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Abstract
In the early 1990s, Harada and Oshiro introduced extending and lifting properties for
modules and, simultaneously, considered two new classes of artinian rings which contain
quasi-Frobenius (QF-) rings and Nakayama rings: one is the class of right Harada rings and
the other is the class of right co-Harada rings. Although QF-rings and Nakayama rings are
left-right symmetric, Harada and co-Harada rings are not left-right symmetric. However,
Oshiro showed that left Harada rings and right co-Harada rings are coinside. In this paper
we provide many characterizations of right co-Harada rings and (right and left) co-Harada
rings.
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1 Introduction

Throughout this paper all rings will be associative with identity and modules will be unital
modules. For an R-module M we write MR (RM) to indicate that M is a right (left) R-
module. By J (M), E(M), Z(M) we denote the Jacobson radical, the injective hull and the
singular submodule of M , respectively. We denote the set of primitive idempotents of R

by Pi(R). A ring R is said to have enough idempotents if the identity element of R can be
written as the sum of a finite number of orthogonal primitive idempotens of R.

Let R be a ring and M a right R-module. N ≤ M will mean N is a submodule of M .
A submodule N of M is called small in M , denoted by N ≤sm M , whenever for every
submodule L of M , N + L = M implies L = M . A non-zero submodule N of M is said to
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be an essential submodule of M , denoted by N ≤e M , if for every 0 �= L ≤ M , N ∩L �= 0.
A non-zero module M is called uniform if N ≤e M for every non-zero submodule N of M .

A module M is said to be small if M is small in its injective hull. A (right) R-module M

is called non-small if M is not a small submodule in its injective hull, which is equivalent to
the fact that M is not a small submodule in any extension module of M (see [11, Proposi-
tion 1.1]). Dually,M is called a non-cosmallmodule, following [19], ifM is a homomorphic
image of a projective module P whose kernel is not essential in P , which is equivalent to
the fact that if M is a homomorphic image of a module N , then the kernel is always not
essential in N (see [11, Proposition 3.1]).

A module M is called an extending module (CS module) if every submodule of M is
essential in a direct summand of M . A ring R is called right CS if RR is an extending
module. A module M is said to be a local module if M has a unique maximal submodule.

A ring R is called right QF-3 if RR has a direct summand eR (e is an idempotent of R)
which is a faithful injective right ideal, and it is called right QF-3+ if E(RR) is projective. A
ring R is called right QF-2 if it is a direct sum of right uniform ideals (as right R-modules).
R is called right (left) nonsingular if the right (left) singular ideal of R is zero.

M is called uniserial if the set of submodules of M is linearly ordered and M is called
serial if it is a direct sum of uniserial modules. A ring R is a right (left) serial ring if RR

(RR) is a serial module, and R is called a serial ring if R are both right and left serial. A
two-sided artinian serial ring is also called a Nakayama ring.

A submodule N of a module M is called a waist in M if either N ≤ X or X ≤ N is
satisfied for any submodule X of M .

Definition 1 A module M is called z-serial if M satisfies three following conditions:

(1) M is uniform,
(2) Z(M) is a waist in M ,
(3) M/Z(M) is uniserial.

The following series of results from various sources is presented here in order to make it
easier to refer to them later in the paper.

Lemma 1 ([7, Lemma 7.1]) Every direct summand of an extending module is an extending
module.

Lemma 2 ([9, 18.23]) Every local right (lef t) R-module over semiperfect ring R is iso-
morphic to a homomorphic image of eR (Re) for some e ∈ Pi(R). If R is right (lef t) QF-2
then every local right (lef t) R-module is either projective or singular.

In [11] Harara has studied the following conditions:

(∗)r Every non-small right R-module contains a non-zero injective submodule.
(∗)∗r Every non-cosmall right R-module contains a non-zero projective direct summand.

He also gave a characterization of semiperfect rings with (∗)∗r as follows:

Theorem 1 ([11, Theorem 3.6]) Let R be semiperfect. Then (∗)∗r holds if and only if there
exists a set of primitive idempotents {ei} and of integers {ni} such that:
(1) eiR is injective,
(2) eiJ

ti is projective for ti ≤ ni and eiJ
ni+1 is singular, and
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(3) Every indecomposable projective module is isomorphic to some eiJ
ti .

