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Abstract
We observe that for a unit tangent vector field u ∈ T M on a 3-dimensional Riemannian
manifold M , there is a unique unit cotangent vector field A ∈ T ∗M associated to u such
that we can define the curl of u by dA. Through a unit cotangent vector field A ∈ T ∗M , we
define the Oseen–Frank energy functional on 3-dimensional Riemannian manifolds. More-
over, we prove partial regularity of minimizers of the Oseen–Frank energy on 3-dimensional
Riemannian manifolds.
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1 Introduction

A liquid crystal is a mesomorphic phase of a material which occurs between its liquid and
solid phase. The material is composed of rod like molecules which display orientational
order, unlike a liquid, but lacking the lattice structure of a solid. In their pioneering works,
Oseen [36] and Frank [11] established the static mathematical continuum theory on nematic
liquid crystals through a director u, which is the average direction of molecules [35]. There
are a lot of analytical and computational issues in study of static equilibrium configurations.

Let ⊂ R
3 be an open bounded domain with smooth boundary . Set

H 1 ; S2) = u ∈ H 1 ;R3) : |u| = 1 a.e. on .

The Oseen–Frank energy associated to a director u ∈ H 1 ; S2) is given by

E(u) = W(u,∇u) dx,
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where W(u,∇u) is the Oseen–Frank free energy density given by

W(u,∇u) = k1(div u)2 +k2(u ·curl u)2 +k3|u×curl u|2 + (k2 +k4) tr(∇u)2 − (div u)2 ,

in which k1, k2, k3 are the Frank constants for molecular distortion of splay, twist and bend
respectively, and k4 is the Frank constant for the surface energy (e.g. [35]).

Let γ : → S2 be a given smooth boundary data. For any map u ∈ H 1
γ

2), the
integral

= 1

2
[tr(∇u)2 − (div u)2]dx

is a number depending on only γ (see [20]). Therefore, without loss of generality, we
assume

W(u,∇u) := k|∇u|2 + V (u,∇u), (1.1)

where k = min{k1, k2, k3} > 0 and

V (u,∇u) = (k1 − k)(div u)2 + (k2 − k)(u · curl u)2 + (k3 − k)|u × curl u|2.

An equilibrium configuration of liquid crystals corresponds to an extremal (critical point)
of the functional E. The Euler–Lagrange equations associated with E in H 1 ; S2) is

δik − uiuk ∇αWpk
α
(u,∇u) − Wuk (u,∇u) = 0 (1.2)

for i = 1, 2, 3. Here and in the sequel, we adopt the Einstein summation convention and
denote by δik the Kronecker delta. In the special case of k1 = k2 = k3 = 1 and k4 = 0, the
equation (1.2) is

u + |∇u|2u = 0 in

which is the equation of harmonic maps from into S2. In 1964, Eells and Sampson [8]
introduced the study of harmonic maps between two Riemannian manifolds. There are many
interesting results on harmonic maps (e.g. [7, 29]). In particular, Giaquinta–Giusti [13, 14]
and Schoen–Uhlenbeck [33] proved partial regularity of minimizing harmonic maps. For
further developments on harmonic maps, see [18, 24].

Numerical and experimental analysis on liquid crystals has shown that equilibrium con-
figurations of the system (1.2) expect to have point and line singularities. In physics, it is
called the one-constant approximation for the special case of k1 = k2 = k3 = 1 and k4 = 0
(e.g. [35, Section 2.2.1]). For this special case, Brezis, Coron and Leib [4] investigated
the local behavior of isolated singularities of energy minimizing maps. Bethuel, Brezis and
Coron [3] introduced a relaxed energy for harmonic maps and proved existence of infinitely
many weak solutions of harmonic maps (see also [23]). Bethuel and Brezis [2] studied the
regularity problem of minimizers of modified relaxed problems for harmonic maps. Using
Cartesian currents, Giaquinta, Modica and Soucek [16] proved partial regularity of mini-
mizers of the relaxed energy for harmonic maps. In the same spirit of Sacks–Uhlenbeck [34]
and Uhlenbeck [38], Giaquinta, the author and Yin [15] proposed an approximation for the
relaxed energy of the Dirichlet energy and proved partial regularity of a minimizer of the
relaxed energy for harmonic maps without using Cartesian currents.

In the theory of liquid crystals, the Frank elastic constants k1, k2, k3 in (1.1) are unequal
in general. For an example, the work of Zwetkoff in 1937 was mentioned by Stewart in [35]
that the Frank elastic constants for para-Azoxyanisole (PPA) at T = 125◦C are

k1 = 9 × 10−12N, k2 = 5.8 × 10−12N, k3 = 19 × 10−12N .

