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Abstract
A generalized inverse of an m × n matrix A over a pseudoring means an n × m matrix G

satisfying AGA = A. In this paper we give a characterization of matrices having general-
ized inverses. Also, we introduce and study a space decomposition of a matrix, and prove
that a matrix is decomposable if and only if it has a generalized inverse. Finally, we estab-
lish necessary and sufficient conditions for a matrix to possess various types of g-inverses
including Moore–Penrose inverse.
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1 Introduction

Recall that [12] a pseudoring is a triple (D,+, ·) where D is a completely ordered set with
a minimal element 0; + and · are two binary operations on D satisfying:

a + b = max{a, b},
(D∗, ·) is a group with identity element 1 (where D∗ = D \ 0);

(∀a ∈ D) 0 · a = a · 0 = 0;
“ · ” is distributive with respect to “+”.

The following algebras are all pseudorings:

(1) (R ∪ {−∞}, max, +) (tropical algebra);
(2) (Z ∪ {−∞}, max, +) (extended integers);
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(3) (Q ∪ {−∞}, max, +)(extended integers);
(4) (R+ ∪ {0}, max, ·) (max algebra);
(5) (B,+, ·) (2-element Boolean algebra).

Matrix theory over the above pseudorings has broad applications in combinatorial opti-
mization, control theory, automata theory and many other areas of science (see [2–4, 6, 8]).
As usual, the set of all m×n matrices over a pseudoring D is denoted by Mm×n(D). In par-
ticular, we will use Mn(D) instead of Mn×n(D). The operations “ + ” and “ · ” on D induce
corresponding operations on matrices in the obvious way. It is easy to see that (Mn(D), ·)
is a semigroup. For brevity, we will write AC in place of A · C. Unless otherwise stated, we
refer to matrix as a matrix over a pseudoring in the remainder of this paper.

For a matrix A in Mm×n(D), suppose that there exists a matrix G in Mn×m(D) such
that AGA = A. Then A is called regular, and call G a generalized inverse of A. There are
a series of papers in the literature considering the structure of regular matrices over some
algebraic systems. In 1975, Rao and Rao [11] study the generalized inverses of Boolean
matrices. In 1981, Hall and Katz [7] characterize the generalized inverses of nonnegative
integer matrices. In 1998, Bapat [1] obtains the generalized inverses of nonnegative real
matrices. And in 2015, Kang and Song [10] determine the general form of matrices over the
max algebra having generalized inverses.

The main purpose of this paper is to study regular matrices and their generalized inverses
over a pseudoring. The forms of regular matrices in this paper are extended the correspond-
ing results in [10] and [11]. This paper will be divided into five sections. In Section 2 we
introduce some preliminary notions and notation. A normal form of an idempotent matrix
is given in Section 3. After characterizing idempotent matrices, we obtain the general form
of matrices which have generalized inverses. In Section 4 we define a space decomposition
of a matrix and prove that a matrix has a g-inverse if and only if it has a space decomposi-
tion. In Section 5 we establish necessary and sufficient conditions for the existence of the
Moore–Penrose inverse and other types of g-inverses of a matrix.

2 Preliminaries

The following notation of linear dependence can be found in [12]. We will be interested in
the space Dn consisting of n-tuples x with entries in D. We write xi for the ith component
of x. The Dn admits an addition and a scaling action of D given by (x + y)i = xi + yi and
(λx)i = λxi , respectively. These operations give Dn the structure of an D-pseudomodule.
Each element of this pseudomodule is called a vector. A vector α in Dn is called a linear
combination of a subset {α1, . . . , αk} of Dn, if there exist d1, . . . , dk ∈ D such that

α = d1α1 + · · · + dkαk .

For a subset S of Dn, let span(S) denote{
k∑

i=1

diαi | k ∈ N, αi ∈ S, di ∈ D, i = 1, 2, . . . , k

}
,

where N denotes the set of all natural numbers. The set S is called linearly dependent if there
exists a vector α ∈ S such that α is a linear combination of elements in S \ {α}. Otherwise,
S is called linearly independent. A subset {αi | i ∈ I } of a subpseudomodule V of Dn is
called a basis of V if span({αi | i ∈ I }) = V and {αi | i ∈ I } is linearly independent.

In the sequel, the following notions and notation are needed for us.
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• In denotes the identity matrix, i.e., the diagonal entries are all 1 and the other entries
are all 0.

