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Abstract
We consider a mathematical model for the evolutionary dynamics of tumour cells in vas-
cularised tumours under chemotherapy. The model comprises a system of coupled partial
integro-differential equations for the phenotypic distribution of tumour cells, the concentra-
tion of oxygen and the concentration of a chemotherapeutic agent. In order to disentangle
the impact of different evolutionary parameters on the emergence of intra-tumour phe-
notypic heterogeneity and the development of resistance to chemotherapy, we construct
explicit solutions to the equation for the phenotypic distribution of tumour cells and provide
a detailed quantitative characterisation of the long-time asymptotic behaviour of such solu-
tions. Analytical results are integrated with numerical simulations of a calibrated version of
the model based on biologically consistent parameter values. The results obtained provide a
theoretical explanation for the observation that the phenotypic properties of tumour cells in
vascularised tumours vary with the distance from the blood vessels. Moreover, we demon-
strate that lower oxygen levels may correlate with higher levels of phenotypic variability,
which suggests that the presence of hypoxic regions supports intra-tumour phenotypic het-
erogeneity. Finally, the results of our analysis put on a rigorous mathematical basis the
idea, previously suggested by formal asymptotic results and numerical simulations, that
hypoxia favours the selection for chemoresistant phenotypic variants prior to treatment.
Consequently, this facilitates the development of resistance following chemotherapy.
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1 Introduction

Previous empirical and theoretical work has suggested that spatial variation in oxygen lev-
els can foster the emergence of intra-tumour phenotypic heterogeneity [4, 26, 29, 32, 50,
56, 58, 73]. In particular, it has been hypothesised that the nonlinear interplay between
impaired oxygen delivery caused by structural abnormalities present in the tumour vascu-
lature [21, 25, 42, 43, 61, 75, 76], limited oxygen diffusion and oxygen consumption by
tumour cells may lead to the creation of distinct ecological niches in vascularised tumours,
whereby tumour cells with different phenotypic characteristics can be selected [4, 17, 27,
37, 40, 49]. This hypothesis is supported by a growing body of experimental and clin-
ical studies indicating that: well-oxygenated parts of the tumour are densely populated
by cells characterised by higher oxygen uptake and faster proliferation via aerobic path-
ways; hypoxic parts of the tumour (i.e., regions where oxygen levels are below normal
physiological levels) are mainly occupied by cells that display higher levels of hypoxia-
inducible factors, such as HIF-1 [21, 30, 47, 61, 68, 69, 71, 74, 80], which typically
correlate with slower proliferation via anaerobic pathways and higher levels of resistance to
chemotherapy [15, 23].

In this paper, we use a mathematical model for the evolutionary dynamics of tumour
cells in vascularised tumours under chemotherapy to gain a deeper understanding of
the adaptive process that underpins the emergence of intra-tumour phenotypic het-
erogeneity and the development of resistance to chemotherapeutic agents. The model
comprises a system of coupled partial integro-differential equations for the phenotypic
distribution of tumour cells, the concentration of oxygen and the concentration of a
chemotherapeutic agent.

Non-local partial differential equations (PDEs) similar to the one that governs the
evolution of the phenotypic distribution of tumour cells in our model and related integro-
differential equations have recently received increasing attention from the mathematical
community—see for instance [2, 3, 9, 12–14, 16, 22, 38, 41, 57]. In particular, our
work follows earlier papers on the analysis and numerical simulation of integro-differential
equations and non-local PDEs modelling the emergence of intra-tumour phenotypic hetero-
geneity [41, 53, 54, 57, 77]. The focus of these papers is on the cases where tumour cells
do not change their phenotypic state or the rate of phenotypic variation is small. The main
novelty of our work is that we allow tumour cells to undergo spontaneous epimutations (i.e.,
heritable phenotypic changes that occur randomly due to non-genetic instability and are
not induced by any selective pressure [39]) and we do not impose any smallness assump-
tions on the rate at which such phenotypic changes occur. In this more general scenario,
building upon the method of proof presented in [5, 8, 19, 51], we carry out an analytical
study of evolutionary dynamics. In particular, we construct explicit solutions to the equa-
tion for the phenotypic distribution of tumour cells and, considering the case where the
concentrations of oxygen and chemotherapeutic agent are stationary, we provide a detailed
quantitative characterisation of the long-time asymptotic behaviour of such solutions. The
analytical results obtained are integrated with numerical simulations of a calibrated version
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of the model based on biologically consistent parameter values, in order to further assess the
impact of the dynamics of oxygen and chemotherapeutic agent on the phenotypic evolution
of tumour cells.

The paper is organised as follows. In Section 2, we introduce the equations of the model
and the underlying modelling assumptions. In Section 3, we present the results of our ana-
lytical study of evolutionary dynamics. In Section 4, we report on numerical solutions
that confirm and extend the analytical results obtained. Section 5 concludes the paper and
provides a brief overview of possible research perspectives.

2 Mathematical Model

We model the evolution of tumour cells within a region of a vascularised tumour along
with the dynamical interactions that occur between tumour cells and both oxygen and a
chemotherapeutic agent, which are released from the intra-tumoural vascular network.

The tumour region is approximated as a bounded set � ⊂ R
d , with smooth boundary ∂�,

where d = 1, 2, 3 depending on the biological scenario under study. The spatial position
of tumour cells is described by a vector x ∈ � and the phenotypic state of every cell is
modelled by a scalar variable y ∈ R, which represents the rescaled level of a hypoxia-
inducible factor. Building upon the ideas presented in [52, 63], we assume that there is
a sufficiently high level of expression of the hypoxia-inducible factor yH conferring both
the highest rate of cellular division via anaerobic energy pathways and the highest level
of resistance to chemotherapy, while there is a sufficiently low level of expression of the
hypoxia-inducible factor yL < yH providing the highest rate of cellular division via aerobic
energy pathways. Without loss of generality, we define yH := 1 and yL := 0, so that
values of y → 1 correspond to phenotypic variants with higher rates of cellular division
via anaerobic energy pathways and higher levels of chemoresistance (i.e., anaerobic and
chemoresistant phenotypic variants), whereas values of y → 0 correspond to phenotypic
variants with higher rates of cellular division via aerobic energy pathways (i.e., aerobic
phenotypic variants).

The phenotypic distribution of tumour cells at time t ∈ [0,∞) and position x is
described by the function n(t, x, y), while the functions s(t, x) and c(t, x) describe, respec-
tively, the oxygen concentration and the concentration of the chemotherapeutic agent at
time t and position x. Moreover, at each time t , we define the density of tumour cells at
position x as

ρ(t, x) :=
∫
R

n(t, x, y) dy,

while the local mean phenotypic state and the related variance are defined, respectively, as

μ(t, x) := 1

ρ(t, x)

∫
R

y n(t, x, y) dy and

σ 2(t, x) := 1

ρ(t, x)

∫
R

y2 n(t, x, y) dy − μ2(t, x).
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2.1 Dynamics of Tumour Cells

The local phenotypic distribution of tumour cells n(t, x, y) is governed by the following
non-local PDE{

∂tn = β ∂2
yyn + R (y, ρ(t, x), s(t, x), c(t, x)) n, (t, x, y) ∈ (0,∞) × � × R,

ρ(t, x) := ∫
R

n(t, x, y) dy.
(1)

