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Abstract
This paper proves that for all positive integers n, the equation

x

y
+ p

y

z
+ z

w
+ p

w

x
= 8np,

where p = 1 or p is a prime congruent to 1 (mod 8), does not have solutions in positive
integers.
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1 Introduction

The problem concerning the sum of rationals whose product is 1 has been studied by many
authors. Cassels [5] showed that the equation

x

y
+ y

z
+ z

x
= 1

does not have solutions in integers. Bremner and Guy [3] found integer solutions to the
equation

x

y
+ y

z
+ z

x
= n

for many values of n in the range |n| ≤ 1000. Sierpinski [6] asked if the equation
x

y
+ y

z
+ z

x
= 4

has solutions in positive integers? Bondarenko [1] showed that the equation
x

y
+ y

z
+ z

x
= 4k2
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does not have solutions in positive integers if 3 � k. Using the technique developed by
Bremner and Tho [4], which is based on Stoll’s idea [8], we will prove the following results:

Theorem 1 Let n be a positive integer. Then the equation
x

y
+ y

z
+ z

w
+ w

x
= 8n

does not have solutions in positive integers.

Theorem 2 Let n be a positive integer, p - a prime congruent to 1 (mod 8). Then the
equation

x

y
+ p

y

z
+ z

w
+ p

w

x
= 8pn

does not have solutions in positive integers.

An equivalent form of Theorem 1 is that there are no four positive rationals whose
product is 1 and sum is an integer divisible by 8. In the next section, we give a proof for
Theorem 2. Theorem 1 can be proven in a similar (and simpler) way. All computations in
the paper are done in Magma [2].

2 Proof of Theorem 2

2.1 Notation

For a prime q and a nonzero q-adic number a, denote vq(a) the highest power of q dividing
a. By definition,Q∞ = R. Let k = Qq or k = R. For a, b in k∗, the Hilbert symbol (a, b)q
is defined by

(a, b)q =
{
1 if ax2 + by2 = z2 has a solution (x, y, z) �= (0, 0, 0) in k3,
−1 otherwise.

When k = Q∞, the symbol (a, b)∞ is defined similarly. The following properties of Hilbert
symbol are true, see Serre [7, Chap. III]:

(i) For a, b, c ∈ Q∗
q ,

(a, bc)q = (a, b)q(a, c)q,

(a, b2)q = 1.

(ii) For a, b ∈ Q∗,
(a, b)∞

∏
q prime

(a, b)q = 1.

(iii) For a, b ∈ Q∗
q , let a = qαu, b = qβv, where α = vq(a) and β = vq(b). Then

(a, b)q = (−1)αβ(q−1)/2
(

u

q

)β (
v

q

)α

, if q �= 2,

(a, b)q = (−1)
(u−1)(v−1)

4 + α(v2−1)
8 + β(u2−1)

8 , if q = 2,

where
(

u
q

)
denotes the Legendre symbol.
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2.2 Proof

Assume that (x, y, z, w) is a positive integer solution to
x

y
+ p

y

z
+ z

w
+ p

w

x
= 8pn (1)

with gcd(x, y, z, w) = 1.
Consider two quadratic forms:

D(X,Z) = X2 + Z2 − 2XZ(8pn2 − 1),

H(X,Z) = X2 + Z2 − 2XZ(8pn2 + 1).

Lemma 1
D(x, z) < 0, H(y, w) < 0.

Proof From (1) and the AM-GM inequality, we have

8pn =
(

x

y
+ pw

x

)
+

(
py

z
+ z

w

)
≥ 2

√
x

y

pw

x
+ 2

√
py

z

z

w

= 2
√

p
y + w√

yw
.

Thus,
4n

√
pyw ≥ y + w.

Hence,
y2 − 2(8pn2 − 1)yw + w2 ≤ 0.

Similarly,

8np =
(

x

y
+ py

z

)
+

( z

w
+ pw

x

)
≥ 2

(√
x

y

py

z
+

√
z

w

pw

x

)

= 2
√

p
x + z√

xz
.

Thus,
4n

√
pxz ≥ x + z.

Hence,
x2 − 2(8pn2 − 1)xz + z2 ≤ 0.

