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Abstract
Among Numerical Methods for PDEs, the Virtual Element Methods were introduced
recently in order to allow the use of decompositions of the computational domain in poly-
topes (polygons or polyhedra) of very general shape. The present paper investigates the
possible interest in their use (together or in alternative to Finite Element Methods) also for
traditional decompositions (in triangles, tetrahedra, quadrilateral or hexahedra). In particu-
lar their use looks promising in problems related to high-order PDEs (requiring Cp finite
dimensional spaces with p ≥ 1), as well as problems where incompressibility conditions are
needed (e.g. Stokes), or problems (like mixed formulation of elasticity problems) where sev-
eral useful features (symmetry of the stress tensor, possibility to hybridize, �inf-sup stability
condition, etc.) are requested at the same time.

Keywords Virtual elements · Finite elements · Polygonal decompositions

Mathematics Subject Classification (2010) 65N30

1 Introduction

Virtual Element Methods (VEM) are a recent technology in Scientific Computing, designed
to use decompositions of the computational domain into polygons or polyhedra. As it is
well known, the decompositions commonly used by the Finite Element community and
in the related commercial codes, so far, have been almost exclusively concentrated on tri-
angles, tetrahedra, quadrilaterals, hexahedra and little more. VEM, instead, are conceived
for allowing also complicated geometries, typically polytopes with many faces/edges and
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complicated shapes. The purpose of the present paper is to show that VEM can also prove
to be interesting on simple geometries. Escaping the limit of piecewise polynomial shape
functions, VEM can indeed allow more performant local spaces, and could, whenever con-
venient, be used also on simpler elements, like triangles, quads, and their 3d counterpart.
Hence, they could as well be included as useful variants in a Finite Element code.

Indeed, we shall see that even on simple geometries Virtual Elements might come out
to be extremely useful, both when used in combination with Finite Elements and when
used as an innovative powerful alternative. Throughout the paper we will keep comparing
VEM and FEM: we would like to point out, from the very beginning, that this should not
be taken as a (rather childish) competition between two very useful instruments. In most
cases the main purpose of the comparison with FEM will be to help the reader towards a
better understanding of the new instrument (with its pros and cons) just by comparing with
an instrument that is already well known, and concentrating on the differences. One should
keep in mind that the main original motivation for VEM is to deal with decompositions that
are geometrically complicated and not to replace FEM on simpler cases. However, the use
of VEM on simple geometries might also prove to be convenient on several occasions.

Actually we shall see that the possibility of adding to the polynomial spaces a few addi-
tional non polynomial functions can alleviate many types of troubles and give rise to very
interesting alternatives. These additional functions are never computed explicitly, but one
can use, in the code, some related quantities (typically, some kinds of projection) that are
computable directly out of the degrees of freedom.

As examples of use of VEM on simple geometries that perform easily where FEM pose
nontrivial difficulties, in this paper we take: the use of Cp discretizations (for p ≥ 1),
the treatment of the incompressibility condition for Fluids and for Elastic Materials, and
the mixed (stress-displacement) formulation of linear elasticity problems à la Hellinger
Reissner. We will see that the construction of Hs-conforming approximations (for s ≥ 2),
the use of perfectly incompressible approximations, as well as the use of symmetric-and
hybridizable stress fields come out more easily in the VEM context than in the traditional
FEM approaches.

An outline of the paper is as follows. In the next section, we will present the basic ideas
of Virtual Element Methods, taking as a first example the simple Poisson problem. We
will show how to deal with the non-polynomial functions appearing in the local spaces,
how to construct a consistent conforming approximation, and how to stabilize it in order to
get a well-posed discrete problem. Next, a sort of Serendipity procedure will be presented
for reducing the number of degrees of freedom internal to the elements. We will see that
on triangles Serendipity VEM coincide exactly with the usual polynomial approximation,
while on quads we have several little variants that might have some interest here and there.
Finally, we will present the nonconforming VEM-approximation where some differences
between FEM and VEM start to pop out already on triangles.

In Section 3, we will consider the VEM approximation of vector spaces like H(div; �)

and H(rot;�), and in the following Section 4 we will show how the VEM approach can
easily help in the construction of C1 elements (to deal, e.g., with plate problems). We shall
also see that, in the VEM context, the construction of Cp discretized spaces for p ≥ 2
becomes reasonably feasible, whereas (as is well known) with FEM the construction of C1

spaces poses already several difficulties.
Next, in Section 5 we will deal with the incompressibility problem. The treatment of

these problems in the FEM context has been the object of a number of quite interesting
papers in the recent years. Here, a general comparison between VEM and FEM becomes
nearly unfeasible, since every FEM approach is different and has different features, pros
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and cons. We took a (questionable) decision: to make the comparison of VEM with some
older and well known method (actually the Crouzeix–Raviart: P2+bubbles velocities and
discontinuous P1 pressures). This is, in our opinion, justified by our target of helping in
understanding VEM, and not fighting for being the best method (whatever that means...). We
provide however a rich list of references to the latest, quite interesting, FEM developments.

Finally, in the last Section 6 we deal with the Hellinger–Reissner mixed formulation of
linear elasticity. Here, we face a situation quite similar but even worse than that of the previ-
ous section, in the presence of a wealth of recent different FEM approaches trying to satisfy,
at the same time, a number of important requests (stability, symmetry of the stress tensor,
possible hybridization, etc.). Here too we decided to compare the VEM approach with one of
the best known FEM approach (the Arnold–Awanou–Winther element), although the most
similar FEM approach would have been the one by Guzman–Neilan in [38], that however
would have required a more detailed description.

1.1 Notation

Throughout the paper, if k is an integer ≥ 0, Pk will denote the space of polynomials of
degree ≤ k. In R

d its dimension πk,d is given by:

πk,1 = k + 1, πk,2 = (k + 1)(k + 2)/2, πk,3 = (k + 1)(k + 2)(k + 3)/6.

As usual, P−1 = {0}. When no confusion can occur, we will use the simpler πk .
Next, for a domain O we will denote by �

0,O
k (or simply by �0

k when no confusion can
occur) the L2(O)-orthogonal projection operator onto Pk(O), defined, as usual, for every
v ∈ L2(O), by

�
0,O
k (v) ∈ Pk(O) and

∫
O

(
v − �

0,O
k (v)

)
qkdO = 0 ∀qk ∈ Pk(O).

For s integer ≥ 1 we define also

P̂s(O) :=
{
qs ∈ Ps such that

∫
O

qsdO = 0

}
.

and assuming the origin to be in the barycenter ofO:

P
hom
s (O) := {homogeneous polynomials of degree s}.

Moreover, given a function ψ ∈ L2(O) and an integer s ≥ 0, we recall that the moments of
order ≤ s of ψ onO are defined as:∫

O
ψ qs dO for qs ∈ Ps(O).

Hence, to assign the moments of ψ up to the order s on O will amount to πs conditions.
Typically this will be used when these moments are considered as degrees of freedom. Then,
we will take in Ps a basis {qi} such that ‖qi‖L1 � 1.

We recall that, in two dimensions, the curl operator has two aspects (as grad and div)
given by

rot(v1, v2) := ∂xv2 − ∂yv1, rot(ϕ) := (∂yϕ,−∂xϕ).

