ORIGINAL ARTICLE

On Generalized Inverses of $m \times n$ Matrices Over a Pseudoring

Lin Yang¹ . Sheng-Liang Yang¹

Received: 20 August 2020 / Accepted: 23 December 2020 / Published online: 19 May 2021 © Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2021

Abstract

A generalized inverse of an $m \times n$ matrix A over a pseudoring means an $n \times m$ matrix G satisfying AGA = A. In this paper we give a characterization of matrices having generalized inverses. Also, we introduce and study a space decomposition of a matrix, and prove that a matrix is decomposable if and only if it has a generalized inverse. Finally, we establish necessary and sufficient conditions for a matrix to possess various types of g-inverses including Moore–Penrose inverse.

Keywords Idempotent matrix \cdot Regular matrix \cdot Generalized inverse \cdot Space decomposition

Mathematics Subject Classification (2010) 15B99 · 06E75 · 15A09 · 15A23

1 Introduction

Recall that [12] a pseudoring is a triple $(D, +, \cdot)$ where D is a completely ordered set with a minimal element $\mathbf{0}$; + and \cdot are two binary operations on D satisfying:

 $a + b = \max\{a, b\},\$

 (D^*, \cdot) is a group with identity element **1** (where $D^* = D \setminus \mathbf{0}$);

 $(\forall a \in D) \quad \mathbf{0} \cdot a = a \cdot \mathbf{0} = \mathbf{0};$

" \cdot " is distributive with respect to "+".

The following algebras are all pseudorings:

- (1) $(\mathbb{R} \cup \{-\infty\}, \max, +)$ (tropical algebra);
- (2) $(\mathbb{Z} \cup \{-\infty\}, \max, +)$ (extended integers);

Sheng-Liang Yang slyang@lut.cn

Lin Yang yanglinmath@163.com

¹ Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China

- (3) $(\mathbb{Q} \cup \{-\infty\}, \max, +)$ (extended integers);
- (4) $(\mathbb{R}_+ \cup \{0\}, \max, \cdot)$ (max algebra);
- (5) $(\mathbb{B}, +, \cdot)$ (2-element Boolean algebra).

Matrix theory over the above pseudorings has broad applications in combinatorial optimization, control theory, automata theory and many other areas of science (see [2–4, 6, 8]). As usual, the set of all $m \times n$ matrices over a pseudoring D is denoted by $M_{m \times n}(D)$. In particular, we will use $M_n(D)$ instead of $M_{n \times n}(D)$. The operations "+" and "·" on D induce corresponding operations on matrices in the obvious way. It is easy to see that $(M_n(D), \cdot)$ is a semigroup. For brevity, we will write AC in place of $A \cdot C$. Unless otherwise stated, we refer to matrix as a matrix over a pseudoring in the remainder of this paper.

For a matrix A in $M_{m \times n}(D)$, suppose that there exists a matrix G in $M_{n \times m}(D)$ such that AGA = A. Then A is called regular, and call G a generalized inverse of A. There are a series of papers in the literature considering the structure of regular matrices over some algebraic systems. In 1975, Rao and Rao [11] study the generalized inverses of Boolean matrices. In 1981, Hall and Katz [7] characterize the generalized inverses of nonnegative integer matrices. In 1998, Bapat [1] obtains the generalized inverses of nonnegative real matrices. And in 2015, Kang and Song [10] determine the general form of matrices over the max algebra having generalized inverses.

The main purpose of this paper is to study regular matrices and their generalized inverses over a pseudoring. The forms of regular matrices in this paper are extended the corresponding results in [10] and [11]. This paper will be divided into five sections. In Section 2 we introduce some preliminary notions and notation. A normal form of an idempotent matrix is given in Section 3. After characterizing idempotent matrices, we obtain the general form of matrices which have generalized inverses. In Section 4 we define a space decomposition of a matrix and prove that a matrix has a g-inverse if and only if it has a space decomposition. In Section 5 we establish necessary and sufficient conditions for the existence of the Moore–Penrose inverse and other types of g-inverses of a matrix.

2 Preliminaries

The following notation of linear dependence can be found in [12]. We will be interested in the space D^n consisting of *n*-tuples *x* with entries in *D*. We write x_i for the *i*th component of *x*. The D^n admits an addition and a scaling action of *D* given by $(x + y)_i = x_i + y_i$ and $(\lambda x)_i = \lambda x_i$, respectively. These operations give D^n the structure of an *D*-pseudomodule. Each element of this pseudomodule is called a vector. A vector α in D^n is called a *linear combination* of a subset $\{\alpha_1, \ldots, \alpha_k\}$ of D^n , if there exist $d_1, \ldots, d_k \in D$ such that

$$\alpha = d_1\alpha_1 + \cdots + d_k\alpha_k.$$

For a subset S of D^n , let span(S) denote

$$\left\{\sum_{i=1}^k d_i\alpha_i \mid k \in \mathbb{N}, \alpha_i \in S, d_i \in D, i = 1, 2, \dots, k\right\},\$$

where \mathbb{N} denotes the set of all natural numbers. The set *S* is called *linearly dependent* if there exists a vector $\alpha \in S$ such that α is a linear combination of elements in $S \setminus {\alpha}$. Otherwise, *S* is called *linearly independent*. A subset ${\alpha_i \mid i \in I}$ of a subpseudomodule \mathcal{V} of D^n is called a *basis* of \mathcal{V} if span ${\alpha_i \mid i \in I} = \mathcal{V}$ and ${\alpha_i \mid i \in I}$ is linearly independent.

In the sequel, the following notions and notation are needed for us.