• An n × n matrix A is called to be invertible if there exists an n × n matrix B such that
AB = BA = In. In this case, B is called an inverse of A and is denoted by A−1.

• An n × n matrix is called a monomial matrix if it has exactly one entry in each row and
column which is not equal to 0.

• An n × n matrix is called a permutation matrix if it is formed from the identity matrix
by reordering its columns and/or rows.

• O denotes the zero matrix, i.e., the matrix whose entries are all 0.

Proposition 2.1 A matrix A is invertible if and only if A is a monomial matrix.

Proof Suppose that A = (aij )n×n is an invertible matrix. Then there exists a matrix B =
(bij )n×n such that

AB = BA = (cij )n×n = In.

Thus
ai1b1i + ai2b2i + · · · + ainbni = cii = 1.

It follows that there exists 1 ≤ k ≤ n, such that aikbki = 1, and so

aik = (bki)
−1 �= 0. (2.1)

Since for any j �= i,

cij = ai1b1j + ai2b2j + · · · + aikbkj + · · · + ainbnj = 0,

cji = aj1b1i + aj2b2i + · · · + ajkbki + · · · + ajnbni = 0,

we have
bkj = 0 and ajk = 0. (2.2)

Since for any k �= j ,

ckj = bk1a1j + bk2a2j + · · · + bkiaij + · · · + bknanj = 0,

cjk = bj1a1k + bj2a2k + · · · + bjiaik + · · · + bjnank = 0,

then
aij = 0 and bji = 0. (2.3)

By (2.1), (2.2) and (2.3), we obtain that A is a monomial matrix.
It is easy to see that the converse is true.

A permutation matrix is also a monomial matrix. And the inverse of a permutation matrix
is its transpose.

Let A be an m × n matrix. The column space (row space, resp.) of an m × n matrix A

is the subpseudomodule of Dm (Dn, resp.) spanned by all its columns (rows, resp.) and is
denoted by Col(A) (Row(A), resp.). By Corollary 4.7 in [12], we know that every finitely
generated pseudomodule has a basis. For an m × n matrix A, let ai∗ and a∗j denote the
ith row and the j th column of A, respectively. As a consequence, by Theorem 5 in [12] we
immediately have

Lemma 2.2 Let {a∗i1 , . . . , a∗ir } and {a∗j1 , . . . , a∗jr } be any two bases of Col(A). Then
there exists an r × r monomial matrix M such that[

a∗i1 · · · a∗ir

] = [
a∗j1 · · · a∗jr

]
M .
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Lemma 2.2 tells us that the cardinalities of any two bases for Col(A) are same. The
cardinality is called the column rank of A, denoted by c(A). Dually, we can define the row
rank of A, denoted by r(A). The column rank and the row rank of a matrix need not be
equal in general. Let A be an m × n matrix. If c(A) = r(A) = r , then r is called the rank
of A. If c(A) = n and r(A) = m, then A is called nonsingular, and singular otherwise.

Let A = (aij ) be an n × n matrix, the submatrix⎡
⎢⎢⎢⎣
aj1i1 aj1i2 · · · aj1is

aj2i1 aj2i2 · · · aj2is
...

...
...

ajr i1 ajr i2 · · · ajr is

⎤
⎥⎥⎥⎦

is called a basis submatrix of A, if {a∗i1 , . . . , a∗ir } is a basis of Col(A) and {aj1∗, . . . , ajs∗} is
a basis of Row(A). If A1 and A2 are both bases submatrices of A, then there exist monomial
matrices M1 and M2 such that A1 = M1A2M2. We denote the basis submatrix by Ā. It is
easy to see that c(A) = c(Ā) = the number of columns of Ā, and that r(A) = r(Ā) = the
number of rows of Ā. The Rao “normal form” of a matrix is to be needed for us.

Lemma 2.3 ([5] Lemma 101 Rao “normal form”) Let A be an m × n matrix. Then there
exists an m × m permutation matrix Q and an n × n permutation matrix P such that

A = Q

[
Ā ĀU

V Ā V ĀU

]
P,

where U is an r × (n − r) matrix and V is an (m − s) × s matrix.