For the general case of the unequal Frank constants k1, k2 and k3, Hardt, Kinderlehrer and
Lin [20, 21] proved that an energy minimizer u is smooth on some open subset 0 ⊂
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and moreover Hβ \ 0) = 0 for some positive β < 1, where Hβ is the Hausdorff mea-
sure. Almgren and Lieb [1] did more analysis on singularities of energy minimizing maps
when k1, k2 and k3 are close to k. Giaquinta, Modica and Soucek [17] studied the relaxed
energy of the Oseen–Frank functional. As we pointed out before, harmonic maps have been
extensively studied between two Riemannian manifolds (e.g. [7, 18, 29]), so it is interesting
to generalize the Oseen–Frank energy on Riemannian manifolds.

In this paper, we investigate the Oseen–Frank energy functional on 3-dimensional Rie-
mannian manifolds. Let (M, g) be a 3-dimensional Riemannian manifold (with possible
boundary). In local coordinates around a point x ∈ M , a smooth Riemannian metric g can
be represented by

g = gij dxi ⊗ dxj ,

where (gij ) is a positive definite symmetric n×n matrix. Let (gij ) := (gij )
−1 be the inverse

matrix of (gij ) and the volume element of (M; g) is

dvg = |g|dx with |g| := det(gij ).

For a unit tangent vector field u ∈ H 1 ; T M), we write u(x) = ui(x) ∂
∂xi in local

coordinates with the norm

|u(x)|2 = gij u
i(x)uj (x) = 1.

Although one can define curl u in the tangent space through a normal frame, there is no
clear form of curl u. As pointed out in [6, Chapter 3, p. 79], curl u associates to dA through
an one-form A. Motivated by this observation, we have

Theorem 1.1 For a unit tangent vector field u ∈ T M , there is a unique unit cotangent
vector field A ∈ T ∗M associated to u such that

|d∗A|2 = |div u|2, A, ∗dA 2 = |u · curl u|2, |A ∧ ∗dA|2 = |u × curl u|2,
where ∗ is the Hodge star operator (e.g. [31]).

Let be a domain in M . For a unit tangent vector field u ∈ H 1 ; T M), let A ∈
H 1 ; T ∗M) be the unit cotangent vector field associated to u in Theorem 1.1 and denote
by ∇A the covariant derivative of A (e.g. [31]). Then, we define the Oseen–Frank energy
functional of A in by

E(A; = W(A(x),∇A(x)) dvg, (1.3)

where W(A,∇A) is the Oseen–Frank energy density defined by

W(A, ∇A) := k|∇A|2 + V (A, d∗A, dA)

with k = min{k1, k2, k3} > 0, satisfying

V (A, d∗A, dA) = (k1 − k)|d∗A|2 + (k2 − k) A, ∗dA 2 + (k3 − k)|A ∧ ∗dA|2.

Denote T ∗
M(S2) = {A ∈ T ∗M : |A| = 1}. Then A ∈ H 1 ∗

M(S2)) is a weak solution
to the liquid crystal system if A satisfies the Euler–Lagrange equation

k ∇∗∇A − |∇A|2A + (k1 − k) dd∗A dd∗A,A A) (1.4)

+(k2 − k3) d∗( A, ∗dA A) d∗( A, ∗dA A),A A)

+(k3 − k) d∗dA d∗dA,A A + (k2 − k3) A, ∗dA dA A, ∗dA 2A = 0
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in the sense of distribution (see details in Section 4).
Then we prove partial regularity of minimizers of the Oseen–Frank energy:

Theorem 1.2 Let A be a minimizer of the Oseen–Frank energy functional (1.3) in
H 1

γ ; T ∗
M(S2)), where γ is a given boundary value. Then, A is smooth in a set 0 ⊂ ¯

andHβ( ¯ \ 0) = 0 for some positive β < 1, whereHβ is the Hausdorff measure.

The idea of proofs of Theorem 1.2 is to modify an approach of the direct method in
[22], which is based on a reverse Hölder inequality. The direct method for elliptic systems
was extensively studied in [12] and [19]. Using the minimality, we prove a Caccioppoli’s
inequality and a reverse Hölder inequality. Since the principal term in (1.4) is complicated,
the liquid crystal system is not a standard elliptic system, which is not discussed in [12] and
[19].

We would like to outline some key ideas to handle the extra terms in (1.4). We choose a

normal co-frame {ωi}3
i=1 around x0 ∈ M such that ω3 = Ax0,R

|Ax0,R | . Set Ã = Ã1ω1 + Ã2ω2.

Using the fact that |A| = 1, we can prove

|∇(A − Ã)|2 ≤ C |A − Ax0,R| + R2 + R−1

BR(x0)

|∇A|2 dvg |∇A|2.

We rewrite (1.4) into an equation on Ã (see (4.4)). Then we can estimate the difficult
terms in (1.4). Finally, we modify the freezed coefficient method from [12] to prove partial
regularity.

Remark 1 Based on the static Oseen–Frank theory, Ericksen [9] and Leslie [32] proposed
a hydrodynamic theory to describe the behavior of liquid crystal flows. Recently, there are
a lot of progress about the Ericksen–Leslie system in R

3 with unequal Frank constants k1,
k2, k3 (e.g. [10, 26–28]). Comparing with the result of Struwe [37] and Chen–Struwe [5]
on the harmonic map flow between manifolds, it is interesting to study the Ericksen–Leslie
system on manifolds for unequal Frank constants k1, k2, k3.