In the reaction-diffusion equation (1), the diffusion term models the effect of spontaneous
epimutations, which occur at rate β > 0 [18, 52], while the non-local reaction term models
the effect of cell division and death. The function R (y, ρ(t, x), s(t, x), c(t, x)) represents
the fitness of tumour cells in the phenotypic state y at position x and time t under the
local environmental conditions given by the cell density ρ(t, x), the oxygen concentration
s(t, x) and the concentration of chemotherapeutic agent c(t, x) (i.e., the phenotypic fitness
landscape of the tumour at position x and time t). In particular, we consider

R(y, ρ, s, c) := p(y, s) − ζρ − k(y, c) (2)

with
p(y, s) := f (y) + g(y, s). (3)

Here, ζ > 0, f (y) is a C2-function such that

arg max
y∈R

f (y) = 1, f (1) > 0, ∂2
yyf < 0, (4)

g(y, s) is a C2-function of y and a C1-function of s that satisfies the following assumptions
arg max

y∈R
g(y, s) = 0, g(0, s) > 0, ∂2

yyg(·, s) < 0 ∀ s ∈ (0,∞), lim
s→∞ g(0, s) > f (1), (5)

g(·, 0) = 0, ∂s |g(·, s)| ≥ 0 ∀ s ∈ (0,∞), (6)

and k(y, c) is a C2-function of y and a C1-function of c that satisfies the following
assumptions

arg min
y∈R

k(y, c) = 1, k(1, c) = 0, ∂2
yyk(·, c) > 0 ∀ c ∈ (0,∞), (7)

k(·, 0) = 0, ∂ck(·, c) ≥ 0 ∀ c ∈ (0,∞). (8)

Definition (2) along with assumptions (7) and (8) models a biological scenario whereby the
background fitness of tumour cells in the phenotypic state y at position x and time t is given
by a function p(y, s(t, x)), the value of which is reduced:

– due to competition for limited space, by a certain amount which is the same for all
phenotypic variants and is proportional to ρ(t, x), with a proportionality constant ζ that
is related to the local carrying capacity of the tumour;

– due to the cytotoxic action of the chemotherapeutic agent, by a certain amount k(y, c)

which increases monotonically with the concentration of the chemotherapeutic agent
c and is smaller for phenotypic variants with y → 1, which are characterised by
higher levels of chemoresistance, and is null for the phenotypic variant corresponding
to y = 1, since such a phenotypic variant is assumed to be completely resistant to the
chemotherapeutic agent.

Definition (3) corresponds to the case where the background fitness p(y, s) is defined
as a linear combination of the background fitness associated with anaerobic energy path-
ways f (y) and the background fitness associated with aerobic energy pathways g(y, s).
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In particular, assumptions (4–6) translate into mathematical terms the following biological
ideas:

– The state y = 1 corresponds to the phenotypic variant with the maximal background
fitness associated with anaerobic energy pathways, whereas the state y = 0 corresponds
to the phenotypic variant with the maximal background fitness associated with aerobic
energy pathways.

– Due to the fact that less fit phenotypic variants are driven to extinction by natural selec-
tion, the background fitness associated with anaerobic (or aerobic) energy pathways
can be negative for phenotypic variants with values of y sufficiently far from 1 (or 0).

– Because of the fitness cost associated with a less efficient anaerobic metabolism [11],
the maximal background fitness of aerobic phenotypic variants in well-oxygenated
environments is larger than the maximal background fitness of anaerobic phenotypic
variants.

– In the absence of oxygen, the background fitness p(y, s) coincides with the background
fitness associated with anaerobic energy pathways f (y).

– The larger is the oxygen concentration, the stronger is the impact of the background
fitness associated with aerobic energy pathways g(y, s) on the background fitness
p(y, s).

In particular, following the modelling strategies presented in [53], here we use the
definitions

f (y) := ϕ
[
1 − (1 − y)2

]
, g(y, s) := γs

s

αs + s
(1−y2), k(y, c) := γc

c

αc + c
(1−y)2,

(9)
where ϕ > 0 is the maximal background fitness of anaerobic phenotypic variants, γs > ϕ is
the maximal background fitness of aerobic phenotypic variants, αs > 0 and αc > 0 are the
Michaelis–Menten constants of oxygen and chemotherapeutic agent respectively, and γc >

0 is the maximal reduction of the background fitness of aerobic phenotypic variants due to
the cytotoxic action of the chemotherapeutic agent. Definitions (9) satisfy assumptions (4)–
(8), ensure analytical tractability of the model and lead to a fitness function R(y, ρ, s, c) that
is close to the approximate fitness landscapes which can be inferred from experimental data
through regression techniques – see, for instance, equation (1) in [60]. In fact, with these
definitions, after a little algebra, the difference p(y, s) − k(y, c) in (2) can be rewritten as

p(y, s) − k(y, c) = a(s, c) − b(s, c) (y − h(s, c))2 , (10)

where

a(s, c) := γs

s

αs + s
− γc

c

αc + c
+

(
ϕ + γc

c
αc+c

)2

ϕ + γs
s

αs+s
+ γc

c
αc+c

, (11)

b(s, c) := ϕ + γs

s

αs + s
+ γc

c

αc + c
(12)

and

h(s, c) := ϕ + γc
c

αc+c

ϕ + γs
s

αs+s
+ γc

c
αc+c

. (13)

Here, a(s, c) is the maximum fitness, h(s, c) is the fittest phenotypic state and b(s, c) is
the selection gradient under the environmental conditions corresponding to the oxygen con-
centration s(t, x) and the concentration of chemotherapeutic agent c(t, x). We remark that
b(s, c) is a selection gradient in that it provides a measure of the strength of the selective
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pressure exerted on tumour cells by oxygen and the chemotherapeutic agent [46]. Notice
that,

h : [0, ∞) × [0,∞) → [0, 1], lim
s→0

h(s, ·) = 1, lim
s→∞ h(s, 0) = 1

1 + γs

ϕ

,

and

lim
c→∞ h(s, c) = 1

1 + γs

ϕ+γc

s
αs+s

∀s ∈ [0, ∞).

Hence, consistent with our modelling assumptions,

– for any concentrations of oxygen and chemotherapeutic agent, the fittest phenotypic
state is between y = 0 (i.e., the state corresponding to the phenotypic variant with the
highest rate of cellular division via aerobic energy pathways) and y = 1 (i.e., the state
corresponding to the phenotypic variant with the highest rate of cellular division via
anaerobic energy pathways and the highest level of resistance to chemotherapy);

– in hypoxic conditions (i.e., when s → 0), the fittest phenotypic state is y = 1;
– when there is no chemotherapeutic agent (i.e., when c ≡ 0), in well-oxygenated

environments (i.e., when s → ∞) the larger is the ratio between the maximal back-
ground fitness of aerobic phenotypic variants γs and the maximal background fitness of
anaerobic phenotypic variants ϕ, the closer the fittest phenotypic state will be to y = 0;

– under high-dose chemotherapy, the smaller is the ratio between the maximal back-
ground fitness of aerobic phenotypic variants γs and the maximal reduction of the
background fitness of aerobic phenotypic variants due to the cytotoxic action of the
chemotherapeutic agent γc, the closer the fittest phenotypic state will be to y = 1.