- *I_n* denotes the *identity matrix*, i.e., the diagonal entries are all **1** and the other entries are all **0**.
- An $n \times n$ matrix A is called to be *invertible* if there exists an $n \times n$ matrix B such that $AB = BA = I_n$. In this case, B is called an inverse of A and is denoted by A^{-1} .
- An $n \times n$ matrix is called a *monomial matrix* if it has exactly one entry in each row and column which is not equal to **0**.
- An n × n matrix is called a *permutation matrix* if it is formed from the identity matrix by reordering its columns and/or rows.
- *O* denotes the *zero matrix*, i.e., the matrix whose entries are all 0.

Proposition 2.1 A matrix A is invertible if and only if A is a monomial matrix.

Proof Suppose that $A = (a_{ij})_{n \times n}$ is an invertible matrix. Then there exists a matrix $B = (b_{ij})_{n \times n}$ such that

$$AB = BA = (c_{ij})_{n \times n} = I_n$$

Thus

$$a_{i1}b_{1i} + a_{i2}b_{2i} + \dots + a_{in}b_{ni} = c_{ii} = \mathbf{1}.$$

It follows that there exists $1 \le k \le n$, such that $a_{ik}b_{ki} = 1$, and so

$$a_{ik} = (b_{ki})^{-1} \neq \mathbf{0}. \tag{2.1}$$

Since for any $j \neq i$,

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ik}b_{kj} + \dots + a_{in}b_{nj} = \mathbf{0},$$

$$c_{ji} = a_{j1}b_{1i} + a_{j2}b_{2i} + \dots + a_{jk}b_{ki} + \dots + a_{jn}b_{ni} = \mathbf{0},$$

we have

$$b_{kj} = \mathbf{0} \quad \text{and} \quad a_{jk} = \mathbf{0}. \tag{2.2}$$

Since for any $k \neq j$,

$$c_{kj} = b_{k1}a_{1j} + b_{k2}a_{2j} + \dots + b_{ki}a_{ij} + \dots + b_{kn}a_{nj} = \mathbf{0},$$

$$c_{ik} = b_{i1}a_{1k} + b_{i2}a_{2k} + \dots + b_{in}a_{ik} + \dots + b_{in}a_{nk} = \mathbf{0},$$

then

$$a_{ij} = \mathbf{0} \quad \text{and} \quad b_{ji} = \mathbf{0}. \tag{2.3}$$

By (2.1), (2.2) and (2.3), we obtain that A is a monomial matrix.

It is easy to see that the converse is true.

A permutation matrix is also a monomial matrix. And the inverse of a permutation matrix is its transpose.

Let A be an $m \times n$ matrix. The column space (row space, resp.) of an $m \times n$ matrix A is the subpseudomodule of D^m (D^n , resp.) spanned by all its columns (rows, resp.) and is denoted by Col(A) (Row(A), resp.). By Corollary 4.7 in [12], we know that every finitely generated pseudomodule has a basis. For an $m \times n$ matrix A, let \mathbf{a}_{i*} and \mathbf{a}_{*j} denote the *i*th row and the *j*th column of A, respectively. As a consequence, by Theorem 5 in [12] we immediately have

Lemma 2.2 Let $\{\mathbf{a}_{*i_1}, \ldots, \mathbf{a}_{*i_r}\}$ and $\{\mathbf{a}_{*j_1}, \ldots, \mathbf{a}_{*j_r}\}$ be any two bases of Col(A). Then there exists an $r \times r$ monomial matrix M such that

$$\begin{bmatrix} \mathbf{a}_{*i_1} \cdots \mathbf{a}_{*i_r} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{*j_1} \cdots \mathbf{a}_{*j_r} \end{bmatrix} M.$$

D Springer

Lemma 2.2 tells us that the cardinalities of any two bases for Col(A) are same. The cardinality is called the *column rank* of A, denoted by c(A). Dually, we can define the *row rank* of A, denoted by r(A). The column rank and the row rank of a matrix need not be equal in general. Let A be an $m \times n$ matrix. If c(A) = r(A) = r, then r is called the *rank* of A. If c(A) = n and r(A) = m, then A is called *nonsingular*, and *singular* otherwise.

Let $A = (a_{ij})$ be an $n \times n$ matrix, the submatrix

$$\begin{bmatrix} \mathbf{a}_{j_{1}i_{1}} \ \mathbf{a}_{j_{1}i_{2}} \ \cdots \ \mathbf{a}_{j_{1}i_{s}} \\ \mathbf{a}_{j_{2}i_{1}} \ \mathbf{a}_{j_{2}i_{2}} \ \cdots \ \mathbf{a}_{j_{2}i_{s}} \\ \vdots \ \vdots \ \vdots \\ \mathbf{a}_{j_{r}i_{1}} \ \mathbf{a}_{j_{r}i_{2}} \ \cdots \ \mathbf{a}_{j_{r}i_{s}} \end{bmatrix}$$

is called a *basis submatrix* of A, if $\{\mathbf{a}_{*i_1}, \ldots, \mathbf{a}_{*i_r}\}$ is a basis of Col(A) and $\{\mathbf{a}_{j_1*}, \ldots, \mathbf{a}_{j_s*}\}$ is a basis of Row(A). If A_1 and A_2 are both bases submatrices of A, then there exist monomial matrices M_1 and M_2 such that $A_1 = M_1 A_2 M_2$. We denote the basis submatrix by \overline{A} . It is easy to see that $c(A) = c(\overline{A}) =$ the number of columns of \overline{A} , and that $r(A) = r(\overline{A}) =$ the number of rows of \overline{A} . The Rao "normal form" of a matrix is to be needed for us.

Lemma 2.3 ([5] Lemma 101 Rao "normal form") Let A be an $m \times n$ matrix. Then there exists an $m \times m$ permutation matrix Q and an $n \times n$ permutation matrix P such that

$$A = Q \begin{bmatrix} \bar{A} & \bar{A}U \\ V\bar{A} & V\bar{A}U \end{bmatrix} P,$$

where U is an $r \times (n - r)$ matrix and V is an $(m - s) \times s$ matrix.

