along S, one shows (in [32]) that K is also semi-negative along S.

2.1 Semi-negativity of Ty (— log 3)

The most important negativity is that of the logarithmic tangent bundle T (— log S). Assum-
ing injectivity of the local Torelli, i.e., the injectivity of the derivative of the period

map ¢
de : Ty(—log §) — End(E)
on U (in general d¢ is required to be injective at at least one point in U), since the

original Higgs map satisfies the integrability condition: & A & = 0, this is equivalent to
([32, Proposition 2.1])

d¢ (Ty (—log §)) C Ker (ee“d : End(E) — End(E) ® 2}, (log S)) ,

where the Higgs map 6™ comes from the tensor algebra and gives also the grading of
the Gauss—-Manin connection on End(V, V, Fil*, ¥). In particular, Ty (—log S) is semi-
negative in the sense of the curvature current of the Hodge metric. Consequently, it implies
that
- .Q}/(log S) is weakly positive on U in the sense of Viehweg.

.Q)l, (log S) is semi-positive in the usual sense of Algebraic Geometry, i.e., for any pro-

jective curve C C Y and any quotient bundle .Q)l?(log S)le — Q — 0 one has
det QO > 0.
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530 K. Zuo

—  The holomorphic bisectional curvature of the Hodge metric on Ty (— log )|y is semi-
negative.

2.2 Bigness of w;(g)

The theorem due to Griffiths—Schmid [14] tells us more! It asserts that the holomor-
phic sectional curvature is strictly negative. This property together with semi-negativity of
Ty (—log S) shows that wy (S) is big. Griffiths [10, 13] constructed the so-called augmented
line bundle L by taking the product of determinants of the Hodge bundles of suitable powers.
L isnefon Y and ample on U. Alternatively, one uses the iteration of the Kodaira—Spencer
map and shows directly L = ra))-,(.S_") — P + N, where r is a positive rational number, P
is an effective divisor and N is a rational semi-negative divisor. This shows wy (S) is big
([32, Lemma 2.2]).

2.3 Bigness of Q;(Iog S)

The bigness of .Q)l, (log S) should have a close relation to the strict negativity of holomorphic
sectional curvature due to Griffiths—Schmid. There are several different notions of ample-
ness and bigness for torsion free sheaves on Y. The first one has been introduced by Viehweg
and mainly used in Viehweg—Zuo’s papers. Here we just concentrate on vector bundles.

Definition 1 (Viehweg) A vector bundle E over a projective variety is called generically
ample if for some symmetric power S”(E) there exist an ample line bundle A and a
generically surjective map

A% 5 SY(E).

Definition 2 A vector bundle E is called big if some positive power of the tautological line
bundle O (1) on the projective bundle P(E) contains an ample sub-line bundle.

Proposition 1 1. E is big in Definition 2 if and only if some symmetric power S"(E)
contains a generically ample subbundle.
2. A generically ample vector bundle is big.

Conversely a big vector bundle is not necessarily generically ample. For example, the
cotangent bundle on a locally bounded symmetric domain of rank > 1 is big but not
generically ample. However, the cotangent bundle on a complex ball quotient is ample.

In general, the sheaf of log differential forms on a log base (¥, §) admitting a locally
injective Torelli map is big. This is due to Brunebarbe, Klingler and Totaro ([2, Theo-
rem 1.1]). The crucial point in Lemma 1.4 in their paper is to use the strict negativity of
holomorphic sectional curvature to produce a generically ample subsheaf in a symmetric
power S" (.Q}, (log S)). In fact, the existence of an ample subsheaf in the symmetric power
of sheaf of log differential forms can be constructed directly via Kodaira—Spencer map as
follows. If the first Hodge bundle E™° is generically ample as in Definition 1, for example
in the case of variation of middle cohomology of Calabi—Yau n-folds or abelian varieties,
then one obtains a generically ample subbundle

E" @ker(0)" — S§"(24(log$))

by applying the maximal non-zero iteration of Kodaira—Spencer maps. In general we con-
sider the Griffiths augmented line bundle L. Then L is generically ample. Deng [6] observed
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On the Negativity of Moduli Spaces for Polarized Manifolds 531

that L can be realized as a sub-line bundle in a suitable type of tensor product of the original
Higgs bundle. By running the maximal non-zero iteration of Kodaira—Spencer map starting
from L as the initial line bundle one obtains non-zero map

L ®@ker(0®™)" — $"2}(log $).
As the sheaf on the left-hand side is a tensor product of a generically ample line bundle with

a non-negative sheaf and the image is generically ample and .Q)l, (log S) is semi-positive, the
bigness of wy (S) follows.

3 Bigness of 2/ (log S) for a Log Base (Y, S) Parametrizing Varieties
with Semi-ample Canonical Line Bundles

The following construction has been introduced in [29, 30]. Let f : V — U be a smooth
family of polarized manifolds of dimension n with semi-ample canonical line bundle and
with maximal variation. We take a good partial compactification f : X — Y of the original
family f : V — U, which satisfies:

— X and Y are quasi-projective manifolds, U C Y and V C X. The map f restricted to
V coincides with f : V — U.

— §: =Y\ U issmooth and A := f*(S) is relatively normal crossing over S. Hence,
f : X — Y is a log smooth projective morphism between the log pairs (X, A) and
Y, S).