Since (8pn2 − 1)2 − 1 is not a perfect square, we have y2 − 2(8pn2 − 1)yw + w2 < 0 and
x2 − 2(8pn2 − 1)xz + z2 < 0. Hence D(x, z) < 0 and H(y, w) < D(y, w) < 0.

From (1):
x2zw + py2wx + z2xy + pw2yz − 8npxyzw = 0. (2)

Fix x, z and consider the projective curve Fx,z(Y,W, d) = 0, where

Fx,z(Y,W, d) = pxWY 2 + pW 2Yz + (xz2Y + x2zW)d2 − 8npxzYWd .

Then, Fx,z(y,w, 1) = Fx,z(0, 1, 0) = 0. So, Fx,z(Y,W, d) = 0 is isomorphic to the elliptic
curve

Cx,z : ω2 = u(u2 + pxz(16n2pxz − x2 − z2)u + p2x4z4) (3)

185On a Diophantine Equation



via the rational maps φ : Fx,z → Cx,z,

φ(Y : W : d) =
(−x2z2Wp

Y
,
x2z2W(4nxzd − xY − zW)

Yd

)
,

and ψ : Cx,z → Fx,z,

ψ(u, ω) = (
px2z2(4nxzu + pω) : −u(4nxznu + pω) : zu(u − px3z)

)
.

Let D = D(x, z), H = H(x, z). Let

A = pxz(16n2pxz − x2 − z2),

B = p2x4z4.

Lemma 2 If q is an odd prime, then

(u,D)q = 1.

Proof Let d = gcd(x, z), x = dx1, y = dy1, where x1, z1 ∈ Z+ with gcd(x1, z1) = 1,
u1 = u

d4
and ω1 = ω

d6
. Then

(D(x, z), u)q = (d2(x2
1 + z21 − 2(8pn2 − 1)x1z1), d

4u1)q

= (D(x1, z1), u1)q .

From (3), we also have

ω2
1 = u1

(
u21 + px1z1(16pn2x1z1 − x2

1 − z21)u1 + p2x4
1z

4
1

)
.

Therefore, it is enough to prove Lemma 2 in the case gcd(x, z) = 1.
Let u = qru0, where r = vq(u). We consider the following cases:
Case 1: r < 0. From (3), we have

ω2 = q3ru0(u
2
0 + q−rAu0 + q−2rB).

Thus

3r = vq(ω2) = 2vq(ω).

Therefore, 2 | r . Now
(q−3r/2ω)2 = u0(u

2
0 + q−rAu0 + q−2rB).

Taking reduction (mod p) shows u0 is a square (mod q). Thus u0 ∈ Z2
q . Because r is even,

we have u = qru0 ∈ Q2
q . Hence (D, u)q = 1.

Case 2: r = 0. Let D = qkD1, where k = vq(D). Because D ∈ Z, we have k ≥ 0.
Suppose 2 | k. Because u and D1 are units in Zq , we have (u,D1)q = 1. Thus

(u,D)q = (u, qkD1)q = (u,D1)q = 1.

We consider the case 2 � k. Then,

x2 + z2 ≡ 2(8pn2 − 1)xz (mod q).

Hence,

(x + z)2 ≡ 16pn2xz (mod q).
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We have

u2 + Au + B =
(

u + A

2

)2

− p2x2z2HD

4

≡
(

u + A

2

)2

(mod q).

(i) Suppose q � u + A
2 . Then u2 + Au + B ∈ Z2

q . Because ω2 = u(u2 + Au + B), we

have u ∈ Z2
q . Thus (u,D)q = 1.

(ii) Suppose q | u + A
2 . Thus u ≡ −A

2 (mod q). Therefore, q � A. Because q | D, we have

A = pxz(2xz − D) ≡ 2px2z2 (mod q).

Because q � u and q � A, we have q � 2px2z2. Now q � 2pxz, so gcd(D, H) = 1.
Let S = u + A

2 and T = HD
4 . Because gcd(H,D) = 1 and q | D, we have vq(T ) =

vq(D) = k. Let S = qlS1, T = qkT1, where l = vq(S). From ω2 = u(u2 + Au + B)

and q � u, we have

vq(u2 + Au + B) = 2vq(ω).

Thus 2 | vq(u2 + Au + B). On the other hand,

vq(u2 + Au + B) = vq(S2 + T ) = vq(q2lS2
1 + qkT1).

