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Abstract
Let A be a Banach algebra and X be a (Banach) A-bimodule. A linear map T : A −→ X

is called an n-Jordan multiplier if T (an) = aT (an−1) for all a ∈ A. In this paper, among
other things, we show that under special hypotheses every (n + 1)-Jordan multiplier is an
n-Jordan multiplier and vice versa.
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1 Introduction and Preliminaries

Let A be a Banach algebra and X be a (Banach) A-bimodule. A map T : A −→ X is called
left multiplier (right multiplier) if for all a, b ∈ A,

T (ab) = T (a)b (T (ab) = aT (b)),

and T is called a multiplier if it is both left and right multiplier. Also, T is called left Jordan
multiplier (right Jordan multiplier) if for all a ∈ A,

T (a2) = T (a)a (T (a2) = aT (a)),

and T is called a Jordan multiplier if T is a left and a right Jordan multiplier.
The term multiplier was introduced by S. Helgason in [4]. Even nowadays some authors

use the term centralizer instead of multiplier. This terminology was introduced by J.G. Wen-
del in [9]. The general theory of (centralizers) multipliers on Banach algebras has been
developed by B.E. Johnson [5]. He proved that each multiplier T : A −→ A on without
order Banach algebra A is linear and continuous.

Recall that the Banach algebra A is called without order, if for all x ∈ A, xA = {0}
(Ax = {0}) implies x = 0.

Clearly, every left (right) multiplier is a left (right) Jordan multiplier, but the converse is
not true in general, as was demonstrated in [3, Example 2.6]. Zalar [10] proved that every
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right (left) Jordan multiplier on a 2-torsion free semiprime ring is a right (left) multiplier.
Another approach to the same result can be found in [8]. One may refer to the monograph
[7] for the additional fundamental results in the theory of multipliers.

There exists another related concept, called (two-sided) multiplier. A map T : A −→ X

is said to be multiplier if for every a, b ∈ A,

aT (b) = T (a)b. (1)

If T is both left and right multiplier, then T is a multiplier, according to (1), but the converse
is, in general, false. The following example obtained by the author in [11].

Example 1.1 Let

A =
⎧
⎨

⎩

⎡

⎣
0 a b

0 0 c

0 0 0

⎤

⎦ : a, b, c ∈ R

⎫
⎬

⎭

and define T : A −→ A by

T

⎛

⎝

⎡

⎣
0 a b

0 0 c

0 0 0

⎤

⎦

⎞

⎠ =
⎡

⎣
0 a 0
0 0 c

0 0 0

⎤

⎦ .

Then, for all x, y ∈ A, T (x)y = xT (y), hence T is a multiplier as in (1), but it is not left
(right) multiplier, because T (x)y �= T (xy) = 0, in general.

We say that w ∈ A is a left (right) separating point of A-bimodule X if the condition
wx = 0 (xw = 0) for x ∈ X implies that x = 0.

If w ∈ A is a left (right) separating point of A-bimodule X and T : A −→ X satisfies in
(1), then T is a left (right) multiplier. Indeed, let aT (b) = T (a)b, then for all x ∈ A,

x
(
T (ab)

) = T (x)ab = xT (a)b = x
(
T (a)b

)
.

In particular, w(T (ab)) = w(T (a)b). Since w is a left separating point of X, we get
T (ab) = T (a)b, for all a, b ∈ A, which means that T is a left multiplier. We can prove that
T is a right multiplier in a similar way.

Let A be a unital Banach algebra with unit eA. An A-bimodule X is called unitary if
eAx = xeA = x for all x ∈ X. For example, A∗ is a unitary A-bimodule with the following
actions.

a · f (x) := f (xa), f · a(x) := f (ax), a, x ∈ A, f ∈ A∗.

Definition 1.2 Let A be a Banach algebra, X be a left A-module and let T : A −→ X be a
linear map. Then T is called right n-multiplier if

T (a1a2 . . . an) = a1T (a2 . . . an),

for all a1, a2, . . . , an ∈ A. Moreover, T is called right n-Jordan multiplier if for all a ∈ A,

T (an) = aT (an−1).

The left n-multiplier (left n-Jordan multiplier) and n-multiplier (n-Jordan multiplier) can
be defined analogously.