In the following we will introduce and study the equivalences R∗ and L ∗ on the
set M(D) (= ∪∞

m=1 ∪∞
n=1 Mm×n(D)) of all matrices. The equivalences R∗ and L ∗ are,

respectively, defined by

(∀A, B ∈ M(D)) AR∗B ⇐⇒ (∃X, Y ∈ M(D)) A = BX and B = AY ;
(∀A, B ∈ M(D)) AL ∗B ⇐⇒ (∃X, Y ∈ M(D)) A = XB and B = YA.

It is easy to see that if AR∗B (AL ∗B, resp.), then the number of rows (columns, resp.) of
A is equal to that of B. In particular, the restriction of R∗ and L ∗ to Mn(D) coincide with
Green’s relations R and L on the semigroup (Mn(D), ·), respectively, which play a key
role in the algebraic theory of semigroups.

Proposition 2.4 Let A and B be matrices in M(D). Then

AR∗B ⇐⇒ Col(A) = Col(B) and AL ∗B ⇐⇒ Row(A) = Row(B).

Proof Suppose that AR∗B. If A is an m × n matrix and B is an m × q matrix, then by the
definition of R∗, there exists a q × n matrix X such that BX = A. Now, it follows that
Col(BX) = Col(A) ⊆ Col(B), since the columns of BX are contained in Col(B). Dually,
Col(B) ⊆ Col(A). Thus Col(A) = Col(B).

Conversely, suppose that Col(A) = Col(B). If A is an m × n matrix and B is an m × q

matrix, then each column of A is in Col(A) and so is in Col(B), since the pseudomodule D

has a multiplicative identity 1. This implies that each column of A can be written as a linear
combination of the columns of B. Thus there exists a q × n matrix X such that BX = A.
Similarly, we can prove that there exists an n × q matrix Y such that AY = B. Hence, we
have shown that AR∗B.
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Dually, we can show that AL ∗B if and only if Row(A) = Row(B).

We now immediately deduce the following result.

Corollary 2.5 Let A and B be matrices in M(B). Then

AR∗B =⇒ c(A) = c(B) and AL ∗B =⇒ r(A) = r(B).

For an m × n matrix A, we will introduce various types of inverses of A. Consider an
n × m matrix G in the following equations:

(G-1) AGA = A;
(G-2) GAG = G;
(G-3) (AG)T = AG;
(G-4) (GA)T = GA.

A matrix G satisfying (G-1) is called a generalized inverse (g-inverse for short) of A. If G

satisfies (G-1) and (G-3) ((G-1) and (G-4), resp.), then it is called a {1, 3}-g-inverse ({1, 4}-
g-inverse, resp.) of A. Finally, if G satisfies all from (G-1) to (G-4), then it is called a
Moore–Penrose inverse of A.

We note that if G1 and G2 are any two g-inverses of A, then G1 + G2 is also a g-inverse
of A, since

A(G1 + G2)A = AG1A + AG2A = A + A = A.
Also, it is well known that G is a {1, 3}-g-inverse of A if and only if GT is a {1, 4}-g-inverse
of AT .

Proposition 2.6 Let A and G be an m × n matrix and an n × m matrix, respectively. Then
the following statements are equivalent:

(i) AGA = A;
(ii) (AG)2 = AG and AR∗AG;

(iii) (GA)2 = GA and AL ∗GA.

Proof (i) ⇒ (ii). Assume that (i) holds. Then (AG)2 = (AGA)G = AG. Also, it is clear
that AR∗AG.

(ii) ⇒ (i). Assume that (ii) holds. Then A = AGX for some m×n matrix X. This implies
that AGA = AGAGX = AGX = A since (AG)2 = AG. Thus (i) holds.

Similarly, we can show that (i) ⇔ (iii).

3 Normal Form of an Idempotent Matrix

In this section, we will give the Rao normal form of an idempotent matrix which plays a
very important role in the studying the maximal subgroup of the semigroup Mn(D). The
following results are inspired by Kang and Song [10], in which they studied the idempotent
matrices over the max-algebra.

Define the partial order ≤ on Mm×n(D) by

A ≤ B ⇐⇒ A + B = B.

Lemma 3.1 Let A, B, C be m × n matrices, let X1, Y1 be n × p matrices and let X2, Y2 be
p × m matrices. Then the following statements hold.
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(i) If A + B = C, then A ≤ C and B ≤ C.
(ii) If X1 ≤ Y1, then AX1 ≤ AY1. If X2 ≤ Y2, then X2A ≤ Y2A.

