ORIGINAL ARTICLE

A Note on Co-Harada Rings

Phan Dan¹ · Banh Duc Dung2

Received: 13 January 2020 / Accepted: 19 October 2020 / Published online: 2 March 2021 © Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2021

Abstract

In the early 1990s, Harada and Oshiro introduced extending and lifting properties for modules and, simultaneously, considered two new classes of artinian rings which contain quasi-Frobenius (QF-) rings and Nakayama rings: one is the class of right Harada rings and the other is the class of right co-Harada rings. Although QF-rings and Nakayama rings are left-right symmetric, Harada and co-Harada rings are not left-right symmetric. However, Oshiro showed that left Harada rings and right co-Harada rings are coinside. In this paper we provide many characterizations of right co-Harada rings and (right and left) co-Harada rings.

Keywords Harada rings · Co-Harada rings · Small modules · Nonsmall modules · Cosmall modules · Non-cosmall modules

Mathematics Subject Classification (2010) 16D70 · 16D80 · 16P20

1 Introduction

Throughout this paper all rings will be associative with identity and modules will be unital modules. For an *R*-module *M* we write M_R ($_R M$) to indicate that *M* is a right (left) *R*module. By $J(M)$, $E(M)$, $Z(M)$ we denote the Jacobson radical, the injective hull and the singular submodule of *M*, respectively. We denote the set of primitive idempotents of *R* by Pi*(R)*. A ring *R* is said to have enough idempotents if the identity element of *R* can be written as the sum of a finite number of orthogonal primitive idempotens of *R*.

Let *R* be a ring and *M* a right *R*-module. $N \leq M$ will mean *N* is a submodule of *M*. A submodule *N* of *M* is called *small in M*, denoted by $N \leq_{sm} M$, whenever for every submodule *L* of *M*, $N + L = M$ implies $L = M$. A non-zero submodule *N* of *M* is said to

- Banh Duc Dung [dungbd@hcmute.edu.vn](mailto: dungbd@hcmute.edu.vn)

> Phan Dan [danp@hiu.vn](mailto: danp@hiu.vn)

¹ Faculty of General Education, Hong Bang International University, Ho Chi Minh City, Vietnam

² Faculty of Applied Sciences, HCMC University of Technology and Education, Ho Chi Minh City, Vietnam

be an *essential submodule* of *M*, denoted by $N \leq_e M$, if for every $0 \neq L \leq M$, $N \cap L \neq 0$. A non-zero module *M* is called *uniform* if $N \leq_e M$ for every non-zero submodule N of M.

A module *M* is said to be *small* if *M* is small in its injective hull. A (right) *R*-module *M* is called *non-small* if *M* is not a small submodule in its injective hull, which is equivalent to the fact that *M* is not a small submodule in any extension module of *M* (see [\[11,](#page-7-0) Proposition 1.1]). Dually, *M* is called a *non-cosmall* module, following [\[19\]](#page-8-0), if *M* is a homomorphic image of a projective module *P* whose kernel is not essential in *P*, which is equivalent to the fact that if *M* is a homomorphic image of a module *N*, then the kernel is always not essential in N (see [\[11,](#page-7-0) Proposition 3.1]).

A module *M* is called an *extending module (CS module)* if every submodule of *M* is essential in a direct summand of M. A ring R is called right CS if R_R is an extending module. A module *M* is said to be a *local module* if *M* has a unique maximal submodule.

A ring *R* is called *right QF-3* if *RR* has a direct summand *eR* (*e* is an idempotent of *R*) which is a faithful injective right ideal, and it is called *right QF-3*⁺ if $E(R_R)$ is projective. A ring *R* is called *right QF-2* if it is a direct sum of right uniform ideals (as right *R*-modules). *R* is called *right* (*left*) *nonsingular* if the right (left) singular ideal of *R* is zero.

M is called *uniserial* if the set of submodules of *M* is linearly ordered and *M* is called *serial* if it is a direct sum of uniserial modules. A ring *R* is a *right* (*left*) *serial ring* if *RR* (*RR*) is a serial module, and *R* is called a *serial ring* if *R* are both right and left serial. A two-sided artinian serial ring is also called a *Nakayama ring*.

A submodule *N* of a module *M* is called a *waist* in *M* if either $N \leq X$ or $X \leq N$ is satisfied for any submodule *X* of *M*.

