ORIGINAL ARTICLE

On Generalized Inverses of ^m × ⁿ Matrices Over a Pseudoring

Lin Yang¹ · Sheng-Liang Yang1

Received: 20 August 2020 / Accepted: 23 December 2020 / Published online: 19 May 2021 © Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2021

Abstract

A generalized inverse of an $m \times n$ matrix A over a pseudoring means an $n \times m$ matrix G satisfying $AGA = A$. In this paper we give a characterization of matrices having generalized inverses. Also, we introduce and study a space decomposition of a matrix, and prove that a matrix is decomposable if and only if it has a generalized inverse. Finally, we establish necessary and sufficient conditions for a matrix to possess various types of g-inverses including Moore–Penrose inverse.

Keywords Idempotent matrix · Regular matrix · Generalized inverse · Space decomposition

Mathematics Subject Classification (2010) 15B99 · 06E75 · 15A09 · 15A23

1 Introduction

Recall that $[12]$ a pseudoring is a triple $(D, +, \cdot)$ where D is a completely ordered set with a minimal element $\mathbf{0}$; $+$ and \cdot are two binary operations on *D* satisfying:

 $a + b = \max\{a, b\}$

(D[∗], ·) is a group with identity element **1** (where D [∗] = *D* \ **0**);

 $(\forall a \in D)$ **0** · $a = a \cdot \mathbf{0} = \mathbf{0}$;

" · " is distributive with respect to "+". The following algebras are all pseudorings:

- (1) $(\mathbb{R} \cup \{-\infty\}, \max, +)$ (tropical algebra);
- (2) *(*^Z ∪ {−∞}*,* max*,* ⁺*)* (extended integers);

- Lin Yang [yanglinmath@l63.com](mailto: yanglinmath@l63.com)

> Sheng-Liang Yang [slyang@lut.cn](mailto: slyang@lut.cn)

¹ Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China

- (3) *(*^Q ∪ {−∞}*,* max*,* ⁺*)*(extended integers);
- (4) *(*R⁺ ∪ {0}*,* max*,* ·*)* (max algebra);
- (5) *(*B*,* ⁺*,* ·*)* (2-element Boolean algebra).

Matrix theory over the above pseudorings has broad applications in combinatorial opti-mization, control theory, automata theory and many other areas of science (see [\[2–](#page-12-0)[4,](#page-12-1) [6,](#page-12-2) [8\]](#page-12-3)). As usual, the set of all $m \times n$ matrices over a pseudoring *D* is denoted by $M_{m \times n}(D)$. In particular, we will use $M_n(D)$ instead of $M_{n \times n}(D)$. The operations "+" and "·" on *D* induce corresponding operations on matrices in the obvious way. It is easy to see that $(M_n(D), \cdot)$ is a semigroup. For brevity, we will write AC in place of $A \cdot C$. Unless otherwise stated, we refer to matrix as a matrix over a pseudoring in the remainder of this paper.

For a matrix *A* in $M_{m \times n}(D)$, suppose that there exists a matrix *G* in $M_{n \times m}(D)$ such that *AGA* = *A*. Then *A* is called regular, and call *G* a generalized inverse of *A*. There are a series of papers in the literature considering the structure of regular matrices over some algebraic systems. In 1975, Rao and Rao [\[11\]](#page-13-1) study the generalized inverses of Boolean matrices. In 1981, Hall and Katz [\[7\]](#page-12-4) characterize the generalized inverses of nonnegative integer matrices. In 1998, Bapat [\[1\]](#page-12-5) obtains the generalized inverses of nonnegative real matrices. And in 2015, Kang and Song [\[10\]](#page-12-6) determine the general form of matrices over the max algebra having generalized inverses.

The main purpose of this paper is to study regular matrices and their generalized inverses over a pseudoring. The forms of regular matrices in this paper are extended the corresponding results in [\[10\]](#page-12-6) and [\[11\]](#page-13-1). This paper will be divided into five sections. In Section [2](#page-1-0) we introduce some preliminary notions and notation. A normal form of an idempotent matrix is given in Section [3.](#page-4-0) After characterizing idempotent matrices, we obtain the general form of matrices which have generalized inverses. In Section [4](#page-8-0) we define a space decomposition of a matrix and prove that a matrix has a g-inverse if and only if it has a space decomposition. In Section [5](#page-10-0) we establish necessary and sufficient conditions for the existence of the Moore–Penrose inverse and other types of g-inverses of a matrix.

2 Preliminaries

The following notation of linear dependence can be found in [\[12\]](#page-13-0). We will be interested in the space D^n consisting of *n*-tuples *x* with entries in *D*. We write x_i for the *i*th component of *x*. The D^n admits an addition and a scaling action of *D* given by $(x + y)_i = x_i + y_i$ and $(\lambda x)_i = \lambda x_i$, respectively. These operations give D^n the structure of an *D*-pseudomodule. Each element of this pseudomodule is called a vector. A vector α in D^n is called a *linear combination* of a subset $\{\alpha_1, \ldots, \alpha_k\}$ of D^n , if there exist $d_1, \ldots, d_k \in D$ such that

$$
\alpha=d_1\alpha_1+\cdots+d_k\alpha_k.
$$

For a subset *S* of *Dn*, let span*(S)* denote

$$
\left\{\sum_{i=1}^k d_i \alpha_i \mid k \in \mathbb{N}, \alpha_i \in S, d_i \in D, i = 1, 2, \ldots, k\right\},\
$$

where N denotes the set of all natural numbers. The set *S* is called *linearly dependent* if there exists a vector $\alpha \in S$ such that α is a linear combination of elements in $S \setminus {\alpha}$. Otherwise, *S* is called *linearly independent*. A subset $\{\alpha_i \mid i \in I\}$ of a subpseudomodule V of D^n is called a *basis* of V if span({ $\alpha_i | i \in I$ }) = V and { $\alpha_i | i \in I$ } is linearly independent.

In the sequel, the following notions and notation are needed for us.

