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Abstract
Motivated by the circumcentered Douglas–Rachford method recently introduced by
Behling, Bello Cruz and Santos to accelerate the Douglas–Rachford method, we study the
properness of the circumcenter mapping and the circumcenter method induced by isome-
tries. Applying the demiclosedness principle for circumcenter mappings, we present weak
convergence results for circumcentered isometry methods, which include the Douglas–
Rachford method (DRM) and circumcentered reflection methods as special instances.
We provide sufficient conditions for the linear convergence of circumcentered isom-
etry/reflection methods. We explore the convergence rate of circumcentered reflection
methods by considering the required number of iterations and as well as run time as our
performance measures. Performance profiles on circumcentered reflection methods, DRM
and method of alternating projections for finding the best approximation to the intersection
of linear subspaces are presented.
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1 Introduction

Throughout this paper, we assume that

with inner product 〈·, ·〉 and induced norm ‖ · ‖. Denote the set of all nonempty subsets of
H containing finitely many elements by P(H). Given K ∈ P(H), the circumcenter of K

is defined as either empty set or the unique point CC(K) such that CC(K) ∈ aff(K) and
CC(K) is equidistant from all points in K , see [4, Proposition 3.3].

Let m ∈ N \ {0}, and let T1, . . . , Tm−1, Tm be operators fromH toH. Assume

The associated set-valued operator S : H → P(H) is defined by

The circumcenter mapping CCS induced by S is defined by the composition of CC and S ,
that is (∀x ∈ H) CCS(x) = CC(S(x)). If CCS is proper, i.e., (∀x ∈ H), CCSx ∈ H, then
we are able to define the circumcenter methods induced by S as

x0 = x and xk = CCS(xk−1) = CCk
Sx, where k = 1, 2, . . . .

Motivated by Behling, Bello Cruz and Santos [7], we worked on circumcenters of finite
set in Hilbert space in [4] and on the properness of circumcenter mappings in [5]. For other
recent developments on circumcentered isometry methods, see also [9, 10, 16] and [6]. In
this paper, we study the properness of the circumcenter mapping induced by isometries,
and the circumcenter methods induced by isometries. Isometry includes reflector associated
with closed affine subspaces. We provide convergence or even linear convergence results of
the circumcentered isometry methods. In particular, for circumcentered reflection methods,
we also offer some applications and evaluate their linear convergence rate by comparing
them with two classical algorithms, namely, the Douglas–Rachford method (DRM) and the
method of alternating projections (MAP).

More precisely, our main results are the following:

– Theorem 3.3 provides the properness of the circumcenter mapping induced by isome-
tries.

– Theorem 4.7 presents a sufficient condition for the weak convergence of circumcen-
tered isometry methods.

– Theorems 4.14 and 4.15 present sufficient conditions for the linear convergence of
circumcentered isometry methods in Hilbert space and R

n, respectively.
– Proposition 5.18 takes advantage of the linear convergence of DRM to build the linear

convergence of other circumcentered reflection methods.

Theorem 3.3 extends [5, Theorem 4.3] from reflectors to isometries. Based on the demi-
closedness principle for circumcenter mappings built in [5, Theorem 3.20], we obtain
Theorem 4.7, which implies the weak convergence of the DRM and the circumcen-
tered reflection method, the main actor in [8]. Motivated by the role played by the
Douglas–Rachford operator in the proof of [7, Theorem 1], we establish Theorem 4.14
and Proposition 5.18. As a corollary of Proposition 5.18, we observe that Proposition 5.19
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yields [7, Theorem 1]. Motivated by the role that the firmly nonexpansive operator A

played in [8, Theorem 3.3] to deduce the linear convergence of circumcentered reflection
method in Rn, we obtain Proposition 2.10 and Theorem 4.15(ii). Theorem 4.15(ii) says that
some α-averaged operators can be applied to construct linear convergent methods, which
imply the linear convergence of the circumcentered isometry methods. As applications of
Theorem 4.15, Propositions 5.10, 5.14, and 5.15 display particular classes of circumcentered
reflection methods being linearly convergent.

The rest of the paper is organized as follows. In Section 2, we present various basic
results for subsequent use. Our main theory results start at Section 3. Some results in
[5, Section 4.1] are generalized in Section 3.1 to deduce the properness of the circum-
center mapping induced by isometries. Thanks to the properness, we are able to generate
the circumcentered isometry methods in Section 4. In Section 4.2, we focus on exploring
sufficient conditions for the (weak, strong and linear) convergence of the circumcentered
isometry methods. In Sections 5 and 6, we consider the circumcentered reflection methods.
In Section 5, first, we display some particular linearly convergent circumcentered reflec-
tion methods. Then the circumcentered reflection methods are used to accelerate the DRM,
which is then used to find best approximation onto the intersection of finitely many linear
subspaces. Finally, in Section 6, in order to evaluate the rate of linear convergence of the
circumcentered reflection methods, we use performance profile with performance measures
on both required number of iterations and run time to compare four circumcentered reflec-
tion methods with DRM and MAP for solving the best approximation problems associated
with two linear subspaces with Friedrichs angle taken in certain ranges.