Proof (i) Suppose that A + B = C. Then we have

A + C = A + (A + B) = A + B = C.

Hence A ≤ C. Similarly, B ≤ C.
(ii) Suppose that X1 ≤ Y1. Then X1 + Y1 = Y1. Thus it follows that

AX1 + AY1 = A(X1 + Y1) = AY1,

and so AX1 ≤ AY1. Similarly, if X2 ≤ Y2, then X2A ≤ Y2A.

Lemma 3.2 If E = (eij ) be an n × n idempotent matrix, then eii ≤ 1 for all 1 ≤ i ≤ n.

Proof Let E = (eij )n×n be an idempotent matrix. Then for any 1 ≤ i ≤ n,

eii · eii ≤ (ei1 · e1i ) + · · · + (eii · eii) + · · · + (ein · eni) = eii .

This implies that eii ≤ eiie
−1
ii = 1.

Lemma 3.3 Let E = (eij ) be an n × n idempotent matrix. If eii < 1 for some i ∈
{1, 2, . . . , n}, then the i-th column (row, resp.) of E is a linear combination of the remain-
ing columns (rows, resp.). Furthermore, the matrix obtained from E by deleting the i-th
column and the i-th row is an (n − 1) × (n − 1) idempotent matrix.

Proof Let E = (eij )n×n be an idempotent matrix. Suppose that eii < 1 for some 1 ≤ i ≤ n.

Without loss of generality, we assume that e11 < 1. Partition E as

[
e11 E12
E21 E22

]
. Then we

have

E2 =
[

e11 · e11 + E12E21 e11E12 + E12E22

E21e11 + E22E21 E21E12 + E2
22

]
=

[
e11 E12
E21 E22

]
.

This implies that [
E12E21 E12E22

E22E21 E21E12 + E2
22

]
=

[
e11 E12
E21 E22

]
,

since e11 < 1. Thus it follows that[
e11
E21

]
=

[
E12E21
E22E21

]
=

[
E12
E22

]
E21, (3.1)[

e11 E12
] = [

E12E21 E12E22
] = E12

[
E21 E22

]
, (3.2)

E21E12 + E2
22 = E22. (3.3)

The equation (3.1) ((3.2), resp.) tells us that the 1-th column (the 1-th row, resp.) of E is
a linear combination of the remaining columns (rows, resp.). By Lemma 3.1 and (3.3), we
have

E2
22 ≤ E22 and E21E12 ≤ E22. (3.4)

Thus it follows by (3.4) and Lemma 3.1 that E21E12 = E21E12E22 ≤ E2
22, since E12E22 =

E12. We therefore have

E22 = E21E12 + E2
22 ≤ E2

22 + E2
22 = E2

22, (3.5)

by Lemma 3.1. Thus (3.4) and (3.5) tell us that E2
22 = E22.
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The above lemma tells us that if E = (eij ) is an n × n idempotent matrix and eii < 0
for some 1 ≤ i ≤ n, then c(E) < n and r(E) < n. Thus by Lemmas 3.2 and 3.3, we
immediately have the following result.

Corollary 3.4 All main diagonal entries of a nonsingular idempotent matrix are 1.

Lemma 3.5 Let E be an n × n idempotent matrix whose main diagonal entries are all 1.
Then the i-th row of E is a linear combination of the remaining rows if and only if the i-
th column of E is a linear combination of the remaining columns. Furthermore, the matrix
obtained from E by deleting the i-th column and the i-th row is an (n − 1) × (n − 1)

idempotent matrix.

Proof Let E = (eij ) be an n × n idempotent matrix with eii = 0 for all 1 ≤ i ≤ n.
Suppose that the i-th row of A is a linear combination of the remaining rows. Without

loss of generality, we assume that the 1-th row of E is a linear combination of the remaining

rows. Partition E as

[
1 E12

E21 E22

]
. Then we have

E2 =
[

1 + E12E21 E12 + E12E22

E21 + E22E21 E21E12 + E2
22

]
=

[
1 E12

E21 E22

]
.