- I_n denotes the *identity matrix*, i.e., the diagonal entries are all **1** and the other entries are all **0**.
- An $n \times n$ matrix A is called to be *invertible* if there exists an $n \times n$ matrix B such that $AB = BA = I_n$. In this case, *B* is called an inverse of *A* and is denoted by A^{-1} .
- An $n \times n$ matrix is called a *monomial matrix* if it has exactly one entry in each row and column which is not equal to **0**.
- An $n \times n$ matrix is called a *permutation matrix* if it is formed from the identity matrix by reordering its columns and/or rows.
- *O* denotes the *zero matrix*, i.e., the matrix whose entries are all 0.

Proposition 2.1 *A matrix A is invertible if and only if A is a monomial matrix.*

Proof Suppose that $A = (a_{ij})_{n \times n}$ is an invertible matrix. Then there exists a matrix $B =$ $(b_{ij})_{n \times n}$ such that

$$
AB = BA = (c_{ij})_{n \times n} = I_n.
$$

Thus

$$
a_{i1}b_{1i} + a_{i2}b_{2i} + \cdots + a_{in}b_{ni} = c_{ii} = 1.
$$

It follows that there exists $1 \leq k \leq n$, such that $a_{ik}b_{ki} = 1$, and so

$$
a_{ik} = (b_{ki})^{-1} \neq \mathbf{0}.
$$
 (2.1)

Since for any $j \neq i$,

$$
c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ik}b_{kj} + \cdots + a_{in}b_{nj} = \mathbf{0},
$$

\n
$$
c_{ji} = a_{j1}b_{1i} + a_{j2}b_{2i} + \cdots + a_{jk}b_{ki} + \cdots + a_{jn}b_{ni} = \mathbf{0},
$$

we have

$$
b_{kj} = \mathbf{0} \quad \text{and} \quad a_{jk} = \mathbf{0}.\tag{2.2}
$$

Since for any $k \neq j$,

$$
c_{kj} = b_{k1}a_{1j} + b_{k2}a_{2j} + \cdots + b_{ki}a_{ij} + \cdots + b_{kn}a_{nj} = \mathbf{0},
$$

$$
c_{jk} = b_{j1}a_{1k} + b_{j2}a_{2k} + \cdots + b_{jn}a_{ik} + \cdots + b_{jn}a_{nk} = \mathbf{0},
$$

then

$$
a_{ij} = \mathbf{0} \quad \text{and} \quad b_{ji} = \mathbf{0}.\tag{2.3}
$$

By (2.1) , (2.2) and (2.3) , we obtain that *A* is a monomial matrix.

It is easy to see that the converse is true.

A permutation matrix is also a monomial matrix. And the inverse of a permutation matrix is its transpose.

Let *A* be an $m \times n$ matrix. The *column space* (*row space*, resp.) of an $m \times n$ matrix *A* is the subpseudomodule of D^m (D^n , resp.) spanned by all its columns (rows, resp.) and is denoted by Col*(A)* (Row*(A)*, resp.). By Corollary 4.7 in [\[12\]](#page-13-0), we know that every finitely generated pseudomodule has a basis. For an $m \times n$ matrix A, let \mathbf{a}_{i*} and \mathbf{a}_{*j} denote the *i*th row and the *j*th column of *A*, respectively. As a consequence, by Theorem 5 in [\[12\]](#page-13-0) we immediately have

Lemma 2.2 *Let* $\{a_{*i_1}, \ldots, a_{*i_r}\}$ *and* $\{a_{*j_1}, \ldots, a_{*j_r}\}$ *be any two bases of* Col(*A*)*. Then there exists an r* × *r monomial matrix M such that*

$$
\left[\begin{array}{ccc} \mathbf{a}_{*i_1} & \cdots & \mathbf{a}_{*i_r} \end{array}\right] = \left[\begin{array}{ccc} \mathbf{a}_{*j_1} & \cdots & \mathbf{a}_{*j_r} \end{array}\right]M.
$$

 $\textcircled{2}$ Springer

Lemma 2.2 tells us that the cardinalities of any two bases for Col*(A)* are same. The cardinality is called the *column rank* of *A*, denoted by *c(A)*. Dually, we can define the *row rank* of *A*, denoted by $r(A)$. The column rank and the row rank of a matrix need not be equal in general. Let *A* be an $m \times n$ matrix. If $c(A) = r(A) = r$, then *r* is called the *rank* of *A*. If $c(A) = n$ and $r(A) = m$, then *A* is called *nonsingular*, and *singular* otherwise.

Let $A = (a_{ij})$ be an $n \times n$ matrix, the submatrix

$$
\begin{bmatrix}\n\mathbf{a}_{j_1i_1} & \mathbf{a}_{j_1i_2} & \cdots & \mathbf{a}_{j_1i_s} \\
\mathbf{a}_{j_2i_1} & \mathbf{a}_{j_2i_2} & \cdots & \mathbf{a}_{j_2i_s} \\
\vdots & \vdots & & \vdots \\
\mathbf{a}_{j_ri_1} & \mathbf{a}_{j_ri_2} & \cdots & \mathbf{a}_{j_ri_s}\n\end{bmatrix}
$$

is called a *basis submatrix* of *A*, if $\{a_{*i_1}, \ldots, a_{*i_r}\}$ is a basis of Col(*A*) and $\{a_{j_1}, \ldots, a_{j_s}\}$ is a basis of Row*(A)*. If *A*¹ and *A*² are both bases submatrices of *A*, then there exist monomial matrices M_1 and M_2 such that $A_1 = M_1 A_2 M_2$. We denote the basis submatrix by A. It is easy to see that $c(A) = c(A)$ = the number of columns of *A*, and that $r(A) = r(A)$ = the number of rows of \overline{A} . The Rao "normal form" of a matrix is to be needed for us.

