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Abstract
Dirac-harmonic maps are critical points of an action functional that is motivated from the
nonlinear σ -model of quantum field theory. They couple a harmonic map like field with
a nonlinear spinor field. In this article, we shall discuss the latest progress on heat flow
approaches for the existence of Dirac-harmonic maps under appropriate boundary con-
ditions. Also, we discuss the refined blow-up analysis for two types of approximating
Dirac-harmonic maps arising from those heat flow approaches.

Keywords Dirac-harmonic map · Dirac-harmonic map flow · α-Dirac-harmonic map ·
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1 Introduction

Motivated by the supersymmetric nonlinear sigma model from quantum field theory [11],
Dirac-harmonic maps were introduced by Jost and his collaborators in [6]. They are natural
generalizations of harmonic maps and harmonic spinors.

Let (M, g) be a Riemannian manifold and let (N, h) be a compact Riemannian manifold
with dimension n ≥ 2. Let φ be a smooth map from M to N . Denote φ∗T N the pull-
back bundle of T N by φ and then we get the twisted bundle ΣM ⊗ φ∗T N . There is a
natural metric 〈·, ·〉ΣM⊗φ∗T N onΣM⊗φ∗T N induced from the metrics onΣM and φ∗T N .
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Likewise, there is a natural connection ˜∇ on ΣM ⊗ φ∗T N induced from the connections
on ΣM and φ∗T N . Let ψ be a section of the bundle ΣM ⊗ φ∗T N . In local coordinates, it
can be written as

ψ = ψi ⊗ ∂yi (φ),

where eachψi is a usual spinor onM and ∂yi is the nature local basis onN . Then˜∇ becomes

˜∇ψ = ∇ψi ⊗ ∂yi (φ) +
(

Γ i
jk∇φj

)

ψk ⊗ ∂yi (φ),

where Γ i
jk are the Christoffel symbols of the Levi-Civita connection of N . The Dirac

operator along the map φ is defined by

We consider the following functional

where dM = dvolg .
Critical points (φ, ψ) of the above functional L are called Dirac-harmonic maps from M

to N . In terms of local coordinates, the corresponding Euler–Lagrange equations are given
by the following

where Δg := 1√
g

∂
∂xβ

(√
ggβγ ∂

∂xγ

)

is the Laplacian operator with respect to the Riemannian

metric g and R(φ, ψ) is defined by

R(φ, ψ) = 1

2
Rm

lij (φ(x))
〈

ψi, ∇φl · ψj
〉 ∂

∂ym
(φ(x)).

Here Rm
lij is the Riemann curvature tensor of the target manifold (N, h).

By Nash’s embedding theorem, we embed N isometrically into some Euclidean space
R

K . Then, critical points (φ, ψ) of the functional L satisfy the following extrinsic Euler–
Lagrange equations

where is the usual Dirac operator for the spinor bundle on (M, g), A(·, ·) is the second
fundamental form of N in R

K , and

A
(

dφ(eγ ), eγ · ψ
) :=

(

∇φi · ψj
)

⊗ A
(

∂yi , ∂yj

)

,

Re(P (A(dφ(eγ ), eγ · ψ); ψ)) := P
(

A
(

∂yl , ∂yj

) ; ∂yi

)

Re
(〈

ψi, dφl · ψj
〉)

.

Here P(ξ ; ·) denotes the shape operator, defined by 〈P(ξ ; X), Y 〉 = 〈A(X, Y ), ξ〉 for
X, Y ∈ Γ (T N), and Re(z) denotes the real part of z ∈ C.

When the domain M is of dimension 2, the functional L(φ,ψ) is conformally invariant,
see [6]. That is, for any conformal diffeomorphism f : M → M , if we set

˜φ = φ ◦ f and ˜ψ = λ−1/2ψ ◦ f,
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where the positive function λ > 0 is the conformal factor of the conformal map f , i.e.
f ∗g = λ2g, then there holds

L
(

˜φ, ˜ψ
) = L(φ, ψ).

Similarly to two dimensional harmonic maps, since the conformal group is noncompact,
it makes the variational problem borderline cases of the Palais–Smale condition, and hence
standard PDE methods can not be applied to get the existence of critical points.

To investigate the existence problem of Dirac-harmonic maps, another key difficulty
arises from the fact that the action functional L is not bounded from below. Therefore,
classical variational approaches developed for harmonic maps cannot be directly applied to
study the existence of Dirac-harmonic maps. There have been several other approaches, for
instance, see [1, 7, 22]. The methods used as well as the results obtained in those papers are
rather different from the present ones discussed here. In [22], some explicit examples of non-
trivial Dirac-harmonic maps were constructed, however they are rather special and cannot
replace a general scheme for the existence problem. In [7], under the condition that the tar-
get manifold satisfies certain convexity assumption, a subharmonic function is constructed
from a solution to which a maximum principle can be applied. Ammann and Ginoux [1]
uses some powerful methods from index theory, however in a more constrained setting.

In this article, we shall discuss some approaches that seem to be most promising to us
for addressing the general existence issue and propose some open problems related to them.

The first approach is a heat flow for Dirac-harmonic maps which was firstly introduced
in [9]. This flow couples a parabolic second order system for the map part with a first order
elliptic system for the spinor part. That is, the solution of the first order Dirac type equation
is carried along a second order harmonic map type heat flow. When the spinor vanishes, this
flow reduces to the classical harmonic map heat flow introduced in [13], see [15] for the
case of domain manifolds with boundary. Of course, we are interested in the case when the
spinor field is non-trivial. Then the Dirac type equation for the spinor can be considered as
some side constraint which depends nonlinearly on the heat flow for the map.

The heat flow for Dirac-harmonic maps introduced in [9] is the following elliptic-
parabolic system:

(1.1)

When the domain M is closed, for some given fixed map Φ, solutions to the Dirac type
equation

are in general not unique. In order to get the uniqueness of solution to the above Dirac type
equation, in [9], the authors considered the case that the domain manifold M is compact and
has non-empty smooth boundary ∂M . Then they imposed the following boundary-initial
data for the flow (1.1)

{

φ(x, t) = φ0(x, t) on M × {0} ∪ ∂M × [0, T ];
Bψ(x, t) = Bψ0(x, t) on ∂M × [0, T ], (1.2)

and proved the short-time existence and uniqueness. Later, the case of 1 dimensional
domains, namely the heat flow for Dirac-geode.sics, was considered in [8].