— Y has a smooth projective compactification ¥ such that Y \ U =: § is a normal crossing
divisor and codim(¥ \Y)>2.

3.1 Deformation Higgs Bundle (Sheaf) (F, 7¢) Arising from Kodaira-Spencer Map

We start with the classical Kodaira—Spencer map on the log smooth family f : X — Y:

n,0
Ty(—log S) SN S«Txyy(—log A),

or equivalently
1’”'0
Oy = R! f.Tx/y(—log A)®02} (log S).
Tensoring the Kodaira—Spencer map 16’ 0 with RY e T; / y(—1log A) and then composing
with the wedge product A, we define the extended Kodaira—Spencer maps r(f 1 as the
composition:

‘["'0®Id
Ty(—log $) ® RY fuTy y (—log A) ——— R' f,Txy(—log A) ® R £.T}!,, (—log 4)

A

5 RTATE (< log 4).

Denote Fé’ 4 = Raf, T}? sy (= log A). Putting all terms together we obtain the so-called
deformation Higgs bundle (sheaf) attachedto f : X — Y:

(Fo, ©0) = @ F(f”q, @ T(f’q

p+q=n p+q=n
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532 K. Zuo

One checks that the sum of the extended Kodaira—Spencer maps 79 = @ré’ ¥ satisfies the
integrability condition 7o A 79 = 0 using the associativity and anti-commutivity of the cup
product on Dolbeault cohomology of the tangent sheaf. By taking the reflexive hull F?-4 of
Fl"" on'Y, the Higgs field

r(f’q : Fop'q — F({)_l'q+]®.(2)1,(log S)
extends to a Higgs field
thd ;. pPra o prrlatl g .Q)l,(log S)

on Y, since codim(¥Y \ Y) > 2. So we obtain a Higgs bundle (sheaf) (F, t) on Y as an
extension of the Kodaira—Spencer map of f : X — Y.

We note that for a family of Calabi—Yau n-folds the Higgs bundle (F, t) is nothing
but the graded Higgs bundle of the VHS associated to the middle cohomology of f after
tensoring with the Hodge line bundle f,$2% Y (log A)V.

Motivated by the negativity of the kernel of the Higgs map arising from PVHS, we would
like to compare (F, 7) with a Higgs bundle arising from the geometric origin and show the
negativity of the kernel of Kodaira—Spencer map 7.

Via linear algebra

F({"q =RIf, (Q)’;/Y(log AR ﬁ—l) /mod torsions

with p+¢g =nand L = .Q;'(/y(log A) we see that there is a close relation between (F, 1)
and the graded Higgs bundle (E, 0) = €D RY f. (.Q;;/Y(log A), 9) arising from PVHS of
the middle cohomology of f. Indeed, if £ has a non-zero section, then it induces a natural
Higgs sheaf map from (F, ) into (£, ). In Section 3.5 we will see that this idea can be
realized once some positive power of £ has non-zero sections.

3.2 Comparing (F, t) with Higgs Bundle Arising from the Geometry Origin

Given an ample line bundle A on Y there are two versions of the comparison map.

Version 1. Replacing f : X — Y by taking a self-fibre product to a higher power By
taking a self fibre product f M . X® — ¥ to a higher power and a cyclic cover 7 : Z —
X we obtain a Higgs sheaf map

oo (R".5") > Eoea,
where (Fé") , r(g")) denote the deformation Higgs bundle associated to f™ : X — ¥ and

(E, 0) is the logarithmic graded Higgs bundle on Y of the quasi-canonical extension of the

(n)
PVHS of the middle cohomology of the induced family g : Z _£> x® f—) Y with the
normal crossing degeneration locus S+ T (after a blowing up of Y of the degeneration locus
of g).

Version 2. Replacing Y by a Kawamata cover Y’ — Y to raise the power of A By taking
a Kawamata cover ¢ : Y/ — Y and a cyclic cover 7 : Z — X’ of the fibre product
f': X’ — Y’ induced by the base change, we obtain a Higgs sheaf map

p: YHF.T) - (E,0)@y*AT,
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On the Negativity of Moduli Spaces for Polarized Manifolds 533

where (E, 0) is the logarithmic graded Higgs bundle of the quasi-canonical extension of

PVHS of the middle cohomology of the induced family g : Z Lx Sy,

We emphasize the following crucial property of the comparison map. Although the Higgs
field  on E has in general bigger singularity S + T, its restriction to p(F) has only
singularity on the original degeneration locus S. We will briefly describe the construction
of (E, 0) in Section 3.5.

3.3 Negativity of the Kernel of Kodaira-Spencer Map

The Higgs sheaf map p is a sort of Torelli map, which relates the negativity of the kernel of
60 to the negativity of the kernel of t. First we discuss the injectivity of p.

Proposition 2 We take (F, ) either as the deformation Higgs bundle associated to a higher
power self fibre product of the original family or as the pulled back of the deformation Higgs
bundle associated to the original family via a Kawamata base change. Writing p = @ p?9,

1 pmo: Oy = F0 — E"0 @ A~ s injective.

(2) If the canonical line bundle of the fibres is ample, then every pP 4 is injective at all
points of U\ T.

(3) Ifthe canonical line bundle of the fibres is big, then p"~ ! is injective at all points of
U\T.