Lemma 2.3 ([\[5\]](#page-12-7) Lemma 101 Rao "normal form") Let A be an $m \times n$ matrix. Then there *exists an* $m \times m$ *permutation matrix* Q *and an* $n \times n$ *permutation matrix* P *such that*

$$
A = Q \left[\begin{array}{cc} \bar{A} & \bar{A}U \\ V \bar{A} & V \bar{A}U \end{array} \right] P,
$$

where U is an $r \times (n - r)$ *matrix and V is an* $(m - s) \times s$ *matrix.*

In the following we will introduce and study the equivalences \mathcal{R}^* and \mathcal{L}^* on the set $M(D)$ (= $\bigcup_{m=1}^{\infty}$ $\bigcup_{n=1}^{\infty}$ $M_{m \times n}(D)$) of all matrices. The equivalences \mathcal{R}^* and \mathcal{L}^* are, respectively, defined by

$$
(\forall A, \ B \in M(D)) \ A\mathcal{R}^*B \iff (\exists X, \ Y \in M(D)) \ A = BX \text{ and } B = AY;
$$

$$
(\forall A, \ B \in M(D)) \ A\mathcal{L}^*B \iff (\exists X, \ Y \in M(D)) \ A = XB \text{ and } B = YA.
$$

It is easy to see that if *A* \mathscr{R} ^{*}*B* (*A* \mathscr{L} ^{*}*B*, resp.), then the number of rows (columns, resp.) of *A* is equal to that of *B*. In particular, the restriction of \mathcal{R}^* and \mathcal{L}^* to $M_n(D)$ coincide with Green's relations \mathcal{R} and \mathcal{L} on the semigroup $(M_n(D), \cdot)$, respectively, which play a key role in the algebraic theory of semigroups.

Proposition 2.4 *Let A and B be matrices in M(D). Then*

$$
A\mathcal{R}^*B \iff \text{Col}(A) = \text{Col}(B)
$$
 and $A\mathcal{L}^*B \iff \text{Row}(A) = \text{Row}(B)$.

Proof Suppose that *A* \mathcal{R} ^{*}*B*. If *A* is an *m* × *n* matrix and *B* is an *m* × *q* matrix, then by the definition of \mathcal{R}^* , there exists a $q \times n$ matrix X such that $BX = A$. Now, it follows that $Col(BX) = Col(A) \subseteq Col(B)$, since the columns of *BX* are contained in Col(*B*). Dually, $Col(B) \subseteq Col(A)$. Thus $Col(A) = Col(B)$.

Conversely, suppose that $Col(A) = Col(B)$. If *A* is an *m* × *n* matrix and *B* is an *m* × *q* matrix, then each column of *A* is in $Col(A)$ and so is in $Col(B)$, since the pseudomodule *D* has a multiplicative identity **1**. This implies that each column of *A* can be written as a linear combination of the columns of *B*. Thus there exists a $q \times n$ matrix *X* such that $BX = A$. Similarly, we can prove that there exists an $n \times q$ matrix *Y* such that $AY = B$. Hence, we have shown that $A\mathscr{R}^*B$.

Dually, we can show that $A\mathcal{L}^*B$ if and only if $Row(A) = Row(B)$.

We now immediately deduce the following result.

Corollary 2.5 *Let A and B be matrices in M(*B*). Then*

$$
A\mathcal{R}^*B \implies c(A) = c(B)
$$
 and $A\mathcal{L}^*B \implies r(A) = r(B)$.

For an $m \times n$ matrix *A*, we will introduce various types of inverses of *A*. Consider an $n \times m$ matrix *G* in the following equations:

 $(G-1)$ $AGA = A;$ $(G-2)$ $GAG = G$; $(G-3)$ $(AG)^{T} = AG;$ $(G-4)$ $(GA)^{T} = GA$.

A matrix *G* satisfying (G-1) is called a *generalized inverse* (g-inverse for short) of *A*. If *G* satisfies (G-1) and (G-3) ((G-1) and (G-4), resp.), then it is called a $\{1, 3\}$ *-g-inverse* ($\{1, 4\}$ g*-inverse*, resp.) of *A*. Finally, if *G* satisfies all from (G-1) to (G-4), then it is called a *Moore–Penrose inverse* of *A*.

We note that if G_1 and G_2 are any two g-inverses of A, then $G_1 + G_2$ is also a g-inverse of *A*, since

$$
A(G_1 + G_2)A = AG_1A + AG_2A = A + A = A.
$$

Also, it is well known that *G* is a {1, 3}-g-inverse of *A* if and only if G^T is a {1, 4}-g-inverse of A^T .

Proposition 2.6 *Let A and G be an* $m \times n$ *matrix and an* $n \times m$ *matrix, respectively. Then the following statements are equivalent:*

- (i) $AGA = A$;
- (ii) $(AG)^2 = AG$ *and* $A\mathscr{R}^*AG$;
- (iii) $(GA)^2 = GA$ *and* $A\mathscr{L}^*GA$.

Proof (i) \Rightarrow (ii). Assume that (i) holds. Then $(AG)^2 = (AGA)G = AG$. Also, it is clear that $A\mathscr{R}^*AG$.

 (i) ⇒ (i). Assume that (ii) holds. Then $A = AGX$ for some $m \times n$ matrix X. This implies that $AGA = AGAGX = AGX = A$ since $(AG)^2 = AG$. Thus (i) holds.

Similarly, we can show that (i) \Leftrightarrow (iii).

3 Normal Form of an Idempotent Matrix

In this section, we will give the Rao normal form of an idempotent matrix which plays a very important role in the studying the maximal subgroup of the semigroup $M_n(D)$. The following results are inspired by Kang and Song [\[10\]](#page-12-6), in which they studied the idempotent matrices over the max-algebra.

Define the partial order \leq on $M_{m \times n}(D)$ by

$$
A \leq B \iff A + B = B.
$$

Lemma 3.1 Let A, B, C be $m \times n$ matrices, let X_1 , Y_1 be $n \times p$ matrices and let X_2 , Y_2 be $p \times m$ *matrices. Then the following statements hold.*

 \Box

□

 \Box

 \Box

- (i) If $A + B = C$, then $A \leq C$ and $B \leq C$.
- (ii) *If* $X_1 \leq Y_1$ *, then* $AX_1 \leq AY_1$ *. If* $X_2 \leq Y_2$ *, then* $X_2A \leq Y_2A$ *.*

Proof (i) Suppose that $A + B = C$. Then we have

 $A + C = A + (A + B) = A + B = C$.

Hence $A \leq C$. Similarly, $B \leq C$.