Finally, for a vector v = (v1, v2) we indicate by v⊥ the vector v⊥ = (v2, −v1).
Throughout the paper we will follow the common notation for scalar products, norms,

and seminorms. In particular, (v, w)0,O (sometimes, just (v,w)0) and ‖v‖0,O (sometimes,
just ‖v‖0) will denote the L2(O) scalar product and norm, whereas |v|1,O (sometimes, just
|v|1) and ‖v‖1,O (sometimes, just ‖v‖1) will denote the H 1 semi-norm and norm.
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Finally, we point out that throughout the paper, as common in the VEM literature, we
will consider that the same geometrical entity (say, a triangle) might be considered as a
polygon (for instance, a quadrilateral or a pentagon, hexagon, etc.) according to the number
of points on its boundary that we consider as vertices (and, as natural, considering as edge
the portion of boundary in between two consecutive vertices, in the usual counterclockwise
ordering. See Fig. 1. This feature can be extremely helpful for example when doing adaptive
mesh refinement (see the leftmost case in Fig. 1).

2 H1 Approximations

Let us consider a second order linear elliptic problem, with variational formulation

find u ∈ V such that a(u, v) = 〈f, v〉 ∀v ∈ V . (1)

To fix ideas one may think of the usual toy problem −�u = f in �, u = 0 on ∂�, with
� ⊂ R

2 a polygonal domain, f ∈ L2(�), and V = H 1
0 (�), although what follows applies

to more general operators. Problem (1) is then

find u ∈ V = H 1
0 (�) such that

∫
�

∇u · ∇v dx =
∫

�

f v dx ∀v ∈ V .

Let Th be a decomposition of � into polygons P , and let Vh ⊂ V be a finite dimensional
subspace. We can write the discrete problem as

find uh ∈ Vh such that ah(uh, vh) = 〈fh, vh〉 ∀vh ∈ Vh, (2)

and we have to define Vh, ah(·, ·), and fh in such a way that problem (2) has a unique
solution and optimal error estimates hold. In the next subsection we will recall the original
approach of [15] and indicate the general path of Virtual Element approximations.

2.1 Original Virtual Element Approximation

We first recall the definition of the discrete spaces from [15]. Let P be a generic polygon in
Th. For k ≥ 1 we define

Vk(P) :=
{
v ∈ C0

(
P

)
: v|e ∈ Pk(e) ∀ edge e ⊂ ∂P, �v ∈ Pk−2(P)

}
, (3)

Fig. 1 Each of the three above polygons is considered as a hexagon
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with the degrees of freedom given by

(D1) : the values of v at the vertices,

(D2) : for k ≥ 2 the moments
∫

e

vpk−2ds ∀pk−2 ∈ Pk−2(e) ∀ edge e, (4)

(D3) : for k ≥ 2 the moments
∫
P

vpk−2dx ∀pk−2 ∈ Pk−2(P).

Instead of the moments D2 one could use the values at k − 1 distinct points on each edge,
more in the spirit of FEM:(

D′
2

) : the value of v at k − 1 distinct points on each edge e.

The global space is then defined as

Vh := {v ∈ V : v|P ∈ Vk(P) ∀P ∈ Th}. (5)

It can be shown ([15]) that out of the dofs (4) we can compute on each element P the
operator �∇

k : Vk(P) → Pk(P) defined by∫
P

∇
(
�∇

k v − v
)

· ∇qkdx = 0 ∀qk ∈ Pk,

∫
∂P

(
�∇

k v − v
)
ds = 0. (6)

Then, a discrete bilinear form is constructed, on each element P , as

aP
h (vh,wh) := aP

(
�∇

k vh, �
∇
k wh

)
+ SP

((
I − �∇

k

)
vh,

(
I − �∇

k

)
wh

)
vh, wh ∈ Vh,

(7)
where SP is any symmetric bilinear form that scales like aP (·, ·). There are various recipes
for SP , the most commonly used being the so-called dofi-dofi:

SP (vh, wh) :=
#dof s∑
i=1

dofi(vh)dofi(wh). (8)

We can also define a right-hand side fh directly computable from the degrees of freedom
(D1)–(D3). Denoting by V1, . . . , Vn the vertices of P) we set:

〈fh, vh〉P =
{
for k = 1

∫
P �0

0f vhdx with vh =
∑

i vh(Vi )

n
,

for k ≥ 2
∫
P �0

k−2f vhdx.
(9)

The global bilinear form and right-hand side are defined, as in FEM, by summing over
the elements of Th:

ah(vh, wh) =
∑
P∈Th

aP
h (vh,wh), 〈fh, vh〉 =

∑
P∈Th

〈fh, vh〉P .

With these choices (and mild assumptions on the mesh) it has been proved that problem
(2) has a unique solution, and optimal estimates hold

‖u − uh‖V ≤ Chk|u|k+1.

Figures 2 and 3 show a comparison between FEM and VEM on triangles and quads.
From Fig. 2 we see that triangular VEM have more degrees of freedom than FEM for

k ≥ 2. Looking for simplicity at the case k = 2 we point out that the additional degree of
freedom in the VEM space corresponds to the function β2 defined by:

β2 = 0 on ∂P, and �β2 = 1 in P (10)

that, clearly, is not in P2.
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VEM k=3

FEM k=2FEM k=1 FEM k=3

VEM k=1 VEM k=2

Fig. 2 Triangles: d.o.f.s for FEM and original VEM

Instead, from Fig. 3 we see that for quads VEM have less degrees of freedom for k ≥ 3:
indeed, the number of internal d.o.f.s for FEM equals the dimension of Qk−2, i.e. (k − 1)2,
while that of VEM is equal to the dimension of Pk−2, given by k(k−1)/2. We also underline
that, as it can be seen in Figs. 2–3, the internal dofs for VEM do not change with the element
shape; what changes when going from a triangle to a quad or to a generic polygon is just
the number of edge-dofs, which depends on the number of edges.

VEM k=3

FEM k=2FEM k=1 FEM k=3

VEM k=1 VEM k=2

Fig. 3 Quads: d.o.f.s for FEM and original VEM
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2.2 Enhanced and Serendipity Virtual Elements

Following [1] and [17], in order to eliminate as many internal dofs as possible, and, at the
same time, to allow the computation of all the moments of order ≤ k, we first define the
local space

Ṽ S
k (P) := {v ∈ C0(P) : v|e ∈ Pk(e) ∀e ⊂ ∂P, �v ∈ Pk(P)}, (11)

with the degrees of freedom

(D1)–(D2) plus the moments of order up to k :
∫
P

vpkdx ∀pk ∈ Pk(P).

Clearly the space (11) is bigger than (3), apparently in contradiction with our first aim, but
now the L2-orthogonal projection onto Pk is directly available from the internal dofs. Then
we begin by defining locally an operator �k : H 1(P) → Pk(P) as follows:

�kv ∈ Pk(P) :
∫

∂P
(�kv − v)qk ds = 0 ∀qk ∈ Pk(P). (12)

Clearly, system (12) has a unique solution unless Pk contains polynomials that are identi-
cally zero on the boundary, i.e., unless Pk contains bubbles. This happens for k ≥ 3 on
triangles (b3 = product of the equations of the three edges) and for k ≥ 4 on “true” quads
(b4 = product of the equations of the four edges). In these cases we need to add internal
conditions, namely:∫

P
(�kv − v)qsdx = 0 ∀qs ∈ Pk−3

︸ ︷︷ ︸
on triangles

or
∫
P

(�kv − v)qsdx = 0 ∀qs ∈ Pk−4,

︸ ︷︷ ︸
on quads

(13)

and then solve the system (12)–(13) in the least-squares sense. Once the polynomial �kv

has been computed, we define the new space by “copying” its moments. Namely, setting
N = maximum degree of internal moments used to define �k:

V S
k (P) :=

{
v ∈ Ṽ S

k (P) s.t.
∫
P

vpsdx =
∫
P

�kvpsdx ∀ps ∈ P
hom
s , N < s ≤ k

}
(14)

Figure 4 shows that on triangles serendipity VEM have the same number of dofs as FEM
(and actually the two spaces coincide), while Fig. 5 compares the dofs of serendipity VEM
and FEM (see [3]). The number is the same, although serendipity FEM are known to suffer
from distorsion (see [6]), while VEM do not, as shown in [17].