In the following we will introduce and study the equivalences \mathscr{R}^* and \mathscr{L}^* on the set $M(D) \ (= \bigcup_{m=1}^{\infty} \bigcup_{n=1}^{\infty} M_{m \times n}(D))$ of all matrices. The equivalences \mathscr{R}^* and \mathscr{L}^* are, respectively, defined by

$$(\forall A, B \in M(D)) \ A\mathscr{R}^*B \iff (\exists X, Y \in M(D)) \ A = BX \text{ and } B = AY;$$
$$(\forall A, B \in M(D)) \ A\mathscr{L}^*B \iff (\exists X, Y \in M(D)) \ A = XB \text{ and } B = YA.$$

It is easy to see that if $A\mathscr{R}^*B$ ($A\mathscr{L}^*B$, resp.), then the number of rows (columns, resp.) of A is equal to that of B. In particular, the restriction of \mathscr{R}^* and \mathscr{L}^* to $M_n(D)$ coincide with Green's relations \mathscr{R} and \mathscr{L} on the semigroup ($M_n(D)$, \cdot), respectively, which play a key role in the algebraic theory of semigroups.

Proposition 2.4 Let A and B be matrices in M(D). Then

$$A\mathscr{R}^*B \iff \operatorname{Col}(A) = \operatorname{Col}(B)$$
 and $A\mathscr{L}^*B \iff \operatorname{Row}(A) = \operatorname{Row}(B)$

Proof Suppose that $A\mathscr{R}^*B$. If *A* is an $m \times n$ matrix and *B* is an $m \times q$ matrix, then by the definition of \mathscr{R}^* , there exists a $q \times n$ matrix *X* such that BX = A. Now, it follows that $Col(BX) = Col(A) \subseteq Col(B)$, since the columns of *BX* are contained in Col(B). Dually, $Col(B) \subseteq Col(A)$. Thus Col(A) = Col(B).

Conversely, suppose that Col(A) = Col(B). If A is an $m \times n$ matrix and B is an $m \times q$ matrix, then each column of A is in Col(A) and so is in Col(B), since the pseudomodule D has a multiplicative identity **1**. This implies that each column of A can be written as a linear combination of the columns of B. Thus there exists a $q \times n$ matrix X such that BX = A. Similarly, we can prove that there exists an $n \times q$ matrix Y such that AY = B. Hence, we have shown that $A\mathscr{R}^*B$.

Dually, we can show that $A\mathscr{L}^*B$ if and only if $\operatorname{Row}(A) = \operatorname{Row}(B)$.

We now immediately deduce the following result.

Corollary 2.5 Let A and B be matrices in $M(\mathbb{B})$. Then

$$A\mathscr{R}^*B \implies c(A) = c(B) \quad and \quad A\mathscr{L}^*B \implies r(A) = r(B).$$

For an $m \times n$ matrix A, we will introduce various types of inverses of A. Consider an $n \times m$ matrix G in the following equations:

(G-1) AGA = A;(G-2) GAG = G;(G-3) $(AG)^T = AG;$ (G-4) $(GA)^T = GA.$

A matrix G satisfying (G-1) is called a *generalized inverse* (g-inverse for short) of A. If G satisfies (G-1) and (G-3) ((G-1) and (G-4), resp.), then it is called a $\{1, 3\}$ -g-inverse ($\{1, 4\}$ -g-inverse, resp.) of A. Finally, if G satisfies all from (G-1) to (G-4), then it is called a *Moore–Penrose inverse* of A.

We note that if G_1 and G_2 are any two g-inverses of A, then $G_1 + G_2$ is also a g-inverse of A, since

$$A(G_1 + G_2)A = AG_1A + AG_2A = A + A = A.$$

Also, it is well known that G is a $\{1, 3\}$ -g-inverse of A if and only if G^T is a $\{1, 4\}$ -g-inverse of A^T .

Proposition 2.6 Let A and G be an $m \times n$ matrix and an $n \times m$ matrix, respectively. Then the following statements are equivalent:

- (i) AGA = A;
- (ii) $(AG)^2 = AG \text{ and } A\mathscr{R}^*AG;$
- (iii) $(GA)^2 = GA \text{ and } A\mathscr{L}^*GA.$

Proof (i) \Rightarrow (ii). Assume that (i) holds. Then $(AG)^2 = (AGA)G = AG$. Also, it is clear that $A\mathscr{R}^*AG$.

(ii) \Rightarrow (i). Assume that (ii) holds. Then A = AGX for some $m \times n$ matrix X. This implies that AGA = AGAGX = AGX = A since $(AG)^2 = AG$. Thus (i) holds.

Similarly, we can show that (i) \Leftrightarrow (iii).

3 Normal Form of an Idempotent Matrix

In this section, we will give the Rao normal form of an idempotent matrix which plays a very important role in the studying the maximal subgroup of the semigroup $M_n(D)$. The following results are inspired by Kang and Song [10], in which they studied the idempotent matrices over the max-algebra.

Define the partial order \leq on $M_{m \times n}(D)$ by

$$A \leq B \iff A + B = B.$$

Lemma 3.1 Let A, B, C be $m \times n$ matrices, let X_1 , Y_1 be $n \times p$ matrices and let X_2 , Y_2 be $p \times m$ matrices. Then the following statements hold.

(i) If A + B = C, then $A \le C$ and $B \le C$.

(ii) If $X_1 \leq Y_1$, then $AX_1 \leq AY_1$. If $X_2 \leq Y_2$, then $X_2A \leq Y_2A$.

Proof (i) Suppose that A + B = C. Then we have

A + C = A + (A + B) = A + B = C.

Hence $A \leq C$. Similarly, $B \leq C$.