2.2 Dynamics of Abiotic Factors

The oxygen concentration s(t, x) and the concentration of chemotherapeutic agent c(t, x)
are governed by the following partial integro-differential equations

∂t s = Ds�xs −
∫
R

rs(y, s)n(t, x, y)dy − λss + qs(t, x), (t, x) ∈ (0,∞) × � (14)

and

∂t c = Dc�xc −
∫
R

rc(y, c)n(t, x, y)dy − λcc + qc(t, x), (t, x) ∈ (0,∞) × � (15)

coupled with (1) and subject to zero-flux boundary conditions, i.e.,

∇xs · u = 0 and ∇xc · u = 0 on ∂�, (16)

where u is the unit normal to ∂� that points outward from �. In (14) and (15), the
parameters Ds > 0 and Dc > 0 are the diffusion coefficients of oxygen and chemother-
apeutic agent, the functions rs(y, s) and rc(y, c) are the consumption rates of oxygen and
chemotherapeutic agent by tumour cells in the phenotypic state y, the parameters λs > 0
and λc > 0 are the natural decay rates of oxygen and chemotherapeutic agent, and the
source terms qs(t, x) and qc(t, x) model the influx of oxygen and chemotherapeutic agent
from the intra-tumoural blood vessels at position x ∈ � and at time t .

We assume that the oxygen is consumed only by phenotypic variants corresponding to
values of y for which the fitness associated with aerobic energy pathways g(y, s) is posi-
tive and we let oxygen consumption occur at a rate proportional to g(y, s). Moreover, we
assume that the chemotherapeutic agent is consumed by phenotypic variants corresponding
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to different y at different rates proportional to the amount k(y, c) by which their background
fitness is reduced due to the cytotoxic action of the chemotherapeutic agent. In accordance
with these assumptions, we use the following definitions

rs(y, s) := ηs (g(y, s))+ and rc(y, s) := ηck(y, c),

where ηs > 0 and ηc > 0 are constants of proportionality and (·)+ denotes the positive part
of (·). As done in [77], we let ω ⊂ � be the set of points within the tumour tissue which
are occupied by blood vessels and, since we do not consider the formation of new blood
vessels, we assume ω to be given and remain constant in time. Therefore, we define the
source terms qs and qc as

qs(t, x) := is(t, x)1ω(x) and qc(t, x) := ic(t, x)1ω(x), (17)

where 1ω is the indicator function of the set ω, and is(t, x) and ic(t, x) are the rates of inflow
of oxygen and chemotherapeutic agent through intra-tumoural blood vessels at position
x ∈ ω and time t .

3 Analysis of Evolutionary Dynamics

In order to obtain a comprehensive analytical description of the evolutionary dynamics of
tumour cells, in this section we focus on a scenario where the concentrations of oxygen
and chemotherapeutic agent are given and stationary, i.e., when, instead of being solu-
tions of (14) and (15), the functions s(t, x) and c(t, x) are given and satisfy the following
assumptions

s(t, x) ≡ S(x) and c(t, x) ≡ C(x), (18)

with

S ∈ C(�) with S : � → R≥0 and C ∈ C(�) with C : � → R≥0. (19)

Under assumptions (18) and (19), we introduce the abridged notation

a ≡ a(S(x), C(x)), b ≡ b(S(x), C(x)), h ≡ h(S(x), C(x)).

In this scenario, we construct explicit solutions of (1) (cf. Proposition 1) and we study the
asymptotic behaviour of such solutions for t → ∞ (cf. Theorem 1). In agreement with
much of the previous work on the mathematical analysis of the evolutionary dynamics of
continuously-structured populations [62, 66], we focus on the case where at time t = 0 the
local phenotypic distribution of tumour cells is of the following Gaussian form

n(0, x, y) = ρ0(x)

√
v0(x)
2π

exp

[
−v0(x)

2
(y − μ0(x))2

]
, ∀ x ∈ �, (20)

where v0(x) := 1/σ 2
0 (x) and

ρ0 ∈ C(�) with ρ0 : � → R>0, σ 2
0 ∈ C(�) with σ 2

0 : � → R>0,

μ0 ∈ C(�) with μ0 : � → R. (21)

Proposition 1 Let assumptions (2), (10–13), (18) and (19) hold. Then, (1) subject to (20)
and (21) admits the exact solution

n(t, x, y) = ρ(t, x)

√
v(t, x)

2π
exp

[
−v(t, x)

2
(y − μ(t, x))2

]
, ∀ x ∈ �, (22)
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Fig. 1 Plots of ρ∞(S, C),μ∞(S, C) and σ 2∞(S, C). Plots of the equilibrium cell density ρ∞, the equilibrium
local mean phenotypic state μ∞ and the related variance σ 2∞ defined via (25) as functions of the stationary
concentrations of oxygen S and chemotherapeutic agent C. The plots refer to the parameter values listed in
Table 1. The cell density is in units of 108 and the concentrations of oxygen and chemotherapeutic agent are
scaled by the reference values S0 and C0 given in Table 1, respectively

with ρ(t, x), μ(t, x) and v(t, x) := 1/σ 2(t, x) being solutions of the Cauchy problem⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tv = 2(b − βv2), v ≡ v(t, x),

∂tμ = 2b

v
(h − μ), μ ≡ μ(t, x),

∂tρ =
[(

a − b

v
− b(μ − h)2

)
− ζρ

]
ρ, ρ ≡ ρ(t, x),

v(0, x) = 1/σ 2
0 (x), μ(0, x) = μ0(x), ρ(0, x) = ρ0(x),

(t, x) ∈ (0,∞) × �.

(23)

Theorem 1 Let assumptions (2), (10–13), (18) and (19) hold. Then, the solution of (1)
subject to (20) and (21) is such that

ρ(t, ·) −→ ρ∞(S, C), μ(t, ·) −→ μ∞(S, C), σ 2(t, ·) −→ σ 2∞(S, C) as t → ∞,

(24)
with

ρ∞(S, C) = max

(
0,

a(S, C) − √
βb(S, C)

ζ

)
, μ∞(S, C) = h(S, C), σ 2∞(S, C)

=
√

β

b(S, C)
. (25)

The proofs of Proposition 1 and Theorem 1 are reported in Appendices A and B,
respectively. These results provide a mathematical formalisation of the idea that, when
the concentrations of oxygen and chemotherapeutic agent are given and stationary (i.e.,
s(t, x) ≡ S(x) and c(t, x) ≡ C(x)), the tumour cell density ρ(t, x), the local mean phe-
notypic state μ(t, x) and the related variance σ 2(t, x) converge to some equilibrium values
which are determined by the local concentrations of oxygen and chemotherapeutic agent.
This is illustrated by the heat maps in Fig. 1, which show how, for the biologically con-
sistent parameter values listed in Table 1, the values of ρ∞, μ∞ and σ 2∞ defined via (25)
vary as functions of S and C. Notice that the parameter values in Table 1 are such that
ρ∞ > 0.

These results demonstrate that spatial variations of the oxygen concentration determine
spatial variations of the tumour cell density, of the local mean phenotypic state and the
related variance. Specifically, under the parameter values listed in Table 1, the tumour cell
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density ρ∞ is an increasing function of the oxygen concentration. Moreover, the local mean
phenotypic state μ∞ coincides with the fittest phenotypic state h, which decreases from
values close to y = 1 (i.e., the state corresponding to the phenotypic variant with the high-
est rate of cellular division via anaerobic energy pathways) to values close to y = 0 (i.e.,
the state corresponding to the phenotypic variant with the highest rate of cellular division
via aerobic energy pathways) for increasing values of the oxygen concentration. This sug-
gests that aerobic phenotypic variants are to be expected to colonise oxygenated regions of
the tumour, while anaerobic phenotypic variants are likely to populate poorly-oxygenated
regions. Finally, the local phenotypic variance σ 2∞ is a decreasing function of the oxygen
concentration, which supports the idea that higher levels of phenotypic variability may occur
in hypoxic regions of the tumour.