To investigate the long time behavior of the flow (1.1) and (1.2), in [18], the authors
considered the case of a two dimensional domain and established a global weak solution
of (1.1) which is unique and regular with the exception of at most finite singular times,
which can be considered as an extension of the global weak solution to the two dimensional
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harmonic map heat flow introduced in [34]. As an application, we deduce some existence
results for Dirac-harmonic maps where the spinor part is nontrivial. However, due to some
technical reasons for the Dirac type equation for the spinor, in [18], we need to assume
some extra initial-boundary constraint. In analogy to the two dimensional harmonic map
flow with Dirichlet boundary condition studied in [3], we show that this initial-boundary
constraint can be improved, see Theorem 2.6 in Section 2.

In order to get a general existence result in dimension 2, in [19], the authors developed
a new scheme in geometric analysis, which is the second approach. Firstly, they improved
a key estimate for the Dirac operator along a given map, see (2.5). Then, based on this
improved estimate and inspired by the Sacks–Uhlenbeck approximation for harmonic maps
in [33], in [19], the authors introduced the following functional:

where α > 1 is a constant. Critical points (φ, ψ) of the above functional Lα are called
α-Dirac-harmonic maps, see [19].

Similarly to the action functional L for Dirac-harmonic maps, the new functional Lα is
not bounded from below and classical variational methods can not be applied to get the exis-
tence of critical points, namely α-Dirac-harmonic maps. To overcome this issue, motivated
by the Sacks–Uhlenbeck flow introduced in [17], the authors [19] introduced the heat flow
for α-Dirac-harmonic maps:

(1.3)

This is a new parabolic-elliptic system. By proving the global regular solution of (1.3) (for
every fixed α > 1 which is close to 1), one can get the existence of α-Dirac-harmonic maps
which are the critical points of the functional Lα . Then by studying the limit for a sequence
of α-Dirac-harmonic maps as α goes to 1, one successfully showed the general existence
of Dirac-harmonic maps under suitable non-trivial boundary condition. This is the general
existence scheme developed in [19].

Furthermore, when the domain is closed spin Riemannian manifold, the short time exis-
tence of the heat flow for Dirac-harmonic maps (1.1) is proved in [35] under some extra
constant imposed for the spinor. Based on the notions and methods of α-Dirac-harmonic
map and α-Dirac-harmonic map flow introduced in [19], and the techniques of handling
the closed domain case developed in [35], some existence results for Dirac-harmonic maps
from closed surfaces are recently obtained in [26, 27].

The rest of the article is organized as follows. In Section 2, two types of heat flow meth-
ods are discussed which yield some existence results of Dirac-harmonic maps. In Section 3,
the refined blow-up analysis for approximating Dirac-harmonic maps arising from those
two heat flows introduced in Section 2 are explored, such as (generalized) energy identity
and (no) neck property. In the last section, we propose some problems related to these two
heat flow approaches.

2 Heat FlowMethod

In this section, we shall discuss two heat flow methods for the existence problem of Dirac-
harmonic maps. Firstly, we need the following notations.
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Notations Denote

E(φ) = 1

2

∫

M

|dφ|2dM, E(ψ) =
∫

M

|ψ |4dM, E(φ,ψ) =
∫

M

(

|dφ|2 + |ψ |4
)

dM .

Denote

Ωt
s = Ω × [s, t], Mt

s = M × [s, t], MT = M × [0, T ]
and denote the standard Sobolev and Hölder spaces by

W 2k,k
p

(

MT
)

, C2k,k,α
(

MT
)

= C2k+α,k+ α
2

(

MT
)

,

C1,0,α
(

MT
)

:= Cα,α/2
(

MT
)

∩
{

sup
0≤t≤T

‖u‖C1+α(M) < ∞
}

.

Finally,

V
(

Mt
s

) :=
{

(φ, ψ) : M × [s, t] → N ×
(

ΣM ⊗ φ−1T N
) ∣

∣

∣ sup
s≤σ≤t

‖∇φ‖L2(M)

+ sup
s≤σ≤t

‖ψ‖W 1,4/3(M) + sup
s≤σ≤t

‖ψ‖L8(M) +
∫

Mt
s

(

|∂tφ|2 + |∇2φ|2
)

dMdt < ∞
}

.

We recall some basic notions from spin geometry. Let M be a compact Riemann surface
with smooth boundary ∂M , equipped with a Riemannian metric g and with a fixed spin
structure, ΣM be the spinor bundle over M and 〈·, ·〉ΣM be the natural Hermitian inner
product on ΣM . Choosing a local orthonormal basis eγ , γ = 1, 2 on M , the usual Dirac
operator is defined as , where ∇ is the spin connection on ΣM and · is the
Clifford multiplication. This multiplication is skew-adjoint:

〈X · ψ, ϕ〉ΣM = −〈ψ, X · ϕ〉ΣM

for any X ∈ Γ (T M), ψ, ϕ ∈ Γ (ΣM). The usual Dirac operator on a surface can be
seen as the Cauchy–Riemann operator. Consider R2 equipped with the Euclidean metric
dx2 + dy2. Let e1 = ∂

∂x
and e2 = ∂

∂y
be the standard orthonormal frame. A spinor field on

R
2 is simply a map

ψ : R
2 → Δ2 = C

2

and the action of e1 and e2 on spinors can be identified with multiplication with the
following two matrices

e1 =
(

0 1
−1 0

)

, e2 =
(

0 i

i 0

)

.

Let ψ :=
(

ψ1
ψ2

)

: R2 → C
2 be a spinor field onR2, then the Dirac operator is given by

where
∂

∂z
= 1

2

(

∂

∂x
− i

∂

∂y

)

,
∂

∂z
= 1

2

(

∂

∂x
+ i

∂

∂y

)

.

For more details on spin geometry and Dirac operators, we refer to [28].
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2.1 Dirac-harmonic Map Flow

Let us recall the heat flow for Dirac-harmonic maps introduced in [9]. For a map φ ∈
C2,1,α(M × (0, T ];N) and a spinor field ψ ∈ C1,0,α(M × (0, T ];ΣM ⊗ φ∗T N), we
consider the following system

(2.1)

where τ(φ) is the tension field of φ. The above elliptic-parabolic system (2.1) is called the
Dirac-harmonic map flow. Moreover, we impose the following boundary-initial data

{

φ(x, t) = φ0(x, t) on M × {0} ∪ ∂M × [0, T ];
Bψ(x, t) = Bψ0(x, t) on ∂M × [0, T ], (2.2)

where φ0 ∈ C2,1,α(M×{0}∪∂M×[0, T ];N),ψ0 ∈ C1,0,α
(

∂M × [0, T ]; ΣM ⊗ φ−1T N
)

and B = B± is the chiral boundary operator defined as follows:

B± : L2
(

∂M, ΣM ⊗ φ−1T N |∂M

)

→ L2
(

∂M, ΣM ⊗ φ−1T N |∂M

)

ψ �→ 1

2

(

Id ± −→
n · G

) · ψ,

where −→
n is the outward unit normal vector field on ∂M , G = ie1 · e2 is the chiral oper-

ator defined using a local orthonormal frame {eα}2α=1 on M and satisfying the following
properties:

G2 = Id, G∗ = G, ∇G = 0, G · X = −X · G,

for any X ∈ Γ (T M). The classical chiral boundary operator for usual spinors was firstly
introduced in [14], see also [2, 16] for more abstract settings. In [10], the notion of chiral
boundary operator was firstly extended to spinor fields along a map in order to propose the
boundary value problems for Dirac-harmonic maps. The chiral boundary condition is also
used in the study of boundary value problems for the super-Liouville system [23–25].