(4) If the fibres admit good minimal models, then the following composition map

_ n,0 _ n,0
Ty(log §) ® F™0 25 Tp(—log§) @ p"O(F™0) L5 prll g A~

is injective at every point of a Zariski open subset of U \ T.

The injectivity in (1) is tautological. The injectivity in (2) respectively in (3) follows from
Kodaira type respectively Bogomolov—Sommese vanishing theorem [29]. The comparison
map in (4) is similar (in every way) to the Kodaira—Spencer map on a family of Calabi—
Yau n-folds over U. Viehweg and Zuo show the map is non-zero and Deng [5] shows it
is injective at generic point. Both arguments are global and crucially rely on the semi-
negativity of ker(9”-?) and the strictly negativity of A~!. The injectivity of 6”0 o o0 in
(4) is weaker than the injectivity in (3), but strong enough to show all hyperbolicities on U
except for Kobayashi hyperbolicity.

As a consequence of the the non-triviality of the comparison map, we get the negativity
of the kernel of Kodaira—Spencer map. To illustrate the idea we assume that the canonical
line bundle along the fibres are ample (in general one works with the image p(F, 1) C
(E,0)® A~! and pays the attention to the property that the restriction of 6 to p(F) has only
singularities in S and

om0 Ty(—log$§) — E" Mlga!
is injective at the generic point). We have an embedding of Higgs bundles
(F,0)C(E,0)@A™!

and
ker(t) C ker(6) @ A™".

Since (E, 0) is the quasi-canonical extension of a polarized VHS on U C Y=UUSUT,
Griffiths curvature formula for ker(0) yields the semi-negativity on ker(0); more precisely,
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534 K. Zuo

the Hodge metric on ker(6) outside S + T extends to a degenerated metric on ¥ with semi-
negative curvature in the sense of currents. Hence, we see that ker(t) is negative on Y with
the following consequences.

Proposition 3

1. Under the comparison map p, the image of the kernel of the Kodaira—Spencer map of
a family of varieties with semi-ample canonical line bundle along the fibres (in general
admitting good minimal model) and of maximal variation is strictly negative.

2. Taking the maximal non-zero iteration of Kodaira—Spencer map on (F, T) for the case
the canonical line bundle on fibres is ample (for semi-ample case take the image
p(F, 1) C(E,0))

1
SIT)?(— log ) r_#()) ker(tnfl,l) C ker(enfl.l) ® A1

its dual gives rise to a generically ample subsheaf
r’v;EO =
A:=im (A ® ker(@”_”)v> =75 52l (log §).

ie. 9}? (log S) is big.
3. Assume the canonical line bundle on the fibres is ample. If (G, ) C (F, 1) be a sub-
Higgs bundle, then det G" is big. In particular, (EB;'»ZZ R’ f, T)?/y(— logA), 1) isa

sub-Higgs bundle of (F, t) forany 0 <1 < n. Hence ®;l»:l det(R/ f*T)?/y(— log A))Y
is big.

Proof 3. Take the second version of the comparison map
p: YG,1) > (E,0) @y A",
where p is injective. Let r := rank G, then the sub-Higgs line bundle
Y¥*det(G, 1) = A(E,0) Q y*A™"

lies in the kernel of the Higgs field on the right-hand side, as a graded Higgs line bundle
has vanishing Higgs field. This shows that ¢* det G is big on ¥’ and hence det G is big
onY. O

Remark 1 1t would be interesting to compare the bigness of the line bundle

n
. . Vv
@ det (R7 £,y (~log )
j=l
with the bigness of the Griffiths augmented line bundle from PVHS.

3.4 Pseudo-effectivity of ﬂ;(log S$)®N and Various Hyperbolicities of U

Campana and Paun [4] proved that .(2117 (log S) is pseudo-effective. Namely, for any quotient
sheaf Q of .Q;? (log $)®N and for any movable curve C C Y one has ¢;(Q)C > 0. The
proof relies on the existence of a generically ample subsheaf A C ' .Q)l-, (log S). Again

combining with this ample subsheaf A they showed the log pair (¥, S) is of log general
type, the so-called conjecture on Viehweg hyperbolicity.
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On the Negativity of Moduli Spaces for Polarized Manifolds 535

The maximal non-zero iteration of Kodaira—Spencer map on the image Higgs bun-

dle p((F,7) ® A)
1
STy (—10g $) ® A 275 ker(pr" ) C ker(9" 1)

defines a complex Finsler pseudometric (a further modification of the Fubini—Study metric
on A is eventually needed [30] and [21]) such that the holomorphic sectional curvature is
strictly negative. All hyperbolicities on U except the Kobayashi hyperbolicity follows from
this metric. In particular, very recently Deng et al. [7] have shown the big Picard theorem
holds true in U. As for Kobayashi hyperbolicity, a further modification by taking the Finsler
metric as the sum of iterations of all lengths by To and Yeung [26] (also see [5]) is needed
for constructing a non-degenerated and strictly negatively curved Finsler metric.

The following proposition shall give a Hodge theoretical counterpart and interpretation
of the strict negativity of the holomorphic sectional curvature of the modified Finisler metric
defined by taking the sum of iterations of all lengths.

Proposition 4 The determinant of the image Higgs sheaf by taking iterations of Kodaira—
Spencer map of all lengths

(A D Ty(logS) ® AP SzTy(—logS) RAD--- D SlTy(—log S) ® A) — (E,09)
is non-positive.