A typical variant of this procedure can be identified in the original enhancement trick as
designed first in [1]. For a given integer δ ≥ k − 2 one considers the space

Ṽ E
δ (P) := {v ∈ C0

(
P

)
: v|e ∈ Pk(e) ∀e ⊂ ∂P, �v ∈ Pδ(P)},

VEMS k=3VEMS k=1 VEMS k=2

Fig. 4 Triangles: dofs for serendipity VEM
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VEMS k=4

FEMS k=1 FEMS k=2 FEMS k=3 FEMS k=4

VEMS k=1 VEMS k=2 VEMS k=3

Fig. 5 Quads: dofs for serendipity FEM and VEM

with the degrees of freedom

(D1)–(D2) plus the moments of order up to δ :
∫
P

vpδdx ∀pδ ∈ Pδ(P).

Then, using the boundary dofs and the moments up to k − 2, we construct the �∇
k operator

as in (6), and use it (mimicking (14), with �∇
k instead of �k) to define the moments of v of

all orders between k − 1 and δ. Thus, the new space is

V E
k (P) :=

{
v ∈ Ṽ E

δ (P) s.t.
∫
P

vpsdx =
∫
P

�∇
k vpsdx ∀ps ∈ P

hom
s , k − 1 ≤ s ≤ δ

}
.

(15)

Remark 1 The advantage of the enhancement trick is that it can always be done, for every
polygon P , without recurring to a least-squares solution. On the other hand, the Serendip-
ity approach becomes more and more powerful when the number of non-aligned edges
of P increases. For instance, on a decomposition made by non degenerate hexagons, the
Serendipity VEM spaces of order k will have no internal degrees of freedom whenever
k ≤ 5. This of course will not be true for degenerate polygons, as for instance, in Fig. 1, for
the leftmost example, where the first bubble appears for k = 3, and for the rightmost one,
where the first bubble will appears for k = 5.

Remark 2 Serendipity FEMwere introduced on quadrilaterals in order to reduce the number
of internal degrees of freedom, and avoid the need for higher order numerical integration
schemes. For VEM, as we have seen, Serendipity elements are also convenient on triangles.
But, in spite of the fact that we use the name “Serendipity” for both VEM and FEM, the
spirit of the procedure is rather different from one case to the other. In the FEM context,
the Serendipity approach is usually performed by: i) choosing the degrees of freedom that
one wants to eliminate (typically, one or more internal node), and ii) choosing, accordingly
(in general, kicking out one or more monomials), a polynomial subspace where the new,
reduced set of degrees of freedom, is unisolvent. See for instance the classical [54] and the
references therein, as well as the more evolved [3]. Instead in Serendipity VEM, as we have
seen, we look first for a projector, onto the space of polynomials, that can be computed
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using a smaller number of degrees of freedom. Then we restrict ourselves to the subspace
(of the original VEM space) where the values to be assigned to the other degrees of freedom
(not used in constructing the projector) are taken from the values of the projector. See again
[17].

Remark 3 One might argue that static condensation could be a simpler procedure to reduce
the internal degrees of freedom. This is true in two dimensional problems, but it is not
anymore the case for three dimensional problems, where the reduction of dofs on faces is
important. Static condensation on faces might turn into a nightmare, while the serendipity
approach works very well.

2.3 Non-conforming Virtual Elements

Another typical Finite Element variant of Galerkin approximations is given by the so-called
Nonconforming methods, where the inclusion Vh ⊂ H 1(�) does not hold anymore, and
the continuity across interelement boundaries is required only in a weak sense (typically, on
each edge the average and the moments up to the order k−1, where k is, as before, the order
of the polynomials that we want to be included). See e.g. [29] and the references therein.

We just try to give the flavor of the Nonconforming Virtual Elements, referring for
instance to [2, 12, 48, 53]. The local space is:

V NC
k (P) :=

{
v ∈ H 1(P) : ∂v

∂n |e
∈ Pk−1(e) ∀ edge e, �v ∈ Pk−2(P) ∀P

}
.

Before introducing the global space we need some notation. We introduce the space
H 1(Th) = ∏

P∈Th
H 1(P), and for ϕ ∈ H 1(Th) we denote by [[ϕ]] its jump on internal

edges e ∈ Th. Then, the natural counterpart of (5), for k ≥ 1 is now

V NC
h :=

{
v ∈ H 1(Th) : v|P ∈ V NC

k (P) ∀P,∫
e

[[v]]pk−1ds = 0 ∀ internal edge e, ∀pk−1 ∈ Pk−1(e),

∫
e

vpk−1ds = 0 ∀e on ∂�, ∀pk−1 ∈ Pk−1(e)

}
.

The degrees of freedom are given by

(
D′

1

) : the moments
∫

e

vpk−1ds ∀pk−1 ∈ Pk−1(e) ∀e,

(
D′

2

) : for k ≥ 2 the moments
∫
P

vpk−2dx ∀pk−2 ∈ Pk−2(P).

It is not difficult to see that these are indeed a set of degrees of freedom for V NC
h . It is also

easy to see that, using them, for every v ∈ V NC
h and for each polygon P we can compute its

∇-projection �∇
k v defined as in (6). Using the �∇

k operator as in (7) one can now construct
the local as well as the global approximate bilinear form ah. Then, basically, we deal with
them as with usual nonconforming Finite Elements.

Just to give an idea of the possible comparison between nonconforming FEM and VEM,
we consider the case of k = 2 on triangles. Both for FEM and VEM we take first as
boundary degrees of freedom the moments, on each edge, of order ≤ 1. But on triangles
(and on quadrilaterals as well), since k = 2 is even, FEM also need an additional degree of
freedom inside; indeed the six values at the 3× 2 Gauss points do not identify a polynomial
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of degree ≤ 2 on the triangle in a unique way (take an ellipses through the six points and
you get a p2 �= 0 that vanishes at all six points). VEM are not better off, since their internal
degree of freedom cannot be eliminated through some sort of Serendipity trick, (exactly
for the same reason: there is a p2 that is orthogonal, on each edge, to all linear and to all
constant functions). The typical escape for FEM is to add a seventh polynomial (see e.g.
[33]): referring to Fig. 6, indicating with λA, λB , and λC the usual barycentric coordinates,
we add

ζ := λAλB(λA − λB) + λBλC(λB − λC) + λCλA(λC − λA) (16)

and take the mean value on P as seventh degree of freedom.
When using VEM we already have seven functions and the distinction between k odd or

k even is not necessary. In some sense, the nonconforming VEM are already happy as they
are, no matter whether k is even or odd. The difference is that for k even we could not play
some smart Serendipity trick in order to get rid of some internal degrees of freedom, while
this would be allowed for k odd. In the case k = 2 we see that the VEM space obviously
contains all polynomials of degree ≤ 2. The additional (non polynomial) element could be
thought of as being generated by adding to the space P2 one function. For instance we can
choose the VEM function, say χ(x, y), that, with the notation of Fig. 6, could be identified
by the following conditions:∫

P
χdx = 0,

∫
e

χ ds = 0 ∀ edge e,

1

|ea |
∫

ea

χqads = 1

|eb|
∫

eb

χqbds = 1

|ec|
∫

ec

χqcds = 1,

where: the edge ea , with length |ea |, is opposite to the vertex A, and qa is the polynomial of
degree 1 such that qa(a1) = 1 and qa(a2) = −1 (and similar notation for the edges eb and
ec). We point out that on the boundary of our triangle the function χ cannot be the trace of
a polynomial of degree ≤ 2. Indeed, it is easy to check that every v ∈ P2 verifies

1

|ea |
∫

ea

vqads + 1

|eb|
∫

eb

vqbds + 1

|ec|
∫

ec

vqcds = 0.