In fact, in the boundary-initial data (2.2), one can also take B to be the MIT bag boundary
operator B±

MIT or the J -boundary operator B±
J as considered in [9, 10]. For the sake of

convenience, in the sequel, we shall only consider the case of chiral boundary conditions
and omit the discussion of the other two types of boundary conditions, as the arguments for
them are the same.

In [9], a short time existence and uniqueness result for the flow (2.1) and (2.2) was
obtained:

Theorem 2.1 [9, Theorem 1.3] Let Mm (m ≥ 2) be a compact spin Riemannian manifold
with smooth boundary ∂M , N be a compact Riemannian manifold. Suppose that

φ0 ∈ ∩T >0C
2,1,α(M × [0, T ];N)

and
ψ0 ∈ ∩T >0C

1,0,α (∂M × [0, T ];ΣM ⊗ φ∗
0T N

)

for some 0 < α < 1, then the problem consisting of (2.1) and (2.2) admits a unique solution

φ ∈ ∩0<t<s<T1C
2,1,α(M × [t, s]) ∩ C0(M × [0, T1], N)

and
ψ ∈ ∩0<t<s<T1C

1,0,α(M × [t, s]) ∩ C1,0,0 (M × [0, T1];ΣM ⊗ φ∗T N
)
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for some time T1 > 0 which is characterized by

lim sup
t↗T1

‖∇φ(·, t)‖C0(M) = ∞.

In order to solve the Dirichlet-chiral problem for Dirac-harmonic maps from a two
dimensional domain, [18] later studied the existence of a global weak solution of the
Dirac-harmonic map flow. Before stating the next theorem, we give some definitions.

Define a constant Λ = Λ(M,N).

We remark that, in the above definition (2.3), if we considered φ ∈ W 1,p(M,N)with p > 2
and replaced E(φ) with ‖φ‖W 1,p , then the corresponding constant Λ would be ∞ (see
[18, Lemma 2.6] or [9, Theorem 1.1]). However, in the critical case of φ ∈ W 1,2(M,N),
for general M and N , we do not know whether Λ is ∞ or not. It would be interesting to
know how large the constant Λ can be.

In fact, what we know is that the constant Λ defined above has a positive lower bound
(see [18, Lemma 2.9]). More precisely, we have

Λ ≥ 1

2Λ1 · Λ2 · Λ3
> 0,

where Λ1 = Λ1(M,N) > 0 (see [18, Lemma 2.7]) is the elliptic estimate constant for the
usual Dirac operator :

Λ2 = Λ2(M,N) > 0 is the following Sobolev embedding constant:

‖f ‖L4(M) ≤ Λ2‖f ‖W 1,4/3(M) ∀ f ∈ W 1,4/3
(

M,RN
)

and Λ3 > 0 denotes any upper bound of the L∞-norm ‖A‖L∞(N) of the spinorial extension
of the second fundamental form A:

|A(dφ(eα), eα · ψ)| ≤ √
2‖A‖L∞(N)|dφ||ψ |

for any (φ, ψ) ∈ W 1,2(M,N)×W 1,4/3
(

ΣM ⊗ φ−1T N
)

. It is easy to see that if N is some
compact region in the Euclidean space RK , then Λ3 > 0 can be chosen to be arbitrary small
and hence the constant Λ can be ∞. However, this is a trivial case, since then the maps φ

become harmonic functions and the spinor fields ψ become harmonic spinors.
Now, we state the main theorem in [18] that

Theorem 2.2 [18, Theorem 1.2] Let M be a compact Riemann spin surface with smooth
boundary ∂M and let N ⊂ R

N be a compact Riemannian manifold. Suppose φ0 ∈
H 1(M,N), ϕ ∈ C2+α(∂M, N), ψ0 ∈ C1+α (∂M, ΣM ⊗ ϕ∗T N) and satisfy the following
boundary-initial constraint:

E(φ0) + √
2‖Bψ0‖2L2(∂M)

< Λ2,

where Λ = Λ(M,N) > 0 is the constant defined in (2.3). Then there exists a global weak
solution of (2.1) with the boundary-initial data (2.2), which is defined in M × [0, ∞) and
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satisfies

E(π(t)) +
∫

Mt

|∂tφ|2dMdt ≤ E(φ0) + √
2‖Bψ0‖2L2(∂M)

∀ t ≥ 0,

E(φ(t)) + 1

2

∫

∂M

〈−→
n · Bψ0, ψ

〉

(t) ≤ E(φ(s)) + 1

2

∫

∂M

〈−→
n · Bψ0, ψ

〉

(s) ∀ 0 ≤ s ≤ t < ∞.

Moreover, there exists an integer K > 0 depending only on M , N , E(φ0), ‖ϕ‖C2+α(∂M)

and ‖Bψ0‖C1+α(∂M) and there exist finitely many singular times {Tk}, 1 ≤ k ≤ K , satisfying

φ ∈ C
2,1,α
loc

(

M ×
(

(0, ∞) \ {Tk}Kk=1

))

and ψ ∈ C
1,0,α
loc

(

M ×
(

(0, ∞) \ {Tk}Kk=1

))

.

These singular times are characterized by the condition

lim sup
x∈M
t↗Tk

E
(

φ(t); BM
R (x)

)

> ε for all R > 0,

where ε > 0 is a constant depending only on M , N , E(φ0), ‖ϕ‖C2+α(∂M), ‖Bψ0‖C1+α(∂M)

and BM
R (x) is the geodesic ball in M with center x and radius R.

Moreover, we show that, at each singular time {Tk}, that is, when the energy of the
map concentrates, after some suitable space-time rescaling, a bubble, namely, a nontrivial
Dirac-harmonic map from 2-sphere to N can split off.

