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Abstract

Let A be a Banach algebra and X be a (Banach) A-bimodule. A linearmap 7 : A — X
is called an n-Jordan multiplier if T (a") = aT(@" 1 forall a € A. In this paper, among
other things, we show that under special hypotheses every (n + 1)-Jordan multiplier is an
n-Jordan multiplier and vice versa.
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1 Introduction and Preliminaries

Let A be a Banach algebra and X be a (Banach) A-bimodule. Amap T : A —> X is called
left multiplier (right multiplier) if for all a, b € A,

T(ab) =T (a)b (T (ab) = aT (b)),

and T is called a multiplier if it is both left and right multiplier. Also, T is called left Jordan
multiplier (right Jordan multiplier) if for alla € A,

T@) =T@a (T =aT(a)),

and T is called a Jordan multiplier if T is a left and a right Jordan multiplier.

The term multiplier was introduced by S. Helgason in [4]. Even nowadays some authors
use the term centralizer instead of multiplier. This terminology was introduced by J.G. Wen-
del in [9]. The general theory of (centralizers) multipliers on Banach algebras has been
developed by B.E. Johnson [5]. He proved that each multiplier 7 : A —> A on without
order Banach algebra A is linear and continuous.

Recall that the Banach algebra A is called without order, if for all x € A, xA = {0}
(Ax = {0}) implies x = 0.

Clearly, every left (right) multiplier is a left (right) Jordan multiplier, but the converse is
not true in general, as was demonstrated in [3, Example 2.6]. Zalar [10] proved that every
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right (left) Jordan multiplier on a 2-torsion free semiprime ring is a right (left) multiplier.
Another approach to the same result can be found in [8]. One may refer to the monograph
[7] for the additional fundamental results in the theory of multipliers.

There exists another related concept, called (two-sided) multiplier. Amap7 : A — X
is said to be multiplier if for every a, b € A,

aT (b) = T (a)b. (D
If T is both left and right multiplier, then T is a multiplier, according to (1), but the converse

is, in general, false. The following example obtained by the author in [11].

Example 1.1 Let

Oab
A= 00c|:a,b,ceR
000
and define 7 : A —> A by
[0 a b 0a0
T 00c¢ =100c¢
1000 000

Then, forall x,y € A, T(x)y = xT(y), hence T is a multiplier as in (1), but it is not left
(right) multiplier, because T (x)y # T (xy) = 0, in general.

We say that w € A is a left (right) separating point of A-bimodule X if the condition
wx =0 (xw = 0) for x € X implies that x = 0.

If w € A is a left (right) separating point of A-bimodule X and 7 : A — X satisfies in
(1), then T is a left (right) multiplier. Indeed, let a7 (b) = T (a)b, then for all x € A,

x(T(ab)) = T (x)ab = xT (a)b = x(T (a)b).

In particular, w(T (ab)) = w(T (a)b). Since w is a left separating point of X, we get
T (ab) = T (a)b,forall a, b € A, which means that T is a left multiplier. We can prove that
T is a right multiplier in a similar way.

Let A be a unital Banach algebra with unit e4. An A-bimodule X is called unitary if
eax = xe4q = x forall x € X. For example, A* is a unitary A-bimodule with the following
actions.

a- f(x):= f(xa), f-alx):= f(ax), a,x €A, feA"
Definition 1.2 Let A be a Banach algebra, X be a left A-module andlet7 : A — X bea
linear map. Then T is called right n-multiplier if
T(aiay...ap) =a1T(ay...a,),
for all ay, a, ..., a, € A. Moreover, T is called right n-Jordan multiplier if for alla € A,
T(@") =aT (@ ").
The left n-multiplier (left n-Jordan multiplier) and n-multiplier (n-Jordan multiplier) can

be defined analogously.

Note: Since all results which are true for right multipliers have obvious analogue state-
ments for left multipliers, we will focus in the sequel just on the right versions. We will
also drop the prefix right for simplicity.
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The concept of n-multiplier was introduced and studied by Laali and Fozouni [6], where
some interesting results related to these maps were obtained. The notion of n-Jordan multi-
plier was introduced in [2]. Following [6] and [2], let Mul,, (A, X) and JMul, (A, X) be the
set of all n-multipliers and n-Jordan multipliers from a Banach algebra A into its module X.
It is clear that every n-multiplier is an (n + 1)-multiplier, while on the other hand it was
shown in [6, Theorem 2], that in the general case Mul,, (A, X) C Mul,+1(A, X). Moreover,
by [6, Theorem 3] if A is an essential Banach algebra, then Mul,, (A, X) = Mul,,4+1(A, X).
Obviously,
Mul, (A, X) € IMul, (A, X),
and this inclusion may be strict by [2, Proposition 6]. See also [3, Example 2.6] for n = 2.
Next we establish another example for the case n = 3.

Example 1.3 Let

[0 a x ¢]
_]{00by.
A= 000 a a,b,c,x,yeR
1000 0]
and define 7 : A — A via
[0 a x ] Oayc
T 00by _|00bx
000a “1000a
1000 0] 0000

Then, for all u € A, T(u?) = u® and T (u?) = u>. Therefore T is a 3-Jordan multiplier, but
T is not 3-multiplier.