(ii) Suppose that $X_1 \leq Y_1$. Then $X_1 + Y_1 = Y_1$. Thus it follows that

$$AX_1 + AY_1 = A(X_1 + Y_1) = AY_1,$$

and so $AX_1 \leq AY_1$. Similarly, if $X_2 \leq Y_2$, then $X_2A \leq Y_2A$.

Lemma 3.2 If $E = (e_{ij})$ be an $n \times n$ idempotent matrix, then $e_{ii} \leq 1$ for all $1 \leq i \leq n$.

Proof Let $E = (e_{ij})_{n \times n}$ be an idempotent matrix. Then for any $1 \le i \le n$,

$$e_{ii} \cdot e_{ii} \leq (e_{i1} \cdot e_{1i}) + \dots + (e_{ii} \cdot e_{ii}) + \dots + (e_{in} \cdot e_{ni}) = e_{ii}.$$

This implies that $e_{ii} \leq e_{ii}e_{ii}^{-1} = \mathbf{1}$.

Lemma 3.3 Let $E = (e_{ij})$ be an $n \times n$ idempotent matrix. If $e_{ii} < 1$ for some $i \in \{1, 2, ..., n\}$, then the *i*-th column (row, resp.) of E is a linear combination of the remaining columns (rows, resp.). Furthermore, the matrix obtained from E by deleting the *i*-th column and the *i*-th row is an $(n - 1) \times (n - 1)$ idempotent matrix.

Proof Let $E = (e_{ij})_{n \times n}$ be an idempotent matrix. Suppose that $e_{ii} < 1$ for some $1 \le i \le n$. Without loss of generality, we assume that $e_{11} < 1$. Partition E as $\begin{bmatrix} e_{11} & E_{12} \\ E_{21} & E_{22} \end{bmatrix}$. Then we have

$$E^{2} = \begin{bmatrix} e_{11} \cdot e_{11} + E_{12}E_{21} & e_{11}E_{12} + E_{12}E_{22} \\ E_{21}e_{11} + E_{22}E_{21} & E_{21}E_{12} + E_{22}^{2} \end{bmatrix} = \begin{bmatrix} e_{11} & E_{12} \\ E_{21} & E_{22} \end{bmatrix}.$$

This implies that

$$\begin{bmatrix} E_{12}E_{21} & E_{12}E_{22} \\ E_{22}E_{21} & E_{21}E_{12} + E_{22}^2 \end{bmatrix} = \begin{bmatrix} e_{11} & E_{12} \\ E_{21} & E_{22} \end{bmatrix}$$

since $e_{11} < 1$. Thus it follows that

$$\begin{bmatrix} e_{11} \\ E_{21} \end{bmatrix} = \begin{bmatrix} E_{12}E_{21} \\ E_{22}E_{21} \end{bmatrix} = \begin{bmatrix} E_{12} \\ E_{22} \end{bmatrix} E_{21},$$
(3.1)

$$\begin{bmatrix} e_{11} & E_{12} \end{bmatrix} = \begin{bmatrix} E_{12}E_{21} & E_{12}E_{22} \end{bmatrix} = E_{12}\begin{bmatrix} E_{21} & E_{22} \end{bmatrix},$$
(3.2)

$$E_{21}E_{12} + E_{22}^2 = E_{22}. (3.3)$$

The equation (3.1) ((3.2), resp.) tells us that the 1-th column (the 1-th row, resp.) of E is a linear combination of the remaining columns (rows, resp.). By Lemma 3.1 and (3.3), we have

$$E_{22}^2 \le E_{22}$$
 and $E_{21}E_{12} \le E_{22}$. (3.4)

Thus it follows by (3.4) and Lemma 3.1 that $E_{21}E_{12} = E_{21}E_{12}E_{22} \le E_{22}^2$, since $E_{12}E_{22} = E_{12}$. We therefore have

$$E_{22} = E_{21}E_{12} + E_{22}^2 \le E_{22}^2 + E_{22}^2 = E_{22}^2, \tag{3.5}$$

by Lemma 3.1. Thus (3.4) and (3.5) tell us that $E_{22}^2 = E_{22}$.

The above lemma tells us that if $E = (e_{ij})$ is an $n \times n$ idempotent matrix and $e_{ii} < 0$ for some $1 \le i \le n$, then c(E) < n and r(E) < n. Thus by Lemmas 3.2 and 3.3, we immediately have the following result.

Corollary 3.4 All main diagonal entries of a nonsingular idempotent matrix are 1.

Lemma 3.5 Let *E* be an $n \times n$ idempotent matrix whose main diagonal entries are all **1**. Then the *i*-th row of *E* is a linear combination of the remaining rows if and only if the *i*-th column of *E* is a linear combination of the remaining columns. Furthermore, the matrix obtained from *E* by deleting the *i*-th column and the *i*-th row is an $(n - 1) \times (n - 1)$ idempotent matrix.

Proof Let $E = (e_{ij})$ be an $n \times n$ idempotent matrix with $e_{ii} = 0$ for all $1 \le i \le n$.