Definition 1 A module *M* is called *z-serial* if *M* satisfies three following conditions:

- (1) *M* is uniform,
- (2) *Z(M)* is a waist in *M*,
- (3) $M/Z(M)$ is uniserial.

The following series of results from various sources is presented here in order to make it easier to refer to them later in the paper.

Lemma 1 ([\[7,](#page-7-1) Lemma 7.1]) *Every direct summand of an extending module is an extending module.*

Lemma 2 ([\[9,](#page-7-2) 18.23]) *Every local right (lef t) R-module over semiperfect ring R is isomorphic to a homomorphic image of* eR *(Re) for some* $e \in \text{Pi}(R)$ *. If* R *is right* (left) QF-2 *then every local right (lef t) R-module is either projective or singular.*

In [\[11\]](#page-7-0) Harara has studied the following conditions:

- *(*∗*)r* Every non-small right *R*-module contains a non-zero injective submodule.
- *(*∗*)*[∗] Every non-cosmall right *R*-module contains a non-zero projective direct summand.

He also gave a characterization of semiperfect rings with *(*∗*)*[∗] *^r* as follows:

Theorem 1 ([\[11,](#page-7-0) Theorem 3.6]) *Let R be semiperfect. Then (*∗*)*[∗] *^r holds if and only if there exists a set of primitive idempotents* {*ei*} *and of integers* {*ni*} *such that:*

- (1) *eiR is injective,*
- (2) $e_i J^{t_i}$ *is projective for* $t_i \leq n_i$ *and* $e_i J^{n_i+1}$ *is singular, and*

(3) *Every indecomposable projective module is isomorphic to some* $e_i J^{t_i}$ *.*

In this case, every submodule $e_i B$ *in* $e_i R$ *either is contained in* $e_i J^{n_i+1}$ *or equal to some* $e_i J^{t_i}, t_i \leq n_i + 1$, where $J = J(R)$ *.*

The following classes of rings have been defined by Oshiro [\[16\]](#page-8-1): A ring *R* is called a *right Harada ring* if it is right artinian and satisfies the condition *(*∗*)r*. Dually, a ring *R* is called a *right co-Harada ring* if it satisfies the condition *(*∗*)*[∗] *^r* and the ACC on right annihilators.

Huynh in [\[13\]](#page-7-3) studied right co-Harada rings under the name right Σ-CS rings. Many results on onesided Harada (or co-Harada) rings are given in [\[1,](#page-7-4) [10\]](#page-7-5) and [\[16\]](#page-8-1).

In 1993, Vanaja ([\[21\]](#page-8-2)) has generalized *(*∗*)*[∗] *^r* by considering the following condition

(∗*)*[∗] ¹*,r* Every finitely generated non-cosmall right *R*-module contains a non-zero projective direct summand.

It is known ([\[21,](#page-8-2) Theorem 1.10]) that the following are equivalent for a semiperfect ring *R*: (1) *R* satisfies (*)^{*}₁,*r*; (2) *R*^(*n*) is an extending module; and (3) Direct sum of any two indecomposable projective right *R*-modules is extending.

Lemma 3 ([\[9,](#page-7-2) Theorem 20.15]) *Every indecomposable injective and projective right Rmodule M* is isomorphic to a summand of R, that is, there exists an idempotent $e \in R$ *such that* $M \cong eR$ *.*

Lemma 4 ([\[11,](#page-7-0) [19\]](#page-8-0)) *The following statements holds for non-cosmall modules:*

- (1) An *R*-module *M* is non-cosmall if and only if $M \neq Z(M)$;
- (2) *If an R-module M contains a non-zero projective submodule, then it is non-cosmall.*

From the definition of non-cosmall modules and Lemma 3 we have

Lemma 5 *The following statements are equivalent for a ring R and a cardinal α:*

- (1) $R_R^{(\alpha)} = \bigoplus_I R_R$ *is an extending module, where* card $(I) = \alpha$ *.*
- (2) *Every α-generated right R-module M is a direct sum of a projective module and a singular module.*

The proof of the following lemma is straightforward and will be omitted.

Lemma 6 ([\[11\]](#page-7-0)) *Let R be a ring.*

- (1) *If* $\{X_i\}_{i=1}^n$ *is a set of small submodules of a right R-module X, then* $\sum_{i=1}^n X_i$ *is a small module,*
- (2) *If R is right perfect, then a right R-module M is nonsmall if and only if there exists an element* $m \in M$ *such that module cyclic* mR *is nonsmall.*

Lemma 7 ([\[17\]](#page-8-3)) *A ring R is a right (resp. left) Harada ring if and only if R is left (resp. right) co-Hadada.*

The following lemma is a special case of [\[2,](#page-7-6) Lemma 11].