Finally, I would like to dedicate this paper to Professor Jürgen Jost on the occasion of
his 65th birthday. I met Jürgen first time at ETH-Zürich in 1994 when I was a postdoctoral
fellow under supervision of Professor Michael Struwe. Through our collaboration [25], I
learnt a lot of mathematics from Jürgen and Michael. Furthermore, I also learn a lot of
knowledge on differential geometry from Jürgen’s books [30, 31].

The paper is organized as follows. In Section 2, we outline geometric setting for the
Oseen–Frank energy and prove Theorem 1.1. In Section 3, we prove the Caccioppoli
inequality and the reverse Hölder inequality. In Section 4, we prove Theorem 1.2.

2 Geometric Setting for the Oseen–Frank Energy

Let M be a smooth Riemannian 3-manifold M equipped with a Riemannian metric g; i.e.,
for each tangent space TxM , there is an inner product , . In local coordinates,

gij := ∂

∂xi
,

∂

∂xj
.
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For X, Y,Z ∈ C∞(T M), the connection ∇ satisfies

X Y,Z XY,Z Y, ∇XZ .

The connection, which satisfies the above identity, is called Riemannian. In local coordi-
nates, the Christoffel symbols are defined by

k
ij := 1

2
gkl ∂glj

∂xi
+ ∂gil

∂xj
− ∂gij

∂xl

satisfying

∇ ∂

∂xi

∂

∂xj
= k

ij

∂

∂xk
, ∇ ∂

∂xi
(dxj ) = − j

ikdxk .

We recall that the curvature tensor of Levi-Civita connection R is given by

R(X, Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z

for X, Y,Z ∈ C∞(T M). In local coordinates,

R
∂

∂xi
,

∂

∂xj

∂

∂xl
= Rk

lij

∂

∂xk
.

We set

Rklij := gkmRm
lij = R

∂

∂xi
,

∂

∂xj

∂

∂xk
,

∂

∂xl
.

In local coordinates, we have

Rk
lij =

k
j l

∂xi
−

k
il

∂xj
+ k

im
m
jl − k

jm
m
il .

For each x ∈ M , let u(x) be a unit tangent vector in TxM . In local coordinates, we write
u(x) = ui(x) ∂

∂xi with the norm |u(x)|2 = giju
i(x)uj (x) = 1. It follows from [6, Chapter 4,

pp. 114–115] that the absolute differential of u is defined by

∇u = (dui + ujωi
j ) ⊗ ∂

∂xi
= ∂ui

∂xj

+ uk i
kj dxj ⊗ ∂

∂xi
,

where ωi
j is defined by ωi

j = i
jkduk .

The divergence of the vector u(x) = ui(x) ∂
∂xi (e.g. [31]) is defined as

div u = 1√|g|
∂

∂xj
|g|uj . (2.1)

For a unit vector u(x) = ui(x) ∂
∂xi ∈ T M , there is a unique corresponding cotangent vector

A in T ∗M defined by

A(x) = Ai(x) dxi = giju
j dxi (2.2)

satisfying

|A|2 = giju
j dxi, gklu

ldxk = gij gklg
ikuluj = gij u

iuj = 1.

Then the absolute differential of A (e.g. [6, Chapter 4]) is given by

∇A = (dAi − Ajω
j
i ) ⊗ dui = ∂Ai

∂xj
− Ak k

ij duj ⊗ dui .

601The Oseen–Frank Energy Functional on Manifolds



Moreover,

dA = dAj ∧ dxj = 1

2

∂Aj

∂xi
− ∂Ai

∂xj

dxi ∧ dxj =
i<j

∂Aj

∂xi

− ∂Ai

∂xj

dxi ∧ dxj .

It implies

|dA|2 = 1

4
gikgjl ∂Aj

∂xi
− ∂Ai

∂xj

∂Al

∂xk
− ∂Ak

∂xl
.

Let d be the exterior derivative given by

d : k(T M) → k+1(T M) for an integer k ≥ 0

and the adjoint operator
d∗ : k+1(T M) → k(T M)

satisfying the property

M

da, b dv =
M

a, d∗b dv.

Let ∗ be the Hoge star operator (e.g. [31]) by

∗ : k(T ∗
x M) → 3−k(T ∗

x M).

Using the star operator ∗, we have

∗dA =
i<j

∂Aj

∂xi
− ∂Ai

∂xj
∗ (dxi ∧ dxj ) ∈ 1(T ∗

x M).

Then

A, ∗dA A1 ∂A3

∂x2
− ∂A2

∂x3
dx1, ∗(dx2 ∧ dx3) A2 ∂A3

∂x2
− ∂A2

∂x3
dx2, ∗(dxi ∧dxj )

+A3 ∂A2

∂x1
− ∂A1

∂x2
dx3, ∗(dx1 ∧ dx2) .