Suppose that the *i*-th row of *A* is a linear combination of the remaining rows. Without loss of generality, we assume that the 1-th row of *E* is a linear combination of the remaining rows. Partition *E* as $\begin{bmatrix} 1 & E_{12} \\ E_{21} & E_{22} \end{bmatrix}$. Then we have $E^2 = \begin{bmatrix} 1 + E_{12}E_{21} & E_{12} + E_{12}E_{22} \\ E_{21} + E_{22}E_{21} & E_{21}E_{12} + E_{22}^2 \end{bmatrix} = \begin{bmatrix} 1 & E_{12} \\ E_{21} & E_{22} \end{bmatrix}.$

Thus by Lemma 3.1 we have

$$E_{22}E_{21} \le E_{21}$$
 and $E_{22}^2 \le E_{22}$. (3.6)

On the other hand, it is easy to see that

$$I_{n-1} \leq E_{22},$$

since $e_{ii} = 1$ for all $2 \le i \le n$. Thus by Lemma 3.1, we can show that

$$E_{21} \le E_{22}E_{21}$$
 and $E_{22} \le E_{22}^2$. (3.7)

Hence by summing (3.6) and (3.7), we have

$$E_{21} = E_{22}E_{21}$$
 and $E_{22} = E_{22}^2$. (3.8)

Since $\begin{bmatrix} 1 & E_{12} \end{bmatrix}$ is a linear combination of the rows of $\begin{bmatrix} E_{21} & E_{22} \end{bmatrix}$, there exists a row vector *X* such that $\begin{bmatrix} 1 & E_{12} \end{bmatrix} = X \begin{bmatrix} E_{21} & E_{22} \end{bmatrix}$. That is to say,

$$1 = XE_{21}$$
 and $E_{12} = XE_{22}$. (3.9)

Thus it follows from (3.8) and (3.9) that $\mathbf{1} = XE_{21} = XE_{22}E_{21} = E_{12}E_{21}$. Therefore,

$$\begin{bmatrix} \mathbf{1} \\ E_{21} \end{bmatrix} = \begin{bmatrix} E_{12}E_{21} \\ E_{22}E_{21} \end{bmatrix} = \begin{bmatrix} E_{12} \\ E_{22} \end{bmatrix} E_{21}$$

This shows that the 1-th column of E is a linear combination of the remaining columns.

Dually, we can show that the converse is true. This completes our proof.

By Lemmas 3.3 and 3.5 we immediately have

Corollary 3.6 If E is an idempotent matrix, then c(E) = r(E).

Lemma 3.7 Let A and B be $n \times n$ matrices. If all main diagonal entries of A are 1 and $ABA \leq A$, then $B \leq A$.

Proof Suppose that $A = (a_{ij})$ and $B = (b_{ij})$ are $n \times n$ matrices. Assume that $ABA = (c_{ij})$. If all main diagonal entries of A are **1** and $ABA \leq A$, then for any $1 \leq i, j \leq n$,

$$b_{ij} = \mathbf{1} \cdot b_{ij} \cdot \mathbf{1} = a_{ii} \cdot b_{ij} \cdot a_{jj} \le \sum_{k=1}^{n} \sum_{l=1}^{n} (a_{ik} \cdot b_{kl} \cdot a_{lj}) = c_{ij} \le a_{ij}.$$

That is to say, $B \leq A$.

The following gives the normal form of an idempotent matrix.

Theorem 3.8 Let *E* be an $n \times n$ matrix. Then *E* is an idempotent matrix of rank *r* if and only if there exists an $n \times n$ permutation matrix *P* such that

$$E = P \begin{bmatrix} \bar{E} & \bar{E}U \\ V\bar{E} & V\bar{E}U \end{bmatrix} P^T,$$

where E is a basis submatrix of E and is an $r \times r$ nonsingular idempotent matrix, U is an $r \times (n-r)$ matrix and V is an $(n-r) \times r$ matrix such that $UV \leq \overline{E}$.

Proof Suppose that *E* is an $n \times n$ matrix. If *E* is an idempotent matrix of rank r (r < n), then by Lemmas 3.3 and 3.5 we have that the *i*-th row of *E* is a linear combination of the remaining rows if and only if the *i*-th column of *E* is a linear combination of the remaining columns. Thus by carrying out the same row permutations and column permutations of *E*, we can find a matrix *E'* such that the first *r* columns and the first *r* rows of *E'* are linearly independent. That is to say, there exists an $n \times n$ permutation matrix *P* such that

$$P^T E P = E' = \begin{bmatrix} \bar{E} & X \\ Y & Z \end{bmatrix},$$

where \bar{E} is an basis submatrix of E, X, Y and Z are matrices of appropriate sizes. Also, by Lemmas 3.3 and 3.5 we can show that \bar{E} is an $r \times r$ nonsingular idempotent matrix. $\begin{bmatrix} X \\ Z \end{bmatrix} = \begin{bmatrix} \bar{E} \\ Y \end{bmatrix} U$ for some $r \times (n - r)$ matrix U, since each column of $\begin{bmatrix} X \\ Z \end{bmatrix}$ is a linear combination of the columns of $\begin{bmatrix} \bar{E} \\ Y \end{bmatrix}$. Dually, we can show that $\begin{bmatrix} Y & YU \end{bmatrix} = V \begin{bmatrix} \bar{E} & \bar{E}U \end{bmatrix}$ for some $(n - r) \times r$ matrix V. Hence, we have

$$E = P \begin{bmatrix} \bar{E} & \bar{E}U \\ V\bar{E} & V\bar{E}U \end{bmatrix} P^T.$$

This is a Rao "normal form" of E. Since $E^2 = E$, we have that $E' = E'^2$. That is to say,

$$\begin{bmatrix} \bar{E} & \bar{E}U \\ V\bar{E} & V\bar{E}U \end{bmatrix} = \begin{bmatrix} \bar{E}^2 + \bar{E}UV\bar{E} & \bar{E}^2U + \bar{E}UV\bar{E}U \\ V\bar{E}^2 + V\bar{E}UV\bar{E} & V\bar{E}U + V\bar{E}UV\bar{E}U \end{bmatrix}.$$

Hence, $\bar{E} = \bar{E}^2 + \bar{E}UV\bar{E}$. Thus by Lemma 3.1, we can show that $\bar{E}UV\bar{E} \leq \bar{E}$. By Corollary 3.4 and Lemma 3.7, we have that $UV \leq \bar{E}$.

The converse is easily to be verified.