Comments I The pseudo-effectivity of Q},(log S) together with the big subsheaf A in the

symmetric power of .Q)l-, (log S) makes the log pair (Y, S) similar to a base space admitting
a locally injective Torelli map. For more applications we would like to ask for the positivity
of log differential forms pulled back to subvarieties. More precisely, regarding the second
component of the deformation Higgs bundle F"~1'! = R!f, Tx,y(—logS) as the pulled
back of the log tangent sheaf on the moduli space via the moduli map one would like to
know if any type non-positivity of F"~1-! restricted to any subvariety holds true? In a recent
paper [15] Javanpeykar, Sun and Zuo used the argument by taking the sum of iterations of
Kodaira—Spencer map specifically on an invertible subsheaf in the pulled back ¢* F"~1:!
via a log map ¢ into (Y, S) and showed that

Proposition 5 [15] Let ¢ : (C, Sc) — (Y, S) be a non constant map from a log curve
(C, S), then any invertible subsheaf L C ¢*F"~ ! one has

(n — 1)deg 2\ (log Sc)

deg L
egL < 2

Consequently, Javanpeykar, Sun and Zuo proved a new version of the Shafarevich
conjecture, the so-called finiteness of pointed families of polarized varieties.

Theorem 1 (Weak-pointed Shafarevich conjecture [15]) Let k be an algebraically closed
field of characteristic zero, let f : V. — U be a smooth family of h-dimensional varieties
with semi-ample canonical line bundle and such that the moduli map is quasi finite. Then U
has the following finiteness property: If N > %(h —1)(2g(C) =2+ #(C\ ©)) is an integer,
ui,...,uy € U(k) are points, C is a smooth quasi projective connected curve over k, and
c1,...,cn € C(k) are pairwise distinct points, then the set of non-constant morphisms
¢:C — Uwithe(c1) =uy,...,d(cy) = uy is finite.
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536 K. Zuo

Conjecture 1 The degree of any subsheaf of the pullback ¢*F"~!-! via any non-constant
log map ¢ : (C, Sc) — (Y, S) is non-positive.

Conjecture 1 should have more stronger consequences on the geometry of (Y, S). For
example, it implies the one pointed Shafarevich Conjecture asked in [15].

So far we have discussed various notions of hyperbolicity in the sense of complex analy-
sis, to end this section we like to pose a conjecture on the bigness of the fundamental group
of U.

One notes that a punctured Riemann surface U is hyperbolic if and only if 71 (U) is
infinite and nonabelian.

Definition 3 (Milnor [19]) A growth function £ associated to a finitely generated group G
is defined as follows: For each positive integer s let £(s) be the number of distinct group
elements which can be expressed as words of length < s with a fixed choice of generators
and their inverses.

Theorem 2 (Milnor [19]) The fundamental group of a compact Riemannian manifold M
with all Riemannian sectional curvatures less than zero has exponential growth, i.e.

£(s) > a’®

for some a > 1.

The proof relies on Giinther’s volume comparison theorem on the exponential growth of
the volume of the geodesic ball on the universal cover M. We make

Conjecture 2 Let U be a base parameterizing polarized manifolds with semi-ample line
bundle and of maximal variation. Then 71 (U) grows at least exponentially.

The idea supporting Conjecture 2 goes back to a question asked by Jiirgen Jost many
years ago. A horizontal subvariety in a period domain is locally embedded into the asso-
ciated real symmetric space under the natural projection. As the real symmetric space has
non-positive Riemannian sectional curvature, Jost asked if the Hodge metric, as a Kéhler
metric on the horizontal subvariety enjoys the same type of property for the Riemannian
sectional curvature. However, Conjecture 1 asks more, via the comparison map and the
maximal non-zero iteration of the Kodaira—Spencer map one hopes that the negativity of the
Riemannian sectional curvature on the real symmetric space can be further “transformed”
into the degenerated Finsler metric on U discussed here. Similar to the approach in prov-
ing the complex hyperbolicity on U we hope to construct a Riemann—Finsler metric on U
via the iteration of Kodaira—Spencer map, whose curvature has certain negativity. In our
situation the complex Finsler metric naturally induces a Riemann—Finsler metric ds]%RFin on
U. We are aware that in general the Riemannian curvature decreasing principle does not
hold true for real sub-manifolds. Very recently together with Steven Lu and Ruiran Sun we
observed the fact that pluriharmonicity of the composition of the horizontal period map with
the projection to the symmetric space of non-compact type implies decreasing Riemannian
curvature still holds true in a weak form. We expect this weak form of the negative sectional
curvatures can be used to show Giinter’s volume comparison inequality and get the solution
of Conjecture 2 by Milnor’s original argument.
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On the Negativity of Moduli Spaces for Polarized Manifolds 537

3.5 Constructing the Comparison Map in Section 3.2, a Hodge Theoretic
Interpretation

The main issue in the comparison map is that we would like to give the relative Cech coho-
mology of log tangent sheaf T,I(J /v (—log A) a Hodge theoretical interpretation. Hence, the
negativity (or positivity) results from Hodge theory can be applied. The construction is the
gluing of the fiberwise construction, which goes back to the works of Esnault—Viehweg and
Kawamata.