On the other hand, larger values of the concentration of chemotherapeutic agent bring
about smaller values of the tumour cell density ρ∞, a shift of the local mean phenotypic state
μ∞ (i.e., the fittest phenotypic state h) from values closer to y = 0 to values closer to y = 1
(i.e., the state corresponding to the anaerobic phenotypic variant with the highest level of
resistance to chemotherapy), and smaller values of the local phenotypic variance σ 2∞. This
indicates that the selective pressure exerted by the chemotherapeutic agent causes a popu-
lation bottleneck in tumour cells leading to a reduction in cell density coming along with
the selection of more chemoresistant phenotypic variants and lower levels of phenotypic
variability.

Remark 1 Under the assumptions of Theorem 1, in the case where (14) and (15) sub-
ject to (16) and coupled with (1) admit classical solutions s(t, x) and c(t, x) that converge
to some limits s∞(x) and c∞(x) as t → ∞, we expect the long-time asymptotic limit
of the local phenotypic distribution of tumour cells n(t, x, y) to be of the Gaussian
form

n∞(x, y) = ρ∞(x)√
2πσ 2∞(x)

exp

[
− 1

2σ 2∞(x)
(y − μ∞(x))2

]
, (26)

where

ρ∞(x) = max

(
0,

a(s∞(x), c∞(x)) − √
βb(s∞(x), c∞(x))

ζ

)
, (27)

μ∞(x) = h(s∞(x), c∞(x)) and σ 2∞(x) =
√

β

b(s∞(x), c∞(x))
. (28)

4 Numerical Simulations

We complement the analytical results of evolutionary dynamics presented in Section 3 with
numerical solutions of the model equations. In Section 4.1, we describe the set-up of numer-
ical simulations and the methods employed to construct numerical solutions. In Section 4.2,
we consider the case of a one-dimensional spatial domain whereby the concentrations of
oxygen and chemotherapeutic agent are stationary. In Section 4.3, we focus on the case of
a two-dimensional spatial domain and let the dynamics of oxygen and chemotherapeutic
agent be governed by (14) and (15). All simulations are carried out using the parameter
values listed in Table 1, which are chosen to be consistent with the existing literature.
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Fig. 2 Stationary concentrations of oxygen and chemotherapeutic agent considered in Section 4.2. Plots
of the oxygen concentration S(x) and the concentration of chemotherapeutic agent C(x) used to obtain the
numerical results of Fig. 3 and Fig. 4. The coloured dots highlight the values of S(x) and C(x) corresponding
to the lines of the same colours in Fig. 3 and Fig. 4—i.e., S(x) and C(x) at x = 0.007 (red), x = 0.015
(blue) and x = 0.035 (green). The space variable x is in units of cm, while both S(x) and C(x) are in
units of g cm−3. The oxygen concentration S(x) is defined in such a way as to match the experimental pO2
profile presented in [35, Fig. 3]. The conversion from mmHg of pO2 to g cm−3 of oxygen concentration was
performed using the conversion factor 1 mmHg = 4.6 × 10−8 g cm−3, which was estimated using the ideal
gas law. The concentration of chemotherapeutic agent C(x) is defined in such a way as to have a behaviour
which is qualitatively similar to that of S(x) and the value of C(0) is chosen in agreement with experimental
data presented in [35]

4.1 Set-up of Numerical Simulations and Numerical Methods

Set-up of numerical simulations of Section 4.2. For the numerical simulations we report on
in Section 4.2, we define � := (0, 0.05) and assume that increasing values of x ≡ x cor-
respond to increasing values of the distance from a blood vessel located in x = 0. Under
the parameter values listed in Table 1, the values of x are in units of cm. Under assump-
tions (18) and (19), we define S(x) and C(x) as shown by the plots in Fig. 2. Here, the
stationary oxygen concentration S(x) is defined in such a way as to match the experimental
oxygen distribution presented in [35, Fig. 3]. Furthermore, the stationary concentration of
chemotherapeutic agent C(x) is defined in such a way as to have a behaviour qualitatively
similar to that of S(x) and the value of C(0) is chosen in agreement with experimental data
presented in [35].

We complement (1) with initial condition (20) and assume

σ 2(0, x) ≡ σ 2
0 = 1, μ(0, x) ≡ μ0 = 0.5 and ρ(0, x) ≡ ρ0 ≈ 108. (29)

Assumptions (29) correspond to a biological scenario whereby at the initial time t = 0
tumour cells are uniformly distributed across the spatial domain � and are mainly found in
the phenotypic state y = 0.5.

Set-up of numerical simulations of Section 4.3. For the numerical simulations we report
on in Section 4.3, we define � := (0, 0.5) × (0, 0.5) in order to model the cross-
section of a vascularised tumour tissue. Under the parameter values listed in Table 1, the
values of x ∈ � are in units of cm. We let the dynamics of oxygen and chemother-
apeutic agent be governed by (14–16). Moreover, we assume the rate of inflow of
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Fig. 3 One-dimensional numerical results under stationary concentration of oxygen and in the absence
of chemotherapeutic agent. Top row. Plots of the cell density ρ(t, x) (left panel), the local mean phenotypic
state μ(t, x) (central panel) and the related variance σ 2(t, x) (right panel) at x = 0.007 (red, solid lines),
x = 0.015 (blue, solid lines) and x = 0.035 (green, solid lines) obtained by solving numerically (1) subject
to the initial condition defined via (20) and (29), under the stationary concentration of oxygen s(t, x) ≡ S(x)

displayed in Fig. 2 and the stationary concentration of chemotherapeutic agent c(t, x) ≡ 0 (i.e., in the
absence of chemotherapeutic agent). The black, dashed lines highlight the corresponding quantities obtained
by solving numerically the Cauchy problem (23) complemented with (29). Bottom row. Plots of the local cell
phenotypic distribution n(t, x, y) obtained by solving numerically (1) subject to the initial condition defined
via (20) and (29), under the stationary concentration of oxygen s(t, x) ≡ S(x) displayed in Fig. 2 and the
stationary concentration of chemotherapeutic agent c(t, x) ≡ 0 (i.e., in the absence of chemotherapeutic
agent), at x = 0.007 (left panel), x = 0.015 (central panel) and x = 0.035 (right panel). Different solid,
coloured lines correspond to different time instants t and the dashed lines highlight the exact solution (22)
with σ 2(t, x), μ(t, x) and ρ(t, x) given by numerical solutions of the Cauchy problem (23) complemented
with (29). The bullets on the axis of abscissas highlight the value of the mean phenotypic state μ(t, x) at
t = 5. The time variable t is in units of 104 s, the space variable x is in units of cm and the parameters values
used are those listed in Table 1

oxygen and chemotherapeutic agent through intra-tumoural blood vessels to be constant in
time and the same for all vessels, i.e., we define the functions is(t, x) and ic(t, x) in (17) as

is(t, x) ≡ Is and ic(t, x) ≡ Ic,

with the values of Is and Ic being those given in Table 1.
We complement (1) with the initial condition defined via (20) and (29), while (14) and

(15) are complemented with the following initial conditions

s(0, x) = S01ω(x) and c(0, x) = C01ω(x), (30)

with the values of S0 and C0 being those given in Table 1. These initial conditions cor-
respond to a biological scenario whereby at the initial time t = 0 tumour cells are

154 C. Villa et al.



uniformly distributed across the spatial domain � and are mainly found in the pheno-
typic state y = 0.5, while the oxygen and the chemotherapeutic agent are concentrated in
correspondence of the blood vessels.