In this case, every submodule eiB in eiR either is contained in eiJ
ni+1 or equal to some

eiJ
ti , ti ≤ ni + 1, where J = J (R).

The following classes of rings have been defined by Oshiro [16]: A ringR is called a right
Harada ring if it is right artinian and satisfies the condition (∗)r . Dually, a ring R is called
a right co-Harada ring if it satisfies the condition (∗)∗r and the ACC on right annihilators.

Huynh in [13] studied right co-Harada rings under the name right �-CS rings. Many
results on onesided Harada (or co-Harada) rings are given in [1, 10] and [16].

In 1993, Vanaja ([21]) has generalized (∗)∗r by considering the following condition

(∗)∗1,r Every finitely generated non-cosmall right R-module contains a non-zero projec-
tive direct summand.

It is known ([21, Theorem 1.10]) that the following are equivalent for a semiperfect ring
R: (1) R satisfies (∗)∗1,r ; (2) R

(n)
R is an extending module; and (3) Direct sum of any two

indecomposable projective right R-modules is extending.

Lemma 3 ([9, Theorem 20.15]) Every indecomposable injective and projective right R-
module M is isomorphic to a summand of R, that is, there exists an idempotent e ∈ R such
that M ∼= eR.

Lemma 4 ([11, 19]) The following statements holds for non-cosmall modules:

(1) An R-module M is non-cosmall if and only if M �= Z(M);
(2) If an R-module M contains a non-zero projective submodule, then it is non-cosmall.

From the definition of non-cosmall modules and Lemma 3 we have

Lemma 5 The following statements are equivalent for a ring R and a cardinal α:

(1) R
(α)
R = ⊕IRR is an extending module, where card(I ) = α.

(2) Every α-generated right R-module M is a direct sum of a projective module and a
singular module.

The proof of the following lemma is straightforward and will be omitted.

Lemma 6 ([11]) Let R be a ring.

(1) If {Xi}ni=1 is a set of small submodules of a right R-module X, then
∑n

i=1Xi is a small
module,

(2) If R is right perfect, then a right R-module M is nonsmall if and only if there exists an
element m ∈ M such that module cyclic mR is nonsmall.

Lemma 7 ([17]) A ring R is a right (resp. left) Harada ring if and only if R is left (resp.
right) co-Hadada.

The following lemma is a special case of [2, Lemma 11].

Lemma 8 Let U be a uniform module, and suppose that U is not isomorphic to any of its
proper submodules. Then End(U) is a local ring.
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Proof Let α ∈ End(U). Then Ker(α)∩Ker(1−α) = 0 in U . Since U is uniform, it follows
that either Ker(α) = 0 or Ker(1−α) = 0, respectively either α or (1−α) is monomorphic.
Since U is not isomorphic to any of its proper submodules, one of two homomorphisms is
isomorphic, as required.

2 Co-Harada Rings

We start the section with a lemma which will be useful in the sequel.

Lemma 9 Let M be a uniform cyclic module such that E(M)/M has ACC on cyclic sub-
modules. Then M is not isomorphic to any of its proper submodules, and hence End(M) is
a local ring.

Proof Let E = E(M) and suppose that there is a proper submodule U of M and an
isomorphism ϕ : U → M . Consider the commutative diagram

where ϕ̄ is an extension of ϕ. Let ϕ̄(eR) = U1 and ϕ̄(U1) = U2, and ϕ̄(Un) = Un+1 for
any integer number n. Since E is uniform and ϕ is an isomorphism, it follows that ϕ̄ is
a monomorphism. So that, we get an infinite strictly ascending chain of cyclic modules
M ≤ U1 ≤ U2 ≤ · · · ≤ Un ≤ · · · in E, which is a contradiction, since E/M has ACC for
cyclic submodules. Hence, M is not isomorphic to any of its proper submodules. Moreover,
by Lemma 8, End(M) is local.

The following theorem provides characterizations of semiperfect rings with (∗)∗r . This
generalizes [15, Theorem 2.3] and [20, Theorem 3.8] (without assuming E(eR) is a z-serial
module for every e ∈ Pi(R)).