Corollary 3.9 Let *E* be an $n \times n$ matrix. Then *E* is a symmetric idempotent matrix of rank *r* if and only if there exists an $n \times n$ permutation matrix *P* such that

$$E = P \begin{bmatrix} \bar{E} & \bar{E}U \\ V\bar{E} & V\bar{E}U \end{bmatrix} P^T,$$

where \overline{E} is a basis submatrix of E and is an $r \times r$ symmetric nonsingular idempotent matrix, U is an $r \times (n - r)$ matrix and V is an $(n - r) \times r$ matrix such that $UV < \overline{E}$.

4 Generalized Inverses of a Regular Matrices

In this section we will give a characterization of regular matrices. Also, we will define a space decomposition of a matrix and prove that a matrix A is regular if and only if A is space decomposable.

Theorem 4.1 Let A be an $m \times n$ matrix. Then A is regular if and only if there exists an $m \times m$ permutation matrix P and an $n \times n$ permutation matrix Q such that

$$A = P \left[\begin{array}{cc} FM & FC \\ VFM & VFC \end{array} \right] Q,$$

where F is a nonsingular idempotent matrix, M is a diagonal monomial matrix and C, V are matrices of appropriate sizes.

Proof Suppose that A is an $m \times n$ matrix. If A is regular, then there exists an $n \times m$ matrix G such that G is a g-inverse of A. Thus AG is idempotent and $A\mathscr{R}^*AG$ by Proposition 2.6. Let the rank of AG be r. Now, by Theorem 3.8, there exists an $m \times m$ permutation matrix P such that $AG = P\begin{bmatrix} F & FU\\ VF & VFU \end{bmatrix} P^T$, where F is an $r \times r$ nonsingular idempotent matrix, U and V are matrices of appropriate sizes, and so

$$AGP = P \begin{bmatrix} F & FU\\ VF & VFU \end{bmatrix}.$$
(4.1)

Notice that the set of the first r columns of AGP is a basis of Col(AGP). Since $A\mathscr{R}^*AG\mathscr{R}^*(AGP)$, it follows from (4.1), Lemma 2.2 and Proposition 2.4 that there exists a permutation matrix Q such that

$$A = AGP \begin{bmatrix} M & X \\ -\infty & Y \end{bmatrix} Q = P \begin{bmatrix} F & FU \\ VF & VFU \end{bmatrix} \begin{bmatrix} M & X \\ O & Y \end{bmatrix} Q = P \begin{bmatrix} FM & FC \\ VFM & VFC \end{bmatrix} Q,$$

where *M* is an $r \times r$ monomial matrix and C = X + UY. Conversely, it is easy to verify $Q^T \begin{bmatrix} M^{-1} & O \\ O & O \end{bmatrix} P^T$ is a g-inverse of *A*.

As a consequence, we have

Corollary 4.2 If A is a regular matrix, then c(A) = r(A).

Notice that for a matrix A, A is regular if and only if A^T is regular, since G is a g-inverse of A if and only if G^T is a g-inverse of A^T .

A nonzero matrix A is said to be space decomposable if there exist matrices L and R such that

$$A = LR, \quad A\mathscr{R}^*L \quad \text{and} \quad A\mathscr{L}^*R. \tag{4.2}$$

The decomposition LR will be called a space decomposition of A. Thus Col(A) = Col(L)and $\operatorname{Row}(A) = \operatorname{Row}(R)$. This means the matrix A is decomposed two matrices, which satisfy a matrix preserves column space and another matrix preserves row space.

Proposition 4.3 A nonzero matrix is regular if and only if it is space decomposable.

Proof Suppose that A is a nonzero $m \times n$ matrix.

If A is a regular matrix of rank r, then by Theorem 4.1, A is of the form

$$P\left[\begin{array}{cc}FM & FC\\VFM & VFC\end{array}\right]Q,$$

where P and Q are permutation matrices and M is a monomial matrix. Let

$$L_A = P \begin{bmatrix} F \\ VF \end{bmatrix}$$
 and $R_A = \begin{bmatrix} FM & FC \end{bmatrix} Q.$ (4.3)

Then

$$A = L_A R_A, \quad L_A = A Q^T \begin{bmatrix} M^{-1} \\ O \end{bmatrix} \text{ and } R_A = \begin{bmatrix} I_r & O \end{bmatrix} P^T A.$$

This implies that $A\mathscr{R}^*L_A$ and $A\mathscr{L}^*R_A$. Thus L_A and R_A satisfy the condition (4.2) and so A is space decomposable.

Conversely, assume that A is space decomposable. Then it follows from (4.2) that there exist matrices L and R such that A = LR, $A\mathscr{R}^*L$ and $A\mathscr{L}^*R$. This implies that L = AX and R = YA for some matrices X and Y. Hence

$$A = LR = A(XY)A,$$

and so A is regular.

Notice that a matrix of rank less than 3 is space decomposable.

Corollary 4.4 If the rank of a matrix A is less than 3, then A is regular.

In [9], Johnson and Kambites proved that the all 2×2 tropical matrix are regular. Corollary 4.4 extend this result.

Lemma 4.5 Let A be a nonsingular idempotent matrix. If G is a g-inverse of A, then AG = GA = A.

Proof Suppose that $A = (a_{ij})$ is an $n \times n$ nonsingular idempotent matrix and that G is a g-inverse of A. Then AGA = A. It follows from Proposition 2.6 that AG is idempotent and $A\mathscr{R}^*AG$. Since A is nonsingular we can show by Corollary 2.5 that AG is also nonsingular. Thus by Corollary 3.4 it follows that main diagonal entries of A and AG are all 1. This implies by Lemma 3.7 that $G \leq A$, since AGA = A. Hence

$$AG \le A^2 = A,\tag{4.4}$$

by Lemma 3.1(ii). Since (AG)A(AG) = AG, by Lemma 3.7 we have

$$A \le AG. \tag{4.5}$$

(4.4) and (4.5) tell us that AG = A. Notice that A^T is idempotent and $A^TG^TA^T = A^T$. Similarly, we have that $A^TG^T = A^T$, and hence GA = A.