Numerical methods. Numerical solutions are constructed using a uniform discretisation
of the interval [0, 0.05] or the square [0, 0.5] × [0, 0.5] as the computational domain of the
independent variable x. Moreover, a uniform discretisation of the set [−7, 7] is used as the
computational domain of the independent variable y. We consider t ∈ [0, T], with T > 0
being the final time of simulations. The final time T is chosen sufficiently large so as to
ensure that the solutions are at numerical equilibrium at the end of simulations. The exact
values of T are reported in the captions of Figs. 3–9. We discretise the interval [0, T] with
a uniform step. The method for solving numerically (1) subject to the zero-flux boundary
conditions

∂yn(·, ·, −7) = 0 and ∂yn(·, ·, 7) = 0
is based on an explicit finite difference scheme in which a three-point stencil is used to
approximate the diffusion term in y and an explicit finite difference scheme is used for
the non-local reaction term. Furthermore, the method for solving numerically (14) and (15)
subject to the zero-flux boundary conditions (16) is based on an explicit finite difference
scheme whereby a five-point stencil is used to approximate the diffusion terms and an
explicit finite difference scheme is used for the other terms. Finally, numerical solutions
to the Cauchy problem (23) are constructed using the explicit Euler method. All numerical
computations are performed in MATLAB.

4.2 One-Dimensional Numerical Results under Stationary Concentrations of
Oxygen and Chemotherapeutic Agent

The sample of numerical results presented in Fig. 3 refer to the case where the oxygen
concentration s(t, x) ≡ S(x) and the concentration of cytotoxic agent c(t, x) ≡ 0, while
the results presented in Fig. 4 refer to the case where s(t, x) ≡ S(x) and c(t, x) ≡ C(x),
with S(x) and C(x) being defined as illustrated by the plots in Fig. 2.

Agreement between analytical and numerical results. In agreement with the results estab-
lished by Proposition 1, the numerical results displayed in the top rows of Fig. 3 and
Fig. 4 show that there is a perfect match between the cell density ρ(t, x), the local mean
phenotypic state μ(t, x) and the related variance σ 2(t, x) computed via numerical inte-
gration of the local cell phenotypic distribution n(t, x, y), which is obtained by solving
numerically (1) subject to the initial condition defined via (20) and (29), and the correspond-
ing quantities obtained by solving numerically the Cauchy problem (23) complemented
with (29). Similarly, the sample of numerical results presented in the bottom rows of
Fig. 3 and Fig. 4 show that the local cell phenotypic distribution n(t, x, y) matches the
exact local cell phenotypic distribution (22). Moreover, in accordance with the asymptotic
results established by Theorem 1, the cell density, the local mean phenotypic state and the
related variance converge, respectively, to the equilibrium values ρ∞(x), μ∞(x) and σ 2∞(x)
given by (25).

Tumour cell dynamics in the absence of chemotherapeutic agent. The numerical results
of Fig. 3 show that, in the absence of chemotherapeutic agent, since the stationary oxygen
concentration S(x) decreases monotonically with the distance from the blood vessel located
at x = 0 (vid. Fig. 2), the cell density ρ(t, x) at equilibrium is maximal in the vicinity of the
blood vessel (cf. red line), where the oxygen concentration is higher, and decreases mono-
tonically as the distance from the vessel increases (cf. blue and green lines). Accordingly,
the local mean phenotypic state at equilibrium increases from values closer to y = 0 (i.e.,
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Fig. 4 One-dimensional numerical results under stationary concentrations of oxygen and chemother-
apeutic agent. Top row. Plots of the cell density ρ(t, x) (left panel), the local mean phenotypic state μ(t, x)

(central panel) and the related variance σ 2(t, x) (right panel) at x = 0.007 (red, solid lines), x = 0.015
(blue, solid lines) and x = 0.035 (green, solid lines) obtained by solving numerically (1) subject to the initial
condition defined via (20) and (29), and under the stationary concentrations of oxygen s(t, x) ≡ S(x) and
chemotherapeutic agent c(t, x) ≡ C(x) displayed in Fig. 2. The black, dashed lines highlight the correspond-
ing quantities obtained by solving numerically the Cauchy problem (23) complemented with (29). Bottom
row. Plots of the local cell phenotypic distribution n(t, x, y) obtained by solving numerically (1) subject to
the initial condition defined via (20) and (29), and under the stationary concentrations of oxygen S(x) and
chemotherapeutic agent C(x) displayed in Fig. 2, at x = 0.007 (left panel), x = 0.015 (central panel) and
x = 0.035 (right panel). Different solid, coloured lines correspond to different time instants t and the dashed
lines highlight the exact solution (22) with σ 2(t, x), μ(t, x) and ρ(t, x) given by numerical solutions of the
Cauchy problem (23) complemented with (29). The filled bullets on the axis of abscissas highlight the value
of the mean phenotypic state μ(t, x) at t = 5, while the empty bullets highlight the corresponding values
obtained in the case where c(t, x) ≡ 0 (i.e., in the absence of chemotherapeutic agent). The time variable t

is in units of 104 s, the space variable x is in units of cm and the parameters values used are those listed in
Table 1

the state corresponding to the phenotypic variant with the highest rate of cellular division
via aerobic energy pathways) to values closer to y = 1 (i.e., the state corresponding to the
phenotypic variant with the highest rate of cellular division via anaerobic energy pathways)
moving away from the blood vessel. Moreover, the local phenotypic variance σ 2(t, x) at
equilibrium is a monotonically increasing function of the distance from the blood vessel
(i.e., local phenotypic variability increases with the distance from the blood vessel).

Tumour cell dynamics in the presence of chemotherapeutic agent. A comparison of the
numerical results of Fig. 3 and Fig. 4 reveals that in the regions in close proximity of
the blood vessel (cf. red lines), where its concentration is higher, the chemotherapeutic
agent leads to the occurrence of a population bottleneck in tumour cells, which results
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Fig. 5 One-dimensional numerical results for different delivered doses of chemotherapeutic agent.
Plots of the local cell phenotypic distributions n(T, x, y) at x = 0.007 (second panel), x = 0.015 (third panel)
and x = 0.035 (fourth panel) obtained by solving numerically (1) subject to the initial condition defined via
(20) and (29), under the stationary concentration of oxygen S(x) displayed in Fig. 2 and different stationary
concentrations of chemotherapeutic agent. In particular, the three stationary concentrations of chemothera-
peutic agent displayed in the first panel are used, that is, C1(x) = 0.5 C(x) (dotted line), C2(x) = C(x)

(dashed line) and C3(x) = 1.5 C(x) (solid line), where C(x) is the reference concentration of chemothera-
peutic agent displayed in Fig. 2. In the second, third and fourth panels, the local cell phenotypic distributions
at t = T corresponding to C1 (dotted lines), C2 (dashed lines) and C3 (solid lines) are displayed, and the
markers on the axis of abscissas highlight the value of the mean phenotypic state μ(T , x) corresponding to
C1 (square), C2 (bullet) and C3 (diamond). The insets in the second and third panel display a close-up of the
axis of abscissas. The space variable x is in units of cm, T = 106 s and the parameters values used are those
listed in Table 1

into: a reduction of the equilibrium value of the cell density ρ(t, x); a selective sweep
toward more resistant phenotypic variants, as demonstrated by the fact that the equilibrium
value of the local mean phenotypic state μ(t, x) shifts from values closer to y = 0 (i.e., the
state corresponding to the phenotypic variant with the highest rate of cellular division via
aerobic energy pathways) to values closer to y = 1 (i.e., the state corresponding to the anaer-
obic phenotypic variant with the highest level of resistance to chemotherapy); a reduction
of the equilibrium value of the local phenotypic variance σ 2(t, x). Moreover, moving away
from the blood vessel, since its concentration decreases, the chemotherapeutic agent has a
weaker impact on the dynamics of tumour cells (cf. blue lines). As a result, the evolution of
tumour cells in regions distal to the blood vessel is hardly affected by the chemotherapeutic
agent (cf. green lines).