Theorem 2 Let R be a ring. The following statements are equivalent:

(1) R is a semiperfect ring with (∗)∗r .
(2) R is a ring with enough idempotents, eR is a waist in E(eR) and E(eR)/eR has ACC

on cyclic submodules for every e ∈ Pi(R).
(3) R is a ring with enough idempotents, eR is a waist in E(eR) and eR/Z(eR) has finite

length for any e ∈ Pi(R).

Proof (1) ⇒ (2). It is obvious, see Theorem 1.
(2) ⇒ (1). Assume (2). Then RR = e1R ⊕ e2R ⊕ · · · ⊕ enR, where ei ∈ Pi(R) and eiR

is indecomposable. Let e = ei . Since eR is a waist in E(eR), it follows that eR is uniform,
so that End(eR) is local by Lemma 9. Hence R is a semiperfect ring. By [20, Theorem 2.4],
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R satisfies condition (∗)∗1,r . Moreover, every eR is not isomorphic to any of its proper
submodules, by Lemma 9. So that R satisfies (∗)∗r , by [20, Lemma 3.1].

(3) ⇒ (1) Assume (3). Then RR = e1R ⊕ e2R ⊕ · · · ⊕ enR, where ei ∈ Pi(R) and
eiR is indecomposable. Let e = ei . It follows that eR is uniform, since eR is a waist in
E(eR). If Z(eR) = 0 then End(eR) is local, since eR has finite length. If eR is injective
then End(eR) is local, since eR is uniform. We consider the case W = Z(eR) �= 0 and
E = E(eR) �= eR. By (3), length(eR/W) = n > 0. Using the same argument as in the
proof of Lemma 9, we get an infinite strictly ascending chain of cyclic modules eR ≤ U1 ≤
U2 ≤ · · · ≤ Un ≤ · · · in E, where eR ∼= Ui for i = 1, 2, . . . . Since Z(E) �= E and eR

is a waist in E, Z(Ui) �= eR, so that Z(Ui) = Z(eR) = W . Then eR/W is not a module
with finite length, a contradiction. It follows that eR is not isomorphic to any of its proper
submodules. Hence End(eR) is local, by Lemma 8. Therefore R is a semiperfect ring. Since
eR is a waist in E(eR) for every e ∈ Pi(R), R satisfies (∗)∗1,r , by [20, Theorem 2.4]. Since
every eR is not isomorphic to any of its proper submodules, it follows R satisfies (∗)∗r , by
[20, Lemma 3.1].

A well-known result of C. Faith [8] asserts that a right self-injective ring is QF if
and only if R has ACC (or DCC) on right annihilators. Next we provide some similar
characterizations of right co-Harada rings.

Theorem 3 Let R be a ring satisfying the ACC (or DCC) on right annihilators. Then the
following statements are equivalent:

(1) R is a right co-Harada ring;
(2) R

(2)
R is an extending module and E(RR)/R has ACC on cyclic submodules.

(3) For every e ∈ Pi(R), eR is a waist in E(eR) and E(eR)/eR has ACC on cyclic
submodules.

(4) For every e ∈ Pi(R), eR is a waist in E(eR), E(eR) is a projective module and
eR/Z(eR) has ACC on cyclic submodules.

Proof (1) ⇒ (2). It is obvious.
(2) ⇒ (3). Assume (2). It is easy to see that R is a direct sum of indecomposable right

ideals if R satisfies the ACC (or DCC) on right annihilators. Since R
(2)
R is extending, so is

RR . Hence R is a direct sum of uniform right ideals. Let RR = e1R ⊕ e2R ⊕ · · · ⊕ enR,
where {ei}ni=1 is a set of primitive idempotents of R and each eiR is uniform. Let e = ei

and E = E(eiR). It is easy to see that E/eR has ACC for cyclic submodules, since it is
isomorphic to a direct summand of E(RR)/R. If eR is injective then End(eR) is local since
eR is uniform. Assume eR is not injective. It follows from Lemma 9 that End(eR) is local.
So that R is semiperfect. Since R2

R is extending, it follows from [20, Lemma 12.8] that eR

is a waist in E(eR). Therefore (3) holds.
(3) ⇒ (1). Assume (3). If R has the ACC (or DCC) on right annihilators then R is a ring

with enough idempotents. It follows from (3) and Theorem 2 that R is a semiperfect ring
with (∗)∗r . Hence R is a right co-Harada ring, by [6, Corollary 3.8].