On the boundary the behaviour of χ is quite similar to that of ζ given in (16), but the
normal derivative of χ is on each edge a polynomial of degree 1 (and not 2 as ζ ) and (most
important) �χ is constant (instead of linear): a feature that might turn out to be convenient
in certain problems where some equilibrium or conservation properties could be enforced
strongly and not “only on average”.

c1

c2

B a1 a2

A

C

b1

b2

Fig. 6 Toward Nonconforming VEM
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2.4 Conforming VEM in 3 Dimensions

Let P be a polyhedron, and let f be a face. We begin by defining the space

Vk(P) :=
{
v ∈ C0(P) : v|f ∈ Vk(f ) ∀f ⊂ ∂P, �v ∈ Pk−2(P)

}
,

where Vk(f ) is the space defined in (3). The degrees of freedom will be

(D1) : the values of v at the vertices,

(D2) : for k ≥ 2 the moments
∫

e

vpk−2ds ∀pk−2 ∈ Pk−2(e) ∀ edge e, (17)

(D3) : for k ≥ 2 the moments
∫

f

vpk−2dx ∀pk−2 ∈ Pk−2(f ) ∀ face f,

(D4) : for k ≥ 2 the moments
∫
P

vpk−2dx ∀pk−2 ∈ Pk−2(P).

Proceeding as we did before, the next step is to compute the �∇
k operator as in (6). To this

end, integrating by parts we obtain
∫
P

∇�∇
k v · ∇qk :=

∫
P

∇v · ∇qk = −
∫
P

v�qk +
∑

f ∈∂P

∫
f

v
∂qk

∂n
,

and we realize that the integrals on faces cannot be computed out of the dofs (17). Indeed,
we would need moments of order k − 1 and not just k − 2. We then use the enhanced
procedure explained in Section 2.2 (see (15)), and define the new space

Ṽk(P) :=
{
v ∈ C0

(
P

)
: v|f ∈ V E

k (f ) ∀f ⊂ ∂P, �v ∈ Pk−2(P)
}
.

We point out that the serendipity approach could be used on faces to reduce the number of
dofs. We refer to [17] for details.

3 H(div) and H(rot) Conforming FEM/VEM on Triangles

3.1 FEM for H(div;�) and H(rot;�) Spaces

Similarly to what we did for VEM discretizations of H 1 we can now present the VEM
discretizations of vector-valued spaces H(div; �) and H(rot;�). We recall that in Finite
Elements we have, essentially, two families of spaces for H(div; �) that go under the name
of Raviart–Thomas [51] and Brezzi–Douglas–Marini [21] (in short: RT and BDM), and two
families of spaces for H(rot; �) that go under the name of Nédélec of first kind [49] and
Nédélec of second kind [50] (in short: N1 and N2). We recall them here below, for triangular
elements: For k integer

RTk :=
{
(Pk)

2 + xPk

}
, N1k :=

{
(Pk)

2 + x⊥
Pk

}
, k ≥ 0

and

BDMk ≡ N2k := (Pk)
2, k ≥ 1.
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The boundary degrees of freedom are, for all edge e:

∫
e

v · nqkds ∀qk ∈ Pk(e) for RTk and BDMk,

∫
e

v · tqkds ∀qk ∈ Pk(e) for N1k and N2k .

The internal degrees of freedom are, for k ≥ 1 and for all triangles T ,

For RTk :
∫

T

v · qdx ∀q ∈ BDMk−1 and for BDMk :
∫

T

v · qdx ∀q ∈ N1k−2 (18)

as well as

For N1k :
∫

T

v · qdx ∀q ∈ N2k−1 and for N2k :
∫

T

v · qdx ∀q ∈ RTk−2. (19)

Clearly, for k = 1 both RTk−2 and N1k−2 are empty, and the corresponding dofs (in (18)
and in (19), respectively) are not there.

For the three-dimensional case, as well as for the case of quadrilaterals and hexahedra,
where, however, the definitions are less straightforward, we refer for instance to [20–23] or
to [4].

Moreover, for the two dimensional case on triangles, we remark the perfect symmetry
between the H(div; T ) and the H(rot; T ) case: changing n with t as well as grad with rot
and div with rot. Hence, from now on, in this section we will restrain ourselves to the case
of H(div;P) spaces on triangles (Fig. 7).

RT k=1

BDM k=1 BDM k=2

RT k=2

Fig. 7 Face FEM, k = 1 and k = 2
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3.2 VEMH(div;P) Spaces on Triangles

Here too we still have to distinguish between RT-like and BDM-like spaces: roughly speak-
ing, for v · n a polynomial of order k on the boundary, we will have spaces having the
divergence in Pk (the RT case, for k ≥ 0) and spaces having the divergence in Pk−1 (the
BDM case, for k ≥ 1). We refer to [22] and [16] for more details.

On a (general) polygon P , for k = degree of v · n on each edge, and δ = degree of the
divergence (equal to k or k − 1) we set

Vk,δ(P) := {
v ∈ H(div : P) ∩ H(rot : P) s.t. v · n|e ∈ Pk(e) ∀e,

div v ∈ Pδ(P), rot v ∈ Pk−1(P)} .
The degrees of freedom in Vk,δ(P) are

• (D1)

∫
e

v · nqkds ∀qk ∈ Pk(e) ∀ edge e in ∂P,

• (D2) ( for k > 0 and δ > 0)
∫
P
v · grad qδdx ∀qδ ∈ Pδ(P),

• (D3) ( for k > 0)
∫
P
rot vqk−1dx ∀qk−1 ∈ Pk−1(P).

See Fig. 8 where the blue d.o.f.s are common to FEM and VEM, and the green ones are the
additional dofs needed for VEM.

A comparison with FEM shows that, as in the scalar case, VEM exhibit more internal
dofs: one more for k = 1 (the green bullet), and three more for k = 2. As we did for scalar
approximations (see (14) and (15)), they could be eliminated by the enhancement or by the
serendipity approaches. See e.g. [18].

BDM−like k=2

RT−like k=2RT−like k=1

BDM−like k=1 BDM−like k=2

RT−like k=2RT−like k=1

BDM−like k=1

Fig. 8 Face VEM k = 1 and k = 2
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Considering again the simplest case, here k = 1, we see that the additional degree of
freedom corresponds to the addition (to the FEM space BDM1 or RT1) of rotβ2, where
β2 is the function defined in (10). For k = 2, at first sight we could think that we are
adding, to the FEM space, the rot of the three functions β3 such that β3 = 0 on ∂P and
�β3 ∈ P1. There are three independent ones, but on a triangular domain one of them is the
cubic bubble, whose rot is already in the BDM2 space as well as in the RT2 space. Hence,
we are just adding two new ones to the FEM case (see the green dots in Fig. 8).

Here too, we point out that for VEM the passage from triangles to quadrilaterals (of
very general shape) is immediate (as well as the passage to more general polygons), while
the FEM spaces, already for quadrilaterals, and more on hexahedra, require a considerable
additional work. See for instance [8] and the references therein.