Note that the inclusion JMul,1(A, X) € JMul, (A, X) is not true, in general. The next
example illustrates this fact.

Example 1.4 Let

Oxab

. 00yc]|.

A= 000 z D x,y,z,a,b,ceR
0000

and define T : A —> A via
Oxab 0zcO
T 00yc _|00ya

000z 1000 x
0000 0000

Then, T (u") = uT ("~ 1) forall u € A and for n > 4. So, T is an n-Jordan multiplier, but
T(u3) #* uT(uz) forall u € A, where x, y, z # 0. Hence, T is not 3-Jordan multiplier.

Each Jordan multiplier is an n-Jordan multiplier (see Lemma 2.1 below), but an ana-
logues of this fact need not hold for n > 3. That is, in general every n-Jordan multiplier is
not m-Jordan multiplier, where m > n > 3.

Also by Example 1.4, some (n + 1)-Jordan multipliers fail to be n-Jordan multipliers.
Therefore neither (n + 1)-Jordan multipliers are necessarily n-Jordan multipliers nor 7n-
Jordan multipliers are automatically (n+1)-Jordan multipliers. Now the following questions
can be raised.
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Under which conditions for a Banach algebra A is any (n + 1)-Jordan multiplier T :
A — X automatically an n-Jordan multiplier and vice versa?

Moreover, when is any n-Jordan multiplier automatically an n-multiplier?

In this paper, we investigate this question and prove that under suitable conditions
concepts of (n + 1)-Jordan multiplier, n-Jordan multiplier and Jordan multiplier are
equivalent.

2 n-Multiplier and n-Jordan Multiplier
We commence with the following lemma.

Lemma 2.1 Let A be a Banach algebra, X be a left A-module and let T : A — X be a
linear and Jordan multiplier. Then T is an n-Jordan multiplier, for n > 2.

Proof Assume that T is a Jordan multiplier, then
T(a*) =aT(), acA. )
Replacing a by a + b we get
T (ab + ba) = aT (b) + bT (a), 3)
for all a, b € A. Interchanging b by a” in (3), we obtain
27 (a%) = aT(a*) + a*T(a). )

It follows from (2) and (4) that T (a3) = aT (a?). Hence T is a 3-Jordan multiplier.
Now let the result has been established for all 3 < k < n. Hence

T(a") = aT (@), )
for all 3 < k < n. Replacing b by a* in (3), we obtain
27 (@) = aT (@) + " T (a). (6)
From (5), we get
a*T(a) = a*'aT (@) = " 'T (%) = a*2aT (@®) = d* T (@) = --- = aT (). 7)
Consequently, by (6) and (7), T is an (k + 1)-Jordan multiplier and the result follows. [
Example 2.2 Let A and T be as in Example 1.1 or Example 1.3. Then T3 = uT (u?)
forallu € A, and so T is a 3-Jordan multiplier, but T is not a Jordan multiplier. Thus, the
converse of above lemma is false in general.
Theorem 2.3 Let A be a unital Banach algebra, and X be a unitary Banach left A-module.

Suppose that T : A —> X is a continuous linear map. If T (ab) = aT (b) foralla,b € A
with ab = e, then T is an n-Jordan multiplier.
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Proof Let a € A be arbitrary. For A € C, with [A| < 1/|la|, ea — Aa is invertible and
(ea —Ara)~! =32  A"a". Then

T(ea) = T((ea — ra)(ea — ra)"'en)
(ea — ra)T((ea — ra) " 'en)

(e — ra)T (Z /\"a"eA>

n=0

o0 o0
eaT(es) +eaT (ZA"a"eA> —aT (Z A"a”eA)
n=0

n=1

T(ea)+ Y A'T(a"ea) —hay A'T(a"en).

n=1 n=0
Hence,
[o¢]
> AT (@) —aT @ "] =0,
n=1
for all A € C with |A| < 1/|la||. Consequently, T (a") = aT (a" 1) for all n € N. This
finishes the proof. O

As a consequence of Theorem 2.3, we have the next result.

Corollary 2.4 Let A be a unital Banach algebra, X be a unitary Banach left A-module and
let T : A —> X be a continuous linear map. If a € Inv(A) and T(aa™") = aT(a™ "),
then T is an n-Jordan multiplier.

The following example shows that the condition 7 (ab) = aT (b) for all a,b € A with
ab = e4 in Theorem 2.3 is essential.

(5] e

Then A is a unital Banach algebra and it is a unitary Banach A-bimodule. Define a
continuous linearmap 7 : A — A by

r([5e]) =17 %)
S|

Then xy = es, but T (xy) # xT (y). Therefore, T is not an n-Jordan multiplier, because the
condition T (xy) = xT (y), forall x, y € A with xy = ey4, does not hold.