Now we complete a proof of Theorem 1.1.

Proof Through the dual operator d∗, we have

M

d∗A, f dvg =
M

A, df dvg

for a smooth function f with compact support in M . Then we have in local coordinates

d∗A = − 1√|g|
∂

∂xj
|g|gijAi .

It can be checked that d∗A = −div u through (2.1)–(2.2).
In normal coordinates at each fixed x0 ∈ M (e.g. [31, p. 21]), we have

gij (x0) = δij
i
jk(x0) = 0,

∂gij

∂xk

(x0) = 0

for i, j, k. At each x0 ∈ M , we can write u(x0) = ui(x0)ei ∈ S2 ⊂ Tx0M = R
3 with a

normal frame {ei = ∂
∂xi

}. Let {ωi = dxi} be a normal co-frame at x0. Then at x0, we have

A = A1dx1 + A2dx2 + A3dx3 = u1ω1 + u2ω2 + u3ω3.
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At each x0, we have

dA = ∂A3

∂x2
− ∂A2

∂x3
ω2 ∧ ω3 + ∂A3

∂x1
− ∂A1

∂x3
ω1 ∧ ω3 + ∂A2

∂x1
− ∂A1

∂x2
ω1 ∧ ω2

and

∗dA = ∂A3

∂x2
− ∂A2

∂x3
ω1 + ∂A1

∂x3
− ∂A3

∂x1
ω2 + ∂A2

∂x1
− ∂A1

∂x2
ω3.

Using the formula (2.2.1) of Chapter 2 in [31] with |A| = 1, we have

| ∗ dA|2 = |curl u|2, A, ∗dA 2 = |u · curl u|2,
|A ∧ ∗dA|2 = |A|2| ∗ dA|2 A, ∗dA 2 = |u × curl u|2.

This proves our claim.

3 Caccioppoli’s Inequality and the Reverse Hölder Inequality

In the section, we will follow the approach in [22] for proving Caccioppoli’s inequality and
a reverse Hölder inequality of energy minimizers.

At first, we generalize Hardt–Lin’s extension Lemma in [21]:

Lemma 3.1 Let BR(x0) be a geodesic ball in M for all R ≤ R0 with some R0 > 0.
For any v ∈ H 1(BR(x0); T ∗M) with |v| = 1 on ∂BR(x0), there exists an one form w ∈
H 1(BR(x0); T ∗

M(S2)) such that

w = v on ∂BR(x0)

and

BR(x0)

|∇w|2 dvg ≤ C
BR(x0)

(|∇v|2 + |x − x0|2) dvg

for a constant C independent of v, w and R.

Proof We modify a proof in the Appendix of [21]. At a fixed x0 ∈ M , there is normal
coordinates (e.g. [31, p. 21]) in BR0(x0) such that

gij (x0) = δij ,
∂gij

∂xk

(x) ≤ C|x − x0|

for i, j, k. In the coordinate at x0, we write

v = vi(x)dxi .

Let ã = aidxi ∈ T ∗M be the one form corresponding to the constant a = (a1, a2, a3) ∈ R
3

with |ã| ≤ 1
2 . Then we consider a one form

wa(x) = v(x) − ã

|v(x) − ã| , x ∈ .

Then at x = x0

∇wa = ∇(v − ã)

|v − ã| − (v − ã) v − ã,∇v

|v − ã|3 .
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Integrating over with respect to x and over B1/2 with respect to a, we obtain

B1/2 BR(x0)

|∇wa |2 dvg dã =
BR(x0) B1/2

|∇wa |2 dã dvg

≤ C
BR(x0)

|∇(v − ã)|2 dvg≤C
BR(x0)

|∇v|2+|x − x0|2 dvg

due to the fact that

B1/2

|v − ã|−2 dã ≤ K,

where K is a positive constant. Hence there exists a point a0 with |a0| ≤ 1
2 such that

BR(x0)

|∇wa0 |2 dx ≤ C
BR(x0)

|∇B|2 + |x − x0|2 dvg . (3.1)

For any a ∈ T ∗M with |a| ≤ 1
2 , we define a to be a C1-bilipshitz diffeomorphism of

T ∗
M(S2) onto itself by

a(ξ) = ξ − a

|ξ − a| .

Indeed,
−1
a (η) = a + [(a · η)2 + (1 − |a|2)]1/2 − a · η η

and
|∇ −1

a (η)| ≤
for a uniform constant independently of a with |a| ≤ 1

2 .
Therefore, taking

w = −1
a0

◦ wa0 ,

we have
|∇w| ≤ |∇wa0 |. (3.2)

Our claim follows from (3.1) and (3.2).

We recall Lemma 3.1 in Chapter V of [12]:

Lemma 3.2 Let f (t) be a nonnegative bounded function defined in [r0, r1], r0 ≥ 0.
Suppose that for any two t , s with r0 ≤ t < s ≤ r1 we have

f (t) ≤ C(s − t)α + B + θf (s), (3.3)

where C, B, α, θ are nonnegative constants with 0 ≤ θ < 1. Then all ρ, R with r0 ≤ ρ <

R ≤ r1 we have
f (ρ) ≤ C (R − ρ)α + B .