Lemma 8 *Let U be a uniform module, and suppose that U is not isomorphic to any of its proper submodules. Then* End*(U) is a local ring.*

Proof Let $\alpha \in \text{End}(U)$. Then Ker $(\alpha) \cap \text{Ker}(1-\alpha) = 0$ in *U*. Since *U* is uniform, it follows that either Ker(α) = 0 or Ker($1 - \alpha$) = 0, respectively either α or ($1 - \alpha$) is monomorphic. Since *U* is not isomorphic to any of its proper submodules, one of two homomorphisms is isomorphic, as required. \Box

2 Co-Harada Rings

We start the section with a lemma which will be useful in the sequel.

Lemma 9 *Let M be a uniform cyclic module such that E(M)/M has ACC on cyclic submodules. Then M is not isomorphic to any of its proper submodules, and hence* End*(M) is a local ring.*

Proof Let $E = E(M)$ and suppose that there is a proper submodule U of M and an isomorphism $\varphi : U \to M$. Consider the commutative diagram

where $\bar{\varphi}$ is an extension of φ . Let $\bar{\varphi}(eR) = U_1$ and $\bar{\varphi}(U_1) = U_2$, and $\bar{\varphi}(U_n) = U_{n+1}$ for any integer number *n*. Since *E* is uniform and φ is an isomorphism, it follows that $\bar{\varphi}$ is a monomorphism. So that, we get an infinite strictly ascending chain of cyclic modules $M \le U_1 \le U_2 \le \cdots \le U_n \le \cdots$ in *E*, which is a contradiction, since E/M has ACC for cyclic submodules. Hence, *M* is not isomorphic to any of its proper submodules. Moreover, by Lemma 8, End*(M)* is local. \Box

The following theorem provides characterizations of semiperfect rings with *(*∗*)*[∗] *^r* . This generalizes [\[15,](#page-7-7) Theorem 2.3] and [\[20,](#page-8-4) Theorem 3.8] (without assuming $E(eR)$ is a z-serial module for every $e \in \text{Pi}(R)$).

Theorem 2 *Let R be a ring. The following statements are equivalent:*

- (1) *R* is a semiperfect ring with $(*)^*_r$.
- (2) *R is a ring with enough idempotents, eR is a waist in E(eR) and E(eR)/eR has ACC on cyclic submodules for every* $e \in \text{Pi}(R)$ *.*
- (3) *R is a ring with enough idempotents, eR is a waist in* $E(eR)$ *and* $eR/Z(eR)$ *has finite length for any* $e \in \text{Pi}(R)$ *.*

Proof $(1) \Rightarrow (2)$. It is obvious, see Theorem 1.

*(*2*)* ⇒ *(*1*)*. Assume *(*2*)*. Then $R_R = e_1 R ⊕ e_2 R ⊕ \cdots ⊕ e_n R$, where $e_i ∈ \text{Pi}(R)$ and $e_i R$ is indecomposable. Let $e = e_i$. Since eR is a waist in $E(eR)$, it follows that eR is uniform, so that $\text{End}(eR)$ is local by Lemma 9. Hence R is a semiperfect ring. By [\[20,](#page-8-4) Theorem 2.4], *R* satisfies condition $(*)^{*}_{1,r}$. Moreover, every *eR* is not isomorphic to any of its proper submodules, by Lemma 9. So that *R* satisfies $(*)_r^*$, by [\[20,](#page-8-4) Lemma 3.1].