Theorem 2.3 [18, Theorem 1.3] Let (φ, ψ) be a solution to (2.1) with the boundary-initial
data (2.2) from Theorem 2.2. Suppose T1 is a singular time, i.e.,

lim sup
x∈M
t↗T1

E
(

φ(t); BM
R (x)

)

> ε for all R > 0.

There exist sequences ti ↗ T1, xi → x0 ∈ M , ri → 0 and a nontrivial Dirac-harmonic
map

(

˜φ, ˜ψ
) : R2 → N × (ΣR

2 ⊗ ˜φ∗T N
)

, such that

(1) if x0 ∈ M \ ∂M , then as i → ∞,

φi(x) := φ(xi + rix, ti ) → ˜φ(x) in C1
loc

(

R
2
)

and

ψi(x) := √
riψ(xi + rix, ti ) → ˜ψ(x) in C1

loc

(

R
2
)

.
(

˜φ, ˜ψ
)

has finite energy and conformally extends to a smooth Dirac-harmonic sphere.

(2) if x0 ∈ ∂M , then dist (xi ,∂M)
ri

→ ∞ and the same bubbling statement as in (1) holds.

We remark that in the above Theorem 2.3, for a boundary blow-up point, the case that
dist (xi ,∂M)

ri
is uniformly bounded cannot occur (see [18, Theorem 1.4]).

With the help of the above theorems, we can now present some existence results for
Dirac-harmonic maps from surfaces with boundary.

Theorem 2.4 [18, Theorem 1.5] Let (φ, ψ) be a solution to (2.1) with the boundary-initial
data (2.2) as obtained in Theorem 2.2 and defined in [0, ∞). Then there exists a sequence
ti ↗ ∞ such that (φ(·, ti ), ψ(·, ti )) converges weakly in W 1,2(M)×W 1,4/3(M) to a Dirac-
harmonic map

(φ∞, ψ∞) ∈ C2+α(M,N) × C1+α
(

M,ΣM ⊗ φ∗∞T N
)
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with boundary data φ∞|∂M = ϕ and Bψ∞|∂M = Bψ0.

Furthermore, if we assume that the boundary-initial data are small enough, then the map
part of the limiting Dirac-harmonic map (φ∞, ψ∞) obtained in the above theorem has to be
homotopic to the initial map φ0.

Corollary 2.5 [18, Corollary 1.6]We define a constant ε0 = ε0(N) > 0:

ε0 := inf
{

E(φ) | (φ, ψ) : S2 → N is a nontrivial smooth Dirac-harmonic map
}

.

For any φ0 ∈ H 1(M, N)∩C0(M, N), ϕ ∈ C2+α(∂M, N), ψ0 ∈ C1+α (∂M, ΣM ⊗ ϕ∗T N), if

E(φ0) + √
2‖Bψ0‖2L2(∂M)

< min
{

Λ2, ε0
}

, (2.4)

where Λ > 0 is defined in (2.3), there exists a Dirac-harmonic map (φ, ψ) : M → N with
φ lying in the same homotopy class as φ0.

In fact, from the proof of Corollary 1.6 in [18], it is not hard to see that the upper bound
in (2.4) can be improved. Here, we state as a new theorem.

Theorem 2.6 We define two constants ε0 = ε0(N) > 0 and ε1 = ε1(M,N):

ε0 := inf
{

E(φ) | (φ, ψ) : S2 → N is a nontrivial smooth Dirac-harmonic map
}

,

ε1 := inf
{

E(u) | u ∈ W 1,2(M,N), u|∂M = φ0

}

.

For any φ0 ∈ H 1(M,N) ∩ C0(M, N), ϕ ∈ C2+α(∂M, N), ψ0 ∈ C1+α (∂M, ΣM ⊗ ϕ∗T N), if

E(φ0) + √
2‖Bψ0‖2L2(∂M)

< min
{

Λ2, ε0 + ε1
}

,

where Λ > 0 is defined in (2.3), there exists a Dirac-harmonic map (φ, ψ) : M → N with
φ lying in the same homotopy class as φ0.

We remark that the constant ε1 = ε1(M,N) is positive when the given boundary map φ0
is not a constant map.

Proof It is sufficient to prove that no blow-up will occur along the flow. In fact, if the
flow blows up at some singular time T ≤ ∞, then there exists at one singularity (x0, T ).
By the proof of Theorem 1.2 and Theorem 1.5 in [18], we know there exists a weak limit

(φ(x, T ), ψ(x, T )) of (φ(x, ti), ψ(x, ti)) in the sense of W 1,2(M) × W 1, 43 (M) as ti → T .
By Theorem 2.3, some nontrivial Dirac-harmonic spheres appear. Assume

(

˜φ, ˜ψ
)

is one,
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then by Theorem 2.3, we have

E(φ(·, T )) = lim
R→0

E
(

φ(·, T ),M \ BM
R (x0)

)

≤ lim
R→0

lim inf
t↗T

E
(

φ(·, t),M \ BM
R (x0)

)

= lim
R→0

lim inf
t↗T

(

E(φ(·, t)) − E(φ(·, t), BM
R (x0))

)

≤ lim inf
t↗T

E(φ(·, t)) − lim
R→0

lim sup
t↗T

E
(

φ(·, t), BM
R (x0)

)

≤ lim inf
t↗T

E(φ(·, t)) − E
(

˜φ
)

.

However, by Lemma 3.2 in [18], we have

ε0 + ε1 ≤ E
(

˜φ
)+ E(φ(T )) ≤ lim sup

t→T

E(φ) ≤ E(φ0) + √
2‖Bψ0‖2L2(∂M)

< min
{

Λ2, ε0 + ε1
}

.

This is a contradiction which finishes the proof.

2.2 α-Dirac-harmonia Map Flow

We note that a technical difficulty for the long time behavior of the Dirac-harmonic
map flow stems from the fact that along the Dirac-harmonic map flow considered in
Theorem 2.2, we only have that the energy of the map φ is uniformly bounded, i.e.,

E(φ(·, t)) =
∫

M

|∇φ(·, t)|2dM ≤ C < +∞.

However, the Dirac type equation for the spinor ψ does not provide good control of the
energy of the spinor field

E(ψ(·, t)) =
∫

M

|ψ(·, t)|4dM,

as time t approaches the first singular time T1 > 0, even for the L1-norm. This is the
main difficulty and why we need to impose the additional boundary-initial constraint in
Theorem 2.2 in order to obtain a global weak solution to the Dirac-harmonic map flow and
prove some existence results by letting time t goes to infinity.

The general question we are interested in, however, is the following

Question Does there exist a Dirac-harmonic map from a compact Riemann surface with
boundary to a compact Riemannian manifold with general Dirichlet-chiral boundary data?