Thus by Lemma 3.1 we have

E22E21 ≤ E21 and E2
22 ≤ E22. (3.6)

On the other hand, it is easy to see that

In−1 ≤ E22,

since eii = 1 for all 2 ≤ i ≤ n. Thus by Lemma 3.1, we can show that

E21 ≤ E22E21 and E22 ≤ E2
22. (3.7)

Hence by summing (3.6) and (3.7), we have

E21 = E22E21 and E22 = E2
22. (3.8)

Since
[
1 E12

]
is a linear combination of the rows of

[
E21 E22

]
, there exists a row vector

X such that
[
1 E12

] = X
[
E21 E22

]
. That is to say,

1 = XE21 and E12 = XE22. (3.9)

Thus it follows from (3.8) and (3.9) that 1 = XE21 = XE22E21 = E12E21. Therefore,[
1

E21

]
=

[
E12E21
E22E21

]
=

[
E12
E22

]
E21.

This shows that the 1-th column of E is a linear combination of the remaining columns.
Dually, we can show that the converse is true. This completes our proof.

By Lemmas 3.3 and 3.5 we immediately have

Corollary 3.6 If E is an idempotent matrix, then c(E) = r(E) .

Lemma 3.7 Let A and B be n × n matrices. If all main diagonal entries of A are 1 and
ABA ≤ A, then B ≤ A.
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Proof Suppose that A = (aij ) and B = (bij ) are n×n matrices. Assume that ABA = (cij ).
If all main diagonal entries of A are 1 and ABA ≤ A, then for any 1 ≤ i, j ≤ n,

bij = 1 · bij · 1 = aii · bij · ajj ≤
n∑

k=1

n∑
l=1

(aik · bkl · alj ) = cij ≤ aij .

That is to say, B ≤ A.

The following gives the normal form of an idempotent matrix.

Theorem 3.8 Let E be an n × n matrix. Then E is an idempotent matrix of rank r if and
only if there exists an n × n permutation matrix P such that

E = P

[
Ē ĒU

V Ē V ĒU

]
P T ,

where Ē is a basis submatrix of E and is an r × r nonsingular idempotent matrix, U is an
r × (n − r) matrix and V is an (n − r) × r matrix such that UV ≤ Ē.

Proof Suppose that E is an n × n matrix. If E is an idempotent matrix of rank r (r < n),
then by Lemmas 3.3 and 3.5 we have that the i-th row of E is a linear combination of the
remaining rows if and only if the i-th column of E is a linear combination of the remaining
columns. Thus by carrying out the same row permutations and column permutations of E,
we can find a matrix E′ such that the first r columns and the first r rows of E′ are linearly
independent. That is to say, there exists an n × n permutation matrix P such that

P T EP = E′ =
[

Ē X

Y Z

]
,

where Ē is an basis submatrix of E, X, Y and Z are matrices of appropriate sizes. Also,
by Lemmas 3.3 and 3.5 we can show that Ē is an r × r nonsingular idempotent matrix.[

X

Z

]
=

[
Ē

Y

]
U for some r × (n − r) matrix U , since each column of

[
X

Z

]
is a linear

combination of the columns of

[
Ē

Y

]
. Dually, we can show that

[
Y YU

] = V
[
Ē ĒU

]
for some (n − r) × r matrix V . Hence, we have

E = P

[
Ē ĒU

V Ē V ĒU

]
P T .

This is a Rao “normal form” of E. Since E2 = E, we have that E′ = E′2. That is to say,[
Ē ĒU

V Ē V ĒU

]
=

[
Ē2 + ĒUV Ē Ē2U + ĒUV ĒU

V Ē2 + V ĒUV Ē V ĒU + V ĒUV ĒU

]
.

Hence, Ē = Ē2 + ĒUV Ē. Thus by Lemma 3.1, we can show that ĒUV Ē ≤ Ē. By
Corollary 3.4 and Lemma 3.7, we have that UV ≤ Ē.

The converse is easily to be verified.

Corollary 3.9 Let E be an n × n matrix. Then E is a symmetric idempotent matrix of rank
r if and only if there exists an n × n permutation matrix P such that

E = P

[
Ē ĒU

V Ē V ĒU

]
P T ,
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where Ē is a basis submatrix of E and is an r×r symmetric nonsingular idempotent matrix,
U is an r × (n − r) matrix and V is an (n − r) × r matrix such that UV ≤ Ē.