 $(3) \Rightarrow (1)$ Assume (3). Then $R_R = e_1 R \oplus e_2 R \oplus \cdots \oplus e_n R$, where $e_i \in \text{Pi}(R)$ and e_iR is indecomposable. Let $e = e_i$. It follows that *eR* is uniform, since *eR* is a waist in $E(eR)$. If $Z(eR) = 0$ then End (eR) is local, since eR has finite length. If eR is injective then End (eR) is local, since eR is uniform. We consider the case $W = Z(eR) \neq 0$ and $E = E(eR) \neq eR$. By (3), length $(eR/W) = n > 0$. Using the same argument as in the proof of Lemma 9, we get an infinite strictly ascending chain of cyclic modules $eR \leq U_1 \leq$ *U*₂ ≤ ··· ≤ *U*_n ≤ ··· in *E*, where *eR* $\cong U_i$ for $i = 1, 2, \ldots$ Since $Z(E) \neq E$ and *eR* is a waist in *E*, $Z(U_i) \neq eR$, so that $Z(U_i) = Z(eR) = W$. Then eR/W is not a module with finite length, a contradiction. It follows that *eR* is not isomorphic to any of its proper submodules. Hence $\text{End}(eR)$ is local, by Lemma 8. Therefore R is a semiperfect ring. Since *eR* is a waist in *E(eR)* for every $e \in \text{Pi}(R)$, *R* satisfies $(*)^{*}_{1,r}$, by [\[20,](#page-8-4) Theorem 2.4]. Since every *eR* is not isomorphic to any of its proper submodules, it follows *R* satisfies $(*)_r^*$, by [\[20,](#page-8-4) Lemma 3.1]. П

A well-known result of C. Faith [\[8\]](#page-7-8) asserts that a right self-injective ring is QF if and only if *R* has ACC (or DCC) on right annihilators. Next we provide some similar characterizations of right co-Harada rings.

Theorem 3 *Let R be a ring satisfying the ACC (or DCC) on right annihilators. Then the following statements are equivalent:*

- (1) *R is a right co-Harada ring;*
- (2) $R_R^{(2)}$ *is an extending module and* $E(R_R)/R$ *has ACC on cyclic submodules.*
- (3) *For every* $e \in \text{Pi}(R)$ *, eR is a waist in* $E(eR)$ *and* $E(eR)/eR$ *has ACC on cyclic submodules.*
- (4) *For every* $e \in \text{Pi}(R)$ *, eR is a waist in* $E(eR)$ *,* $E(eR)$ *is a projective module and eR/Z(eR) has ACC on cyclic submodules.*

Proof $(1) \Rightarrow (2)$. It is obvious.

 $(2) \Rightarrow (3)$. Assume (2). It is easy to see that *R* is a direct sum of indecomposable right ideals if *R* satisfies the ACC (or DCC) on right annihilators. Since $R_R^{(2)}$ is extending, so is *RR*. Hence *R* is a direct sum of uniform right ideals. Let $R_R = e_1 R \oplus e_2 R \oplus \cdots \oplus e_n R$, where $\{e_i\}_{i=1}^n$ is a set of primitive idempotents of *R* and each e_iR is uniform. Let $e = e_i$ and $E = E(e_i, R)$. It is easy to see that E/eR has ACC for cyclic submodules, since it is isomorphic to a direct summand of $E(R_R)/R$. If eR is injective then $End(eR)$ is local since *eR* is uniform. Assume *eR* is not injective. It follows from Lemma 9 that $\text{End}(eR)$ is local. So that *R* is semiperfect. Since R_R^2 is extending, it follows from [\[20,](#page-8-4) Lemma 12.8] that *eR* is a waist in $E(eR)$. Therefore (3) holds.

 $(3) \Rightarrow (1)$. Assume (3). If *R* has the ACC (or DCC) on right annihilators then *R* is a ring with enough idempotents. It follows from (3) and Theorem 2 that *R* is a semiperfect ring with $(*)^*$. Hence *R* is a right co-Harada ring, by [\[6,](#page-7-9) Corollary 3.8].

 (1) ⇒ *(*4*)*. It is clear, since *R* is an artinian ring, and *R* satisfies $(*)_r^*$.

 (4) ⇒ (3) . Let *f* ∈ Pi(*R*) be any element. Using the argument as above, it follows that every $E(f R)$ is uniform and projective. So that $E(f R) \cong e R$ for some $e \in \text{Pi}(R)$, by Lemma 3. Since $f \in R$ is a waist in eR , then $Z(eR) \leq fR$. It implies that $Z(eR) = Z(fR)$. So that $eR/Z(fR)$ has ACC on cyclic submodules, by (4). It follows that $E(fR)/fR$ has ACC on cyclic submodules.

The proof of the theorem is complete.

The main result in [\[5\]](#page-7-10) is a special case of the following result.