To investigate this issue, in [19], we introduced a new parabolic-elliptic system and gave
an affirmative answer to this question. In our new approach, one crucial observation is the
following key estimate for the Dirac operator along a given map φ (see [19, Lemma 3.4]):

Key Estimate Let φ ∈ W 1,q (M,N) for some q > 2 and ψ ∈ W 1,p(M,ΣM ⊗ φ∗T N) for
some 1 < p < 2, then there holds

(2.5)
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We remark that the above estimate has two key properties. The first one is that the pos-
itive constant C = C(p, M,N, ‖∇φ‖Lq(M)) > 0 depends on the norm ‖∇φ‖Lq(M) with
q > 2 of the map φ. The second one is that the two numbers q > 2 and 1 < p < 2 are
independent of each other. In fact, such kind of estimate holds true for more general Dirac
type systems (see [19, Lemma 3.3]) which should be useful in other problems.

Note that the key estimate for the Dirac operator along a given map in (2.5) requires
that the map φ lies in W 1,q (M,N) for some q > 2. Inspired by this fact and the well known
Sacks–Uhlenbeck’s approximation, in [19], we introduced the following functional

where α > 1 is a constant. Critical points (φα, ψα) of the above functional Lα are called
α-Dirac-harmonic maps from M to N . When the spinor field is vanishing, the above
functional reduces to Sacks–Uhlenbeck’s approximation for harmonic maps in [33].

By a direct computation, one can verify that critical points (φα, ψα) of the new functional
Lα satisfy the following Euler–Lagrange equations (see [19, Lemma 3.2]):

One crucial step in our new scheme is to get the existence result of Dirac-harmonic maps
through studying the limit behaviour of a sequence of α-Dirac-harmonic maps as α ↘ 1.1

Suppose that there exists a sequence of α-Dirac-harmonic maps (φα, ψα) with

Eα(φα) :=
∫

M

(

1 + |dφα|2
)α

dM ≤ Λ < ∞,

then the key estimate (2.5) implies the following uniform control of the spinors:

‖ψα‖W 1,p(M) with 1 < p < 2, is uniformly bounded as α ↘ 1.

Thus, we can do the blow-up analysis and we will show that the weak limit is just the desired
Dirac-harmonic map. In the case of a two dimensional domain surface, this approach is
better than the Dirac-harmonic map flow [9, 18], and therefore, here lies the advantage of
considering α-Dirac-harmonic maps.

The remaining task then is to show the existence of such a sequence of α-Dirac-harmonic
maps. In fact, this is one crucial step in our new scheme. Since the second term of the
functional Lα is not bounded from below, classical Ljusternik–Schnirelman theory may not
be applied here to obtain critical points of Lα . Therefore, we need to develop a new method
to proceed with our scheme.

In [19], we introduced the following new parabolic-elliptic system:

1Here and in the sequel, for simplicity of notations, when talking about a sequence of (φα, ψα) for α ↘ 1,
we mean the sequence of (φαk

, ψαk
) for a given sequence of αk ↘ 1.
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with the following boundary-initial data:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

φ(x, t) = ϕ(x) on ∂M × [0, T ];
φ(x, 0) = φ0(x) in M;
Bψ(x, t) = Bψ0(x) on ∂M × [0, T ];
φ0(x) = ϕ(x) on ∂M .

(2.8)

The new system (2.6)–(2.7) are called the α-Dirac-harmonic map flow.
Now, we state a result about the global existence of the α-Dirac-harmonic map flow with

a Dirichlet-chiral boundary condition.

Theorem 2.7 [19, Theorem 2.1] Let M be a compact spin Riemann surface with smooth
boundary ∂M and let N ⊂ R

K be a compact Riemannian manifold. Suppose

1 < α < 1 + ε1,

where ε1 > 0 is the positive constants depending only on M and N . Then for any φ0 ∈
C2+λ(M,N), ϕ ∈ C2+λ(∂M, N), ψ0 ∈ C1+λ (∂M, ΣM ⊗ ϕ∗T N) where 0 < λ < 1 is a
constant, there exists a unique global solution

φ ∈ C
2+λ,1+ λ

2
loc (M × [0, ∞),N)

and

ψ ∈ C
λ, λ

2
loc (M × [0, ∞),ΣM ⊗ φ∗T N) ∩ L∞ ([0, ∞), ‖ψ(·, t)‖C1+λ(M)

)

to the problem (2.6)–(2.7) with boundary-initial data (2.8), satisfying

Eα(φ(t)) ≤ Eα(φ0) + 2
√
2‖Bψ0‖2L2(∂M)

and
‖ψ(·, t)‖W 1,p(M) ≤ C

(

p,M, N,Eα(φ0) + 2
√
2‖Bψ0‖2L2(∂M)

)

,

where 1 < p < 2.
Moreover, there exist a time sequence ti → ∞ and an α-Dirac-harmonic map

(φα, ψα) ∈ C2+λ(M,N) × C1+λ
(

M,ΣM ⊗ φ∗
αT N

)

with the boundary data
(φα,Bψα)|∂M = (ϕ,Bψ0),

such that (φ(·, ti ), ψ(·, ti )) converges to (φα, ψα) in C2(M) × C1(M).

When the spinor field is vanishing and the domain is a closed surface, our flow reduces
to the so called Sacks–Uhlenbeck flow studied in [17].

By Theorem 2.7, for any α > 1 sufficiently close to 1, there exists an α-Dirac-harmonic
map (φα, ψα) ∈ C2+λ(M,N)×C1+λ(M,ΣM⊗φ∗

αT N)with the Dirichlet-chiral boundary
condition (φα,Bψα)|∂M = (ϕ,Bψ0) and satisfies the following two properties

Eα(φα) ≤ Eα(φ0) + 2
√
2 ‖Bψ0‖2L2(∂M)

and
‖ψα‖W 1,p(M) ≤ C

(

p,M,N,Eα(φ0) + 2
√
2‖Bψ0‖2L2(∂M)

)

for any 1 < p < 2. With this result in hand, we are able to prove the existence of Dirac-
harmonic maps by applying the blow-up analysis.

Generally, we have the following existence theorem of Dirac-harmonic maps correspond-
ing to the previous Question.
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Theorem 2.8 [19, Theorem 2.2] Let (φα, ψα) : M → N be a sequence of α-Dirac-
harmonic maps with Dirichlet-chiral boundary condition (φα,Bψα)|∂M = (ϕ,Bψ0) and
with uniformly bounded energy

Eα(φα) + ‖ψα‖L4(M) ≤ Λ.