3.5.1 Cyclic (Kummer) Cover in the Absolute Case

Let X be a smooth projective variety. Cyclic covers of X are classical and were invented
mainly to prove Kodaira type vanishing theorems for the Cech cohomology of differential
forms (twisted with an anti big line bundle) of type p +¢ < dim X, see [8] for details. Note
that for the comparison map we focus on the cohomology of type p + g = dim X.

Let £ be a line bundle on X with H%(X, L) # 0 for some positive integer v. Then any
non-zero section s € H%(X, £V) will induce naturally a comparison map

ps:  HY (X, Q)‘;@E*l) — H(Z,2}).

where Z stands for the v-th cyclic (Kummer) cover of s, see [8, Section 3].

Assume that the zero divisor div(s) =: D is smooth. The v-th root out of s defines a
smooth cyclic cover 7 : Z — X ramified on D C X. The Galois group of the cover (Z/vZ)
acts on Z and on 1, (S2 5 ). The eigenspace decomposition reads as:

v—1
m (25) = 2F o @ efdogD)® L7,
i=1
which induces an isomorphism

v—1
HU(Z, ) ~ HY(X, 7,27 Z) = HY(X, 2%) & P H* (X, 2%(log D) ® £*") ‘
i=1

Picking up the st eigenspace .Q)’? (log D) ® L™, the inclusion of sheaves
2P @ L7l 2P(logD)® L7
induces a map
pr: H1(X. Q0@ L") — HY(X, 2ftgD)® L) C HY (2, 20).

In general, D could be singular and have some components with multiplicities. We first
take a blowing up § : W — X to make §*(D) =: B = Zj ajB; being normal crossing.
Then we choose a suitable Kummer cover, the so-called Kawamata cover, 7 : Z — W by
adding the v-th root of r*s and the v-th roots of some sections from additional line bundles
such that Z is smooth and the ramification locus is a normal crossing divisor containing
the divisor Zj:ﬁ ¢N Bj =: B’. Again, by applying the eigenspace decomposition and the

inclusion of sheaves of log differential forms one obtains
H1 (X, 24 e L") — H(W.2ftogB)® («*0)"V) c H (2,23,

where (8% L)~ is slightly large than §* L™, see [8] for details.
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e Logarithmic rank one local system (£~', V) on X arising from the cyclic cover
7w : Z — X. In fact, the eigenspace associated to 1

HY(Z,25), = H (X, 2f(og D) & L")

can be directly interpreted as Hodge cohomology of a filtered logarithmic de Rham
bundle on the log pair (X, D) as follows, see [8, Sections 2 and 3]. The direct image
f«(0z,d) of the trivial de Rham bundle on Z is again a de Rham bundle on X with
logarithmic singularities along D. The 1-eigenspace of f,(Q7) for the Galois action is
L7 together with the integrable connection V coming from d with log pole along D
of the finite local monodromy along D of the order v. The de Rham complex with the
coefficient (£~1, V) has the form

05 @ldogpye 'S .. 5 2tdogDy® L7 — 0,

which has Hodge-to-de Rham E-degeneration w.r.t. the truncated de Rham sub-
complexes using twisted harmonic forms defined by a singular locally constant
metric below. One checks that the Hodge cohomology of this de Rham complex is
HY(X, 2% (log D) ® L71).

e Singular locally constant metric on (£~!, V). The constant metric on Oz descends
to a locally constant metric on 7,(Oz, d) which has singularities exactly along the
ramification divisor D C X of m : Z — X. Hence, it restricts to a locally constant
metric on the eigenspace (£, V). More explicitly, let 7 be a local coordinate function
on an analytic open subset V vanishing on DNV then 17 is a local base of the eigen sub
line bundle £~! ¢ 7,07 on V. The constant metric on Oz defines a locally constant

metric & on £~ with the local expression |t|%. One uses this locally constant metric
to define harmonic representatives for the Betti cohomology of IL.~!, similar to the
constant local system C and to prove E-degeneration directly on X. This is mentioned
in the book [8].

3.5.2 Cyclic (Kummer) Cover for a Family f : X — Y in the Relative Case and the
Comparison Map

e Comparison map by taking self-fibre product. Let f : X — Y be a good partial com-
pactification of a smooth family f : V — U of fibre dimension n with maximal variation
and such that the canonical line bundle along the fibres are semi-ample. Recall that for
L= .Q;‘(/Y(log A), Kawamata and Viehweg showed that f*w;/Y is big for v > 0 [17,
27, 28]. By a slight modification Viehweg—Zuo showed that f, (L") is globally generated
over a Zariski open subset U’ C U and for v > 0. Fix an ample line bundle A on Y. Then
L’ ® A~!is again globally generated over f~!(U’) for v > 0. By replacing the original
family by the self fibre product of a suitable power f) : X — ¥ ([29, proof of 1.4 iii),
p. 27]) or by a Kawamata base change ¢ : Y’ — Y ([29, proof of 1.4 iv), p. 27]) we may
assume £’ @ f*(A™") is globally generated over f~1(U’).