Note: Since all results which are true for right multipliers have obvious analogue state-
ments for left multipliers, we will focus in the sequel just on the right versions. We will
also drop the prefix right for simplicity.
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The concept of n-multiplier was introduced and studied by Laali and Fozouni [6], where
some interesting results related to these maps were obtained. The notion of n-Jordan multi-
plier was introduced in [2]. Following [6] and [2], let Muln(A,X) and JMuln(A,X) be the
set of all n-multipliers and n-Jordan multipliers from a Banach algebra A into its module X.

It is clear that every n-multiplier is an (n + 1)-multiplier, while on the other hand it was
shown in [6, Theorem 2], that in the general case Muln(A,X) � Muln+1(A,X). Moreover,
by [6, Theorem 3] if A is an essential Banach algebra, then Muln(A,X) = Muln+1(A,X).

Obviously,
Muln(A,X) ⊆ JMuln(A,X),

and this inclusion may be strict by [2, Proposition 6]. See also [3, Example 2.6] for n = 2.
Next we establish another example for the case n = 3.

Example 1.3 Let

A =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

0 a x c

0 0 b y

0 0 0 a

0 0 0 0

⎤

⎥
⎥
⎦ : a, b, c, x, y ∈ R

⎫
⎪⎪⎬

⎪⎪⎭

and define T : A −→ A via

T

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

0 a x c

0 0 b y

0 0 0 a

0 0 0 0

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠ =

⎡

⎢
⎢
⎣

0 a y c

0 0 b x

0 0 0 a

0 0 0 0

⎤

⎥
⎥
⎦ .

Then, for all u ∈ A, T (u2) = u2 and T (u3) = u3. Therefore T is a 3-Jordan multiplier, but
T is not 3-multiplier.

Note that the inclusion JMuln+1(A,X) ⊆ JMuln(A,X) is not true, in general. The next
example illustrates this fact.

Example 1.4 Let

A =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

0 x a b

0 0 y c

0 0 0 z

0 0 0 0

⎤

⎥
⎥
⎦ : x, y, z, a, b, c ∈ R

⎫
⎪⎪⎬

⎪⎪⎭

and define T : A −→ A via

T

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

0 x a b

0 0 y c

0 0 0 z

0 0 0 0

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠ =

⎡

⎢
⎢
⎣

0 z c 0
0 0 y a

0 0 0 x

0 0 0 0

⎤

⎥
⎥
⎦ .

Then, T (un) = uT (un−1) for all u ∈ A and for n ≥ 4. So, T is an n-Jordan multiplier, but
T (u3) �= uT (u2) for all u ∈ A, where x, y, z �= 0. Hence, T is not 3-Jordan multiplier.

Each Jordan multiplier is an n-Jordan multiplier (see Lemma 2.1 below), but an ana-
logues of this fact need not hold for n ≥ 3. That is, in general every n-Jordan multiplier is
not m-Jordan multiplier, where m > n ≥ 3.

Also by Example 1.4, some (n + 1)-Jordan multipliers fail to be n-Jordan multipliers.
Therefore neither (n + 1)-Jordan multipliers are necessarily n-Jordan multipliers nor n-
Jordan multipliers are automatically (n+1)-Jordan multipliers. Now the following questions
can be raised.
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Under which conditions for a Banach algebra A is any (n + 1)-Jordan multiplier T :
A −→ X automatically an n-Jordan multiplier and vice versa?

Moreover, when is any n-Jordan multiplier automatically an n-multiplier?
In this paper, we investigate this question and prove that under suitable conditions

concepts of (n + 1)-Jordan multiplier, n-Jordan multiplier and Jordan multiplier are
equivalent.

2 n-Multiplier and n-JordanMultiplier

We commence with the following lemma.

Lemma 2.1 Let A be a Banach algebra, X be a left A-module and let T : A −→ X be a
linear and Jordan multiplier. Then T is an n-Jordan multiplier, for n ≥ 2.

Proof Assume that T is a Jordan multiplier, then

T (a2) = aT (a), a ∈ A. (2)

Replacing a by a + b we get

T (ab + ba) = aT (b) + bT (a), (3)

for all a, b ∈ A. Interchanging b by a2 in (3), we obtain

2T (a3) = aT (a2) + a2T (a). (4)

It follows from (2) and (4) that T (a3) = aT (a2). Hence T is a 3-Jordan multiplier.
Now let the result has been established for all 3 ≤ k ≤ n. Hence

T (ak) = aT (ak−1), (5)

for all 3 ≤ k ≤ n. Replacing b by ak in (3), we obtain

2T (ak+1) = aT (ak) + akT (a). (6)

From (5), we get

akT (a) = ak−1aT (a) = ak−1T (a2) = ak−2aT (a2) = ak−2T (a3) = · · · = aT (ak). (7)

Consequently, by (6) and (7), T is an (k + 1)-Jordan multiplier and the result follows.