Since 2 � k, we must have 2l < k. Thus,

u2 + Au + B = q2l (S2
1 + qk−2lT1) ∈ Q2

q .

Hence, u = ω2

u2+Au+B
∈ Q2

q . So (u,D)q = 1.

Case 3: r > 0.

(a) Suppose q � pxz. Since (u2 + Au + B)α2 + Dβ2 = γ 2 has a solution (1, 0, px2z2)

(mod q), it has a nontrivial solution in Qq . Therefore,

(u2 + Au + B, D)q = 1.

Because u(u2 + Au + B) = ω2 �= 0, we have (u,D)q = 1.
(b) Suppose q | xz. Then q | x or q | z. If q | x, then

D = x2 + z2 − 2p(8n2 − 1)xz ≡ z2 (mod q).

Note that gcd(x, z) = 1, thus D ∈ Z2
q . Therefore, (u,D)q = 1. Similarly, we also

have (u,D)q = 1 if q | z.
(c) Suppose q � xz and q = p. Then u = pru0. So

ω2 = pru0(p
2ru20 + Apru0 + p2x4z4).

We have two subcases:

(i) r ≥ 2. Then 2vp(ω) = r + 2. Thus 2 | r . We now have

(ωp−r/2)2 = u0(p
2r−2u20 + Apr−2u0 + x4z4).

Because p | A, a reduction (mod p) gives u0x
4z4 is a square (mod p). Therefore,

u0 ∈ Z2
q . Thus,

(u,D)p = (2su0,D)p = 1.
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(ii) r = 1. Then

ω2 = pu0(p
2u20 + pAu0 + p2x4z4)

= p3u0(u
2
0 + xz(16pn2xz − x2 − z2)u0 + x4z4).

Thus p divides

u20 + xz(−x2 − z2)u0 + x4z4 = (u0 − x3z)(u0 − xz3).

Therefore,

u0 ≡ x3z (mod p) or u0 ≡ xz3 (mod p).

If u0 ≡ x3z (modp), then

(pu0, p)p = (−1)(p−1)/2
(

u0

p

)
=

(
x3z

p

)

=
(−x4

p

)
=

(−1

p

)

= (−1)
p−1
2

= 1.

Similarly, if xz3 ≡ 0 (modp), then (pu0, p)p = 1. So it is always true that

(pu0, p)p = 1. (4)

Now
D = (x + z)2 − 16pn2xz ≡ (x + z)2 (mod p).

Suppose p � x + z. Then D ∈ Z2
p . Hence (u,D)p = 1. We consider the case

p | x + z. Let x + z = psf , where s = vp(x + y) > 0. Then

D = p(p2s−1f 2 − 16n2xz).

– Suppose that p � n, then

p2s−1f 2 − 16n2xz ≡ (4nx)2 (mod p).

Hence, p2s−1f 2 − 16n2xz ∈ Z2
p . Let D = pD2

1, where D1 ∈ Zp. Then
from (4),

(u,D)p = (pu0, pD2
1)p = (pu0, p)p = 1.

– Suppose that p | n. Let n = ptn1, where t = vp(n) > 0. Then

D = p2sf 2 − 16p2t+1xz.

If s ≤ t , then
D = p2s(f 2 − 16p2t+1−2sn21xz).

Thus D ∈ Z2
p. Hence (u,D)p = 1. We consider the case s > t . Then

D = p2t+1(p2s−2t−1f 2 − 16n21xz).

Because
p2s−2t−1f 2 − 16n21xz ≡ 16n21x

2 (mod p),

we have D = p2s+1D2
2, where D2 ∈ Zp. From (4), we have

(u,D)p = (pu0, p
2r+1D2

2)p = (pu0, p)p = 1.
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Lemma 3 If 4 � x + z, then
(D, u)2 = 1.

Proof Let d = gcd(x, z), let x = dx1, y = dy1, where x1, z1 ∈ Z+ with gcd(x1, z1) = 1,
let u1 = u

d4
and ω1 = ω

d6
. Then

(D(x, z), u)q = (
d2(x2

1 + z21 − 2(8pn2 − 1)x1z1), d
4u1

)
q

= (
D(x1, z1), u1

)
q
.