Choose a generic non-zero section s of L' ® f*(A™") such that the zero divisor
D := div(s) intersects a general fibre of f smoothly. Let T C Y denote the closure
of the discriminant of the map H NV — U, which is the locus where the intersection
Dy:=DnNf ~1(y) becomes singular. Leaving out some codimension two subschemes, we
may assume that S + 7 is a smooth divisor. Let ¥ := f*(T") and we keep the notation
A = f*(S). We take a blowing up § : W — X with centers in D + A + X and such that
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8*(D + A + X)) is normal crossing and the composition map
e wixLly
is log smooth as a morphism between log pairs
h: (W,8%(D+ A+ X)) = (Y, (S+T)).

We write M :=8*(L® f*A~!) and B := §*(D), then M" = Ow (B). One takes the v-th
cyclic cover of the divisor B and choose Z to be a desingularization of this covering and
obtains the induced new family

¢:z5xLy.

Write IT = g~ (S + T). Then the restriction g : Zo = Z AT — Y\ (S+T) is asmooth
family. We may assume that S + T is normal crossing in Y. The quasi-canonical extension
of the filtered de Rham bundle of the locally constant system R” f,.(Cz,) gives rise to a
locally free filtered logarithmic de Rham bundle

ViV Ve RplogS+T))
and the graded Higgs bundle

k k
(E.0):= [P EF9, Poad
q=0 qg=0

The Galois group of g acts on the local system hence on the Higgs bundle. Let (E, 0);
denote 1st eigen sub Higgs bundle.

Remark 2 Similar to Section 3.5.1 the line bundle M ~! underlies a structure of de Rham
bundle (M~!, V) on W with logarithmic singulartiy on §*(D+ A+ X). Let M~! denote the
local system. Then (E, 0); is the graded Higgs bundle of the quasi-canonical extension of
the filtered de Rham bundle of the variation of mixed Hodge structures of the local system

R"h (MW\a*(D+A+2)) on Y \ (§ + T) and with logarithmic pole on (S + T).

We now make the comparison between the deformation Higgs bundle (F, t) for f :
X — Y with (E,8); ® A~!. Just remember that the cyclic cover 7 : Z — W is defined
by taking the v-root out of the divisor §*D € |(§*L ® h*A~!)"|. Therefore (E,0); ® A~}
can be computed by taking higher direct image R°®h, of the tautological exact sequence of
the log smooth map

h: (W, 8(D+A+ %)= (Y, (S+T))
twisted by 8*L~1 thatis
@) 0 h*2}(log(S+ 7)) ® 24, (logs* (D + A+ X)) ® 5L
— Gr(2y, (log(8(D+A+2)@* L™ — 24, (log(8(D+A+X))@5*L™! — 0.

On the other hand, the Higgs bundle (Fy, 7) with F 9% = R4 f*(.Q TlogA) ® L71)
can be computed by taking higher direct images R*® f* of the tautologlcal exact sequence of
the log smooth map f : (X, A) — (¥, S) twisted with £

) 0— f*2}(logS) ® 95/}1(10g A)® L - Gr(R¥(og A) ® L7!
— 2%,y(log ) ® L7 — 0,
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where

Gr(2%(log A)) = 28 (log A)/f*23 (log ) ® Qg‘z(mg A).

The Hurwitz formula for the pullback of logarithmic differential forms viaé§ : W — X
induces an inclusion of the short exact sequence §*(/1) — (I), which induces a map
between higher direct images p”9 Fop R Eg ! and commuting with the edge
morphisms.

e Comparison map by taking Kawamata cover. The construction here is similar to the
previous case. Fixing an ample line bundle then £’ ® A~! is big for v > 0. Instead of
taking self fibre product to higher power we take a Kawamata cover ¥ : Y’ — Y so that
Y*A = A" for an ample line bundle on Y'. Let f’ : X’ — Y’ denote the fibre product of
the base change and £’ = f;.Q;,,/y/ (log A) then (£' @ A1) ~ y*(L* @ A~!) is big. By

taking the v-th cyclic cover 7’ : Z’ — X’ of a section s of (.Q”,/Y,(log A)® A~y
we get the comparison map by the same type of the construction as before.

4 Length of a Family, Characteristic Varieties and Distributions on a
Base

4.1 Introducing the Notion of the Length of a Family and a Criterion for the Rigidity

Given a family f : X — Y of varieties of dimension n with of semi-ample canonical line
bundle and such that the moduli map into the moduli space is quasi finite. Recall the i-th
iteration of the Kodaira—Spencer map

n—(i—1),i—1

. n,0 .. .
v Oy ~ F"0 I Frllgollogs) — - —— F'TH @ T2} (log S).
For i = n (dimension of the fibres) one obtains a coupling
™ Oy — FO" ® §"2)(log 9).

If f is a family of Calabi—Yau manifolds or in general replacing the deformation Higgs
bundle by the graded Higgs bundle of the VHS of the middle cohomology of the family
then t” coincides with the Yukawa coupling or in general Griffiths—Yukawa coupling.

Definition 4 We introduce the length of the iteration of Kodaira—Spencer map of the family
f:X—>Ytobe

o(f)=Min{i > 1|t' =0} — 1.
For a comparison map of the second version

P YL(F.T)®A,) — (E,0),

via a Kawamata cover ¥/, : Y;) — Y we take the maximal non-zero iteration of the Kodaira—
Spencer map valued in ¥ * Ty (log S) on the image Higgs sheaf

p (VE((F, 1) ® Ap)) C (E.0),
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and obtain a generically ample subsheaf in w;Sf(p).Q} (log S),
Ay > YiSH0 2y (log S),

where ¢(p) is called the length of the iteration under a comparison map p of the second
version. It is clear that £ (p) < ¢(f) and rank A, < h¢P) (X, T)ff_p)).