Example 2.2 Let A and T be as in Example 1.1 or Example 1.3. Then T (u3) = uT (u2)

for all u ∈ A, and so T is a 3-Jordan multiplier, but T is not a Jordan multiplier. Thus, the
converse of above lemma is false in general.

Theorem 2.3 Let A be a unital Banach algebra, and X be a unitary Banach left A-module.
Suppose that T : A −→ X is a continuous linear map. If T (ab) = aT (b) for all a, b ∈ A

with ab = eA, then T is an n-Jordan multiplier.
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Proof Let a ∈ A be arbitrary. For λ ∈ C, with |λ| < 1/‖a‖, eA − λa is invertible and
(eA − λa)−1 = ∑∞

n=0 λnan. Then

T (eA) = T ((eA − λa)(eA − λa)−1eA)

= (eA − λa)T ((eA − λa)−1eA)

= (eA − λa)T

( ∞∑

n=0

λnaneA

)

= eAT (eA) + eAT

( ∞∑

n=1

λnaneA

)

− λaT

( ∞∑

n=0

λnaneA

)

= T (eA) +
∞∑

n=1

λnT (aneA) − λa

∞∑

n=0

λnT (aneA).

Hence,
∞∑

n=1

λn[T (an) − aT (an−1)] = 0,

for all λ ∈ C with |λ| < 1/‖a‖. Consequently, T (an) = aT (an−1) for all n ∈ N. This
finishes the proof.

As a consequence of Theorem 2.3, we have the next result.

Corollary 2.4 Let A be a unital Banach algebra, X be a unitary Banach left A-module and
let T : A −→ X be a continuous linear map. If a ∈ Inv(A) and T (aa−1) = aT (a−1),
then T is an n-Jordan multiplier.

The following example shows that the condition T (ab) = aT (b) for all a, b ∈ A with
ab = eA in Theorem 2.3 is essential.

Example 2.5 Let

A =
{[

a 0
0 b

]

: a, b ∈ R

}

.

Then A is a unital Banach algebra and it is a unitary Banach A-bimodule. Define a
continuous linear map T : A −→ A by

T

([
a 0
0 b

])

=
[−b 0

0 −a

]

.

Set

x =
[
2 0
0 1

]

, y =
[ 1

2 0
0 1

]

.

Then xy = eA, but T (xy) �= xT (y). Therefore, T is not an n-Jordan multiplier, because the
condition T (xy) = xT (y), for all x, y ∈ A with xy = eA, does not hold.

Theorem 2.6 Let A be a unital Banach algebra, and X be a unitary Banach left A-module.
Let T : A −→ X be a continuous linear map. If for an idempotent p ∈ A, T (ab) = aT (b)

for all a, b ∈ A with ab = p, then T is an n-Jordan multiplier on pAp.

91Characterization of -Jordan Multipliersn



Proof It is easy to see that pAp is a unital closed subalgebra of A with unit p. Let a ∈ A

be arbitrary. For λ ∈ C, with |λ| < 1/‖pap‖, the elements p and (p − λpap) are invertible
and (p − λpap)−1 = ∑∞

n=0 λn(pap)n. Then

T (p) = T ((p − λpap)(p − λpap)−1p)

= (p − λpap)T ((p − λpap)−1p)

= (p − λpap)T

( ∞∑

n=0

λn(pap)np

)

= pT (p) + pT

( ∞∑

n=1

λn(pap)np

)

− λ(pap)T

( ∞∑

n=0

λn(pap)np

)

= T (p) + p

∞∑

n=1

λnT ((pap)n) − λ(pap)

∞∑

n=0

λnT ((pap)n).

Hence,
∞∑

n=1

λn[pT ((pap)n) − (pap)T ((pap)n−1)] = 0,

for all λ ∈ C with |λ| < 1/‖pap‖. Therefore
pT ((pap)n) = (pap)T ((pap)n−1). (8)

Multiplying p−1 from the right in (8) and using p2 = p, we arrive at

T ((pap)n) = (pap)T ((pap)n−1).