Proposition 4.6 Let A be of the form in Theorem 4.1 and let $L_A R_A$ be the space decomposition of A in (4.3). Then for any $m \times s$ matrix L and any $s \times n$ matrix R, LR is a space decomposition of A if and only if $L = L_A M_1$, $R = M_2 R_A$ and $F M_1 M_2 = M_1 M_2 F = F$ for some $r \times s$ matrix M_1 and some $s \times r$ matrix M_2 .

Proof If A is an $m \times n$ regular matrix of rank r, then by Theorem 4.1, A is of the form

$$P\left[\begin{array}{cc}FM & FC\\VFM & VFC\end{array}\right]Q,$$

where *P* and *Q* are permutation matrices, *M* is a monomial matrix and *F* is a nonsingular idempotent matrix. Let $L_A R_A$ be the space decomposition of *A* in (4.3). Then it follows from (4.2) that $A = L_A R_A$, $A \mathscr{R}^* L_A$ and $A \mathscr{L}^* R_A$.

For any $m \times s$ matrix L and any $s \times n$ matrix R, if LR is a space decomposition of A, then A = LR, $L\mathscr{R}^*A$ and $R\mathscr{L}^*A$. This implies that $L\mathscr{R}^*L_A$ and $R\mathscr{L}^*R_A$ and so $L = L_AM_1$ and $R = M_2R_A$ for some $r \times s$ matrix M_1 and some $s \times r$ matrix M_2 . Now we have

$$A = LR = P \begin{bmatrix} F \\ VF \end{bmatrix} M_1 M_2 \begin{bmatrix} FM & FC \end{bmatrix} Q = P \begin{bmatrix} FM_1M_2FM & FM_1M_2FC \\ VFM_1M_2FM & VFM_1M_2FC \end{bmatrix} Q.$$

Since P and Q are permutation matrices, $FM = FM_1M_2FM$. It follows that $F = FM_1M_2F$, since M is a monomial matrix. Notice that F is a nonsingular idempotent matrix. By Lemma 4.5 we have that $FM_1M_2 = M_1M_2F = F$.

Conversely, assume that there exists an $r \times s$ matrix M_1 and an $s \times r$ matrix M_2 such that $L = L_A M_1$, $R = M_2 R_A$ and $F M_1 M_2 = M_1 M_2 F = F$. Then we have

$$LM_{2} = L_{A}M_{1}M_{2} = P \begin{bmatrix} F \\ VF \end{bmatrix} M_{1}M_{2} = P \begin{bmatrix} F \\ VF \end{bmatrix} = L_{A},$$
$$M_{1}R = M_{1}M_{2}R_{A} = M_{1}M_{2}[FM FC]Q = [FM FC]Q = R_{A},$$

and

$$LR = L_A M_1 M_2 R_A = L_A R_A = A_A$$

This implies that

$$A = LR$$
, $A\mathscr{R}^*L_A\mathscr{R}^*L$ and $A\mathscr{L}^*R_A\mathscr{L}^*R$,

and so LR is a space decomposition of A.

Corollary 4.7 If LR is a space decomposition of a regular matrix A, then both L and R are regular.

Proof Let *A* be an $m \times n$ regular matrix of rank *r*. Suppose that *LR* is a space decomposition of *A*. By Proposition 4.6 it follows that there exist matrices M_1 and M_2 such that $L = P \begin{bmatrix} F \\ VF \end{bmatrix} M_1$, $R = M_2 \begin{bmatrix} FM & FC \end{bmatrix} Q$ and $FM_1M_2 = M_1M_2F = F$, where *P* and *Q* are permutation matrices, *M* is a monomial matrix. Thus we have

$$L_G = M_2 \begin{bmatrix} I_r & O \end{bmatrix} P^T$$
 and $R_G = Q^T \begin{bmatrix} M^{-1} \\ O \end{bmatrix} M_1$

are g-inverses of L and R, respectively, and so both L and R are regular.

5 Other Type of g-Inverses

Notice that G is a {1, 3}-g-inverse of A if and only if AGA = A and $(AG)^T = AG$.

Theorem 5.1 Let A be an $m \times n$ matrix. The following statements are equivalent:

(i) A has a $\{1, 3\}$ -g-inverse.

 \square

 \square

(ii) There exists an $m \times m$ permutation matrix P and an $n \times n$ permutation matrix Q such that

$$A = P \left[\begin{array}{cc} SM & SZ \\ VSM & VSZ \end{array} \right] Q,$$

where S is a symmetric nonsingular idempotent matrix, M is a diagonal monomial matrix and V, Z are matrices such that $V^T V \leq S$.

(iii) $A\mathscr{L}^*A^TA$.

Proof (i) \implies (ii). Let an $n \times m$ matrix *G* be a {1, 3}-g-inverse of *A*. Then $A\mathscr{R}^*AG$ and *AG* is a symmetric idempotent matrix by Proposition 2.6. Let the rank of *AG* is *r*. It follows from Corollary 3.9 that there exists an $m \times m$ permutation matrix *P* such that $AG = P \begin{bmatrix} S & SV^T \\ VS & VSV^T \end{bmatrix} P^T$, and so

$$AGP = P \left[\begin{array}{cc} S & SV^T \\ VS & VSV^T \end{array} \right],$$

where *S* is a symmetric nonsingular idempotent matrix, *V* is a matrix such that $V^T V \leq S$. Notice that the set of the first *r* columns of *AGP* is a basis of Col(*AGP*). Since $A\mathscr{R}^*AG\mathscr{R}^*AGP$, it follows from Lemma 2.2 and Proposition 2.4 that there exists an $n \times n$ permutation matrix $\begin{bmatrix} M & X \end{bmatrix}$

$$Q \text{ such that } A = AGP \begin{bmatrix} M & X \\ O & Y \end{bmatrix} Q, \text{ where } M \text{ is a diagonal monomial matrix. Thus}$$
$$A = P \begin{bmatrix} S & SV^T \\ VS & VSV^T \end{bmatrix} \begin{bmatrix} M & X \\ O & Y \end{bmatrix} Q = P \begin{bmatrix} SM & SZ \\ VSM & VSZ \end{bmatrix} Q,$$

where $Z = X + V^T Y$.