(ii) Suppose that $X_1 \leq Y_1$. Then $X_1 + Y_1 = Y_1$. Thus it follows that

$$
AX_1 + AY_1 = A(X_1 + Y_1) = AY_1,
$$

and so $AX_1 \leq AY_1$. Similarly, if $X_2 \leq Y_2$, then $X_2A \leq Y_2A$.

Lemma 3.2 *If* $E = (e_{ij})$ *be an* $n \times n$ *idempotent matrix, then* $e_{ii} \leq 1$ *for all* $1 \leq i \leq n$ *.*

Proof Let $E = (e_{ij})_{n \times n}$ be an idempotent matrix. Then for any $1 \le i \le n$,

$$
e_{ii} \cdot e_{ii} \leq (e_{i1} \cdot e_{1i}) + \cdots + (e_{ii} \cdot e_{ii}) + \cdots + (e_{in} \cdot e_{ni}) = e_{ii}.
$$

This implies that $e_{ii} \leq e_{ii}e_{ii}^{-1} = 1$.

Lemma 3.3 Let $E = (e_{ij})$ be an $n \times n$ idempotent matrix. If $e_{ii} < 1$ for some $i \in$ $\{1, 2, \ldots, n\}$, then the *i*-th column (row, resp.) of E is a linear combination of the remain*ing columns (rows, resp*.*). Furthermore, the matrix obtained from E by deleting the i-th column and the i-th row is an* $(n - 1) \times (n - 1)$ *idempotent matrix.*

Proof Let $E = (e_{ij})_{n \times n}$ be an idempotent matrix. Suppose that $e_{ii} < 1$ for some $1 \le i \le n$. Without loss of generality, we assume that $e_{11} < 1$. Partition *E* as $\begin{bmatrix} e_{11} & E_{12} \\ E_{21} & E_{22} \end{bmatrix}$. Then we have

$$
E^{2} = \begin{bmatrix} e_{11} \cdot e_{11} + E_{12} E_{21} & e_{11} E_{12} + E_{12} E_{22} \ E_{21} e_{11} + E_{22} E_{21} & E_{21} E_{12} + E_{22}^2 \end{bmatrix} = \begin{bmatrix} e_{11} & E_{12} \ E_{21} & E_{22} \end{bmatrix}.
$$

This implies that

$$
\begin{bmatrix} E_{12}E_{21} & E_{12}E_{22} \ E_{22}E_{21} & E_{21}E_{12} + E_{22}^2 \end{bmatrix} = \begin{bmatrix} e_{11} & E_{12} \ E_{21} & E_{22} \end{bmatrix}
$$

since e_{11} < **1**. Thus it follows that

$$
\begin{bmatrix} e_{11} \\ E_{21} \end{bmatrix} = \begin{bmatrix} E_{12}E_{21} \\ E_{22}E_{21} \end{bmatrix} = \begin{bmatrix} E_{12} \\ E_{22} \end{bmatrix} E_{21},
$$
\n(3.1)

,

$$
[e_{11} E_{12}] = [E_{12} E_{21} E_{12} E_{22}] = E_{12} [E_{21} E_{22}], \qquad (3.2)
$$

$$
E_{21}E_{12} + E_{22}^2 = E_{22}.
$$
\n(3.3)

The equation (3.1) $((3.2)$ $((3.2)$, resp.) tells us that the 1-th column (the 1-th row, resp.) of *E* is a linear combination of the remaining columns (rows, resp.). By Lemma 3.1 and [\(3.3\)](#page-5-0), we have

$$
E_{22}^2 \le E_{22} \quad \text{and} \quad E_{21}E_{12} \le E_{22}. \tag{3.4}
$$

Thus it follows by [\(3.4\)](#page-5-1) and Lemma 3.1 that $E_{21}E_{12} = E_{21}E_{12}E_{22} \le E_{22}^2$, since $E_{12}E_{22} =$ *E*12. We therefore have

$$
E_{22} = E_{21}E_{12} + E_{22}^2 \le E_{22}^2 + E_{22}^2 = E_{22}^2,\tag{3.5}
$$

by Lemma 3.1. Thus [\(3.4\)](#page-5-1) and [\(3.5\)](#page-5-2) tell us that $E_{22}^2 = E_{22}$. \Box

The above lemma tells us that if $E = (e_{ij})$ is an $n \times n$ idempotent matrix and $e_{ii} < 0$ for some $1 \le i \le n$, then $c(E) < n$ and $r(E) < n$. Thus by Lemmas 3.2 and 3.3, we immediately have the following result.

Corollary 3.4 *All main diagonal entries of a nonsingular idempotent matrix are* **1***.*

Lemma 3.5 Let *E* be an $n \times n$ *idempotent matrix whose main diagonal entries are all* 1. *Then the i-th row of E is a linear combination of the remaining rows if and only if the ith column of E is a linear combination of the remaining columns. Furthermore, the matrix obtained from E by deleting the i*-th *column and the i*-th *row is an* $(n - 1) \times (n - 1)$ *idempotent matrix.*

Proof Let $E = (e_{ij})$ be an $n \times n$ idempotent matrix with $e_{ii} = 0$ for all $1 \le i \le n$.

Suppose that the *i*-th row of *A* is a linear combination of the remaining rows. Without loss of generality, we assume that the 1-th row of *E* is a linear combination of the remaining rows. Partition *E* as $\begin{bmatrix} 1 & E_{12} \\ E_{21} & E_{22} \end{bmatrix}$. Then we have $E^2 = \begin{bmatrix} 1 + E_{12}E_{21} & E_{12} + E_{12}E_{22} \\ E_{21} + E_{22}E_{21} & E_{21}E_{12} + E_{22}^2 \end{bmatrix}$ $\begin{bmatrix} 1 + E_{12}E_{21} & E_{12} + E_{12}E_{22} \\ E_{21} + E_{22}E_{21} & E_{21}E_{12} + E_{22}^2 \end{bmatrix} = \begin{bmatrix} 1 & E_{12} \\ E_{21} & E_{22} \end{bmatrix}.$

Thus by Lemma 3.1 we have

$$
E_{22}E_{21} \le E_{21} \quad \text{and} \quad E_{22}^2 \le E_{22}. \tag{3.6}
$$