Using Lemma 3.1 and Lemma 3.2, we prove

Lemma 3.3 (Caccioppoli’s inequality) Let x0 ∈ and R0 > 0 such that BR0(x0) ⊂ . Let
A be a minimizer of E in H 1

γ
∗
M(S2)). Then for any R ≤ R0, we have

BR/2(x0)

|∇A|2 dvg ≤ CR−2

BR(x0)

|A − Ax0,R|2 dvg + CR5, (3.4)

where Ax0,R := 3
i=1 Ai

x0,R
dxi is denoted by

Ai
x0,R

= 1

|BR(x0)| BR(x0)

Ai dvg . (3.5)
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Proof Let v ∈ H 1
γ (BR0(x0), T

∗M) with v = A on ∂BR0(x0) for a R0 > 0. By Lemma 3.1,

there is a w ∈ H 1(BR0(x0); T ∗
M(S2)) with w = A on ∂BR0(x0) such that

BR0 (x0)

|∇w|2 dvg ≤ C
BR0 (x0)

|∇v|2 + |x − x0|2 dvg .

Since A is a minimizer of E in H 1
γ

∗
M(S2)) and w = A on ∂BR0(x0), we have

k
BR0 (x0)

|∇A|2 dvg ≤
BR0 (x0)

W(A,∇A) dx

≤
BR0 (x0)

W(w,∇w) dvg ≤ C
BR0 (x0)

|∇v|2 + |x − x0|2 dvg

for any v ∈ H 1
A(BR0(x0)).

For any two positive t , s with R
2 ≤ t < s ≤ R, we choose a cut-off function η ∈ C∞

0 (Bs)

such that 0 ≤ η ≤ 1 with η ≡ 1 in Bt and |∇η| ≤ C
s−t

. Taking v = A − η(A − Ax0,R), we
see

∇v = (1 − η)∇(A − Ax0,R) − ∇η(A − Ax0,R).

It follows from (3.3) that

Bs

|∇A|2 dx ≤ C
Bs

|∇v|2 + |x − x0|2 dvg .

Then

Bs

|∇A|2 dvg ≤ C1
Bs\Bt

|∇A|2 dvg + C1R
5 + C1(s − t)−2

BR

|A − Ax0,R|2 dvg .

By the standard filling hole trick, there exists a positive θ = C1
1+C1

< 1 such that

Bt

|∇A|2 dvg ≤ θ
Bs

|∇A|2 dvg + CR5 + C(s − t)−2

BR

|A − Ax0,R|2 dvg

for all t , s with R
2 ≤ t < s ≤ R. It implies from using Lemma 3.2 that

BR/2

|∇A|2 dvg ≤ CR−2

BR

|A − Ax0,R|2 dvg + CR5.

This proves our claim.

By applying the Sobolev–Poincare inequality to (3.4), we have

−
BR/2(x0)

|∇A|2 dvg

1/2

≤ C

R
−

BR(x0)

|A − AR|2 dvg

1/2

+ CR

≤ C −
BR(x0)

|∇A| 6
5 dvg

5
6 + CR

for any x0 ∈ and any R > 0 with BR(x0) ⊂ BR0
2

(x0) ⊂ for some R0 > 0. Then

−
BR/2(x0)

(|∇A| + R)2 dvg

1/2

≤ C −
BR(x0)

(|∇A| + R)
6
5 dvg

5
6

.
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Using the above result, we use the standard trick (see Proposition 1.1 of [12]; pp. 122–123)
to obtain that there exists an exponent q > 2 such that for all x0 ∈ and R ≤ R0, we have

−
BR/2(x0)

(|∇A| + R)q dx

1/q

≤ C −
BR(x0)

(|∇A| + R)2 dx

1/2

, (3.6)

where C is a constant independent of A. Equation (3.6) is called a reverse Hölder inequality.

4 Partial Regularity of Weal Solution of Liquid Crystal Systems

In the section, we will modify an approach in [22] to prove partial regularity of weak
solutions having Caccioppoli’s inequality (see Lemma 3.3).

For a smooth one-form φ ∈ C∞
0 , we consider a variation

At(x) = A + tφ

|A(x) + tφ(x)| = A + tφ

(1 + 2t A, φ t2|φ|2)1/2
.

We calculate
dAt

dt
= φ

|A(x) + tφ(x)| − (A + tφ)( A, φ t |φ|2)
(1 + 2t A, φ t2|φ|2)3/2

.

Note |A| = 1. Then

dAt

dt t=0
= φ − A A, φ ,

d∇At

dt t=0
= ∇φ − ∇(A A, φ ).

Note that

d∗At = − 1√|g|
∂

∂xj
|g|gijAi

t .

Using the fact that |A| = 1, we have

d

dt
d∗At

t=0
= d∗(φ − A A, φ )

and
d

dt
dAt

t=0
= d(φ − A A, φ ).