4.1.1 Non-rigid Families and Products Base

Given a log pair (Z, Sz), the log morphisms ¢ : (Z, Sz) — (¥, S), (i.e. p(Z\ Sz) C U
and we consider generically finite log morphisms) are parameterized by a scheme H :=
Hom((Z, Sz), (Y, S)) of locally finite type. By the boundedness theorem [18], the scheme
H is of finite type. A morphism ¢y is called rigid if ¢ is an isolated point in . If ¢ is not
rigid then there is exists a positive dimensional log pair (7, S7) such that ¢g extends to a
generically finite morphism

¢:(Z,Sz) x(T,St) = (¥,9)

by removing a codimension-2 subscheme. In general, we are interested in a product
[1;(Z;, S;) into (Y, S) via a generically finite map.

Via the comparison map the length ¢ (f) provides an upper bound of the number of log
subvarieties appearing as factors in a product in (Y, S).

Proposition 6 (Viehweg—Zuo [29]) If there exists a generically finite map from a product
[T/, (Zi, Si) of m log pairs into (Y, S) thenm < ¢(f) < dim fL

This proposition suggests that ¢ (f) looks like the rank of a locally bounded symmetric
space. Indeed, applying Proposition 6 to the universal family of polarized abelian g-folds
one shows that the maximal number of subvarieties in a product in Ag is equal to g. It
is well-known that there exists products of g copies of modular curves as the so-called
polydisc embedding in A, parameterizing abelian varieties isogeny to products of g-copies
of elliptic curves. Here g is defined as the rank of the group Sp(2g, R).

Proposition 7

1. If there exists a generically finite morphism from a product ]_[fg)(Z,', Si) of the
maximal ¢(f) log pairs into (Y, S) then all .Q%i (log S;) are generically ample and
dim Z; < h¥((X,, T§if Y

2. (A criterion for rigidity for families of algebraic surfaces in terms of the second geomet-
ric genus of the fibre surfaces.) Let f : X — Y be a family of algebraic surfaces with
semi-ample canonical line bundle and such that the moduli map from the base to the
moduli space is quasi-finite then any generically finite morphism ¢o : (Z, S) — (¥, S)
is rigid if dim Z > hO(Xy, w%f).

Proof 1. The pullback of A < S0 21 (log §) to [12Y)(Z:, §;) has the form
A 2} (logSHR -+ K .Q}m (log S¢(£))

(see the proof for Corollary 6.4 in [29] and to be more precise we shall work on the Kawa-
mata cover ¥, : Y/ — Y). Restricting the above map, for example, to the factor Z| passing
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through the generic point, then Az, is generically ample and from the inclusion map
1 1 1
Az, > (24, (10g57,) R @Y, (log S2,) B+ B2}, (logSz,,)) |2

(f) g3
= Qél (10gSZI)@l_[,-:2 dlle-.

We obtain a non-zero map
a: Az, — Q%I (log Sz,).

Claim 1 « is generically surjective.

Proof of Claim 1 Consider the non-zero sub sheaf a(Az,) — .Qél (log Sz,) and let d :=
rank(Az,) then d < rank .Qél (log Sz,) = dim Z;. One observes that the invertible sub
sheaf deta(Az,) — .le (log Sz,) is big. By Bogomolov’s lemma ([1, 12.2. Theorem 4],

here we use the version for logarithmic forms) any invertible sub sheaf of .le (log Sz,)
has Kodaira-dimension less then or equal to d. Hence, the bigness of deta(Az,) implies
d = dim Z;. Claim 1 is done. O

By Claim | we obtain a generically surjective map Az, — .Q%i (log S;). In particular,
dim Z; < rank Az, < h¢) (va T)g;f)) '

2. For such a family f : X — Y of surfaces we have then the rank {(f) = 1 or 2.
For ¢(f) = 1, then the map A — .Q}l, (log S) is surjective. Since A is generically ample,
.Qll, (log S) is generically ample. Hence, any generically finite morphism ¢ : (Z, Sz) —
(Y, S) is rigid.

For ¢(f) = 2. Given a non-rigid generically finite morphism ¢g : (Z, Sz) — (¥, S), we
must show that dim Z < hO(Xy, w?). By 4.1.1, there exists a log curve (T, St) such that on
the complement (W, Sw) of a codim-2 sub scheme X of (Z, Sz) x (T, St) the morphism
¢o extends to a generically finite morphism

¢ (W, Sw) — (Y. 5).
We denote fw : Xw — W the pullback family of f : X — Y via¢ : (W, Sw) — (1, S).

Claim 2 The length ¢ (fw) of the family fw is equal to 2.

Proof of Claim 2 If ¢{(fw) = 1, then the maximal non-zero iteration of Kodaria—Spncer
map of the family fw has length 1 and induces a non-zero map

T: Ay— .Qév(log Sw),

where A is generically ample. Noting that (W, Sy ) is the complement of a codimension-2
sub scheme in (Z, Sz) x (T, St) we obtain an extension

T Azyr — .QéxT(logSZXT).