On the other hand, it is easy to see that

$$
I_{n-1}\leq E_{22},
$$

since $e_{ii} = 1$ for all $2 \le i \le n$. Thus by Lemma 3.1, we can show that

$$
E_{21} \le E_{22} E_{21} \quad \text{and} \quad E_{22} \le E_{22}^2. \tag{3.7}
$$

Hence by summing (3.6) and (3.7) , we have

$$
E_{21} = E_{22}E_{21} \quad \text{and} \quad E_{22} = E_{22}^2. \tag{3.8}
$$

Since $\begin{bmatrix} 1 & E_{12} \end{bmatrix}$ is a linear combination of the rows of $\begin{bmatrix} E_{21} & E_{22} \end{bmatrix}$, there exists a row vector X such that $\begin{bmatrix} 1 & E_{12} \end{bmatrix} = X \begin{bmatrix} E_{21} & E_{22} \end{bmatrix}$. That is to say,

$$
1 = XE_{21} \quad \text{and} \quad E_{12} = XE_{22}. \tag{3.9}
$$

Thus it follows from [\(3.8\)](#page-6-2) and [\(3.9\)](#page-6-3) that $1 = XE_{21} = XE_{22}E_{21} = E_{12}E_{21}$. Therefore,

$$
\begin{bmatrix} 1 \ E_{21} \end{bmatrix} = \begin{bmatrix} E_{12}E_{21} \\ E_{22}E_{21} \end{bmatrix} = \begin{bmatrix} E_{12} \\ E_{22} \end{bmatrix} E_{21}.
$$

This shows that the 1-th column of *E* is a linear combination of the remaining columns.

Dually, we can show that the converse is true. This completes our proof.

By Lemmas 3.3 and 3.5 we immediately have

Corollary 3.6 *If E is an idempotent matrix, then* $c(E) = r(E)$.

Lemma 3.7 *Let A and B be n* × *n matrices. If all main diagonal entries of A are* **1** *and* $ABA \leq A$ *, then* $B \leq A$ *.*

 \Box

 \Box

Proof Suppose that $A = (a_{ij})$ and $B = (b_{ij})$ are $n \times n$ matrices. Assume that $ABA = (c_{ij})$. If all main diagonal entries of *A* are **1** and $ABA \leq A$, then for any $1 \leq i, j \leq n$,

$$
b_{ij} = 1 \cdot b_{ij} \cdot 1 = a_{ii} \cdot b_{ij} \cdot a_{jj} \le \sum_{k=1}^{n} \sum_{l=1}^{n} (a_{ik} \cdot b_{kl} \cdot a_{lj}) = c_{ij} \le a_{ij}.
$$

That is to say, $B \leq A$.

The following gives the normal form of an idempotent matrix.

Theorem 3.8 Let E be an $n \times n$ matrix. Then E is an idempotent matrix of rank r if and *only if there exists an* $n \times n$ *permutation matrix* P *such that*

$$
E = P\left[\begin{array}{cc} \bar{E} & \bar{E}U \\ V\bar{E} & V\bar{E}U \end{array}\right]P^T,
$$

where \bar{E} *is a basis submatrix of* E *and is an* $r \times r$ *nonsingular idempotent matrix,* U *is an* $r \times (n - r)$ *matrix and V is an* $(n - r) \times r$ *matrix such that* $UV \leq \overline{E}$.

Proof Suppose that *E* is an $n \times n$ matrix. If *E* is an idempotent matrix of rank r ($r < n$), then by Lemmas 3.3 and 3.5 we have that the *i*-th row of *E* is a linear combination of the remaining rows if and only if the i -th column of E is a linear combination of the remaining columns. Thus by carrying out the same row permutations and column permutations of *E*, we can find a matrix E' such that the first *r* columns and the first *r* rows of E' are linearly independent. That is to say, there exists an $n \times n$ permutation matrix P such that

$$
P^T E P = E' = \left[\begin{array}{cc} \bar{E} & X \\ Y & Z \end{array} \right],
$$

where \overline{E} is an basis submatrix of E , X , Y and Z are matrices of appropriate sizes. Also, by Lemmas 3.3 and 3.5 we can show that \overline{E} is an $r \times r$ nonsingular idempotent matrix. $\int X$ *Z* 1 = $\int \bar{E}$ *Y U* for some $r \times (n - r)$ matrix *U*, since each column of $\begin{bmatrix} X \\ Z \end{bmatrix}$ *Z* is a linear combination of the columns of $\begin{bmatrix} E \\ V \end{bmatrix}$ *Y* . Dually, we can show that $\left[Y \ YU \ \right] = V \left[\ \bar{E} \ \bar{E}U \ \right]$ for some $(n - r) \times r$ matrix *V*. Hence, we have

$$
E = P\left[\begin{array}{cc} \bar{E} & \bar{E}U \\ V\bar{E} & V\bar{E}U \end{array}\right]P^T.
$$

This is a Rao "normal form" of *E*. Since $E^2 = E$, we have that $E' = E'^2$. That is to say,

$$
\left[\begin{array}{cc} \bar{E} & \bar{E}U \\ V\bar{E} & V\bar{E}U \end{array} \right] = \left[\begin{array}{cc} \bar{E}^2 + \bar{E}UV\bar{E} & \bar{E}^2U + \bar{E}UV\bar{E}U \\ V\bar{E}^2 + V\bar{E}UV\bar{E} & V\bar{E}U + V\bar{E}UV\bar{E}U \end{array} \right].
$$

Hence, $\bar{E} = \bar{E}^2 + \bar{E}UV\bar{E}$. Thus by Lemma 3.1, we can show that $\bar{E}UV\bar{E} \leq \bar{E}$. By Corollary 3.4 and Lemma 3.7, we have that $UV \leq \overline{E}$.

The converse is easily to be verified.

Corollary 3.9 *Let E be an n* × *n matrix. Then E is a symmetric idempotent matrix of rank r if and only if there exists an n* × *n permutation matrix P such that*

$$
E = P\left[\begin{array}{cc} \bar{E} & \bar{E}U \\ V\bar{E} & V\bar{E}U \end{array}\right]P^T,
$$

where \overline{E} *is a basis submatrix of* E *and is an* $r \times r$ *symmetric nonsingular idempotent matrix, U* is an $r \times (n - r)$ *matrix and V* is an $(n - r) \times r$ *matrix such that* $UV \leq E$.