Denoting E(φα; Ω) := ∫
Ω

|∇φα|2dvolg , Ω ⊂ M and the energy concentration set

S :=
{

x ∈ M | lim inf
α→1

E(φα;BM
r (x)) ≥ ε0

2
for all r > 0

}

,

where ε0 is the positive constant depending only on M , N , BM
r (x) is the geodesic ball in

M with center point x and radius r , then S is a finite set. Moreover, after selection of a
subsequence of (φα, ψα) (without changing notation), there exists a Dirac-harmonic map

(φ, ψ) ∈ C2+λ(M,N) × C1+λ(M,ΣM ⊗ φ∗T N)

with Dirichlet-chiral boundary data (φ,Bψ)|∂M = (ϕ,Bψ0), such that

(φα, ψα) → (φ, ψ) in C2
loc(M \ S) × C1

loc(M \ S).

We remark that since we can impose nontrivial boundary conditions for both the map
and the spinor field, we shall obtain Dirac-harmonic maps with nontrivial map part as well
as nontrivial spinor part.

Moreover, similarly to the Dirac-harmonic map flow, we show that at each singular point
x0, where the energy of the map concentrates, after suitable rescaling, a bubble, namely, a
nontrivial Dirac-harmonic sphere splits off.

Theorem 2.9 [19, Theorem 2.4] Under the same assumption as in Theorem 2.8, suppose
x0 ∈ S is an energy concentration point, i.e.,

lim inf
α→1

E
(

φα; BM
r (x0)

)

≥ ε0
2

for all r > 0.

Then,

(1) if x0 ∈ M \ ∂M , there exist a subsequence of (φα, ψα) (still denoted by (φα, ψα)) and
sequences xα → x0, λα → 0 and a nontrivial Dirac-harmonic map (σ, ξ) : R2 → N ,
such that as α → 1,2
(

φα(xα + λαx), λα−1
α

√

λαψα(xα + λαx)
)

→ (σ (x), ξ(x)) in C1
loc

(

R
2
)

× C0
loc

(

R
2
)

.

(σ, ξ) has finite energy and conformally extends to a smooth Dirac-harmonic sphere.3

(2) if x0 ∈ ∂M , then dist (xα,∂M)
λα

→ ∞ and the same bubbling statement as in (1) holds.

Furthermore, we can show that the bubbles in the above Theorem 2.9 are in fact just
harmonic spheres [19].

So far, we have answered theQuestion about the existence of Dirac-harmonic maps with
given Dirichlet-chiral boundary data. It is natural to ask whether the map component φ of
the limit Dirac-harmonic map stays in the same homotopy class as φ0.

2Compared to the usual rescaling, i.e.
(

φα (xα + λαx) ,
√

λαψα (xα + λαx)
)

, for a blow-up sequence of
Dirac-harmonic maps given in [5], here the additional factor λα−1

α comes from the fact that α-Dirac-harmonic
maps are not conformally invariant.
3Here we have used the fact that the unique spin structure on S2 \ {p} extends to the unique spin structure on
S
2 and so does the associated spinor bundle.
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Here we give a positive answer under some natural condition as in the harmonic map
case.

Theorem 2.10 [19, Theorem 2.5] Let M be a compact spin Riemann surface with smooth
boundary ∂M and let N ⊂ R

K be a compact Riemannian manifold. For any φ0 ∈
C2+λ(M,N), ϕ ∈ C2+λ(∂M, N), ψ0 ∈ C1+λ(∂M,ΣM ⊗ ϕ∗T N) where φ0|∂M = ϕ and
0 < λ < 1 is a constant, if (N, h) dose not admit any nontrivial harmonic sphere, then
there exists a Dirac-harmonic map

(φ, ψ) ∈ C2+λ(M,N) × C1+λ(M,ΣM ⊗ φ∗T N)

with Dirichlet-chiral boundary data (φ,Bψ)|∂M = (ϕ,Bψ0) such that the map component
φ is in the same homotopy class as φ0.

3 Refined Blow-up Analysis

In this section, we will study some refined blow-up analysis for sequences of approximating
Dirac-harmonic maps arising from the two approaches discussed in Section 2.

3.1 Approximate Dirac-harmonic Maps

In order to investigate the blow-up picture near a singularity of the Dirac-harmonic map
flow, we shall first define approximate Dirac-harmonic maps. Denote

W 2,2(M,N) :=
{

φ ∈ W 2,2
(

M,RK
)

with φ(x) ∈ N for a.e. x ∈ M
}

,

W 1,4/3(M,ΣM ⊗ φ�T N) :=
{

ψ ∈ W 1,4/3
(

M,ΣM ⊗ R
K
)

with ψ(x) ∈ΣM ⊗ φ�T N

for a.e. x ∈ M
}

.

In this part, we want to consider pairs (φ, ψ) that satisfy the Euler–Lagrange equations
for Dirac-harmonic maps up to some error term in L1. Here is the precise definition.

Definition 3.1 (φ, ψ) ∈ W 2,2(M,N) × W 1, 43 (M,ΣM × φ�T N) is called an approximate
Dirac-harmonic map if there exists a pair (τ (φ,ψ), h(φ,ψ)) ∈ L1(M) such that

We remark that such approximate Dirac-harmonic map appear in the Dirac-harmonic
map flow.

Thus, a pair of field (φ, ψ) is a Dirac-harmonic map if and only if τ(φ,ψ) = h(φ,ψ) =
0. In the sequel, we shall assume that the error terms are in spaces smaller than L1.

Theorem 3.2 ([20, Theorem 1.2] and [21, Theorem 1.1]) Consider a sequence of approxi-
mate Dirac-harmonic maps (φn, ψn) ∈ C2(M,N)×C1(M, ΣM ⊗φ∗T N) from a compact
Riemann surface M with smooth boundary ∂M to a compact Riemannian manifold N

satisfying

E(φn,ψn) + ‖τ(φn, ψn)‖L2 + ‖h(φn, ψn)‖L4 ≤ Λ,
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and with boundary data
φn|∂M = ϕ, Bψn|∂M = Bχ,

where ϕ ∈ C2+α(∂M, N), χ ∈ C1+α(∂M, ΣM ⊗ φ∗T N) for some 0 < α < 1. We assume
that (φn, ψn) ⇀ (φ,ψ) weakly inW 1,2(M,N)×L4(M,ΣM⊗φ∗T N). Define the blow-up
set

S := ∩r>0

{

x ∈ M

∣

∣

∣

∣

lim inf
n→∞

∫

D(x,r)

(

|dφn|2 + |ψn|4
)

≥ ε
}

,

where ε > 0 is the constant depending only on M , N . Then S is a (possibly empty) finite set
{p1, . . . , pq, . . . , pI }, where 1 ≤ q ≤ I , {p1, . . . , pq} ∈ M \ ∂M , {pq+1, . . . , pI } ∈ ∂M .