(ii) \implies (iii). Now assume that (ii) holds. Since P is a permutation matrix, N is a symmetric idempotent matrix, M is a diagonal matrix and V is a matrix such that $V^T V \le N$, it follows that

$$A^{T}A = Q^{T} \begin{bmatrix} MSM & MSZ \\ Z^{T}SM & Z^{T}SZ \end{bmatrix} Q.$$

Hence, since Q is a permutation matrix and M is a monomial matrix,

$$A = P \begin{bmatrix} M^{-1} & O \\ VM^{-1} & O \end{bmatrix} Q A^T A.$$

Thus we have that $A\mathscr{L}^*A^TA$.

(iii) \implies (i). If $A \mathscr{L}^* A^T A$, then there exists an $m \times n$ matrix G, such that $A = G A^T A$. This implies that

$$AG^{T}A = (GA^{T}A)G^{T}A = G(A^{T}AG^{T})A = G(GA^{T}A)^{T}A = GA^{T}A = A.$$

We also have

$$(AG^T)^T = (GA^T AG^T)^T = GA^T AG^T = AG^T.$$

Therefore, G^T is a {1, 3}-g-inverse of A.

In Theorem 5.1(ii), we can easily check that $Q^T \begin{bmatrix} M^{-1} & M^{-1}V^T \\ O & O \end{bmatrix} P^T$ is a {1, 3}-g-inverse of A.

Similarly, we have the following result.

Proposition 5.2 Let A be an $m \times n$ matrix. The following statements are equivalent:

- (i) A has a $\{1, 4\}$ -g-inverse.
- (ii) There exists an $m \times m$ permutation matrix P and an $n \times n$ permutation matrix Q such that

$$A = P \left[\begin{array}{c} SM & SMU \\ WS & WSU \end{array} \right] Q,$$

where S is a symmetric nonsingular idempotent matrix, M is a diagonal monomial matrix and U, W are matrices such that $UU^T < S$.

 $A\mathscr{R}^*AA^T$. (iii)

In Proposition 5.2(ii), we can easily check that $Q^T \begin{bmatrix} M^{-1} & O \\ U^T M^{-1} & O \end{bmatrix} P^T$ is a {1, 4}-g-

inverse of A.

In the following result, we characterize matrices having Moore–Penrose inverses. The proof depends on the above two theorems, and we omit the proof:

Corollary 5.3 Let A be an $m \times n$ matrix. The following statements are equivalent:

- A has a Moore–Penrose inverse. (i)
- (ii) There exists an $m \times m$ permutation matrix P and an $n \times n$ permutation matrix Q such that

$$A = P \left[\begin{array}{cc} SM & SMU \\ VSM & VSMU \end{array} \right] Q,$$

where S is a symmetric nonsingular idempotent matrix, M is a diagonal monomial matrix and V, U are matrices such that $V^T V \leq S$ and $UU^T \leq S$.

 $A\mathscr{L}^*A^TA$ and $A\mathscr{R}^*AA^T$. (iii)

In Corollary 5.3(ii), we can easily check that $Q^T \begin{bmatrix} SM^{-1} & SM^{-1}V^T \\ U^T SM^{-1} & U^T SM^{-1}V^T \end{bmatrix} P^T$ is a Moore–Penrose inverse of A.

Acknowledgements This work is supported by the National Natural Science Foundation of China (Grant No.11861045) and the Hongliu Foundation of First-class Disciplines of Lanzhou University of Technology, China.

References

- 1. Bapat, R.B.: Structure of a nonnegative regular matrix and its generalized inverse. Linear Algebra Appl. 268, 31-39 (1998)
- 2. Butkovič, P.: Max-algebra: the linear algebra of combinatorics? Linear Algebra Appl. 367, 313-335 (2003)
- 3. Butkovič, P.: Max-Linear Systems: Theory and Algorithms. Springer, London (2010)
- 4. Cuninghame-Green, R.: Minimax Algebra. Lecture Notes in Economics and Mathematical Systems, vol. 166. Springer, Berlin (1979)
- 5. Gaubert, S.: Two lectures on max-plus algebra. http://amadeus.inria.fr/gaubert (1998)
- 6. Golan, J.S.: Semirings and Their Applications. Kluwer Academic, Dordrecht (1999)
- 7. Hall, F.J., Katz, I.J.: Nonnegative integral generalized inverses. Linear Algebra Appl. 39, 23–39 (1981)
- 8. Hebisch, U., Weinert, H.J.: Semirings. Algebraic Theory and Applications in Computer Science Series in Algebra, vol. 5. World Scientific, Singapore (1998)
- 9. Johnson, M., Kambites, M.: Multiplicative structure of 2×2 tropical matrices. Linear Algebra Appl. 435, 1612-1625 (2011)
- 10. Kang, K.-T., Song, S.-Z.: Regular matrices and their generalized inverses over the max algebra. Linear Multilinear Algebra 63, 1649–1663 (2015)

- Rao, P.S.S.N.V.P., Rao, K.P.S.B.: On generalized inverses of Boolean matrices. Linear Algebra Appl. 11, 135–153 (1975)
- 12. Wagneur, E.: Moduloïds and pseudomodule 1. Dimension theory. Discrete Math. 98, 57-73 (1991)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.