4 Generalized Inverses of a Regular Matrices

In this section we will give a characterization of regular matrices. Also, we will define a space decomposition of a matrix and prove that a matrix *A* is regular if and only if *A* is space decomposable.

Theorem 4.1 Let A be an $m \times n$ matrix. Then A is regular if and only if there exists an $m \times m$ *permutation matrix* P *and an* $n \times n$ *permutation matrix* O *such that*

$$
A = P \left[\begin{array}{cc} FM & FC \\ VFM & VFC \end{array} \right] Q,
$$

where F is a nonsingular idempotent matrix, M is a diagonal monomial matrix and C, V are matrices of appropriate sizes.

Proof Suppose that *A* is an $m \times n$ matrix. If *A* is regular, then there exists an $n \times m$ matrix *G* such that *G* is a g-inverse of *A*. Thus *AG* is idempotent and *A* \mathcal{R} [∗]*AG* by Proposition 2.6. Let the rank of *AG* be *r*. Now, by Theorem 3.8, there exists an $m \times m$ permutation matrix *P* such that $AG = P \begin{bmatrix} F & FU \ V F & V F U \end{bmatrix} P^T$, where *F* is an *r* × *r* nonsingular idempotent matrix, *U* and *V* are matrices of appropriate sizes, and so

$$
AGP = P \left[\begin{array}{cc} F & FU \\ VF & VFU \end{array} \right]. \tag{4.1}
$$

Notice that the set of the first *r* columns of *AGP* is a basis of Col*(AGP)*. Since *A* \mathscr{R} ^{*} *AG* \mathscr{R} ^{*}(*AGP*), it follows from [\(4.1\)](#page-8-1), Lemma 2.2 and Proposition 2.4 that there exists a permutation matrix *Q* such that

$$
A = AGP \begin{bmatrix} M & X \\ -\infty & Y \end{bmatrix} Q = P \begin{bmatrix} F & FU \\ VF & VFU \end{bmatrix} \begin{bmatrix} M & X \\ O & Y \end{bmatrix} Q = P \begin{bmatrix} FM & FC \\ VFM & VFC \end{bmatrix} Q,
$$

where *M* is an $r \times r$ monomial matrix and $C = X + UY$.

Conversely, it is easy to verify $Q^T \begin{bmatrix} M^{-1} & O \\ O & O \end{bmatrix} P^T$ is a g-inverse of *A*. \Box

As a consequence, we have

Corollary 4.2 *If A is a regular matrix, then* $c(A) = r(A)$.

Notice that for a matrix *A*, *A* is regular if and only if A^T is regular, since *G* is a g-inverse of *A* if and only if G^T is a g-inverse of A^T .

A nonzero matrix *A* is said to be *space decomposable* if there exist matrices *L* and *R* such that

$$
A = LR, \quad A\mathscr{R}^*L \quad \text{and} \quad A\mathscr{L}^*R. \tag{4.2}
$$

The decomposition *LR* will be called a *space decomposition* of *A*. Thus $Col(A) = Col(L)$ and $Row(A) = Row(R)$. This means the matrix A is decomposed two matrices, which satisfy a matrix preserves column space and another matrix preserves row space.

Proposition 4.3 *A nonzero matrix is regular if and only if it is space decomposable.*

Proof Suppose that *A* is a nonzero $m \times n$ matrix.

If *A* is a regular matrix of rank *r*, then by Theorem 4.1, *A* is of the form

$$
P\left[\begin{array}{cc} FM & FC \\ VFM & VFC \end{array}\right]Q,
$$

where *P* and *Q* are permutation matrices and *M* is a monomial matrix. Let

$$
L_A = P\left[\begin{array}{c} F \\ VF \end{array}\right] \quad \text{and} \quad R_A = \left[\begin{array}{cc} FM & FC \end{array}\right] Q. \tag{4.3}
$$

Then

$$
A = L_A R_A, \quad L_A = A Q^T \begin{bmatrix} M^{-1} \\ O \end{bmatrix} \quad \text{and} \quad R_A = \begin{bmatrix} I_r & O \end{bmatrix} P^T A.
$$

This implies that $A\mathscr{R}^*L_A$ and $A\mathscr{L}^*R_A$. Thus L_A and R_A satisfy the condition [\(4.2\)](#page-8-2) and so *A* is space decomposable.

Conversely, assume that *A* is space decomposable. Then it follows from [\(4.2\)](#page-8-2) that there exist matrices *L* and *R* such that $A = LR$, $A\mathscr{R}^*L$ and $A\mathscr{L}^*R$. This implies that $L = AX$ and $R = YA$ for some matrices *X* and *Y*. Hence

$$
A = LR = A(XY)A,
$$

and so *A* is regular.

Notice that a matrix of rank less than 3 is space decomposable.

Corollary 4.4 *If the rank of a matrix A is less than* 3*, then A is regular.*

In [\[9\]](#page-12-8), Johnson and Kambites proved that the all 2×2 tropical matrix are regular. Corollary 4.4 extend this result.

Lemma 4.5 Let A be a nonsingular idempotent matrix. If G is a g-inverse of A, then $AG =$ $GA = A$.

Proof Suppose that $A = (a_{ij})$ is an $n \times n$ nonsingular idempotent matrix and that G is a g-inverse of *A*. Then *AGA* = *A*. It follows from Proposition 2.6 that *AG* is idempotent and *A* $\mathcal{R}∗$ [∗]AG. Since *A* is nonsingular we can show by Corollary 2.5 that *AG* is also nonsingular. Thus by Corollary 3.4 it follows that main diagonal entries of *A* and *AG* are all **1**. This implies by Lemma 3.7 that $G \leq A$, since $AGA = A$. Hence

$$
AG \le A^2 = A,\tag{4.4}
$$

by Lemma 3.1(ii). Since $(AG)A(AG) = AG$, by Lemma 3.7 we have

$$
A \le AG.\tag{4.5}
$$

[\(4.4\)](#page-9-0) and [\(4.5\)](#page-9-1) tell us that $AG = A$. Notice that A^T is idempotent and $A^T G^T A^T = A^T$.
Similarly, we have that $A^T G^T = A^T$, and hence $GA = A$. Similarly, we have that $A^T G^T = A^T$, and hence $G A = A$.