Proposition 1 *Let R be a ring satisfying the ACC (or DCC) on right annihilators. Then the following statements are equivalent:*

- (1) *R is a right co-Harada ring.*
- (2) *R is a right perfect ring and* $R_R^{(2)}$ *is an extending module.*
- (3) *R is a left perfect ring and* $R_R^{(2)}$ *is an extending module.*

Proof $(1) \Rightarrow (2)$, $(1) \Rightarrow (3)$ are obvious.

 $(2) \Rightarrow (1)$. Assume *R* is a right perfect ring. By [\[14\]](#page-7-11), every right *R*-module has ACC on cyclic modules. By $(2) \Rightarrow (1)$ in Theorem 3, it follows (1) .

 (3) ⇒ (1). Assume *R* is a left perfect ring. Let *e* ∈ Pi(*R*). It easy to see that *eR* is a waist in $E(eR)$ and $eR/Z(eR)$ has finite length. It follows that *R* satisfies $(*)_r^*$, by $(3) \Rightarrow (1)$ in Theorem 3, it follows (1).

Corollary 1 *Let R be a right nonsingular ring. Then the following statements are equivalent:*

- (1) *R is a right co-Harada ring.*
- (2) *R is a right perfect ring and* $R_R^{(2)}$ *is an extending module.*
- (3) *R is a left perfect ring and* $R_R^{(2)}$ *is an extending module.*
- (4) *R is Morita equivalent to a finite direct sum of upper triangular matrix rings over division rings.*

Proof It is shown by [\[3,](#page-7-12) Lemma 1.14] that if *R* is a ring with finite right Goldie then *R* has ACC and DCC on right annihilators. From Proposition 1 it easy to see the equivalence of *(*1*), (*2*), (*3*)*. It follows from [\[16\]](#page-8-1) that *(*1*)* ⇔ *(*4*)*. \Box

It is also shown by Oshiro [\[16\]](#page-8-1) that a ring *R* is a left Harada ring if and only if it is a right co-Harada ring, however a right Harada ring need not to be right co-Harada (see also Oshiro [\[16\]](#page-8-1)).

Example 1 (Oshiro, [\[16\]](#page-8-1)) There exists a right co-Harada ring which is not a right Harada ring. Consider the local QF ring $Q = K[x, y]/(x^2, y^2)$, in which *K* is a field.

Put

$$
J = J(Q), \quad S = \text{Soc}(Q_Q) \quad (= \text{Soc}(QQ)),
$$

$$
\bar{Q} = Q/S = \{\bar{a} \mid \bar{a} = a + S \forall a \in Q\}.
$$

Defined *V*, *W* by

$$
V = \left[\begin{array}{cc} Q & Q \\ J & Q \end{array} \right], \quad W = \left[\begin{array}{cc} Q & \bar{Q} \\ J & \bar{Q} \end{array} \right].
$$

Then:

(a) *V* is a Harada and co-Harada ring (right and left).

 $\textcircled{2}$ Springer

 \Box

(b) *W* is right co-Harada and left Harada. However, *W* is neither left co-Harada nor right Harada.

Finally we provide some characterizations of Harada rings (co-Harada rings) via perfect rings.

Theorem 4 *Let R be a ring. Then the following statements are equivalent:*

- (1) *R is a Harada ring;*
- (2) *R is a co-Harada ring;*
- (3) *R is a perfect ring and* $R_R^{(2)}$ *and* $_R R^{(2)}$ *are extending modules;*
- (4) *R is a perfect ring and every 2-generated right (or left) module M has a decomposition* $M = P \oplus S_1 \oplus S_2$, where P is projective, S_1 is injective singular, S_2 is small singular;
- (5) *R is a perfect ring, eR is a waist in E(eR) and Re is a waist in E(Re), for any* $e \in \text{Pi}(R)$;
- (6) *R* is a perfect ring and $M_2(R)$ is a CS ring.

Proof (1) \Leftrightarrow (2). It follows from a result due to Oshiro [\[17\]](#page-8-3) (see, Lemma 7). We shall prove that $(2) \Leftrightarrow (4)$, $(2) \Rightarrow (5) \Rightarrow (3) \Rightarrow (2)$ and $(2) \Leftrightarrow (6)$.