(1) ⇒ (4). It is clear, since R is an artinian ring, and R satisfies (∗)∗r .
(4) ⇒ (3). Let f ∈ Pi(R) be any element. Using the argument as above, it follows

that every E(f R) is uniform and projective. So that E(f R) ∼= eR for some e ∈ Pi(R), by
Lemma 3. Since f R is a waist in eR, then Z(eR) ≤ f R. It implies that Z(eR) = Z(f R).
So that eR/Z(f R) has ACC on cyclic submodules, by (4). It follows that E(f R)/f R has
ACC on cyclic submodules.
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The proof of the theorem is complete.

The main result in [5] is a special case of the following result.

Proposition 1 Let R be a ring satisfying the ACC (or DCC) on right annihilators. Then the
following statements are equivalent:

(1) R is a right co-Harada ring.
(2) R is a right perfect ring and R

(2)
R is an extending module.

(3) R is a left perfect ring and R
(2)
R is an extending module.

Proof (1) ⇒ (2), (1) ⇒ (3) are obvious.
(2) ⇒ (1). Assume R is a right perfect ring. By [14], every right R-module has ACC on

cyclic modules. By (2) ⇒ (1) in Theorem 3, it follows (1).
(3) ⇒ (1). Assume R is a left perfect ring. Let e ∈ Pi(R). It easy to see that eR is a waist

in E(eR) and eR/Z(eR) has finite length. It follows that R satisfies (∗)∗r , by (3) ⇒ (1) in
Theorem 3, it follows (1).

Corollary 1 Let R be a right nonsingular ring. Then the following statements are
equivalent:

(1) R is a right co-Harada ring.
(2) R is a right perfect ring and R

(2)
R is an extending module.

(3) R is a left perfect ring and R
(2)
R is an extending module.

(4) R is Morita equivalent to a finite direct sum of upper triangular matrix rings over
division rings.

Proof It is shown by [3, Lemma 1.14] that if R is a ring with finite right Goldie then R has
ACC and DCC on right annihilators. From Proposition 1 it easy to see the equivalence of
(1), (2), (3). It follows from [16] that (1) ⇔ (4).

It is also shown by Oshiro [16] that a ring R is a left Harada ring if and only if it is a
right co-Harada ring, however a right Harada ring need not to be right co-Harada (see also
Oshiro [16]).

Example 1 (Oshiro, [16]) There exists a right co-Harada ring which is not a right Harada
ring. Consider the local QF ring Q = K[x, y]/(x2, y2), in which K is a field.

Put

J = J (Q), S = Soc(QQ) (= Soc(QQ)),

Q̄ = Q/S = {ā | ā = a + S ∀a ∈ Q}.
Defined V , W by

V =
[

Q Q

J Q

]

, W =
[

Q Q̄

J Q̄

]

.

Then:

(a) V is a Harada and co-Harada ring (right and left).
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(b) W is right co-Harada and left Harada. However, W is neither left co-Harada nor right
Harada.

Finally we provide some characterizations of Harada rings (co-Harada rings) via perfect
rings.

Theorem 4 Let R be a ring. Then the following statements are equivalent:

(1) R is a Harada ring;
(2) R is a co-Harada ring;
(3) R is a perfect ring and R

(2)
R and RR(2) are extending modules;

(4) R is a perfect ring and every 2-generated right (or left) moduleM has a decomposition
M = P ⊕ S1 ⊕ S2, where P is projective, S1 is injective singular, S2 is small singular;

(5) R is a perfect ring, eR is a waist in E(eR) and Re is a waist in E(Re), for any
e ∈ Pi(R);

(6) R is a perfect ring and M2(R) is a CS ring.

Proof (1) ⇔ (2). It follows from a result due to Oshiro [17] (see, Lemma 7). We shall
prove that (2) ⇔ (4), (2) ⇒ (5) ⇒ (3) ⇒ (2) and (2) ⇔ (6).

(2) ⇒ (4). Assume R is a co-Harada ring. LetM be a 2-generated right R-module. Since
R is a right co-Harada ring, M has a decomposition M = P ⊕ S, where P is projective
and S is singular. Since R is a left co-H ring, it follows that R is a right Harada ring, by
Lemma 7. Then, S has a decomposition S = S1 ⊕ S2, where S1 is injective and S2 is small.
Hence M = P ⊕S1 ⊕S2, where P is projective, S1 is injective and singular and S2 is small
and singular.