Tumour cell dynamics for different delivered doses of chemotherapeutic agent. The
numerical results of Fig. 5 reproduce a realistic scenario whereby variation in the delivered
dose of the chemotherapeutic agent leads to pronounced changes in the agent concentration
in close proximity of the blood vessel while leaving the concentration far from the blood
vessel almost unchanged (vid. the stationary distributions of chemotherapeutic agent dis-
played in the first panel of Fig. 5). These results indicate that increasing the value of the
delivered dose leads to a reduction in the number of tumour cells at the cost of promot-
ing a selective sweep toward more resistant phenotypic variants in the vicinity of the blood
vessel—i.e., for values of x sufficiently close to 0, the area under the curve of the equilib-
rium local cell phenotypic distribution shrinks (vid. the plots in the second and third panel
of Fig. 5) and the equilibrium value of the local mean phenotypic state progressively shifts
from values closer to y = 0 to values closer to y = 1 (vid. the insets in the second and third
panel of Fig. 5). This supports the idea that higher doses of chemotherapeutic agent removes
the selective barrier limiting the growth of less proliferative and more resistant phenotypic
variants in vascularised areas of the tumour.
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Fig. 6 Two-dimensional numerical results under dynamical concentration of oxygen and in the absence
of chemotherapeutic agent. Top row. Plots of the oxygen concentration s(T, x1, x2) (second panel), the cell
density ρ(T, x1, x2) (third panel) and the local mean phenotypic state μ(T, x1, x2) (fourth panel), with T =
5 × 105s, obtained by solving numerically (1) and (14) imposing the initial conditions defined via (20), (29)
and (30), the boundary condition (16) and assuming c(t, x1, x2) ≡ 0 (i.e., in the absence of chemotherapeutic
agent). The set ω in (17) consists of the parts of � highlighted in red in the first panel. Central row. Plots
of the oxygen concentration s(T, x1, 0.4) (second panel), the cell density ρ(T, x1, 0.4) (third panel, blue
line) and the local mean phenotypic state μ(T, x1, 0.4) (fourth panel, blue line). The plot of the oxygen
concentration s(T, x1, x2) is displayed in the first panel, where the white, dashed line highlights the 1D cross-
section corresponding to x2 = 0.4. The red lines in the third and fourth panels highlight ρ∞(x1, 0.4) and
μ∞(x1, 0.4) computed through (28) and (28) with s∞(x1, 0.4) := s(T, x1, 0.4) and c∞ ≡ 0. Bottom row.
Same as the central row but for x2 = 0.2. The space variables x1 and x2 are in units of cm, and the parameters
values used are those listed in Table 1

4.3 Two-Dimensional Numerical Results under Dynamical Concentrations of
Oxygen and Chemotherapeutic Agent

In the remainder of this section, we use the notation x ≡ (x1, x2). The sample of numeri-
cal results presented in Fig. 6 and Fig. 7 refer to the case where the oxygen concentration
s(t, x1, x2) is governed by (14), subject to the initial condition (30) and the boundary con-
dition (16), while the concentration of chemotherapeutic agent c(t, x1, x2) ≡ 0. On the
other hand, the results presented in Fig. 8 and Fig. 9 refer to the case where s(t, x1, x2) and
c(t, x1, x2) are governed by (14) and(15), respectively, subject to the initial conditions (30)
and the boundary conditions (16). In both cases, the set of points within the tumour tissue
which are occupied by blood vessels (i.e., the set ω) is defined as illustrated by the plots in
the first panels of Fig. 6 and Fig. 8.

Agreement between analytical and numerical results. The sample of numerical results
presented in Fig. 6 and Fig. 8 show that, in the case of constant influx from intra-
tumoural blood vessels, the concentration of oxygen s(t, x1, x2) and the concentration of
chemotherapeutic agent c(t, x1, x2) obtained by solving numerically (14) and (15), subject
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Fig. 7 Two-dimensional numerical results under dynamical concentration of oxygen and in the absence
of chemotherapeutic agent. Plots of the oxygen concentration s(T, x1, x2) (first panel) and the local cell
phenotypic distribution n(T, x1, x2, y) at (x1, x2) = (0.15, 0.4) (second panel), (x1, x2) = (0.16, 0.4) (third
panel) and (x1, x2) = (0.3, 0.4) (fourth panel), with T = 5 × 105s, obtained by solving numerically (1) and
(14) imposing the initial conditions defined via (20), (29) and (30), the boundary condition (16) and assuming
c(t, x1, x2) ≡ 0 (i.e., in the absence of chemotherapeutic agent). The set ω in (17) consists of the parts of �

highlighted in red in the first panel of Fig. 6. The white, dashed line in the first panel highlights the 1D cross-
section corresponding to x2 = 0.4 and the bullets highlight the points (0.15, 0.4), (0.16, 0.4) and (0.3, 0.4).
In the second, third and fourth panels, the bullets on the axis of abscissas highlight the value of the local mean
phenotypic state μ(T, x1, x2) and the black, dashed lines highlight the asymptotic limit (26) with ρ∞(x1, x2),
μ∞(x1, x2) and σ 2∞(x1, x2) computed through (28) and (28) with s∞(x1, 0.4) := s(T, x1, 0.4) and c∞ ≡ 0.
The space variables x1 and x2 are in units of cm, and the parameters values used are those listed in Table 1