4 Cp VEM for p ≥ 1

With Virtual Elements it is quite easy to construct high-regularity approximations. Here we
shall deal mostly with C1 approximations, having in mind, as an example of fourth order
problem, a plate bending problem:

D�2w = f in �, w = ∂w

∂n
on ∂�,

where D is the bending rigidity. The variational formulation looks like (1), with V =
H 2

0 (�), and

a(v, w) = D

[
(1 − ν)

∫
�

w/ij v/ijdx + ν

∫
�

�w�vdx

]
, 〈f, v〉 =

∫
�

f vdx. (20)

In (20) ν is the Poisson’s ratio, v/i = ∂v/∂xi, i = 1, 2, and we used the summation con-
vention of repeated indices. Throughout this section w/n will denote the normal derivative,
w/t the tangential derivative in the counterclockwise ordering of the boundary, and so on.
When no confusion occurs we might also use wn, wt ... As we said, we will concentrate on
C1 elements. But at the end of this section we will give a hint on Cp elements for p ≥ 2.

4.1 C1-elements

The possibilities of constructing C1-elements with the VEM approach are almost endless.
To fix the ideas we will recall the approach given in [24, 26]. Let P be a generic polygon in
Th. For given integers r ≥ 0, s ≥ 0 and m ≥ −1 we consider the space

Vr,s,m(P) :=
{
w ∈ H 2(P) : w|e ∈ Pr (e) and wn|e ∈ Ps(e) ∀ edge e, �2w ∈ Pm in P

}
.

(21)
Clearly, for the above space to have some sense, and for allowing the construction of H 2

spaces on the whole domain �, we need adding some restriction. In the vertices of the
decompositions we will need our spaces to be continuous with their first derivatives. This
would require to have as degrees of freedom in each P

• (D0) the values of w,w/1 and w/2 at the vertices,

and in practice this will require, in a natural way, that

r ≥ 3, s ≥ 1.
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Ww, D

Fig. 9 C1 VEM, reduced HCT-like

Moreover, we would need to have the traces of w and of w/n to be single-valued on edges.
This will require to take as additional degrees of freedom

• (D1) for r ≥ 4, the moments
∫

e

wqr−4ds ∀qr−4 ∈ Pr−4(e), ∀e ∈ ∂P,

• (D2) for s ≥ 2, the moments
∫

e

w/n qs−2dx ∀qs−2 ∈ Ps−2(e), ∀e ∈ ∂P .

Finally we will have as internal degrees of freedom

• (D3) for m ≥ 0, the moments
∫
P

wqmdx ∀qm ∈ Pm.

The smallest space will then correspond to r = 3, s = 1, m = −1, and is an extension
to polygons of the reduced Hsieh–Clough–Tocher composite triangular element (see for
instance, [29]). The VEM space (for a general polygon P) will then be

V (P) :=
{
w ∈ H 2(P) : w|e ∈ P3(e), wn|e ∈ P1(e) ∀ edge e, and �2w = 0 in P

}
,

whose degrees of freedom are only the values of w and of its two derivatives at the vertices
of P , that is, (D0). See Fig. 9.

Another example (for r = 3, s = 2, m = −1) is given in Fig. 10; the corresponding
element will have (D0) and (D2) as degrees of freedom and is a sort of VEM counterpart
of the original Hsieh–Clough–Tocher composite triangular element (see again [29]).

In general, the space (21) will contain all polynomials Pκ for

κ = min{r, s + 1,m + 4} (≡ order of precision)

2

Dw,w, Wn

Fig. 10 C1 VEM, HCT-like
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2

nn tD W WWWw,

Fig. 11 C1 VEM, Quartic w and cubic w/n

and out of the degrees of freedom (D0), . . . , (D3), (integrating by parts twice) we can
compute an operator �P

κ : Vr,s,m(P) −→ Pκ (P) defined on each element by

aP (
�P

κ v − v, qκ

) = 0 ∀qκ ∈ Pκ (P),

∫
∂P

(
�P

κ v − v
)
q1ds = 0 ∀q1 ∈ P1(P).

The discrete bilinear form, for vh and wh in Vr,s,m(P), is then defined as in (7)

aP
h (vh,wh) := aP (

�P
κ vh,�

P
κ wh

) + SP ((
I − �P

κ

)
vh,

(
I − �P

κ

)
wh

)

with SP (vh,wh) taken, for instance, as in (8), provided that the dofs (D0)–(D3) are properly
treated in order to scale all of them in the same way. For the treatment of the right-hand side
and for the error estimates we refer to [24, 26].

Following a similar path, without any effort, and still on general polygons, we can design
a huge variety of methods. See, for instance, Fig. 11, corresponding to the case κ = 3
(r = 4, s = 3, m = −1), where the degrees of freedom are those of Fig. 10 plus the value
(at the midpoint of every edge) of w and of w/nt .

If one wants to put as many degrees of freedom as possible on vertices (less numerous
than edges) one can consider the Argyrys-like elements of Figs. 12 and 13.

Comparing with their FEM analogues, we see that we have here some additional
internal degrees of freedom. However, these could be easily eliminated by adapting the
Serendipity/Enhancement approach described in Section 2.2 for C0 VEM.

2Dw, Ww,D nW Moments of order 0 and 1

Fig. 12 C1 VEM, Quintic w and quartic w/n
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4.2 A Hint on Cp VEM for p ≥ 2

Along the same lines, still for general polygons, we might easily construct Cp elements for
p ≥ 2. Just to give an example, we might consider the elements of Fig. 14 (where we also
indicate the degrees of freedom).

In particular, Fig. 14 refers to the local spaces

V (P) :=
{
v ∈ H 3(P) : v|e ∈ P5(e), vn|e ∈ P4(e), vnn|e ∈ P3(e) ∀e ∈ ∂P, �3v = 0 in P

}
.

Out of the degrees of freedom we can once more compute an operator �P
5 : V (P) →

P5(P) defined by

∫
P

(
D3

(
�P

5 v − v
))

:
(
D3q5

)
dx = 0 ∀q5 ∈ P5,

∫
∂P

(
�P

5 v − v
)

q2ds = 0 ∀q2 ∈ P2(P).

The discrete bilinear form is then constructed as before as

aP
h (vh,wh) := aP (

�P
5 vh, �

P
5 wh

)+SP ((
I − �P

5

)
vh,

(
I − �P

5

)
wh

)
vh,wh ∈ V (P),

with SP (vh, wh) taken, for instance, again as in (8).

Remark 4 A family of nonconforming elements for plates was introduced independently in
[2, 53], which we refer to for a detailed description.

Remark 5 As a general consideration, we underline the fact that, in particular for two-
dimensional cases, the construction of Virtual Element spaces is extremely easy: one should
only set the degrees of freedom (for the function and the normal derivatives) on each edge.
The edges being one-dimensional, this is elementary.

Remark 6 On the other side, we must also point the attention to the fact that, so far, the
choice of a convenient stabilization procedure seems here to be less easy than for other
cases. To be more precise: it is not difficult to construct stabilising bilinear forms that make
the discrete problem well posed. However, in many cases the guidelines for an optimal
choice of the “stabilizing parameters” in front of them, or in front of some individual pieces
of them, is far from clear. Just to make an example, the HCT-like element of Fig. 10 can be
easily stabilised with, essentially, any of the different strategies used for C0 elements. But
this is not the case for its reduced-HCT-like companion of Fig. 9. In each particular case a
suitable choice of the stabilising parameter can be (relatively) easily found by trial and error,

2Dw, W Mean valuew,D

Fig. 13 C1 VEM, Quintic w and cubic w/n
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Dw,
n n
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2

tnn n t
CIRCLES: Dw, W SQUARES

2

Fig. 14 Examples of C2 elements

but... this is not what we like. At a more general level we feel that a novel point of view
should be found, allowing the determination of clear guidelines for the choice of stabilising
terms. Indeed, in our opinion, this is possibly the weakest point of VEM in general, and all
new points of view would be more than welcome!