To derive the Euler–Lagrange equation, we compute

d

dt
W(At ,∇At) dx

t=0
= 0.

Using |A|2 = 1, we have

k A, ∇φ − ∇A A, φ (k1 − k) d∗A, d∗[φ − A A, φ

+(k2 − k) A, ∗dA A, d(φ − A A, φ )

+(k2 − k) A, ∗dA dA, φ − A A, φ

+(k3 − k) A ∧ ∗dA, A ∧ ∗[d(φ − A A, φ )

+(k3 − k) A ∧ ∗dA, (φ − A A, φ ) ∧ ∗dA dvg = 0

for any one-form φ ∈ C∞
0 .
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Using the formula (2.2.1) of Chapter 2 in [31] and that |A| = 1, we have

A ∧ ∗dA,A ∧ ∗[dφ − d(A A, φ )

= |A|2 dA, ∗[dφ − d(A A, φ ) A, ∗[dφ − d(A A, φ ) dA, A

dA, d[φ − A A, φ dA, A A, d(φ − A A, φ )

and

A ∧ ∗dA, (φ − A A, φ ) ∧ ∗dA

A, φ − A A, φ dA|2 A, ∗dA dA, φ − A A, φ

A, ∗dA dA, φ − A A, φ .

Therefore, A ∈ H 1 ∗
M(S2)) is said to be a weak solution to the liquid crystal system if

A satisfies (1.4) in weak sense, i.e.,

k A, ∇φ − ∇A A, φ (k1 − k) d∗A, d∗[φ − A A, φ

+(k2 − k3) A, ∗dA A, d(φ − A A, φ )

+(k2 − k3) A, ∗dA dA, φ − A A, φ

+(k3 − k) dA, d[φ − A A, φ dvg = 0

for any one-form φ ∈ C∞
0 .

Now we prove

Theorem 4.1 Let A ∈ H 1 ∗
M(S2)) be any weak solution of (1.4) and assume that A

has the Caccioppoli inequality. ThenA is smooth in an open set 0 ⊂ andHβ \ 0) = 0
for some positive β < 1.

Proof Let x0 be a point in with BR0(x0) ⊂ with R0 ≤ 1
2 dist(x0 . For any R, we

denote Ax0,R := 3
i=1 Ai

x0,R
dxi as in (3.5). In normal coordinates around a point x0 ∈ M

(e.g. [31, p. 21]), we have

gij (x0) = δij ,
∂gij

∂xk

(x) ≤ C|x − x0|, |gij (x) − δij | ≤ C|x − x0|2.

By the Sobolev–Poincare inequality, we have

|1 − |Ax0,R|2| ≤ −
BR(x0)

|A − Ax0,R|2 dvg + C|x − x0|2

≤ CR−1

BR(x0)

|∇A|2 dvg + CR2. (4.1)

If R−1
BR(x0)

|∇A|2 dvg and R are sufficiently small, it can be seen from (4.1) that

|Ax0,R| = 0. We set ω3 = Ax0,R

|Ax0,R | . Then it follows from (4.1) that

|ω3 − Ax0,R| = |1 − |Ax0,R|| ≤ |1 − |Ax0,R|2|
≤ CR−1

BR(x0)

|∇A|2 dvg + CR2.
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Then we have

|A − ω3| ≤ |A − Ax0,R| + |Ax0,R − ω3|
≤ |A − Ax0,R| + CR−1

BR(x0)

|∇A|2 dvg + CR2. (4.2)

At each point x ∈ BR0(x0) with a sufficiently small R0 > 0, there exists an normal frame
field ej = ∂

∂xj in TM (e.g. [6, 31]). Assume that {ωi}3
i=1 is a normal co-frame field in T ∗M

in BR0(x0), where ω3 = Ax0,R

|Ax0,R | . Then we write

A(x) A, ω1 ω1 A,ω2 ω2 A, ω3 ω3

:= Ã1ω1 + Ã2ω2 + Ã3ω3.

Using |A(x)|2 = 1, we have

∇Ã3 = −Ã1∇Ã1 − Ã2∇Ã2 + (1 − Ã3)∇Ã3.

It follows from (4.2) and using Cauchy’s inequality that

|∇Ã3|2 ≤ (1 − |Ã3|2 + (1 − Ã3)
2)|∇A|2 = 2(1 − Ã3)|∇A|2

= 2(|A|2 A, ω3 )|∇A|2 ≤ 2|A − ω3||∇A|2

≤ C |A − Ax0,R| + R2 + R−1

BR(x0)

|∇A|2 dvg |∇A|2. (4.3)

Set Ã = Ã1ω1 + Ã2ω2. Then we re-write (1.4) into the following equation:

k[∇∗∇Ã] + (k1 − k)dd∗Ã + (k2 − k3)d
∗( A, ∗dÃ A) + (k3 − k)d∗dÃ

= −k ∇∗∇(A − Ã) − |∇A|2A − (k1 − k) dd∗(A − Ã) dd∗A,A A

−(k2 − k3) d∗( A, ∗dA A) d∗( A, ∗dA A),A A

−(k3 − k) d∗d(A − Ã) d∗dA,A A

−(k2 − k3) A, ∗dA dA A, ∗dA 2A . (4.4)