Proposition 4.6 Let A be of the form in Theorem 4.1 and let $L_A R_A$ be the space decompo*sition of A in* [\(4.3\)](#page-9-2)*. Then for any* $m \times s$ *matrix L and any* $s \times n$ *matrix R, LR is a space decomposition of A if and only if* $L = L_A M_1$, $R = M_2 R_A$ *and* $F M_1 M_2 = M_1 M_2 F = F$ *for some* $r \times s$ *matrix* M_1 *and some* $s \times r$ *matrix* M_2 *.*

Proof If *A* is an $m \times n$ regular matrix of rank r, then by Theorem 4.1, *A* is of the form

$$
P\left[\begin{array}{cc} FM & FC \\ VFM & VFC \end{array}\right]Q,
$$

where *P* and *Q* are permutation matrices, *M* is a monomial matrix and *F* is a nonsingular idempotent matrix. Let $L_A R_A$ be the space decomposition of *A* in [\(4.3\)](#page-9-2). Then it follows from [\(4.2\)](#page-8-2) that $A = L_A R_A$, $A \mathcal{R}^* L_A$ and $A \mathcal{L}^* R_A$.

For any $m \times s$ matrix *L* and any $s \times n$ matrix *R*, if *LR* is a space decomposition of *A*, then $A = LR$, $L\mathscr{R}^*A$ and $R\mathscr{L}^*A$. This implies that $L\mathscr{R}^*L_A$ and $R\mathscr{L}^*R_A$ and so $L = L_A M_1$ and $R = M_2 R_A$ for some $r \times s$ matrix M_1 and some $s \times r$ matrix M_2 . Now we have

$$
A = LR = P\left[\begin{array}{c} F \\ VF \end{array}\right] M_1 M_2 \left[\begin{array}{cc} FM & FC \end{array}\right] Q = P\left[\begin{array}{cc} FM_1 M_2 FM & FM_1 M_2 FC \\ VFM_1 M_2 FM & VFM_1 M_2 FC \end{array}\right] Q.
$$

Since *P* and *Q* are permutation matrices, $FM = FM_1M_2FM$. It follows that $F =$ *FM*1*M*2*F*, since *M* is a monomial matrix. Notice that *F* is a nonsingular idempotent matrix. By Lemma 4.5 we have that $FM_1M_2 = M_1M_2F = F$.

Conversely, assume that there exists an $r \times s$ matrix M_1 and an $s \times r$ matrix M_2 such that $L = L_A M_1$, $R = M_2 R_A$ and $F M_1 M_2 = M_1 M_2 F = F$. Then we have

$$
LM_2 = L_A M_1 M_2 = P \begin{bmatrix} F \\ VF \end{bmatrix} M_1 M_2 = P \begin{bmatrix} F \\ VF \end{bmatrix} = L_A,
$$

$$
M_1 R = M_1 M_2 R_A = M_1 M_2 \begin{bmatrix} FM & FC \end{bmatrix} Q = \begin{bmatrix} FM & FC \end{bmatrix} Q = R_A,
$$

and

$$
LR = L_A M_1 M_2 R_A = L_A R_A = A.
$$

This implies that

$$
A = LR, \quad A\mathscr{R}^* L_A\mathscr{R}^* L \quad \text{and} \quad A\mathscr{L}^* R_A\mathscr{L}^* R,
$$

and so *LR* is a space decomposition of *A*.

Corollary 4.7 *If LR is a space decomposition of a regular matrix A, then both L and R are regular.*

Proof Let *A* be an $m \times n$ regular matrix of rank *r*. Suppose that *LR* is a space decomposition of *A*. By Proposition 4.6 it follows that there exist matrices M_1 and M_2 such that $L =$ *P F* $\begin{bmatrix} F \\ V F \end{bmatrix}$ M_1 , $R = M_2$ $\left[FM \, FC \right]$ Q and $FM_1M_2 = M_1M_2F = F$, where *P* and Q are permutation matrices, *M* is a monomial matrix. Thus we have

$$
L_G = M_2 \begin{bmatrix} I_r & O \end{bmatrix} P^T \quad \text{and} \quad R_G = Q^T \begin{bmatrix} M^{-1} \\ O \end{bmatrix} M_1
$$

are g-inverses of *L* and *R*, respectively, and so both *L* and *R* are regular.

5 Other Type of g-Inverses

Notice that *G* is a {1, 3}-g-inverse of *A* if and only if $AGA = A$ and $(AG)^{T} = AG$.

Theorem 5.1 *Let A be an* $m \times n$ *matrix. The following statements are equivalent:*

(i) *A has a* {1*,* 3}*-*g*-inverse.*

 \Box

(ii) *There exists an* $m \times m$ *permutation matrix P* and an $n \times n$ *permutation matrix O such that*

$$
A = P \begin{bmatrix} SM & SZ \\ VSM & VSZ \end{bmatrix} Q,
$$

where S is a symmetric nonsingular idempotent matrix, M is a diagonal monomial matrix and V , Z *are matrices such that* $V^T V \leq S$ *.*

(iii) $A \mathcal{L}^* A^T A$.

Proof (i) \implies (ii). Let an *n* × *m* matrix *G* be a {1, 3}-g-inverse of *A*. Then $A\mathscr{R}^*AG$ and *AG* is a symmetric idempotent matrix by Proposition 2.6. Let the rank of *AG* is *r*. It follows from Corollary 3.9 that there exists an $m \times m$ permutation matrix P such that $AG = P \left[\begin{array}{cc} S & SV^T \\ VS & VSV \end{array} \right]$ VS VSV^T $\left[P^T$, and so

$$
AGP = P \left[\begin{array}{cc} S & SV^T \\ VS & VSV^T \end{array} \right],
$$

where *S* is a symmetric nonsingular idempotent matrix, *V* is a matrix such that $V^T V \leq S$. Notice that the set of the first *r* columns of AGP is a basis of Col(AGP). Since $A\mathscr{R}^*AG\mathscr{R}^*AGP$, it follows from Lemma 2.2 and Proposition 2.4 that there exists an $n \times n$ permutation matrix

Q such that
$$
A = AGP \begin{bmatrix} M & X \\ O & Y \end{bmatrix} Q
$$
, where *M* is a diagonal monomial matrix. Thus
\n
$$
A = P \begin{bmatrix} S & SV^T \\ VS & VSV^T \end{bmatrix} \begin{bmatrix} M & X \\ O & Y \end{bmatrix} Q = P \begin{bmatrix} SM & SZ \\ VSM & VSZ \end{bmatrix} Q,
$$

where $Z = X + V^T Y$.