From (3), we also have

ω2
1 = u1

(
u21 + px1z1(16pn2x1z1 − x2

1 − z21) + p2x4
1z

4
1

)
.

Of course, 4 � x1 + z1 if 4 � x + z. Therefore, it is enough to prove Lemma 3 in the case
gcd(x, z) = 1.

If 2 � x + z, then

D = (x + z)2 − 16pn2xz ≡ 1 (mod 8).

So D ∈ Z2
2, hence (D, u)2 = 1. Let us consider the case 2 | x + z. Because 4 � x + z, we

can write x + z = 2h with 2 � h. Then

D = 4(h2 − 4pn2xz).

We consider two cases:

(a) 2 | n. Then h2 − 4pn2xz ≡ 1 (mod 8). Thus D ∈ Z2
2. Hence (D, u)2 = 1.

(b) 2 � n. Then pn2xz ≡ 1 (mod 4), and so h2 − 4pn2xz ≡ 5 (mod 8). Thus D = 4D1,
where D1 ≡ 5 (mod 8).

Let u = 2ru1, where r = v2(u). Then

ω2 = 2ru1(2
2ru21 + 2rAu1 + B).

(i) Suppose r ≥ 3. Then r = 2v2(ω). We have

(2−r/2ω)2 = u1(2
2ru21 + 2rAu1 + B).

Because

22ru21 + 2rAu1 + B ≡ B (mod 8)

≡ p2x4z4 (mod 8)

≡ 1 (mod 8),

we have u1 ≡ 1 (mod 8). Thus u1 ∈ Z2
2, so u = 2ru1 ∈ Z2

2. Hence (u,D)2 = 1.
(ii) Suppose r = 2. Then (ω

2

)2 = u1(2
4u21 + 22Au1 + B).

Taking a reduction (mod 8) gives u1 ≡ 1 (mod 8). Therefore, u = 22u1 ∈ Z2
2.

Hence (u,D)2 = 1.
(iii) Suppose r = 1. Then

ω2 = 2u1(4u
2
1 + 2Au1 + B),

what is impossible (mod 2).
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(iv) Suppose r = 0. Then u = u1 and D = 22D1, where D1 ≡ 5 (mod 8).
Therefore,

(u,D)2 = (u1, 2
2D1)2

= (u1,D1)2

= (−1)(u1−1)(D1−1)/4

= 1.

(v) Suppose r < 0. Then

ω2 = 23ru1
(
u21 + 2−rAu1 + 2−2rB

)
.

Therefore, 3r = 2v2(ω). Thus r ≤ −2. Then(
2−3r/2ω

)2 = u1

(
u21 + 2−rAu1 + 2−2rB

)
.

Note that 2 | A, so taking a reduction (mod 8) gives u1 ≡ 1 (mod 8). Thus
u1 ∈ Z2

2, so u ∈ Z2
2. Hence (u,D)2 = 1.

Lemma 4 If 4 � x + z, then
(u,D)∞ = 1.

Proof Since (D, u)q = 1 for all prime q, and

(D, u)∞
∏

q prime,q<∞
= 1,

we have
(u,D)∞ = 1.

Lemma 5 If q is an odd prime, then

(H, u)q = 1.

Proof Because A2 − 4B = p2x2z2DH , we have

ω2 = u

((
u + A

2

)2

− DH
(pxz

2

)2)
.

So
uα2 − uDHβ2 = ω2,

where α = u + A
2 and β = pxz

2 . Thus

(u,−uHD)q = 1.

On the other hand, (u,−u)q = 1 and (u,D)q = 1; therefore,

(u,H)q = 1.
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Lemma 6 If 4 � x − z, then

(u,H)2 = 1.

Proof Similar to the proof of Lemma 3, it is enough to consider the case gcd(x, z) = 1.
Suppose 2 � x − z, then

H = (x − z)2 − 16pn2xz ≡ 1 (mod 8).

Thus H ∈ Z2
2, and hence (u,H)2 = 1. We consider the case 2 | x − z. Because 4 � x − z,

let x − z = 2k, where 2 � k. Then

H = 4(k2 − 4pn2xz).