By Bogomolov’s lemma 7 is generically surjective. Hence, .QéxT (log SzxT) is generically

ample. But, on the other hand .QéxT(log Sz«71) can not be generically ample. Claim 2 is
completed. O

Since ¢ (fw) = 2 we obtain a non-zero map
2. $?2L(logSz) — S$2RL ,(logSzxT)
= §202) (log S7) B 5?27 (log S7)BR2} (log S7) X £21 (log S7).
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Since Azx7 is generically ample, the restriction of SZ.Qé (log S7) to the T-factor and the
restriction of 529} (log St) to the Z-factor are trivial sheaves, therefor the map 72 factors
through

2 Azxr — 2} (log Sz) ¥ 22} (log St).
Applying Bogomolov lemma to the restriction of 72 to a generic Z-factor
Az — 2} log S7)
shows that rank 2} (log S7) < rank Az < h%(X,, ?). O

Assume f : X — Y in Proposition 7 is a family of Calabi—Yau manifolds or
hypersurfaces in PV of degree d > N + 1 [31] shows a much more stronger result:

Proposition 8 Let f : V — U = U; X - - - X Uj be a smooth family of Calabi—Yau m-folds
or a normalized family of hypersurfaces in PN of degree d > N + 1 (admitting a particle
good compactification f : X — Y withY = Y| x --- X Y] removed a codimension-2 sub
scheme) and let the corresponding moduli map be generically finite. Then the natural map
induced by k-th iteration of the Kodaira—Spencer map on the deformation Higgs bundle

P T, ® - ®piTy, — RATE,

1<ij<--<ig<l
is injective. In particular,

Y. dimUj ---dimU;, < BAVy, T).

I1<ij<---<ig=<l
Propositions 6, 7 and 8 support the following conjecture.

Conjecture 3 ([31, Conjecture 3.2]) Proposition 8 holds true for any family of varieties with
semi-ample canonical line bundle.

4.2 Characteristic Varieties Attached to a Family

We would like to introduce a finer infinitesimal invariant to characterize products in (Y, §).
In the study of the metric rigidity problem on a locally bounded symmetric domain D,
N. Mok [20] has introduced the so-called characteristic bundles {S;} in the projective tan-
gent bundle of D using a maximal set of strongly orthogonal positive non-compact roots in a
Cartan subalgebra £ of the Lie algebra of the Lie group of Hermitian type. Note that S! con-
sists of those tangents with minimal holomorphic sectional curvature. Motivated by Mok’s
work Sheng—Zuo [23] have introduced the notion of characteristic varieties for PVHS of
Calabi—Yau type using iterations of Kodaira—Spencer map on the graded Higgs bundle. For
the case of universal families of abelian varieties over Shimura varieties, the characteris-
tic varieties coincides with Mok’s characteristic bundles over Shimura varieties. Sheng, Xu
and Zuo [24] and Robles [22] have found further applications in characterization of Gross’s
canonical variations of Hodge structure of Calabi—Yau type over bounded symmetric tube
domains.

Motivated by the above construction, we introduce characteristic varieties attached to a
family f : X — Y of n-dim varieties with semi-ample canonical line bundle along the
fibres and with the maximal variation as follows.
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Assume the canonical line bundle along the fibres is ample: by taking k-th iterated
Kodaira—Spencer map on the deformation Higgs bundle
k
S¥Ty(—log $) = F"™M 1<k =<¢(f)

we define the k-th characteristic variety Sk c P(Ty (— log S)) fibrewise by

sk = {v € Ty(—log S|, : TFH Ok+D) = 0}.

For the case the canonical line bundle is semi-ample along the fibres we perform this con-
struction via a comparison map over a Kawamata cover. In this way we obtain an increasing
filtration of subvarieties in the projective bundle of log tangent bundle over Y

Pp=5"cs'c...cstcstlc...cs¢W1 c §5U) = P(Ty(—log 5)).

The characteristic varieties provide an infinitesimal characterization of products of subvari-
eties in (Y, S) in the following sense.

Proposition 9 [f there is a generically finite map ¢ from the log pair H£=l (Zi, S;) into
(Y, S) then each factor Z; lies in leaves of the distribution defined by S*D=I+1 je,

P(Tz (—log S;)) c S¢=1+1

Proof We take the map restricted to the factor the Hf;} (Z;, S;), then the family pulled back
to [T'Z}(Z;, S;) is not rigid. By Corollary 6.5 in [29]

_ ¢(f)—di
P (Mg (e 2)) € 5% iy
and

P (T (—loeSy ) 570 iy

for some d; > 1. Repeating the argument for further (/ — 2) times we finish the proof. [

Motivated by the above proposition we introduce the notion on special sub varieties in
(Y, S).

Definition 5 A log subvariety (Z, S) of (Y, S) is called special and of degree [ if it lies in
leaves of the distribution defined by ¢/~ ie.

P(Tz(—log$)) € S*P 7!, and  P(Tz(—log$)) ¢ S5 =1=1).

Conjecture 4 Given afamily f : X — Y7 x --- x Y} of canonically polarized varieties over
a product base. Then the family is dominated by a finite map from the product of / families
ﬁ:Xi—>Yi,1§i§l.

Faltings [9] found examples of families of abelian varieties such that Conjecture 4 does
not hold true. However, the VHS attached to those families does decompose over a number
field. If the canonical line bundle of the fibres is ample one hopes the decomposition of the
base induces a decomposition on the fibers.
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