 $(2) \Rightarrow (4)$. Assume *R* is a co-Harada ring. Let *M* be a 2-generated right *R*-module. Since *R* is a right co-Harada ring, *M* has a decomposition $M = P \oplus S$, where *P* is projective and *S* is singular. Since *R* is a left co-H ring, it follows that *R* is a right Harada ring, by Lemma 7. Then, *S* has a decomposition $S = S_1 \oplus S_2$, where S_1 is injective and S_2 is small. Hence $M = P \oplus S_1 \oplus S_2$, where P is projective, S_1 is injective and singular and S_2 is small and singular.

 $(4) \Rightarrow (2)$. Assume (4). Let *M* be any 2-generated right *R*-module. Then, *M* has a decomposition $M = P \oplus S_1 \oplus S_2$, where *P* is projective, *S*₁ is injective and singular and *S*₂ is small and singular. It means that $M = P \oplus (S_1 \oplus S_2)$, where *P* is projective and $S_1 \oplus S_2$ is singular. This shows that every 2-generated right *R*-module is a direct sum of a projective module and a singular module. By Lemma 5, it implies that $R_R^{(2)}$ is an extending module. Since *R* is perfect, it follows from [\[20,](#page-8-4) Proposition 3.4] that *R* satisfies the condition $(*)^*_{1,r}$. It is easy to see from Theorem 1 that every indecomposable projective right *R*-module is either injective or small. Let $P = P_1 \oplus P_2 \oplus \cdots \oplus P_k$. Let $I = \{1, 2, \ldots, k\}$. Let $I_1 = \{i \in I \mid P_i \text{ is injective}\}\$ and $I_2 = \{j \in I \mid P_j \text{ is small}\}\$. It is easy to see that $I = I_1 \cup I_2$ and $I_1 \cap I_2 = \emptyset$. Whence, we have

$$
M = P \oplus (S_1 \oplus S_2) = (\oplus_{i \in I_1} P_i) \oplus (\oplus_{j \in I_2} P_j) \oplus (S_1 \oplus S_2)
$$

= (($\oplus_{i \in I_1} P_i$) \oplus S₁) \oplus (($\oplus_{j \in I_2} P_j$) \oplus S₂),

where $(\bigoplus_{i \in I_1} P_i \oplus S_1)$ is injective, and $(\bigoplus_{i \in I_2} P_i \oplus S_2)$ is small by Lemma 6. Hence every 2-generated (and hence every cyclic) right *R*-module is a direct sum of an injective module and a small module. Next, we shall show that *R* satisfies the condition $(*)_r$. Let *X* be a nonsmall right *R*-module. Since *R* is perfect, it follows from Lemma 6 that *X* contains a cyclic nonsmall module *N*. Then, $N = N_1 + N_2$, where N_1 is a nonzero injective module and *N*² is a small module. So, *X* contains nonzero injective module *N*1. Therefore, *R* satisfies the condition $(*)_r$. Since *R* is a perfect ring and *R* satisfies the condition $(*)_r$, *R* is right artinian by [\[12\]](#page-7-13). Since *R* is right artinian and *R* satisfies the condition $(*)_r$, *R* is a right Harada ring and so *R* is a left co-Harada ring. It remains to show that *R* is a right co-Harada

 \Box

ring. However this is clear since *R* is right artinian and *R* satisfies the condition $(*)^{*}_{1,r}$. Hence *R* is a co-Harada ring.

 (2) ⇒ (5). Suppose that *R* is a co-Harada ring. Then *R* is an artinian ring (see [\[17,](#page-8-3) [18\]](#page-8-5)). It follows from [\[20,](#page-8-4) Theorem 3.11] that eR is a waist in $E(eR)$ and Re is a waist in $E(Re)$.

 (5) ⇒ (3). Assume (5). Since *R* is perfect and *eR* (resp. *Re*) is a waist in *E*(*Re*) (resp. $E(Re)$, it follows that $R_R^{(2)}$ (resp. $_RR^{(2)}$) is an extending module, by [\[20,](#page-8-4) Theorem 2.4]. We have (3) .

 $(3) \Rightarrow (2)$. Assume (3). If *R* is a left (resp. right) perfect ring and $R_R^{(2)}$ (resp. *RR*⁽²⁾) is an extending module, the condition $(*)^*$ (resp. $(*)^*$) holds, by [\[20,](#page-8-4) Proposition 3.4]. Furthermore, *R* is a perfect (two-sided) QF-3⁺ ring, by [\[5\]](#page-7-10). Since R_R (resp. $_R R$) is isomorphic to a direct sum of modules of the form e_iR (resp. Re_i), we obtain a faithful injective right (resp. left) ideal by letting *eR* (resp. *Re*) be the sum of one of each isomorphism type of these e_iR (resp. Re_i). It implies that *R* is a right and left QF-3 ring. So, *R* is a semiprimary QF-3 ring. Hence *R* satisfies the ACC on right (and left) annihilators, by [\[4,](#page-7-14) Theorem 1.3]. Therefore *R* is a co-Harada ring.