(4) ⇒ (2). Assume (4). Let M be any 2-generated right R-module. Then, M has a
decomposition M = P ⊕S1 ⊕S2, where P is projective, S1 is injective and singular and S2
is small and singular. It means that M = P⊕ (S1 ⊕ S2), where P is projective and S1 ⊕ S2
is singular. This shows that every 2-generated right R-module is a direct sum of a projective
module and a singular module. By Lemma 5, it implies that R

(2)
R is an extending module.

Since R is perfect, it follows from [20, Proposition 3.4] that R satisfies the condition (∗)∗1,r .
It is easy to see from Theorem 1 that every indecomposable projective right R-module
is either injective or small. Let P = P1 ⊕ P2 ⊕ · · · ⊕ Pk . Let I = {1, 2, . . . , k}. Let
I1 = {i ∈ I | Pi is injective} and I2 = {j ∈ I | Pj is small}. It is easy to see that I = I1∪I2
and I1 ∩ I2 = ∅. Whence, we have

M = P ⊕ (S1 ⊕ S2) = (⊕i∈I1Pi

) ⊕ (⊕j∈I2Pj

) ⊕ (S1 ⊕ S2)

= ((⊕i∈I1Pi

) ⊕ S1
) ⊕ ((⊕j∈I2Pj

) ⊕ S2
)
,

where (⊕i∈I1Pi ⊕ S1) is injective, and (⊕j∈I2Pj ⊕ S2) is small by Lemma 6. Hence every
2-generated (and hence every cyclic) right R-module is a direct sum of an injective module
and a small module. Next, we shall show that R satisfies the condition (∗)r . Let X be a
nonsmall right R-module. Since R is perfect, it follows from Lemma 6 that X contains a
cyclic nonsmall moduleN . Then,N = N1+N2, whereN1 is a nonzero injective module and
N2 is a small module. So, X contains nonzero injective module N1. Therefore, R satisfies
the condition (∗)r . Since R is a perfect ring and R satisfies the condition (∗)r , R is right
artinian by [12]. Since R is right artinian and R satisfies the condition (∗)r , R is a right
Harada ring and so R is a left co-Harada ring. It remains to show that R is a right co-Harada
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ring. However this is clear since R is right artinian and R satisfies the condition (∗)∗1,r .
Hence R is a co-Harada ring.

(2) ⇒ (5). Suppose that R is a co-Harada ring. Then R is an artinian ring (see [17, 18]).
It follows from [20, Theorem 3.11] that eR is a waist in E(eR) and Re is a waist in E(Re).

(5) ⇒ (3). Assume (5). Since R is perfect and eR (resp. Re) is a waist in E(Re) (resp.
E(Re)), it follows that R

(2)
R (resp. RR(2)) is an extending module, by [20, Theorem 2.4].

We have (3).
(3) ⇒ (2). Assume (3). If R is a left (resp. right) perfect ring and R

(2)
R (resp. RR(2)) is

an extending module, the condition (∗)∗r (resp. (∗)∗l ) holds, by [20, Proposition 3.4]. Fur-
thermore, R is a perfect (two-sided) QF-3+ ring, by [5]. Since RR (resp. RR) is isomorphic
to a direct sum of modules of the form eiR (resp. Rei), we obtain a faithful injective right
(resp. left) ideal by letting eR (resp. Re) be the sum of one of each isomorphism type of
these eiR (resp. Rei). It implies that R is a right and left QF-3 ring. So, R is a semiprimary
QF-3 ring. Hence R satisfies the ACC on right (and left) annihilators, by [4, Theorem 1.3].
Therefore R is a co-Harada ring.

(2) ⇒ (6). Since R is right and left co-Harada, then R is two-sided artinian and R
(2)
R ,

RR(2) are extending modules. By [7, Lemma 12.8], the ring M2(R) is a right and left CS
ring.

(6) ⇒ (2). Since M2(R) is a right and left CS ring, then R
(2)
R and RR(2) are extending

modules, by [7, Lemma 12.8]. Since R is a perfect ring, we have (3); hence (2) holds.
The proof of the theorem is complete.
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