4 Generalized Inverses of a Regular Matrices

In this section we will give a characterization of regular matrices. Also, we will define a
space decomposition of a matrix and prove that a matrix A is regular if and only if A is
space decomposable.

Theorem 4.1 Let A be an m × n matrix. Then A is regular if and only if there exists an
m × m permutation matrix P and an n × n permutation matrix Q such that

A = P

[
FM FC

V FM V FC

]
Q,

where F is a nonsingular idempotent matrix, M is a diagonal monomial matrix and C, V
are matrices of appropriate sizes.

Proof Suppose that A is an m × n matrix. If A is regular, then there exists an n × m matrix
G such that G is a g-inverse of A. Thus AG is idempotent and AR∗AG by Proposition 2.6.
Let the rank of AG be r . Now, by Theorem 3.8, there exists an m×m permutation matrix P

such that AG = P

[
F FU

V F V FU

]
P T , where F is an r × r nonsingular idempotent matrix,

U and V are matrices of appropriate sizes, and so

AGP = P

[
F FU

V F V FU

]
. (4.1)

Notice that the set of the first r columns of AGP is a basis of Col(AGP). Since
AR∗AGR∗(AGP), it follows from (4.1), Lemma 2.2 and Proposition 2.4 that there exists
a permutation matrix Q such that

A = AGP

[
M X

−∞ Y

]
Q = P

[
F FU

V F V FU

] [
M X

O Y

]
Q = P

[
FM FC

V FM V FC

]
Q,

where M is an r × r monomial matrix and C = X + UY .

Conversely, it is easy to verify QT

[
M−1 O

O O

]
P T is a g-inverse of A.

As a consequence, we have

Corollary 4.2 If A is a regular matrix, then c(A) = r(A) .

Notice that for a matrix A, A is regular if and only if AT is regular, since G is a g-inverse
of A if and only if GT is a g-inverse of AT .

A nonzero matrix A is said to be space decomposable if there exist matrices L and R

such that
A = LR, AR∗L and AL ∗R. (4.2)

The decomposition LR will be called a space decomposition of A. Thus Col(A) = Col(L)

and Row(A) = Row(R). This means the matrix A is decomposed two matrices, which
satisfy a matrix preserves column space and another matrix preserves row space.
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Proposition 4.3 A nonzero matrix is regular if and only if it is space decomposable.

Proof Suppose that A is a nonzero m × n matrix.
If A is a regular matrix of rank r , then by Theorem 4.1, A is of the form

P

[
FM FC

V FM V FC

]
Q,

where P and Q are permutation matrices and M is a monomial matrix. Let

LA = P

[
F

V F

]
and RA = [

FM FC
]
Q. (4.3)

Then

A = LARA, LA = AQT

[
M−1

O

]
and RA = [

Ir O
]
P T A.

This implies that AR∗LA and AL ∗RA. Thus LA and RA satisfy the condition (4.2) and so
A is space decomposable.

Conversely, assume that A is space decomposable. Then it follows from (4.2) that there
exist matrices L and R such that A = LR, AR∗L and AL ∗R. This implies that L = AX

and R = YA for some matrices X and Y . Hence

A = LR = A(XY)A,

and so A is regular.

Notice that a matrix of rank less than 3 is space decomposable.

Corollary 4.4 If the rank of a matrix A is less than 3, then A is regular.

In [9], Johnson and Kambites proved that the all 2 × 2 tropical matrix are regular.
Corollary 4.4 extend this result.

Lemma 4.5 Let A be a nonsingular idempotent matrix. If G is a g-inverse of A, then AG =
GA = A.

Proof Suppose that A = (aij ) is an n × n nonsingular idempotent matrix and that G is a
g-inverse of A. Then AGA = A. It follows from Proposition 2.6 that AG is idempotent and
AR∗AG. Since A is nonsingular we can show by Corollary 2.5 that AG is also nonsingular.
Thus by Corollary 3.4 it follows that main diagonal entries of A and AG are all 1. This
implies by Lemma 3.7 that G ≤ A, since AGA = A. Hence

AG ≤ A2 = A, (4.4)

by Lemma 3.1(ii). Since (AG)A(AG) = AG, by Lemma 3.7 we have

A ≤ AG. (4.5)

(4.4) and (4.5) tell us that AG = A. Notice that AT is idempotent and AT GT AT = AT .
Similarly, we have that AT GT = AT , and hence GA = A.