5 VEM for Stokes and Incompressible Elasticity

5.1 Stokes 2D

We recall (to set the notation) the incompressible Stokes equations for a polygon � with
homogeneous Dirichlet boundary conditions, and forcing term f ∈ (L2(�))2:

Find u ∈ (
H 1

0 (�)
)2

and p ∈ L2(�) such that:

− �u + ∇p = f in �,

div u = 0 in �. (22)

Setting: V := (
H 1

0 (�)
)2
, Q := L2

0(�) (= L2 functions with zero mean value), and

a(u, v) :=
∫

�

ε(u) : ε(v)d� ∀u, v ∈ V, b(v, q) :=
∫

�

div vqd� ∀v ∈ V, ∀q ∈ Q,

where ε(v) = (∇v + (∇v)T )/2 is the symmetric gradient, the variational formulation of the
problem can be written as: Find u ∈ V, p ∈ Q such that{

a(u, v) + b(v, p) = (f, v) ∀v ∈ V,

b(u, q) = 0 ∀q ∈ Q.
(23)

Remark 7 From a purely mathematical point of view, as it is well known, the equations in
(23) coincide, up to the aspects related to the material properties, with the ones of incom-
pressible elasticity in the mixed (u, p). formulation. Hence the title of this section, where,
indeed, we will limit ourselves to the discussion of the Stokes case alone.

Remark 8 For the sake of simplicity we will keep the viscosity coefficient equal to 1, and
we will stick to the (widely unrealistic) case of homogeneous Dirichlet boundary conditions
on the whole boundary ∂�, as it is (quite often) done in the Mathematical literature.

Taking a sequence of conforming discretizations of this problem with Vh ⊂ V and Qh ⊂
Q, and suitable approximations ah and bh of the bilinear forms a and b, respectively, one

888 F. Brezzi, L.D. Marini



can write the discretized version as: Find uh ∈ Vh and ph ∈ Qh such that{
ah(uh, vh) + bh(vh, ph) = (fh, vh) ∀vh ∈ Vh,

bh(uh, qh) = 0 ∀qh ∈ Qh,
(24)

where, in turn, fh is (if needed) a suitable approximation of f. It is well known that
convergence of the method with optimal error bounds relies on the inf-sup stability condition

∃β > 0 such that inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖vh‖V ‖qh‖Q

≥ β ∀h. (25)

A huge number of different stable pairs pairs (Vh,Qh) satisfying (25) can be found
in the FEM literature. We refer, for simplicity, to [20] and the references therein. Once a
stable pair has been chosen, one can wonder whether the resulting solution uh would satisfy
exactly

divuh ≡ 0 in �, (26)

a condition that would be of considerable help in the mathematical treatment of the dis-
cretized problem, and, most important, would be quite relevant from the physical point of
view (ensuring the exact incompressibility of the discrete solution). Clearly this (for con-
forming approximations) will hold if, in every element P of the decomposition, we had
that{

{uh ∈ Vh} and
{∫

P
divuhqhdx = 0 ∀qh ∈ Qh

}}
⇒ {divuh = 0 in P} . (27)

A simple (and rather natural) sufficient condition for (27) is clearly

div{Vh} ⊆ Qh

that however, joined with (25), would imply

div{Vh} ≡ Qh, (28)

a rather stringent requirement, verified only with very few (and somehow rather cumber-
some) choices of discretizations (and in general only for special types of decompositions).
Among the many recent papers on Finite Element discretizations of the problem we men-
tion [27, 28, 32, 34, 37–41, 52] and refer especially to the excellent review [47], and to the
references therein.

Let us see how to design divergence-free Virtual Elements on practically arbitrary grids.
We concentrate on the 2D case, and refer to the results in [19].

For the velocity space we look first at the boundary, and we define, for k ≥ 2 and for a
polygon P , the space

Bk(∂P) :=
{
v ∈

(
C0(∂P)

)2
s.t. v|e ∈ (Pk(e))

2 ∀ edge e of ∂P
}
. (29)

Clearly, the dimension of Bk(∂P) for a polygon with n edges would be

dimBk(∂P) = 2nk.

Then we can define the VEM space for velocities:

Vk(P) :=
{
v ∈ (H 1(P))2 s.t. v|∂P ∈ Bk(∂P), rot(�v) ∈ Pk−3, div v ∈ Pk−1

}
, (30)

while for the pressure we simply take

Qk(P) = Pk−1(P).
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The dimension of Vk(P) is then equal to 2nk (dimension of Bk(∂P)) plus πk−3, plus
πk−1−1 (since, fromGauss theorem, the mean value of the divergence is determined already
by the boundary values). Then

dimVk(P) = 2nk + (k − 2)(k − 1)

2
+ k(k + 1)

2
− 1 = 2nk + k2 − k.

Accordingly, one can show (see [19]) that a set of degrees of freedom for Vk(P) can be
taken as

– the values of v at the n vertices (= 2n dofs),
– the values of v at k − 1 distinct points inside each edge (= 2n(k − 1) dofs),
– the values of

∫
P v · x⊥qk−3ds for every qk−3 ∈ Pk−3,

– the values of k(k + 1)/2 − 1 moments of div v.

The degrees of freedom for Qk , in each element, will be equal to πk−1 internal moments.
It can be shown (see always [19]) that, using the above degrees of freedom, for each

v ∈ Vk(P) one can compute, among other things, its divergence (which is a polynomial),
and also compute the operator �ε

k : Vk(P) → (Pk(P))2 defined by{ ∫
P ε(v − �ε

kv) : ε(qk)dx = 0 ∀qk ∈ (Pk)
2,∫

∂P (v − �ε
kv)ds = 0

that, in turn, allows to define, on each element P , a discrete bilinear form:

aP
h (u, v) :=

∫
P

ε
(
�ε

ku
) : ε

(
�ε

kv
)
dx + SP (

u − �ε
ku, v − �ε

kv
) ∀ u, v ∈ Vk(P),

where SP is again one of the common stabilizing bilinear forms of VEM theory, as for
instance the analogue of the one in (8).

The discrete bilinear form ah will then be obtained by summing the contributions of all
the polygons P . On the other hand, the bilinear form b(v, q) is directly computable, for
every v ∈ Vk(P) and q ∈ Qk(P), using the degrees of freedom. Finally, for the right-hand
side we use �0

k−2f instead of f, as we did in (9)).
Setting

Vh = {v ∈ V : v|P ∈ Vk(P) ∀P ∈ Th},
Qh =

{
q

∣∣∣∣ q|P ∈ Qk(P) ∀P ∈ Th, and
∫

�

q = 0

}
,

we have now all the ingredients that define the discrete problem:
Find uh ∈ Vh, ph ∈ Qh such that{

ah(uh, vh) + b(vh, ph) = (�0
k−2f, vh) ∀vh ∈ Vh,

b(uh, qh) = 0 ∀qh ∈ Qh.
(31)

Fig. 15 Dofs for k = 2, on triangles, for velocities (left) and pressures (right)
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Fig. 16 Dofs for k = 3, on triangles, for velocities (left) and pressures (right)

The following Figs. 15 and 16 show the degrees of freedom for k = 2 and k = 3 on triangles
and quads. The squares correspond to vectorial degrees of freedom (so, they amount to 2
dofs each).

It is important, in our opinion, to point out once more that, apart from the number n of
edges (and consequently the dimension ofBk), nothing changes when passing from triangles
to quads. And nothing would change passing to more general polygons.

It is not (at all!) easy, now, to compare VEM with FEM on triangles, due to the abun-
dance of different Finite Element approaches that appeared in the literature since the 70s.
For a panorama of the different choices we refer again to the recent overview [47] and to
the references therein. In order to show at least one comparison we decided to go for the
(possibly) most well known triangular element, that is the Crouzeix–Raviart element [30].