Fig. 8 Two-dimensional numerical results under dynamical concentrations of oxygen and chemother-
apeutic agent. Top row. Plots of the oxygen concentration s(T, x1, x2) (second panel), the concentration
of chemotherapeutic agent c(T, x1, x2) (third panel), the cell density ρ(T, x1, x2) (fourth panel) and the
local mean phenotypic state μ(T, x1, x2) (fifth panel), with T = 5 × 105s, obtained by solving numerically
(1), (14) and (15) imposing the initial conditions defined via (20), (29) and (30), and the boundary condi-
tions (16). The set ω in (17) consists of the parts of � highlighted in red in the first panel. Central row.
Plots of the oxygen concentration s(T, x1, 0.4) (third panel, blue line), the concentration of chemotherapeu-
tic agent c(T, x1, 0.4) (third panel, orange line), the cell density ρ(T, x1, 0.4) (fourth panel, blue line) and
the local mean phenotypic state μ(T, x1, 0.4) (fifth panel, blue line). The plots of the oxygen concentration
s(T, x1, x2) and the concentration of chemotherapeutic agent c(T, x1, x2) are displayed in the first and sec-
ond panels, where the white, dashed lines highlight the 1D cross-section corresponding to x2 = 0.4. The red
lines in the fourth and fifth panels highlight ρ∞(x1, 0.4) and μ∞(x1, 0.4) computed through (28) and (28)
with s∞(x1, 0.4) := s(T, x1, 0.4) and c∞(x1, 0.4) := c(T, x1, 0.4). Bottom row. Same as the central row but
for x2 = 0.2. The space variables x1 and x2 are in units of cm, and the parameters values used are those listed
in Table 1.
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Fig. 9 Two-dimensional numerical results under dynamical concentrations of oxygen and chemother-
apeutic agent. Plots of the oxygen concentration s(T, x1, x2) (first panel), the concentration of chemothera-
peutic agent c(T, x1, x2) (second panel) and the local phenotypic cell distribution n(T, x1, x2, y) at (x1, x2) =
(0.15, 0.4) (third panel), (x1, x2) = (0.16, 0.4) (fourth panel) and (x1, x2) = (0.3, 0.4) (fifth panel), with
T = 5 × 105s, obtained by solving numerically (1), (14) and (15) imposing the initial conditions defined
via (20), (29) and (30), and the boundary conditions (16). The set ω in (17) consists of the parts of � high-
lighted in red in the first panel of Fig. 8. The white, dashed lines in the first and second panels highlight the
1D cross-section corresponding to x2 = 0.4 and the bullets highlight the points (0.15, 0.4), (0.16, 0.4) and
(0.3, 0.4). In the third, fourth and fifth panels, the filled bullets on the axis of abscissas highlight the value of
the mean phenotypic state μ(T, x1, x2), while the empty bullets highlight the corresponding values obtained
in the case where c(t, x1, x2) ≡ 0 (i.e., in the absence of chemotherapeutic agent). Moreover, the black,
dashed lines highlight the asymptotic limit (26) with ρ∞(x), μ∞(x) and σ 2∞(x) computed through (28) and
(28) with s∞(x1, 0.4) := s(T, x1, 0.4) and c∞(x1, 0.4) := c(T, x1, 0.4). The space variables x1 and x2 are in
units of cm, and the parameters values used are those listed in Table 1

to the initial conditions (30) and the boundary conditions (16), converge to some equilib-
ria s∞(x1, x2) and c∞(x1, x2). As a result, in agreement with our expectation based on
the results established by Theorem 1 (cf. Remark 1), the cell density ρ(t, x1, x2) and the
local mean phenotypic state μ(t, x1, x2) computed via numerical integration of the local
cell phenotypic distribution n(t, x1, x2, y), which is obtained by solving numerically (1)
subject to the initial condition defined via (20) and (29), converge to the equilibrium val-
ues ρ∞(x1, x2) and μ∞(x1, x2) given by (28) and (28). Moreover, the sample of numerical
results presented in Fig. 7 and Fig. 9 show that the local phenotypic distribution of tumour
cells n(t, x1, x2, y) converges to the equilibrium phenotypic distribution n∞(x1, x2, y)

given by (26).
Emergence of spatial gradients of oxygen and chemotherapeutic agent. The numerical

results of Fig. 6 and Fig. 8 show that, as one would expect based on the experimental results
presented by [35], the equilibrium concentration of oxygen s(T, x1, x2) and the equilib-
rium concentration of chemotherapeutic agent c(T, x1, x2) are maximal in the vicinity of
the blood vessels and decrease monotonically with the distance from the blood vessels.
Moreover, these results demonstrate that the nonlinear interplay between the spatial distribu-
tion of the blood vessels, the reaction-diffusion dynamics of oxygen and chemotherapeutic
agent, and their consumption by tumour cells leads naturally to the emergence of spatial
inhomogeneities in the equilibrium concentrations of such abiotic factors.

Tumour cell dynamics. The plots in Figs. 6–9 demonstrate that the qualitative behaviour
of the numerical results obtained under stationary concentrations of oxygen and chemother-
apeutic agents displayed in Fig. 3 and Fig. 4 remains unchanged when dynamical concentra-
tions of oxygen and chemotherapeutic agent are considered. Specifically, in the absence of
chemotherapy, when moving away from the blood vessels, the equilibrium value of the cell
density ρ(t, x1, x2) decreases, the local mean phenotypic state μ(t, x1, x2) at equilibrium
increases from values close to y = 0 to values close to y = 1, and the equilibrium value
of the related variance σ 2(t, x1, x2) increases (vid. Fig. 6 and Fig. 7). When chemother-
apy is administered, its effect is more pronounced in the proximity of the blood vessels and
consists in a reduction of the equilibrium value of ρ(t, x1, x2), a shift of the equilibrium
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value of μ(t, x1, x2) toward y = 1 and a reduction of the equilibrium value of σ 2(t, x1, x2)

compared to the case where the chemotherapeutic agent is not present. Moreover, the evo-
lutionary dynamics of tumour cells is weakly affected by chemotherapy in regions far from
the blood vessels, where the concentration of chemotherapeutic agent is lower (vid. Fig. 8
and Fig. 9).

5 Conclusions and Research Perspectives

Conclusions. The results of our analysis of evolutionary dynamics recapitulate previous
theoretical results [4, 6, 7, 26, 32, 40, 44, 53, 54, 56, 73, 77] and experimental data [61,
69, 73, 74] by demonstrating that spatial inhomogeneities in the concentration of oxy-
gen promote the selection of different phenotypic variants at different positions within
the tumour. More specifically, our analytical results indicate that the tumour tissue in the
vicinity of blood vessels is to be expected to be densely populated by aerobic phenotypic
variants, while poorly oxygenated regions of the tumour are more likely to be sparsely
populated by anaerobic phenotypic variants. Furthermore, the analytical results obtained
support the idea that higher levels of phenotypic variability may occur in hypoxic regions
of the tumour, which provides a theoretical basis for experimental results such as those
presented by [10].

Coherently with observations made in previous theoretical and experimental studies
[1, 15, 65, 72, 79], our analytical results also suggest that hypoxia favours the selection
for chemoresistant phenotypic variants prior to treatment. Consequently, this facilitates
the development of resistance following chemotherapy. Moreover, these results put on a
rigorous mathematical basis the idea, previously suggested by formal analysis and numer-
ical simulations [53, 67], that chemotherapy removes the selective barrier limiting the
growth of chemoresistant phenotypic variants by killing aerobic phenotypic variants in
well-oxygenated regions of the tumour.

The results of our analysis of evolutionary dynamics are confirmed by the numeri-
cal results presented. Such numerical results also indicate that gradients of oxygen and
chemotherapeutic agents, which are released from the intra-tumoural vascular network,
naturally emerge in vascularised tumours due to the nonlinear interplay between the
spatial distribution of the blood vessels, the reaction-diffusion dynamics of oxygen and
chemotherapeutic agents, and their consumption by tumour cells.

Research perspectives. We plan to extend our analytical results to the case where spatial
movement of tumour cells is incorporated into the model. Based on the formal asymptotic
results that we presented in [77], in the case where cell movement is modelled through
Fick’s first law, we expect the qualitative behaviour of the results obtained in this paper
to remain unchanged in the asymptotic regime where the rate of spontaneous phenotypic
variation and the cell diffusivity tend to zero. However, further developments of the method
of proof employed here are required in order to carry out a similar analysis of evolutionary
dynamics in more general scenarios.