Moreover, a subsequence, still denoted by {(φk, ψk)}, converges weakly in W
2,2
loc (M \ S) ×

W
1,2
loc (M \ S) to (φ, ψ) and for each i = 1, . . . , I , there is a finite set of Dirac-harmonic

spheres
(

σ l
i , ξ

l
i

) : S2 → N , l = 1, . . . , Li , such that

lim
n→∞ E(φn) = E(φ) +

I
∑

i=1

Li
∑

l=1

E
(

σ l
i

)

,

lim
n→∞ E(ψn) = E(ψ) +

I
∑

i=1

Li
∑

l=1

E
(

ξ l
i

)

,

and the image φ(M \ ∂M) ∪⋃q

i=1

⋃Li

l=1

(

σ l
i

(

S2
))

is a connected set.

When (φn, ψn) are Dirac-harmonic maps, namely, all the error terms are vanishing, the
corresponding blow-up analysis including energy identity and no neck property were proved
in [5, 30, 36].

As an application of Theorem 3.2, we shall study the asymptotic behavior at the infinite
time for the Dirac-harmonic map flow in dimension 2.

Theorem 3.3 ([20, Theorem 1.4] and [21, Theorem 1.3]) Let M be a compact spin Rie-
mann surface with smooth boundary ∂M . Let φ0 ∈ H 1(M,N), ϕ ∈ C2+α(∂M, N),
χ ∈ C1+α(∂M, ΣM ⊗ ϕ∗T N). Let (φ, ψ) : M × [0, ∞) → N × (ΣM ⊗ φ∗T N) be a
global weak solution of (2.1) and (2.2), which has finitely many singular times. Then there
exist tn ↑ ∞, a Dirac-harmonic map (φ∞, ψ∞) ∈ C2+α(M,N)×C1+α(M,ΣM⊗φ∗∞T N)

with boundary data φ∞|∂M = ϕ and Bψ∞|∂M = Bχ , nonnegative integer I and a possibly
empty set with at most finitely many points {p1, . . . , pq, . . . , pI } ⊂ M , where 1 ≤ q ≤ I ,
{p1, . . . , pq} ∈ M \ ∂M , {pq+1, . . . , pI } ∈ ∂M such that

(1) (φn, ψn) := (φ(·, tn), ψ(·, tn)) ⇀ (φ∞, ψ∞) in W 1,2(M,N) × L4(M,ΣM ×
φ∗∞T N);

(2) (φn, ψn) → (φ∞, ψ∞) in W
1,2
loc (M \ {p1, . . . , pI }) × L4

loc(M \ {p1, . . . , pI });
(3) For 1 ≤ i ≤ I , there exist a positive integer Li and Li nontrivial Dirac-harmonic

spheres
(

σ l
i , ξ

l
i

) : S2 → N , i = 1, . . . , I ; l = 1, . . . , Li such that

lim
n→∞ E(φn) = E(φ∞) +

I
∑

i=1

Li
∑

l=1

E
(

σ l
i

)

,

lim
n→∞ E(ψn) = E(ψ∞) +

I
∑

i=1

Li
∑

l=1

E
(

ξ l
i

)

,

and the image φ∞(M \ ∂M) ∪⋃q

i=1

⋃Li

l=1

(

σ l
i

(

S2
))

is a connected set.
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3.2 α-Dirac-harmonic Maps

In this part, we shall study the limit behavior for a sequence of α-Dirac-harmonic maps as
α ↘ 1.

Since in general, multiple bubbles can split off at a blow-up point and the functional
Lα is not conformally invariant, to better understand the multiple bubbling behavior for α-
Dirac-harmonic maps, we shall consider the following more general α-energy functionals4

where gα = eϕα

(

(

dx1
)2 + (dx2

)2
)

, ϕα ∈ C∞(D1), ϕα(0) = 0, ϕα converges smoothly to

ϕ0 ∈ C∞(D1) and σα > 0 is a constant.
Critical points of Lα,σα are called general α-Dirac-harmonic maps, and they satisfy the

following Euler–Lagrange equations

Before presenting further results, we shall first give a general description of the blow-
up procedure and the bubbling phenomena for general α-Dirac-harmonic maps. We shall
follow the general scheme as in the case of α-harmonic maps [29, 33].

Denote

Eα,σα (φ) =
∫

M

(

σα + |dφ|2
)α

dM, Eα(φ) =
∫

M

(

1 + |dφ|2
)α

dM .

Consider a sequence of general α-Dirac-harmonic maps {(φα, ψα)} : M → N with
Dirichlet-chiral boundary data (φα,Bψα)|M = (ϕ,Bψ0) and with σα > 0 satisfying

0 < β0 ≤ lim inf
α↘1

σα−1
α ≤ 1

for some β0 > 0 and with uniformly bounded energy

Eα,σα (φα) + E(ψα) ≤ Λ.

From Theorems 2.8 and 2.9, we know that, by passing to a subsequence, (φα, ψα) con-
verges strongly to some limit Dirac-harmonic map (φ, ψ) : M → N with Dirichlet-chiral
boundary data (φ,Bψ)|M = (ϕ,Bψ0), away from at most finitely many blow-up points
S = {xi}Ii=1, as α ↘ 1. Moreover, we show that at each blow-up point where the energy of
the map concentrates, after suitable rescaling, a bubble, namely, a nontrivial Dirac-harmonic
sphere can split off.

More precisely, for a fixed blow-up point xi , 1 ≤ i ≤ I , we may assume there are ki

bubbles occurring at this point, i.e., there are a sequence of points
{

x
ij
α

}

, j = 1, . . . , ki , and

a sequence of positive numbers
{

λ
ij
α

}

with x
ij
α → xi , λ

ij
α → 0 as α ↘ 1 and one of the

following two alternatives holds true: if 1 ≤ j1, j2 ≤ ki and j1 �= j2,

4It is easy to check that a rescaled α-Dirac-harmonic map, e.g.
(

φα(λαx), λα−1
α

√
λαψα(rαx)

)

is locally a
critical point of this functional, we refer to Section 5 in [19] for details. We refer to the beginning of Section 2
in [29] for the analogous case of α-harmonic maps.
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(A1) for any fixed R > 0, BM

Rλ
ij1
α

(

x
ij1
α

)

∩ BM

Rλ
ij2
α

(

x
ij2
α

)

= ∅, whenever α > 1 is

sufficiently close to 1.

(A2) λ
ij1
α

λ
ij2
α

+ λ
ij2
α

λ
ij1
α

= ∞ as α ↘ 1.