For each R ≤ R0, let ṽ = ṽ1ω1 + ṽ2ω2 ∈ H 1(BR(x0)) be the solution of

k∇∗∇v + (k1 − k) dd∗v dd∗v, ω3 ω3

+(k2 − k3) d∗( ω3, ∗dv ω3) d∗( ω3, ∗dv ω3), ω3 ω3

+(k3 − k) d∗dv d∗dv, ω3 ω3 = 0 (4.5)

with boundary value v|∂BR(x0) = Ã1ω1 + Ã2ω2|∂BR(x0). Note that (4.5) is a strong elliptic
linear system on (v1, v2). Then for every ρ < R, we have (e.g. [12])

Bρ(x0)

|∇ṽ|2 dx ≤ C
ρ

R

3

BR(x0)

|∇ṽ|2 dx. (4.6)

Moreover, using the maximum principle of a linear elliptic system (e.g. Proposition 2.3 of
Chapter III in [12]) and |A| = 1, |ṽ| ≤ C in BR(x0) for some positive constant C.

Choosing φ = w̃ = v − Ã = ṽ1ω1 + ṽ2ω2 − Ã1ω1 − Ã2ω2 as test function in (4.5), we
have

BR(x0)

k v,∇w̃ (k1 − k) d∗v, d∗w̃ (k2 − k) ω3, ∗dv ω3, dw̃

+(k3 − k) ω3 ∧ ∗dv, ω3 ∧ ∗dw̃ dvg = 0. (4.7)
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Here we use the fact that φ, ω3 0 and

ω3 ∧ ∗dv, ω3 ∧ ∗dw̃ dv, dw̃ ω3, ∗dv ω3, ∗dw̃ .

Multiplying (4.4) by w̃ = v − Ã = ṽ1ω1 + ṽ2ω2 − Ã1ω1 − Ã2ω2, we have

BR(x0)

k Ã, ∇w̃ (k1 − k) d∗Ã, d∗w̃ (k2 − k) A, ∗dÃ A, dw̃

+(k3 − k) A ∧ ∗dÃ, A ∧ ∗dw̃ dvg

=
BR(x0)

k (A − Ã),∇w̃ k|∇A|2 A, w̃ (k1 − k) d∗(A − Ã), d∗w̃

−(k1 − k) d∗A, d∗[A A, w̃ (k2 − k3) A, ∗d(A − Ã) A, dw̃

−(k2 − k3) A, ∗dA A, d(A A, w̃ ) (k3 − k) d(A − Ã), dw̃

+(k3 − k) dA, d[A A, w̃ dvg . (4.8)

Combining (4.8) with (4.7), we obtain

BR(x0)

k|∇w̃|2 + (k1 − k)|d∗w̃|2 + (k2 − k) ω3, ∗dw̃ 2 + (k3 − k)|ω3 ∧ ∗dw̃|2 dvg

=
BR(x0)

(k2 − k) ω3, ∗dÃ ω3, dw̃ A, ∗dÃ A, dw̃

+(k3 − k) A ∧ ∗dÃ, A ∧ ∗dw̃ (k3 − k) A ∧ ∗dÃ,A ∧ ∗dw̃

+k (A − Ã),∇w̃ k|∇A|2 A, w̃ (k1 − k) d∗(A − Ã), d∗w̃
−(k1 − k) d∗A, d∗[A A, w̃ (k2 − k3) A, ∗d(A − Ã) A, dw̃

−(k2 − k3) A, ∗dA A, d(A A, w̃ ) (k3 − k) d(A − Ã), dw̃

+(k3 − k) dA, d[A A, w̃ dvg . (4.9)

Since w̃ = ṽ1ω1 + ṽ2ω2 − Ã1ω1 − Ã2ω2, then w,ω3 0, which implies

A, w̃ A − ω3, w .

To hand those difficult terms on the right-hand side of (4.9), we have

d A, w̃ A] = d A − ω3, w̃ A A − ω3, w̃ dA

= ( A, w̃ A − ω3, ∇w̃ ) ∧ A A − ω3, w̃ dA

and

d∗ A, w̃ A] = ∗d A, w̃ A]
= ∗( A, w̃ A − ω3,∇w̃ ) ∧ A A − ω3, w̃ d∗A,

where we used the fact that ∇ω3 = 0.
Then, using Young’s inequality, we have

BR(x0)

k|∇w̃|2 + (k1 − k)|d∗w̃|2 + (k2−k) ω3, ∗dw̃ 2+(k3−k)|ω3 ∧ ∗dw̃|2 dvg (4.10)

≤ k

2 BR(x0)

|∇w|2 dvg + C
BR(x0)

|∇A3|2+|∇A|2(|A−ω3|2+|w|2+R2 + |w|) dvg .
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Applying (4.2) and (4.3) to (4.10), we have

BR(x0)

|∇w̃|2 dx ≤ C
BR(x0)

|∇A|2(|A − Ax0,R|2 + R2 + |w|) dvg

+CR−1

BR(x0)

|∇A|2 dvg
BR(x0)

|∇A|2 dvg . (4.11)

By (4.5), we have

BR(x0)

|∇ṽ|2 dx ≤ C
BR(x0)

|∇A|2 dx.