It would also be useful to consider a discrete version of the continuum model presented
here, whereby the dynamics of tumour cells would be described in terms of a branching
random walk, while the concentrations of oxygen and chemotherapeutic agent would be
governed by discrete balance equations. This would make it possible to study stochastic
effects which are relevant at low tumour cell densities and cannot be easily captured by
deterministic models formulated in terms of differential equations. In this regard, we plan to
extend the formal methods that we developed in [70] in order to identify the corresponding
discrete counterpart of our continuum model.
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Moreover, building upon the ideas presented in [7, 8], it would be interesting to study
the effect on the evolutionary dynamics of tumour cells of fluctuations in the rate of oxy-
gen inflow, which are known to influence intra-tumour phenotypic heterogeneity [33, 56,
67]. It would also be interesting to include the effect of temporal variation in the spa-
tial distribution of intra-tumoural blood vessels, which would make it possible to explore
the influence of angiogenesis on the evolutionary dynamics of tumour cells in vascu-
larised tumours. In addition, the model considered here could be further developed to
incorporate a more comprehensive description of cell metabolism that captures acidosis and
enhanced tumour invasiveness caused by the presence of hypoxic cells [24, 27, 28, 31, 44,
55, 58, 68, 80].

Finally, as similarly done by [5] and [64], it would be relevant to address numerical
optimal control of the model equations in order to identify possible delivery schedules
of the chemotherapeutic agent that make it possible to minimise the number of tumour
cells at the end of the treatment or the average number of tumour cells during the course
of treatment. In particular, it would be relevant to verify whether the results presented
in [5] for a spatially homogeneous model—which indicate that continuous administra-
tion of a relatively low dose of the chemotherapy performs more closely to the optimal
dosing regimen to minimise the average number of tumour cells during the course of
treatment—carry through when spatial reaction-diffusion dynamics of the chemothera-
peutic agent are incorporated into the model. In this regard, it would be interesting to
assess the impact of molecular properties of the chemotherapeutic agent (e.g. decay, dif-
fusion and cellular uptake rates) and structural properties of the intra-tumoural vascular
network (e.g. vascular density and blood vessels distribution) on the optimal chemotherapy
schedule.
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Appendix A: Proof of Proposition 1

Substituting (2) and (10) into (1) yields

∂n

∂t
= β

∂2n

∂y2
+

[
a − b(y − h)2 − ζρ(t, x)

]
n, n ≡ n(t, x, y), (t, x, y) ∈ (0,∞)×�×R.

(31)
Building upon the results presented in [5, 19, 51], we make the ansatz (22). Substituting this
ansatz into (31) and introducing the notation v(t, x) := 1/σ 2(t, x) we find

∂tρ

ρ
+ ∂tv

2v
= ∂tv

2
(y−μ)2−∂tμv(y−μ)+β

[
v2(y − μ)2 − v

]
+a−b(y−h)2−ζρ. (32)
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Equating the second-order terms in y gives the following differential equation for v alone

∂tv + 2βv2 = 2b. (33)

Moreover, equating the coefficients of the first-order terms in y, and eliminating ∂tv from
the resulting equation, yields

∂tμ = 2b(h − μ)

v
. (34)

Lastly, choosing y = μ in (32) gives

∂tρ

ρ
+ ∂tv

2v
= −βv + a − b(μ − h)2 − ζρ (35)

and eliminating ∂tv from (35) we obtain

∂tρ =
[(

a − b

v
− b(μ − h)2

)
− ζρ

]
ρ. (36)

Under the initial condition (20), we have

v(0, x) = v0(x), μ(0, x) = μ0(x), ρ(0, x) = ρ0(x),

and imposing these initial conditions for (33), (34) and (36) we arrive at the Cauchy problem
(23) for the functions v(t, x), μ(t, x) and ρ(t, x).

Appendix B: Proof of Theorem 1

Under assumptions (18) and (19), Proposition 1 ensures that for any (t, x) ∈ [0, ∞) ×
� the solution of (1) subject to (20) and (21) is of the Gaussian form (22). Therefore,
building upon the method of proof presented in [8, 19], we prove Theorem 1 by studying
the behaviour of the components of the solution to the Cauchy problem (23) for t → ∞.

Step 1. Asymptotic behaviour of v(t, x) ≡ 1/σ 2(t, x) for t → ∞. Solving (23)1 subject
to the initial condition v(0, x) = v0(x) gives

v(t, ·) =
√

b

β

√
b
β

+ v0 −
(√

b
β

− v0

)
exp

(−4
√

bβt
)

√
b
β

+ v0 +
(√

b
β

− v0

)
exp

(−4
√

bβt
) ,

which implies that

v(t, ·) −→
√

b

β
exponentially fast as t → ∞. (37)

Step 2. Asymptotic behaviour of μ(t, x) for t → ∞. Solving (23)2 subject to the initial
condition μ(0, x) = μ0(x) yields

μ(t, ·) = μ0 exp

(
−2b

∫ t

0

dz

v(z, ·)
)

+ h

[
1 − exp

(
−2b

∫ t

0

dz

v(z, ·)
)]

,

which implies that

μ(t, ·) −→ h exponentially fast as t → ∞. (38)

Step 3. Asymptotic behaviour of ρ(t, x) for t → ∞. We define

w(t, x) ≡ w(v(t, x), μ(t, x), S(x), C(x)) :=
(√

bβ − b

v

)
− b(μ − h)2
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and rewrite (23)3 as

∂tρ =
[(

a − √
bβ + w

)
− ζρ

]
ρ. (39)

Solving (39) subject to the initial condition ρ(0, x) = ρ0(x) yields

ρ(t, ·) =
ρ0 exp

[(
a − √

bβ
)
t + ∫ t

0 w(z, ·)dz
]

1 + ζρ0
∫ t

0 exp
[(

a − √
bβ

)
z + ∫ z

0 w(τ, ·)dτ
]

dz
. (40)

The asymptotic results (37) and (38) ensure that

w(t, ·) −→ 0 exponentially fast as t → ∞, (41)

and, therefore, (40) allows us to conclude that

if
√

b(S(x), C(x))β ≥ a(S(x), C(x)) then ρ(t, x) −→ 0 as t → ∞. (42)

On the other hand, the asymptotic result (41) implies that in the asymptotic regime t →
∞ we have

exp

[(
a − √

bβ
)

t +
∫ t

0
w(z, ·)dz

]
∼ A(S,C) exp

[(
a − √

bβ
)

t
]
,

and also that, under the additional assumption
√

bβ < a,∫ t

0
exp

[(
a − √

bβ
)

z +
∫ z

0
w(τ, ·)dτ

]
dz ∼ A(S,C)

exp
[(

a − √
bβ

)
t
]

a − √
bβ

,

for some positive function A(S,C). These asymptotic relations, along with (40), allow us
to conclude that

if
√

b(S(x), C(x))β < a(S(x), C(x))

then ρ(t, x) −→ a(S(x), C(x)) − √
b(S(x), C(x))β

ζ
as t → ∞. (43)

Taken together, the asymptotic results (42) and (43) ensure that

ρ(t, ·) −→ max

(
0,

a − √
bβ

ζ

)
as t → ∞. (44)

Claims (24–25) follow from the asymptotic results (37), (38) and (44).
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