(ii) \implies (iii). Now assume that (ii) holds. Since *P* is a permutation matrix, *N* is a symmetric idempotent matrix, *M* is a diagonal matrix and *V* is a matrix such that $V^T V \le N$, it follows that

$$
A^T A = Q^T \left[\begin{array}{cc} MSM & MSZ \\ Z^T SM & Z^T SZ \end{array} \right] Q.
$$

Hence, since *Q* is a permutation matrix and *M* is a monomial matrix,

$$
A = P \left[\begin{array}{cc} M^{-1} & O \\ VM^{-1} & O \end{array} \right] QA^T A.
$$

Thus we have that $A \mathscr{L}^* A^T A$.

(iii) \Longrightarrow (i). If $A\mathscr{L}^*A^T A$, then there exists an $m \times n$ matrix *G*, such that $A = GA^T A$. This implies that

$$
AGT A = (GAT A)GT A = G(AT AGT) A = G(GAT A)T A = GAT A = A.
$$

We also have

$$
(AGT)T = (GAT AGT)T = GAT AGT = AGT.
$$

Therefore, G^T is a {1, 3}-g-inverse of *A*.

In Theorem 5.1(ii), we can easily check that $Q^T \begin{bmatrix} M^{-1} & M^{-1}V^T \\ O & O \end{bmatrix} P^T$ is a {1, 3}-ginverse of *A*.

Similarly, we have the following result.

Proposition 5.2 *Let A be an m* × *n matrix. The following statements are equivalent:*

- (i) *A has a* {1*,* 4}*-*g*-inverse.*
- (ii) *There exists an* $m \times m$ *permutation matrix P* and an $n \times n$ *permutation matrix Q such that*

$$
A = P \left[\begin{array}{c} SM \quad SMU \\ WS \quad WSU \end{array} \right] Q,
$$

where S is a symmetric nonsingular idempotent matrix, M is a diagonal monomial matrix and U, *W are matrices such that* $UU^T \leq S$ *.*

(iii) $A\mathscr{R}^*AA^T$.

In Proposition 5.2(ii), we can easily check that $Q^T \begin{bmatrix} M^{-1} & O \\ I^T M^{-1} & O \end{bmatrix}$ *U^T M*−¹ *O* $\left[P^T$ is a $\{1, 4\}$ -g-

inverse of *A*.

In the following result, we characterize matrices having Moore–Penrose inverses. The proof depends on the above two theorems, and we omit the proof:

Corollary 5.3 *Let A be an* $m \times n$ *matrix. The following statements are equivalent:*

- (i) *A has a Moore–Penrose inverse.*
- (ii) *There exists an* $m \times m$ *permutation matrix P* and an $n \times n$ *permutation matrix O such that*

$$
A = P \left[\begin{array}{cc} SM & SMU \\ VSM & VSMU \end{array} \right] Q,
$$

where S is a symmetric nonsingular idempotent matrix, M is a diagonal monomial matrix and V, *U are matrices such that* $V^T V \leq S$ *and* $UU^T \leq S$ *.*

(iii) $A\mathscr{L}^*A^T A$ and $A\mathscr{R}^*A A^T$.

In Corollary 5.3(ii), we can easily check that $Q^T \begin{bmatrix} SM^{-1} & SM^{-1}V^T \\ NI^{T}SM^{-1} & I^{T}C M^{-1} \end{bmatrix}$ $U^T S M^{-1} U^T S M^{-1} V^T$ $\left| \right. P^{T}$ is a Moore–Penrose inverse of *A*.

Acknowledgements This work is supported by the National Natural Science Foundation of China (Grant No.11861045) and the Hongliu Foundation of First-class Disciplines of Lanzhou University of Technology, China.

References

- 1. Bapat, R.B.: Structure of a nonnegative regular matrix and its generalized inverse. Linear Algebra Appl. **268**, 31–39 (1998)
- 2. Butkovič, P.: Max-algebra: the linear algebra of combinatorics? Linear Algebra Appl. 367, 313–335 (2003)
- 3. Butkovič, P.: Max-Linear Systems: Theory and Algorithms. Springer, London (2010)
- 4. Cuninghame-Green, R.: Minimax Algebra. Lecture Notes in Economics and Mathematical Systems, vol. 166. Springer, Berlin (1979)
- 5. Gaubert, S.: Two lectures on max-plus algebra. <http://amadeus.inria.fr/gaubert> (1998)
- 6. Golan, J.S.: Semirings and Their Applications. Kluwer Academic, Dordrecht (1999)
- 7. Hall, F.J., Katz, I.J.: Nonnegative integral generalized inverses. Linear Algebra Appl. **39**, 23–39 (1981)
- 8. Hebisch, U., Weinert, H.J.: Semirings. Algebraic Theory and Applications in Computer Science Series in Algebra, vol. 5. World Scientific, Singapore (1998)
- 9. Johnson, M., Kambites, M.: Multiplicative structure of 2×2 tropical matrices. Linear Algebra Appl. **435**, 1612–1625 (2011)
- 10. Kang, K.-T., Song, S.-Z.: Regular matrices and their generalized inverses over the max algebra. Linear Multilinear Algebra **63**, 1649–1663 (2015)
- 11. Rao, P.S.S.N.V.P., Rao, K.P.S.B.: On generalized inverses of Boolean matrices. Linear Algebra Appl. **11**, 135–153 (1975)
- 12. Wagneur, E.: Moduloïds and pseudomodule 1. Dimension theory. Discrete Math. **98**, 57-73 (1991)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.