Then it follows from (4.6), (4.3) and (4.11) that

Bρ(x0)

|∇A|2dx ≤ C
ρ

R

3

BR(x0)

|∇A|2 dx + C
BR(x0)

|∇w̃|2 dx + C
BR(x0)

|∇A3|2 dx

≤ C
ρ

R

3 + R2 + 1

R BR(x0)

|∇A|2 dx
BR(x0)

|∇A|2 dx

+C
BR(x0)

(|A − Ax0,R| + |w̃|)|∇A|2 dx.

By the reverse Hölder inequality (3.6) and the Sobolev inequality, we obtain

BR(x0)

|w̃||∇A|2 dx ≤
BR(x0)

|∇A|q
2
q

BR(x0)

|w̃| q
q−2 dx

q−2
q

≤ CR
3(2−q)

q

B2R(x0)

(|∇A|2 + R2) dx
BR(x0)

|w̃|2 dx

q−2
q

≤ C R−1

BR(x0)

|∇A|2
q−2
q

B2R(x0)

(|∇A|2 + R2) dx

for some q > 2.
By a similar argument, it follows from using the Hölder inequality and the Sobolev–

Poincare inequality that

BR(x0)

|A − Ax0,R||∇A|2 dx ≤ C R−1

BR(x0)

|∇A|2
q−2
q

B2R(x0)

(|∇A|2 + R2) dx.

Then for every ρ and R with 0 < ρ < R ≤ R0 < 1
2 dist(x0 , we have

Bρ(x0)

|∇A|2 ≤ C
ρ

R

3 + R2 + 1

R BR(x0)

|∇A|2 dx
B2R(x0)

|∇A|2 dx

+C R−1

BR(x0)

|∇A|2
q−2
q

B2R(x0)

(|∇A|2 + R2) dx. (4.12)

By (4.12), it implies from the standard method [12] that A is Hölder continuous in α < 1
inside \ , where

= x ∈ : lim inf
R→0+ R−1

BR(x)

|∇A|2 dx > 0 .
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For completeness, we give a detailed proof here. For any x0 ∈ \ , there is a sufficiently
small R0 such that BR0(x0) ⊂ \ . For each R ≤ R0, set

φ(x0, R) = 1

R BR(x0)

(|∇A|2 + R2) dx = 1

R BR(x0)

|∇A|2 dvg + R|BR(x0)|,

ξ(x0, R) = 1

R BR(x0)

|∇A|2 dx + R−1

BR(x0)

|∇A|2
q−2
q

.

Choosing ρ = 2rR in (4.12) with 0 < r < 1, we have

φ(x0, r2R) ≤ C1 r2(1 + ξ(x0, R)r−3) + R2 φ(x0, 2R) + 4r2R2|B2rR(x0)|. (4.13)

For some α with 0 < α < 1, we choose r such that

2(C1 + 1)r2−2α = 1. (4.14)

For the above r , there are a sufficiently small ε1 and R with 2R ≤ R0 such that

ξ(x0, R) = 1

R BR(x0)

|∇A|2 dx + 1

R BR(x0)

|∇A|2
q−2
q

< ε1, (4.15)

which implies

ξ(x0, R)r−3 ≤ 2ε1r
−3 ≤ 1. (4.16)

Assume that φ(x0, 2R) < ε0 for 2R ≤ R0. It implies that ξ(x0, R) < ε1 for a sufficiently
small ε0. Then it follows from (4.13)–(4.16) that

φ(x0, r2R) ≤ r2αφ(x0, 2R)

implying

φ(x0, r
l2R) ≤ r2lαφ(x0, 2R) < ε0

for all number l.
We conclude that if φ(x0, 2R) < ε0 for some 2R < R0, then

φ(x0, r
l2R) ≤ r2lαε0.

This implies that for any ρ < 2R ≤ R0, we have

φ(x0, ρ) ≤ C
ρ

2R

2α

.

Hence, A belongs to Cα
loc \ for some α < 1. In fact, using (4.12), A belongs to

Cα
loc \ for any α < 1. Repeating the same argument in Theorem 1.5 of Chapter IV of

[12], we can prove that ∇Ã are Hölder continuous inside \ , so is ∇A. Then it can be
proved by the standard theory that A is smooth in \ . By the reverse Hölder inequality,
A ∈ W

1,q
loc for some q > 2. Therefore Hβ

loc = 0 for some positive β < 1.

Theorem 1.2 is a consequence of Theorem 4.1 by using Lemma 3.3.
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