Proposition 4.6 Let A be of the form in Theorem 4.1 and let LARA be the space decompo-
sition of A in (4.3). Then for any m × s matrix L and any s × n matrix R, LR is a space
decomposition of A if and only if L = LAM1, R = M2RA and FM1M2 = M1M2F = F

for some r × s matrix M1 and some s × r matrix M2.
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Proof If A is an m × n regular matrix of rank r , then by Theorem 4.1, A is of the form

P

[
FM FC

V FM V FC

]
Q,

where P and Q are permutation matrices, M is a monomial matrix and F is a nonsingular
idempotent matrix. Let LARA be the space decomposition of A in (4.3). Then it follows
from (4.2) that A = LARA, AR∗LA and AL ∗RA.

For any m×s matrix L and any s×n matrix R, if LR is a space decomposition of A, then
A = LR, LR∗A and RL ∗A. This implies that LR∗LA and RL ∗RA and so L = LAM1
and R = M2RA for some r × s matrix M1 and some s × r matrix M2. Now we have

A = LR = P

[
F

V F

]
M1M2

[
FM FC

]
Q = P

[
FM1M2FM FM1M2FC

V FM1M2FM V FM1M2FC

]
Q.

Since P and Q are permutation matrices, FM = FM1M2FM . It follows that F =
FM1M2F , since M is a monomial matrix. Notice that F is a nonsingular idempotent matrix.
By Lemma 4.5 we have that FM1M2 = M1M2F = F .

Conversely, assume that there exists an r × s matrix M1 and an s × r matrix M2 such
that L = LAM1, R = M2RA and FM1M2 = M1M2F = F . Then we have

LM2 = LAM1M2 = P

[
F

V F

]
M1M2 = P

[
F

V F

]
= LA,

M1R = M1M2RA = M1M2
[
FM FC

]
Q = [

FM FC
]
Q = RA,

and
LR = LAM1M2RA = LARA = A.

This implies that

A = LR, AR∗LAR∗L and AL ∗RAL ∗R,

and so LR is a space decomposition of A.

Corollary 4.7 If LR is a space decomposition of a regular matrix A, then both L and R

are regular.

Proof Let A be an m×n regular matrix of rank r . Suppose that LR is a space decomposition
of A. By Proposition 4.6 it follows that there exist matrices M1 and M2 such that L =
P

[
F

V F

]
M1, R = M2

[
FM FC

]
Q and FM1M2 = M1M2F = F , where P and Q are

permutation matrices, M is a monomial matrix. Thus we have

LG = M2
[
Ir O

]
P T and RG = QT

[
M−1

O

]
M1

are g-inverses of L and R, respectively, and so both L and R are regular.

5 Other Type of g-Inverses

Notice that G is a {1, 3}-g-inverse of A if and only if AGA = A and (AG)T = AG.

Theorem 5.1 Let A be an m × n matrix. The following statements are equivalent:

(i) A has a {1, 3}-g-inverse.
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(ii) There exists an m × m permutation matrix P and an n × n permutation matrix Q

such that

A = P

[
SM SZ

V SM V SZ

]
Q,

where S is a symmetric nonsingular idempotent matrix, M is a diagonal monomial
matrix and V , Z are matrices such that V T V ≤ S.

(iii) AL ∗AT A.

Proof (i) =⇒ (ii). Let an n × m matrix G be a {1, 3}-g-inverse of A. Then AR∗AG

and AG is a symmetric idempotent matrix by Proposition 2.6. Let the rank of AG is r .
It follows from Corollary 3.9 that there exists an m × m permutation matrix P such that

AG = P

[
S SV T

V S V SV T

]
P T , and so

AGP = P

[
S SV T

V S V SV T

]
,

where S is a symmetric nonsingular idempotent matrix,V is a matrix such that V T V ≤ S. Notice
that the set of the first r columns of AGP is a basis of Col(AGP). Since AR∗AGR∗AGP ,
it follows from Lemma 2.2 and Proposition 2.4 that there exists an n×n permutation matrix

Q such that A = AGP

[
M X

O Y

]
Q, where M is a diagonal monomial matrix. Thus

A = P

[
S SV T

V S V SV T

] [
M X

O Y

]
Q = P

[
SM SZ

V SM V SZ

]
Q,

where Z = X + V T Y .
(ii) =⇒ (iii). Now assume that (ii) holds. Since P is a permutation matrix, N is a sym-

metric idempotent matrix, M is a diagonal matrix and V is a matrix such that V T V ≤ N , it
follows that

AT A = QT

[
MSM MSZ

ZT SM ZT SZ

]
Q.