(2) ⇒ *(6)*. Since *R* is right and left co-Harada, then *R* is two-sided artinian and $R_R^{(2)}$, $RR^{(2)}$ are extending modules. By [\[7,](#page-7-1) Lemma 12.8], the ring $M_2(R)$ is a right and left CS ring.

 (6) ⇒ (2). Since *M*₂(*R*) is a right and left CS ring, then *R*⁽²⁾_{*R*} and *RR*⁽²⁾ are extending modules, by [\[7,](#page-7-1) Lemma 12.8]. Since R is a perfect ring, we have (3); hence (2) holds.

The proof of the theorem is complete.

Acknowledgements This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.04-2018.02.

The authors would like to thank the referees for their useful suggestions.

References

- 1. Baba, Y., Oshiro, K.: Classical Artinian Rings and Related Topics. World Scientific, Singapore (2009)
- 2. Camillo, V., Nicholson, W.K., Yousif, M.F.: Ikeda–nakayama rings. J. Algebra **226**, 1001–1010 (2000)
- 3. Chatters, A.W., Hajarnavis, C.R.: Rings with Chain Conditions, vol. 44. Pitman, London (1980)
- 4. Colby, R.R., Rutter, E.A.: Generalizations of QF-3 algebras. Trans. Amer. Math. Soc. **153**, 371–386 (1971)
- 5. Dan, P.: Right perfect rings with the extending property on finitely generated free module. Osaka J. Math. **26**, 265–273 (1989)
- 6. Dung, N.V.: On indecomposable decompositions of CS-modules II. J. Pure Appl. Algebra **119**, 139–153 (1997)
- 7. Dung, N.V., Huynh, D.V., Smith, P.F., Wisbauer, R.: Extending Modules. Pitman Research Notes in Mathematics Series, vol. 313. Longman Scientific & Technical, Essex (1994)
- 8. Faith, C.: Rings with ascending condition on annihilators. Nagoya Math. J. **27**, 179–191 (1966)
- 9. Faith, C.: Algebra II Ring Theory. Grundlehren Der Mathematischen Wissenschaften, vol. 191. Springer, Berlin (1976)
- 10. Faith, C., Huynh, D.V.: When self-injective rings are QF: a report on a problem. J. Algebra Appl. **1**, 75–105 (2002)
- 11. Harada, M.: Non-small modules and non-cosmall modules. In: Proceedings of 1978 Antwerp Conference, Mercel-Dekker, pp. 669–689 (1979)
- 12. Harada, M.: On one-sided QF-2 rings I. Osaka J. Math. **17**, 421–431 (1980)
- 13. Huynh, D.V.: A right countably sigma-CS ring with ACC or DCC on projective principal right ideals is left Artinian and QF-3. Trans. Amer. Math. Soc. **347**, 3131–3139 (1995)
- 14. Jonah, D.: Rings with minimum condition for principal right ideals have the maximum condition for principal left ideals. Math. Z **113**, 106–112 (1970)
- 15. Nonomura, K.: On Nakayama rings. Commun. Algebra **32**, 589–598 (2004)
- 16. Oshiro, K.: Lifting modules, extending modules and their applications to QF-rings. Hokkaido Math. J. **13**, 310–338 (1984)
- 17. Oshiro, K.: On Harada rings I. Math. J. Okayama Univ. **31**, 161–178 (1989)
- 18. Oshiro, K.: On Harada rings III. Math. J. Okayama Univ. **32**, 111–118 (1990)
- 19. Rayar, M.: Small and Cosmall Modules. Ph.D Dissertation, Indiana University (1971)
- 20. Thuyet, L.V., Dan, P., Dung, B.D.: On a class of semiperfect rings. J. Algebra Appl. **12**, 1350009 (2013)
- 21. Vanaja, N.: Characterization of rings using extending and lifting modules. In: Jain, S.K., Rizvi, S.T. (eds.) Ring Theory, pp. 329–342. World Scientific, River Edge (1993)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.