Moreover, one can show that the following two rescaled fields5

σ ij
α := φα

(

xij
α + λij

α x
)

, ξ ij
α :=

(

λij
α

)α−1
√

λ
ij
α ψα

(

xij
α + λij

α x
)

converge in Ck
loc

(

R
2 \
{

p
ij

1 , . . . , p
ij
sj

})

to a nontrivial Dirac-harmonic map
(

σ ij , ξ ij
)

defined onR2, which can be conformally extended to a nontrivial Dirac-harmonic map from
S
2. See the beginning of Section 7 in [19].
We define two types of quantities as follows

μij = lim inf
α↘1

(

λij
α

)2−2α
, νij = lim inf

α↘1

(

λij
α

)−√
α−1

. (3.1)

It is easy to check that νij ∈ [1, ∞]. Also, we can see that there exists a positive constant
μmax ≥ 1 such that μij ∈ [1, μmax]. In fact, for the sake of simplicity, we may assume
that there is only one blow-up point which is denoted by x ∈ M , and there are k1 bubbles

occurring at this point, i.e., there are a sequence of points
{

x
j
α

}

and a sequence of positive

numbers
{

λ
j
α

}

, 1 ≤ j ≤ k1 satisfying (A1) or (A2). Without loss of generality, we may

assume λ1α is the smallest one, i.e.

λ1α

λ
j
α

≤ C < ∞

for all j = 2, . . . , k1 as α ↘ 1. Then we need to show

μ1 = lim inf
α↘1

(

λ1α

)2−2α ≤ μmax .

By applying the blow-up argument for general α-Dirac-harmonic maps (see
[19, Section 7] for more details), we get
(

σ 1
α , ξ1α

)

:=
(

φα

(

x1
α + λ1αx

)

,
(

λ1α

)α−1√

λ1αψα

(

x1
α + λ1αx

)

)

→
(

σ 1, ξ1
)

in Ck
loc

(

R
2
)

,

where
(

σ 1, ξ1
)

can be conformally extended to a nontrivial Dirac-harmonic sphere.
Therefore, we have

Λ ≥ lim
R→∞ lim

α↘1

∫

D
λ1αR

(x1α)

|∇gαφα|2αdvolgα

= lim
R→∞ lim

α↘1

(

λ1α

)2−2α
∫

DR(0)
|∇gασ 1

α |2αdvolgα(x1α+λ1αx)

= lim
R→∞ μ1

∫

DR(0)
|∇σ 1|2dx = μ1E

(

σ 1
)

.

5Let us explain the transformation of the spinor part. In fact, it can be seen as a linear transformation (i.e.
λα−1

α ψα) composed with a conformal transformation (i.e.
√

λαψα(xα +λαx)). Since α-Dirac-harmonic maps
are not conformally invariant, to get unified bubble equations, we need an additional factor λα−1

α in the
scaling.
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By the energy gap theorem for nontrivial Dirac-harmonic spheres (see [19, Lemma 6.2]),
we have

μ1 ≤ Λ

E
(

σ 1
) ≤ Λ

ε4
,

where ε4 = ε4(N) > 0 is a positive constant.
Now, we are able to state a result about generalized energy identities for a sequence of

α-Dirac-harmonic maps that blows up at interior points.

Theorem 3.4 [19, Theorem 2.6] Under the assumptions of Theorem 2.8, if we assume that
S ∩ ∂M = ∅, i.e., all the blow-up points are interior points, then there are at most finitely
many bubbles: a finite set of Dirac-harmonic spheres

(

σ l
i , ξ

l
i

) : S2 → N , l = 1, . . . , li ,
where li ≥ 1, i = 1, . . . , I , such that, the following generalized energy identities hold:

lim
k→∞ Eαk

(φαk
) = E(φ) + |M| +

I
∑

i=1

li
∑

l=1

μ2
ilE
(

σ l
i

)

,

lim
k→∞ E(ψαk

) = E(ψ) +
I
∑

i=1

li
∑

l=1

μ2
ilE
(

ξ l
i

)

,

where the quantities μil ≥ 1 are defined as in (3.1).

Furthermore, we can show that the map parts of the α-Dirac-harmonic necks appearing
in the interior blow-up process are converging to geodesics in the target manifold N and
then derive the length formula of these neck geodesics.

Theorem 3.5 [19, Theorem 2.8] Under the same assumptions as in Theorem 3.4, let x1 ∈
S be an interior blow-up point. For simplicity, assume that there is only one bubble in
BM

r (x1) ⊂ M for some r > 0, for the sequence
{(

φαk
, ψαk

)}

, denoted by
(

σ 1, ξ1
)

, which
is a Dirac-harmonic sphere. Let

ν1 = lim inf
α↘1

(

λ1α

)−√
α−1

.

Then, by passing to subsequences, the map part of the Dirac-harmonic neck appearing
during the blow-up process converges to a geodesic in the target manifold N . Moreover, we
have the following alternatives:

(1) when ν1 = 1, the set φ
(

BM
r (x1)

) ∪ σ 1
(

S2
)

is a connected set in the target N ;
(2) when ν1 ∈ (1, ∞), then the set φ

(

BM
r (x1)

)

and σ 1
(

S2
)

are connected by a geodesic
of length

L =
√

E
(

σ 1
)

π
log ν1;

(3) when ν1 = ∞, the map part of the Dirac-harmonic neck contains at least an infinite
length curve which is a geodesic in N ;

4 Some Problems

Finally, we shall propose some problems related to the two approaches discussed in this
article.
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Problem 1 What is the blow-up behavior at the finite singular time of Dirac-harmonic map
flow? Is the blow-up set finite? Can we also get an energy identity at the finite singular time?

For the harmonic map flow, Eells–Sampson [13] established a global smooth solution
under certain curvature conditions of the target manifold. When the domains are of dimen-
sion two, Struwe [34] proved the existence of a global weak solution which is regular
except finite singular points. Chang–Ding–Ye [4] constructed an example to show that har-
monic map flow admits a finite singular time singularity. The refined blow-up analysis of
two dimensional harmonic map flow at the finite or infinite singular time, namely energy
identity and no neck property, were explored in [12, 31, 32] etc.

Problem 2 What is the limit of the α-Dirac harmonic map flow constructed in Theorem 2.7
as α ↘ 1? Is the limit a weak solution of Dirac-harmonic map flow?

When the spinor is vanishing, α-Dirac harmonic map flow reduces to the Sacks–
Uhlenbeck flow introduced in [17]. By studying the limit as α ↘ 1, the existence of a weak
solution of harmonic map flow was proved in [17].
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