Example 2.5 Let

Set

Theorem 2.6 Let A be a unital Banach algebra, and X be a unitary Banach left A-module.
Let T : A —> X be a continuous linear map. If for an idempotent p € A, T (ab) = aT (b)
foralla,b € A withab = p, then T is an n-Jordan multiplier on pAp.
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Proof 1t is easy to see that pAp is a unital closed subalgebra of A with unit p. Leta € A
be arbitrary. For A € C, with |A| < 1/|| pap]||, the elements p and (p — Apap) are invertible
and (p — Apap) ' = 30, A" (pap)". Then
T(p) = T((p — rpap)(p — pap)~' p)
(p = 2pap)T((p — Apap)~' p)
o0
(p — Apap)T (Z k"(pap)"p)

n=0

pT(p)+ pT (Z x"(pap)"p) — Mpap)T (Z A <pap)"p>

n=1 n=0

T(p)+pY_ A"T((pap)") — A(pap) Y A"T ((pap)").

n=1 n=0
Hence,
o0
Y W'[pT ((pap)") — (pap)T ((pap)*~"H)] =0,
n=1
for all A € C with |A| < 1/|| papl||. Therefore

pT ((pap)") = (pap)T ((pap)"~"). (8)
Multiplying p~! from the right in (8) and using p> = p, we arrive at
T((pap)") = (pap)T ((pap)"~").

Consequently, 7 is an n-Jordan multiplier on pAp. O

Theorem 2.7 Let n € {2, 3} be fixed, A be a unital Banach algebra and X be a unitary left
A-module. Then every (n + 1)-Jordan multiplier T : A — X is an n-Jordan multiplier.

Proof Let n = 2 and T be a 3-Jordan multiplier. Then T@*) = aT(az) for all a € A.
Replacing a by a + e4 we get

3T (a® +a) = aT(en) +2aT(a) + eaT (@?) + 2eAT (a). )
Interchanging a by —a in (9), we obtain
3T (@ —a) = —aT(ea) + 2aT(a) + eaT (@%) — 2esT(a), (10)

for all a € A. It follows from (9) and (10) that
3T (a%) = 2aT (a) + es T (a?).

Since X is unitary, we get T(a?) = aT(a). Thus, T is a Jordan multiplier.
Now let n = 3 and T'(a*) = aT (a®) for all a € A. Replacing a by a + ¢4 and since X
is unitary, we arrive at

3T (a®) 4 3T (a®) + T(a) = 3aT (a*®) + 3aT (a) + aT (e4). an
Switching a by —a in (11) and plus the result by (11), we obtain
T (% = aT(a). (12)
By (11) and (12),
3T (a®) 4+ T(a) = 3aT (a®) + aT (ex), acA. (13)
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Replacing a by a + e4 in (13) and simplify the result to get

9T (a®) + 9T (a) = 6aT (a) + 3T (a*) + 6T (a) + 3aT (ea). (14)
From (12) and (14), we deduce that
T(a) =aT(en), a€A. (15)

It follows from (13) and (15) that T'(a®) = aT (a?) and so T is a 3-Jordan multiplier. O

Next by using the Vandermonde matrix, we show that Theorem 2.7 is also valid for all
neN.

Theorem 2.8 Let A be a unital Banach algebra, X be a unitary Banach left A-module.
Then every (n + 1)-Jordan multiplier T : A —> X is an n-Jordan multiplier.

Proof We firstly have
T((a+kea)"™ ) = (a + kea)T (a + kea)", (16)

for all @ € A, where k is an integer with 1 < k < n. It follows from the equality (16) and
assumption that

n . +1 . n . n . n . .
an+l—1 ("i > T(a) = Zk"+l—l (I’l +1— i) aT(a'_l) + an-‘rl—z (;’) T(a"),
i=1 i=1 i=1

(17)
foralll <k <nanda € A where ;1 = We can rewrite the equalities in (17) as

MX;(a) = MY;(a) + MZ;(a), where

n!
="

and
X, (a) = ("?1) T(a), Yi(a)= <n +1- i>aT(a"—1), Zi(a) = <'f) T(a)).

It is shown in [1, Lemma 2.1] that the square matrix M is invertible. This implies that
Xi(a) =Yi(a)+ Zi(a) forall 1 <i < nandalla € A. In particular, X,,(a) = Y,(a) +
Z,(a). Therefore

(n+ DT (@) =naT (@ ") + T(d").
Consequently, 7' (a") = aT (a"') and hence T is an n-Jordan multiplier. O

From Lemma 2.1 and Theorem 2.8 we get the following result.

Corollary 2.9 Let A be a unital Banach algebra and X be a unitary Banach left A-module.
Suppose that T : A —> X is a linear map. Then the following conditions are equivalent.

(i) T(a) =aT(ey) foralla € A.
(ii) T is a Jordan multiplier.
(iii) T is an n-Jordan multiplier.
(iv) T isan (n + 1)-Jordan multiplier.
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As a consequence of preceding corollary and Theorem 2.3, we get the following result.

Corollary 2.10 Let A be a unital Banach algebra and X be a unitary Banach left A-module.
Suppose that T : A —> X is a continuous linear map. If T (ab) = aT (b) forall a,b € A
with ab = ey, then T is an n-multiplier.
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