We consider two cases:

(a) 2 | n. Then k2 − 4pn2xz ≡ 1 (mod 8). Thus H ∈ Z2
2 and (u,H)2 = 1.

(b) 2 � n. Then 4pn2xz ≡ 4 (mod 8). Thus k2 − 4pn2xz ≡ 5 (mod 8), so H = 4H1,
where H1 ≡ 5 (mod 8). Let u = 2ru1, where r = v2(u). Then

ω2 = 2ru1(2
2ru21 + 2rAu1 + B).

(i) Suppose r ≥ 3. Then r = 2v2(ω). Thus 2 | r . We have

(2−r/2ω)2 = u1(2
2ru21 + 2rAu1 + B).

Taking reduction (mod 8) gives 22ru21+2rAu1+B ≡ 1 (mod 8). Hence u1 ∈ Z2
2,

thus u = 2ru1 ∈ Z2
2. So (u,H)2 = 1.

(ii) Suppose r = 2. Then
(ω

2

)2 = u1(2
4u21 + 22Au1 + B).

Taking reduction (mod 8) gives u1 ≡ 1 (mod 8). Therefore, u ∈ Z2
2. Hence

(u,H)2 = 1.
(iii) Suppose r = 1. Then

ω2 = 2u1(4u
2
1 + 2Au1 + B),

what is impossible (mod 2).
(iv) Suppose r = 0. Then u = u1 and H = 22H1, where H1 ≡ 5 (mod 8).

Therefore,

(u,H)2 = (u1, 2
2H1)2

= (u1, H1)2

= (−1)(u1−1)(H1−1)/4

= 1.

(v) Suppose r < 0. Then

ω2 = u1(u
2
1 + 2−rAu1 + 2−2rB)

2−3r
.

Therefore, 2 | r . Thus r ≤ −2. Now

(23r/2ω)2 = u1(u
2
1 + 2−rAu1 + 2−2rB).
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Note that 2 |A, so taking (mod 8) gives u1 ≡ 1 (mod 8). Therefore, u1 ∈ Z2
2, so

u ∈ Z2
2. Thus (u,H)2 = 1.

Lemma 7 If 4 � x − z, then

(u,H)∞ = 1.

Proof Since (u,H)q = 1 for all primes q and

(u,H)∞
∏

q prime

(u,H)q = 1,

we have

(u,H)∞ = 1.

We summarize Lemmas 2, 3, 4, 5, 6, and 7 into the following proposition:

Proposition 1

– (D(x, z), u)q = (H(x, z), u)q = 1 if q is an odd prime or q = ∞.
– (D(x, z), u)2 = (D(x, z), u)∞ = 1 if 4 � x + z.
– (H(x, z), u)2 = (H(x, z), u)∞ = 1 if 4 � x − z.

In order for (2) to have a positive integer solutions, we seek for points (u, ω) on Cx,z

such that ψ(u, ω) = (Y : W : d) satisfies d �= 0, Y
d

> 0 and W
d

> 0. If u = 0, then ω = 0.
Because ψ(0, 0) = (1 : 0 : 0), we have u �= 0. Therefore,⎧⎪⎪⎨

⎪⎪⎩

px2z(4nxzu + pω)

u(u − px3z)
> 0,

−4xznu + pω

u − px3z
> 0.

Multiplying two inequalities gives u < 0. Let

(u, ω) = φ(y : w : 1) =
(−x2z2wp

y
,
x2z2w(4nxz − xy − zw)

y

)
. (5)

If ω �= 0, then we consider the following cases:

– 4 � x + z. From Proposition 1, we have (D(x, z), u)∞ = 1. Because D(x, z) < 0, by
Lemma 1 we have u > 0, contradicting u < 0.

– 4 � x − z. From Proposition 1, we have (H(x, z), u)∞ = 1. Because H(x, z) < 0, by
Lemma 1 we have u > 0, contradicting u0 < 0.