And indeed, in our opinion, the comparison with the Crouzeix–Raviart pair is particularly
clarifying. We recall that, in more detail, for the Crouzeix–Raviart element the space of
velocities is made, in each triangle, of vector-valued quadratic velocities augmented by
two cubic bubbles (one per component), and the space of pressures is made of piecewise
linear (discontinuous) polynomials. It is well known (see, e.g. [30] or [20]) that the inf-
sup property (25) is verified, while the divergence-free condition (26) does not hold, as the
divergence of the velocity field will come out to be, in each element, a polynomial of degree
2 orthogonal to all linear polynomials but not necessarily equal to zero. Instead the VEM-
pair of Fig. 15, which exhibits the same number of d.o.f.s of the Crouzeix–Raviart pair,
produces a discrete solution which is exactly divergence-free. Indeed, the VEM velocity
space can be thought of as obtained by adding to (P2)

2 two bubble-functions β(i) (i = 1, 2)
solutions of the local Stokes problems:

Find β(i) ∈ (
H 1

0 (P)
)2

and p(i) ∈ L2(P) such that{ −�β(i) + ∇p(i) = 0,
divβ(i) = (x − b)i

(32)

for i = 1, 2 where b = (b1, b2) is the barycenter of P .

Fig. 17 Dofs for k = 2, on quads, for velocities (left) and pressures (right)
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Fig. 18 Dofs for k = 3, on quads, for velocities (left) and pressures (right)

On the same order of ideas, taking (for super-simplicity) the quadrilateral domain Q ≡
] − 1, 1[×] − 1, 1[, and again k = 2, we remark first that the space B2 as defined in (29)
has obviously dimension 16, and can be thought of as being the direct sum of

– {P2}2|∂Q (= the traces of (P2)
2 on ∂Q. Note that this includes also the trace of x2y2

which actually coincides with the trace of x2 + y2 − 1 on ∂Q),
– the space generated (for each component) by the traces of x2y and of xy2,

whose dimensions are clearly 12 and 4, respectively. The whole space Q2(Q) can be seen
as generated by the spaces above, plus the two velocity fields (x2y2, 0) and (0, x2y2) (for
a total number of 18 unknowns, as obvious). Now the space of traces of the VEM Velocity
fields coincides with that of traces of Q2(Q) and has dimension 16 as well. To obtain the
VEM spaces one can

– begin from the 12 vectors in (P2)
2 (that belong to both spaces, and that we would never

give up!);
– then add the four vectors that have the same traces as (x2y, 0), (0, x2y), (xy2, 0), and

(0, xy2), zero divergence, and each component with constant Laplacian.

We have a dimension 16 so far. We can now

– add the two solutions of (32), this time on the domainQ.

The final dimension is now 18, in agreement with Fig. 17.

5.2 The Reduced VEM Spaces

An important variant of the VEM spaces for Stokes is given by the reduced VEM spaces
for incompressible fluids. From a purely mathematical point of view it is clear that (22) is
just a particular case of a more general “divu = g” with g given in L2(�) with zero mean
value (or with a mean value compatible with the boundary values prescribed for u, if these
are different from zero).

In practice, however, the case of incompressible fluids (where, in other words g ≡ 0)
occurs quite often in a number of important applications, so that it might deserve an ad hoc
treatment.

When using VEM one can make profit of the property (28) of these spaces, and combine
it with the perfectly incompressible case. This, in other words, will amount to consider, in
each subdomain, instead of (30) the smaller choice

Vr
k (P) :=

{
v ∈

(
H 1(P)

)2
s.t. v|∂P ∈ Bk(∂P), rot(�v) ∈ Pk−3, div v ∈ P0

}
(33)
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(whose dimension would just be 2nk+(k−2)(k−1)/2), and takeQ0(P) = P0(P). Starting
from the local spaces one can then define the global spaces Vr

h ⊂ V, and Q0
h = piecewise

constants, in the usual way. We can then consider the reduced problem: find ur
h ∈ Vr

h and
p0

h ∈ Q0
h such that {

ah(ur
h, v

r
h) + b(vr

h, p
0
h) = (�0

k−2f, v
r
h) ∀vh ∈ Vr

h,

b(ur
h, q

0
h) = 0 ∀q0

h ∈ Q0
h.

(34)

It is shown in [19] that the velocity ur
h, solution of the reduced problem (34), coincides

exactly with the velocity uh, solution of the discretized problem (31), while the pressure
p0

h is just the L2-projection of the pressure ph on piecewise constants. Clearly, if one is
interested only in the velocity field, the problem is solved. If one is also interested in the
pressure part, one can just use the (31) and compute ph knowing uh.

In Figs. 15, 16, 17 and 18, concerning the degrees of freedom in each element, this
reduction would amount to take out all the green dots in the velocity spaces, and all the
pressure dots but one.

Considering again the simplest case k = 2, we can perform an analysis of the local
reduced space Vr

2 (P) defined in (33), whose dimension, on triangular polygons, is just 12.
This is equal to the number of P2 pairs in two dimensions, but the VEM space does not
coincide with it. Indeed, the divergence of vectors in (P2)

2 is (in general) in P1 while the
divergences of Vr

2 (P) are all constants. Hence the property

(P2)
2 ⊆ Vr

k (P)

is clearly lost, although we still contain all pairs of polynomials in (P1)
2, and all polynomi-

als of P2 with constant divergence. Hence the patch test still holds in the form if the solution
u is a polynomial of degree k with constant divergence, then uh = u. Note that this includes
the incompressible case.

Note as well that (still on triangles) (P2)
2 and Vr

2 (P) have the same dimension, but
in Vr

2 (P) there are two independent elements not belonging to (P2)
2 (the two functions

in (32)). Viceversa, in (P2)
2 there are two elements that do not belong to Vr

2 (P), as for
instance,

q1 := 1

2

(
(x1 − b1)

2, 0
)

and q2 := 1

2

(
0, (x2 − b2)

2
)

,

where again (b1, b2) are the coordinates of the barycenter of P .

Remark 9 Once the reduced problem has been solved (and ur
h ≡ uh has been computed),

the full value of the pressure ph can be computed, in each element P , using its local mean
value (equal to p0

h) and recovering the linear part (with zero mean value) by taking, in (31),
vh equal to β1 and β2, defined in (32).

The VEM approach followed so far for the Stokes problem in the two-dimensional case
has been extended to the three-dimensional case in [13, 14, 19], including a study of the
Stokes Complex and the extension to the Navier–Stokes problem.

Remark 10 It is interesting to point out that, at least for the lowest order case k = 2,
the reduced elements in [19], reported here, have the same degrees of freedom of the for-
mulation in [39] (see also [28]). A step-by-step comparison between the VEM approach
presented here and that in [39] is however more difficult here than it was in previous
situations. Actually, the only subspace in common between the two approaches, for the
velocities, is (P1)

2. Hence, in order to shift from one method to the other we must exchange
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two subspaces of dimension six, that in general have no nontrivial elements in common. In
particular, the VEM spaces are all made (inside each element) of smooth functions, whereas
the others are piecewise polynomials on the refined grid but, in general, only C0 within each
element of the coarser grid.