Consequently, T is an n-Jordan multiplier on pAp.

Theorem 2.7 Let n ∈ {2, 3} be fixed, A be a unital Banach algebra and X be a unitary left
A-module. Then every (n + 1)-Jordan multiplier T : A −→ X is an n-Jordan multiplier.

Proof Let n = 2 and T be a 3-Jordan multiplier. Then T (a3) = aT (a2) for all a ∈ A.
Replacing a by a + eA we get

3T (a2 + a) = aT (eA) + 2aT (a) + eAT (a2) + 2eAT (a). (9)

Interchanging a by −a in (9), we obtain

3T (a2 − a) = −aT (eA) + 2aT (a) + eAT (a2) − 2eAT (a), (10)

for all a ∈ A. It follows from (9) and (10) that

3T (a2) = 2aT (a) + eAT (a2).

Since X is unitary, we get T (a2) = aT (a). Thus, T is a Jordan multiplier.
Now let n = 3 and T (a4) = aT (a3) for all a ∈ A. Replacing a by a + eA and since X

is unitary, we arrive at

3T (a3) + 3T (a2) + T (a) = 3aT (a2) + 3aT (a) + aT (eA). (11)

Switching a by −a in (11) and plus the result by (11), we obtain

T (a2) = aT (a). (12)

By (11) and (12),

3T (a3) + T (a) = 3aT (a2) + aT (eA), a ∈ A. (13)
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Replacing a by a + eA in (13) and simplify the result to get

9T (a2) + 9T (a) = 6aT (a) + 3T (a2) + 6T (a) + 3aT (eA). (14)

From (12) and (14), we deduce that

T (a) = aT (eA), a ∈ A. (15)

It follows from (13) and (15) that T (a3) = aT (a2) and so T is a 3-Jordan multiplier.

Next by using the Vandermonde matrix, we show that Theorem 2.7 is also valid for all
n ∈ N.

Theorem 2.8 Let A be a unital Banach algebra, X be a unitary Banach left A-module.
Then every (n + 1)-Jordan multiplier T : A −→ X is an n-Jordan multiplier.

Proof We firstly have

T ((a + keA)n+1) = (a + keA)T (a + keA)n, (16)

for all a ∈ A, where k is an integer with 1 ≤ k ≤ n. It follows from the equality (16) and
assumption that

n∑

i=1

kn+1−i

(
n+1
i

)

T (ai) =
n∑

i=1

kn+1−i

(
n

n + 1 − i

)

aT (ai−1) +
n∑

i=1

kn+1−i

(
n

i

)

T (ai),

(17)

for all 1 ≤ k ≤ n and a ∈ A where

(
n

i

)

= n!
i!(n−i)! . We can rewrite the equalities in (17) as

MXi(a) = MYi(a) + MZi(a), where

M =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 · · · 1
2n 2n−1 · · · 2
3n 3n−1 · · · 3
· · · · · · · · · · · ·
nn nn−1 · · · n

⎤

⎥
⎥
⎥
⎥
⎦

and

Xi(a) =
(

n+1
i

)

T (ai), Yi(a) =
(

n

n + 1 − i

)

aT (ai−1), Zi(a) =
(

n

i

)

T (ai).

It is shown in [1, Lemma 2.1] that the square matrix M is invertible. This implies that
Xi(a) = Yi(a) + Zi(a) for all 1 ≤ i ≤ n and all a ∈ A. In particular, Xn(a) = Yn(a) +
Zn(a). Therefore

(n + 1)T (an) = naT (an−1) + T (an).

Consequently, T (an) = aT (an−1) and hence T is an n-Jordan multiplier.

From Lemma 2.1 and Theorem 2.8 we get the following result.

Corollary 2.9 Let A be a unital Banach algebra and X be a unitary Banach left A-module.
Suppose that T : A −→ X is a linear map. Then the following conditions are equivalent.

(i) T (a) = aT (eA) for all a ∈ A.
(ii) T is a Jordan multiplier.
(iii) T is an n-Jordan multiplier.
(iv) T is an (n + 1)-Jordan multiplier.
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As a consequence of preceding corollary and Theorem 2.3, we get the following result.

Corollary 2.10 LetA be a unital Banach algebra andX be a unitary Banach leftA-module.
Suppose that T : A −→ X is a continuous linear map. If T (ab) = aT (b) for all a, b ∈ A

with ab = eA, then T is an n-multiplier.
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