– 4 | x + z and 4 | x − z. Let x = 2x1 and z = 2z1 with x1, z1 ∈ Z and 2 � x1, z1. Then
4 � x1 + z1 or 4 � x1 − z1. From ω2 = u(u2 + Au + B), we have

( ω

26

)2 = u

24

(( u

24

)2 + A1

( u

24

)
+ B1

)
,
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where A1 = px1z1(16pn2x1z1 − x2
1 − z21) and B1 = p2x4

1z
4
1. Now 4 � x1 − z1 or

4 � x1 + z1, so we have
(
D(x1, z1),

u

24
)
2 = 1 or

(
H(x1, z1),

u

24
)
2 = 1. In addition,

(D(x, z), u)2 =
(
22D(x1, z1), 2

4 u

24

)
2

=
(
D(x1, z1),

u

24

)
2
.

Similarly

(H(x, z), u)2 =
(
H(x1, z1),

u

24

)
2
.

So (D(x, z), u)2 = 1 or (H(x, z), u)2 = 1. Hence u > 0, contradicting u < 0.
Therefore, ω = 0. From (5), we have

4nxz − xy − zw = 0. (6)

Thus
y

z
+ w

x
= 4n.

Hence
x

y
+ z

w
= 4np. (7)

Now fix y, w and consider the equation Fy,w(X,Z, d) = 0, where

Fy,w(X,Z, d) = X2yZ + py2Zwd2 + Z2wX + pw2Xyd2 − 8npXZdyw.

Then Fy,w(0, 1, 0) = Fy,w(x, z, 1) = 0. So Fy,w(X,Z, d) = 0 is isomorphic to the
elliptic curve

Cy,w : ω′2 = u′ (u′2 + pyw
(
16n2pyw − y2 − w2

)
u′ + p2y4w4

)
,

via the rational maps α : Fy,w → Cy,w ,

α(X : Z : d) =
(−w2pZy2

X
,
−py2w2Z(Xy + Zw − 4npywd)

Xd

)
,

and β : Ey,w → Fy,w ,

β(u′, ω′) =
(
pw2(4npywu′ + ω′) : −u′(4npywu′ + ω′) : wu′(u′ − py3w)

)
.

We have the following result:

Proposition 2

– (D(y, w), u′)q = (H(y, w), u′)q = 1 if q is an odd prime.
– (D(y, w), u′)2 = (D(y, w), u′)∞ = 1 if 4 � y + w.
– (H(y, w), u′)2 = (H(y,w), u′)∞ = 1 if 4 � y − w.

Proof The same as for Proposition 1.

In order for (2) to have positive integer solutions, we seek for points (u′, ω′) on Cy,w

such that β(u′, ω′) = (X : Z : d) satisfies d �= 0, X
d

> 0 and Z
d

> 0. If u = 0, then ω = 0.
Because β(0, 0) = (1 : 0 : 0). We must have u �= 0. So⎧⎪⎪⎨

⎪⎪⎩

pw(4npywu′ + ω′)
u′(u′ − py3w)

> 0,

− 4npywu′ + ω′

w(u′ − py3w)
> 0.
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Multiplying together the two inequalities gives u′ < 0. Assume

(u′, ω′) = α(x : z : 1) =
(−py2w2z

x
,
−py2w2z(yx + wz − 4npyw)

x

)
. (8)

If ω′ �= 0, we then consider the following cases:

– 4 � y + w. From Proposition 2, we have (D(y,w), u′)∞ = 1, thus u′ > 0 because
D(y, w) < 0 by Lemma 1. This contradicts u′ < 0.

– 4 � y − w. From Proposition 2, we have (H(y, w), u′)∞ = 1. Because H(y,w) < 0,
we have u′ > 0, contradicting u′ < 0.

– 4 | y + w and 4 | y − w. Then y = 2y1 and w = 2w1, where 2 � y1, w1. Then
4 � y1 + w1 or 4 � y1 − w1. Then similar to the case 4 � x + z and 4 � x − z, we have
(D(y, w), u′)∞ = 1 or (H(y,w), u′)∞ = 1; the either case implies u′ > 0, which
contradicts u′ < 0.

Therefore, ω′ = 0. From (8), we have

xy + zw − 4npyw = 0. (9)

From (6) and (9), we have
4nxz = 4npyw.

Thus,
x

y

z

w
= p. (10)

From (7) and (10), we have

(4np)2 − 4p =
(

x

y
− z

w

)2

.

Thus 4n2p2 − p ∈ Q2, hence 4n2p2 − p ∈ Z2, impossible because p2 � 4n2p2 − p.
Therefore, there are no positive integer solutions to (1).
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