Hence, since Q is a permutation matrix and M is a monomial matrix,

A = P

[
M−1 O

V M−1 O

]
QAT A.

Thus we have that AL ∗AT A.
(iii) =⇒ (i). If AL ∗AT A, then there exists an m × n matrix G, such that A = GAT A.

This implies that

AGT A = (GAT A)GT A = G(AT AGT )A = G(GAT A)T A = GAT A = A.

We also have
(AGT )T = (GAT AGT )T = GAT AGT = AGT .

Therefore, GT is a {1, 3}-g-inverse of A.

In Theorem 5.1(ii), we can easily check that QT

[
M−1 M−1V T

O O

]
P T is a {1, 3}-g-

inverse of A.
Similarly, we have the following result.

Proposition 5.2 Let A be an m × n matrix. The following statements are equivalent:
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(i) A has a {1, 4}-g-inverse.
(ii) There exists an m × m permutation matrix P and an n × n permutation matrix Q

such that

A = P

[
SM SMU

WS WSU

]
Q,

where S is a symmetric nonsingular idempotent matrix, M is a diagonal monomial
matrix and U , W are matrices such that UUT ≤ S.

(iii) AR∗AAT .

In Proposition 5.2(ii), we can easily check that QT

[
M−1 O

UT M−1 O

]
P T is a {1, 4}-g-

inverse of A.
In the following result, we characterize matrices having Moore–Penrose inverses. The

proof depends on the above two theorems, and we omit the proof:

Corollary 5.3 Let A be an m × n matrix. The following statements are equivalent:

(i) A has a Moore–Penrose inverse.
(ii) There exists an m × m permutation matrix P and an n × n permutation matrix Q

such that

A = P

[
SM SMU

V SM V SMU

]
Q,

where S is a symmetric nonsingular idempotent matrix, M is a diagonal monomial
matrix and V , U are matrices such that V T V ≤ S and UUT ≤ S.

(iii) AL ∗AT A and AR∗AAT .

In Corollary 5.3(ii), we can easily check that QT

[
SM−1 SM−1V T

UT SM−1 UT SM−1V T

]
P T is a

Moore–Penrose inverse of A.
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3. Butkovič, P.: Max-Linear Systems: Theory and Algorithms. Springer, London (2010)
4. Cuninghame-Green, R.: Minimax Algebra. Lecture Notes in Economics and Mathematical Systems,

vol. 166. Springer, Berlin (1979)
5. Gaubert, S.: Two lectures on max-plus algebra. http://amadeus.inria.fr/gaubert (1998)
6. Golan, J.S.: Semirings and Their Applications. Kluwer Academic, Dordrecht (1999)
7. Hall, F.J., Katz, I.J.: Nonnegative integral generalized inverses. Linear Algebra Appl. 39, 23–39 (1981)
8. Hebisch, U., Weinert, H.J.: Semirings. Algebraic Theory and Applications in Computer Science Series

in Algebra, vol. 5. World Scientific, Singapore (1998)
9. Johnson, M., Kambites, M.: Multiplicative structure of 2 × 2 tropical matrices. Linear Algebra Appl.

435, 1612–1625 (2011)
10. Kang, K.-T., Song, S.-Z.: Regular matrices and their generalized inverses over the max algebra. Linear

Multilinear Algebra 63, 1649–1663 (2015)

273On Generalized Inverses of m × n Matrices...

http://amadeus.inria.fr/gaubert


11. Rao, P.S.S.N.V.P., Rao, K.P.S.B.: On generalized inverses of Boolean matrices. Linear Algebra Appl. 11,
135–153 (1975)

12. Wagneur, E.: Moduloı̈ds and pseudomodule 1. Dimension theory. Discrete Math. 98, 57–73 (1991)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

274 L. Yang, S.-L. Yang


	On Generalized Inverses of mn Matrices...
	Abstract
	Introduction
	Preliminaries
	Normal Form of an Idempotent Matrix
	Generalized Inverses of a Regular Matrices
	Other Type of g-Inverses
	References