6 Hellinger–Reissner Formulation of Linear Elasticity Problems

6.1 The Problem and its Difficulties

Starting, for simplicity, from the 2-dimensional case with homogeneous Dirichlet boundary
conditions, we recall that the mixed (Hellinger–Reissner) formulation of linear elasticity
problems in a domain � can be formulated as: Find (σ , u) in � × U such that

div σ + f = 0 in �,

σ = C(ε(u)) in �, (35)

u = 0 on ∂�,

where the stress space � ≡ H(div; �; S) is the space of 2 × 2 symmetric tensors with
divergence in (L2(�))2, the displacement space U is (H 1

0 (�))2, and the constitutive law is
(still for simplicity) the classical Cε := 2με + λtr(ε). With a common notation we also set
D := C

−1. Defining the bilinear forms (local and global)

aP (σ , τ ) :=
∫
P
Dσ : τdx ∀P and a(σ , τ ) :=

∑
P

aP (σ , τ ), (36)

bP (τ , v) :=
∫
P
div τ · vdx ∀P and b(τ , v) :=

∑
P

bP (τ , v), (37)

the variational formulation of (35) can be written as: find σ ∈ � and u ∈ U such that{
a(σ , τ ) + b(τ , u) = 0 ∀τ ∈ �,

b(σ , v) = −(f, v) ∀v ∈ U.

Choosing suitable finite dimensional subspaces �h ⊂ � and Uh ⊂ U and possibly some
approximate bilinear forms ah, bh, and forcing term fh, the approximate problem would
look like: find σ h ∈ �h and uh ∈ Uh such that{

ah(σ h, τh) + bh(τh, uh) = 0 ∀τh ∈ �h,

bh(σ h, vh) = −(fh, vh) ∀vh ∈ Uh.
(38)

The difficulties in the Finite Element dicretization of this problem come from the combined
targets of

i) getting a symmetric discrete stress tensor,
ii) getting a discrete stress tensor with continuous tractions at interelement boundaries,
iii) getting a stable pair (�h,Uh) (meaning that the inf-sup condition holds), and
iv) making the formulation hybridizable, introducing interelement multipliers to force

the continuity of tractions, and eliminating the stress field by static condensation (de
Veubeke style. See also [7]).

Furthermore, it would also be nice to have (at least when the material properties are
piecewise constant)
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v) the self-equilibrium property (meaning that if f = 0 in one element, then div σ h = 0
there), and

vi) the patch-test of some order k ≥ 1 (that is: if u is, globally, a polynomial of degree
≤ k, then uh = u and σ h = σ ).

To our knowledge, in the Finite Element framework all the above properties are almost
impossible to satisfy at the same time (and we are not aware of a successful attempt) stick-
ing on polynomial spaces in each element. See e.g. [5, 8, 9, 25, 27, 35, 36, 38, 42–46],
and the references therein, for several important results in this direction. In a sense, the
huge amount of papers that appeared in the last ten years on the subject shows, at the same
time, the relevance and the difficulty of the task. On the other hand, in the VEM frame-
work, allowing a much wider set of functions in the discrete space, everything is possible
(...well..., “almost”). However, even the super-powerful VEM framework starts becoming
complicated, and here, following essentially [11], we will limit our description to the 2-d
case, referring to [31] for the (successful!) treatment of the three-dimensional case.

6.2 The VEM Spaces

Given a polygon P with n edges, we first introduce the space of local infinitesimal rigid
body motions:

RM(P) = {r(x) = a + b(x − xP )⊥ with a ∈ R
2 and b ∈ R}

where xP is the baricenter of P . Introducing also the space

RM⊥
k (P) =

{
p ∈ (Pk)

2 :
∫
P
pk · r = 0 ∀r ∈ RM(P)

}
,

we note that, obviously, we can always decompose (Pk)
2 as a direct sum

(Pk)
2 = RM(P) ⊕ RM⊥

k .

For each integer k ≥ 1 and for each polygon P we now introduce the local tensor space
of discretized stresses as

�k(P) := {τ ∈ H(div;�; S) s.t. curlcurl(Dτ ) = 0,

τ · n|e ∈ (Pk(e))
2 ∀e ∈ ∂P, div τ ∈ (Pk)

2
}
.

We recall thatD := C
−1, and that the curlcurl of a 2×2 symmetric tensor z is defined as

curlcurl(z) := (z11)yy − 2(z12)xy + (z22)xx

so that for every (smooth enough) vector v we have curlcurl(ε(v)) ≡ 0. Hence the con-
dition curlcurl(Dτ ) = 0 is equivalent to require that τ = C(ε(v)) for some vector v. A
natural requirement for a stress field.

A tensor τ ∈ �k(P) can be individuated by the following degrees of freedom:

for each edge e in ∂P :
∫

e

τn · qkds ∀qk ∈ (Pk(e))
2,

in P :
∫
P
div τ · qkdx ∀qk ∈ (RM)⊥k . (39)

Remark 11 In [10] one could find a cheaper variant of the lowest order space, where τ ·n is
required to have the normal component (i.e., τnn) linear, and the tangential component (i.e.,
τnt ) constant, saving one degree of freedom per edge.
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For the approximation of the vector space of displacements U we simply take

Uk(P) := (Pk)
2. (40)

From the local spaces �k(P) one can then easily construct the global spaces �(�)

by using the local spaces in each element of a decomposition, obviously making the
degrees of freedom on edges single valued, so that the resulting space is a subspace of
H(div; �; S). Similarly, from the local spaces (40) one construct the global space Uh for
the approximation of displacements (no continuity requirements are needed here).

Using the degrees of freedom (39) we can now proceed, as we did in the previous sec-
tions, to the construction of a discrete version of the bilinear form aP (σ , τ ) defined in (36).
For this, we note that for every polygon P , and for every τ in �k(P), integrating by parts
we can compute the projection �a

kτ of τ onto the space (Pk)
4
sym, given by

aP (�a
kτ − τ ,pk) = 0 ∀pk ∈ (Pk)

4
sym.

We can also compute div τ , that belongs to (Pk)
2. Proceeding as in all previous cases we

can then define on each element P an approximated bilinear form

aP
h (σ h, τh) := aP (

�a
kσ , �a

kτh

) + SP ((
I − �a

k

)
σ h,

(
I − �a

k

)
τh

) ∀σ h, τh ∈ �k(P),

where again the bilinear form S is a stabilizing term (to fix ideas, of the dofi-dofi type). Then
one gets the global bilinear form ah(·, ·) summing over the elements. On the other hand, no
projection is needed for the second equation of (38) since both the divergence of tensors in
�h and the elements of Uh are polynomials.

We point out that VEM spaces enjoy, at the same time, all these useful features:

A - They pass the patch test (of order k).
B - They are easily hybridizable (having no vertex degrees of freedom).
C - The stress field is symmetric (equilibrium of momentums).
D - If the load f ∈ (Pk)

2, then div σ h + f = 0 (equilibrium of forces).
E - The definition, essentially, does not depend on the shape of the elements (triangles,

quads, polygons, polyhedra etc.)

As we already did in the previous section (on Stokes problem), we will not enter a
detailed comparison between VEM and different types of FEM. Among other things, this
is also due to the difficulty to pick-up one or two typical Finite Element approaches for the
comparison. Actually, by now, we have a very wide variety of FEM to deal with the present
problem. To our knowledge, the paper [38] (using rational functions together with polyno-
mials) is the one that best approaches, on triangles, the basic features of VEM. One might
consider that rational functions are used there, instead of solutions of some PDE system (as

Normal Stress (2 dofs) Displacements (2 dofs)Divergence moments vs RT−ort (3 dofs)

Fig. 19 Hellinger-Reissner Dofs for k = 1, VEM [11]
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Normal Stress (2 dofs) Displacements (2 dofs)Stress Average (3 dofs) Stress values (3 dofs)

Fig. 20 Hellinger-Reissner Dofs for k = 1, FEM Arnold-Winther [5]

we do with VEM) as an alternative way to escape the polynomial trap. In our Figs. 19 and
20 we decided however to compare the degrees of freedom of VEM with those of the most
classical (and possibly best known) [5], hence avoiding a description of the FEM spaces
used in more recent approaches. We do not pretend this to be exhaustive in any sense. It is
not, BY FAR. We refer the interested readers to the FEM and VEM papers already cited
here.
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