We now turn to notation. Let C be a nonempty subset of H. Denote the cardinality of
C by card(C). The intersection of all the linear subspaces of H containing C is called the
span of C, and is denoted by spanC; its closure is the smallest closed linear subspace of
H containing C and it is denoted by spanC. C is an affine subspace of H if C �= ∅ and
(∀ρ ∈ R) ρC + (1 − ρ)C = C; moreover, the smallest affine subspace containing C

is the affine hull of C, denoted affC. An affine subspace U is said to be parallel to an
affine subspace M if U = M + a for some a ∈ H. Every affine subspace U is parallel
to a unique linear subspace L, which is given by (∀y ∈ U) L := U − y = U − U .
For every affine subspace U , we denote the linear subspace parallel to U by parU . The
orthogonal complement of C is the set C⊥ = {x ∈ H | 〈x, y〉 = 0 for all y ∈ C}. The
best approximation operator (or projector) onto C is denoted by PC while RC := 2PC − Id
is the reflector associated with C. For two subsets A, B of H, the distance d(A,B) is
inf ‖A − B‖. A sequence (xk)k∈N in H converges weakly to a point x ∈ H if, for every
u ∈ H, 〈xk, u〉 → 〈x, u〉; in symbols, xk ⇀ x. Let T : H → H be an operator. The set
of fixed points of the operator T is denoted by FixT , i.e., FixT := {x ∈ H | T x = x}.
T is asymptotically regular if for each x ∈ H, T kx − T k+1x → 0. For other notation not
explicitly defined here, we refer the reader to [3].

2 Auxiliary Results

This section contains several results that will be useful later.

2.1 Projections

Fact 2.1 [3, Proposition 29.1] Let C be a nonempty closed convex subset of H, and let
x ∈ H. Set D := z + C, where z ∈ H. Then PDx = z + PC(x − z).
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Fact 2.2 [11, Theorems 5.8 and 5.13] Let M be a closed linear subspace ofH. Then:

(i) x = PMx + PM⊥x for each x ∈ H. Briefly, Id = PM + PM⊥ .
(ii) M⊥ = {x ∈ H | PM(x) = 0} and M = {x ∈ H | PM⊥(x) = 0} = {x ∈ H | PM(x) =

x}.

Fact 2.3 [5, Proposition 2.10] Let C be a closed affine subspace of H. Then the following
hold:

(i) The projector PC and the reflector RC are affine operators.
(ii) (∀x ∈ H) (∀ν ∈ C) ‖x − PCx‖2 + ‖PCx − v‖2 = ‖x − ν‖2.
(iii) (∀x ∈ H) (∀y ∈ H) ‖x − y‖ = ‖RCx − RCy‖.

Lemma 2.4 Let M := aff{x, x1, . . . , xn} ⊆ H, where x1 − x, . . . , xn − x are linearly
independent. Then for every y ∈ H,

PM(y) = x +
n∑

i=1

〈y − x, ei〉ei,

where (∀i ∈ {1, . . . , n}) ei = xi−x−∑i−1
j=1〈xi−x,ej 〉ej

‖xi−x−∑i−1
j=1〈xi−x,ej 〉ej ‖ .

Proof Since x1 − x, . . . , xn − x are linearly independent, by the Gram–Schmidt orthog-

onalization process [17, p. 309], let (∀i ∈ {1, . . . , n}) ei := xi−x−∑i−1
j=1〈xi−x,ej 〉ej

‖xi−x−∑i−1
j=1〈xi−x,ej 〉ej ‖ , then

e1, . . . , en are orthonormal. Moreover

span{e1, . . . , en} = span{x1 − x, . . . , xn − x} := L.

Since M = x + L, thus by Fact 2.1, we know PM(y) = x + PL(y − x). By [3, Propo-
sition 29.15], we obtain that for every z ∈ H, PL(z) = ∑n

i=1〈z, ei〉ei , where (∀i ∈
{1, . . . , n}) ei = xi−x−∑i−1

j=1〈xi−x,ej 〉ej

‖xi−x−∑i−1
j=1〈xi−x,ej 〉ej ‖ .

2.2 Firmly Nonexpansive Mappings

Definition 2.5 [3, Definition 4.1] Let D be a nonempty subset of H and let T : D → H.
Then T is

(i) firmly nonexpansive if

(∀x, y ∈ D) ‖T x − Ty‖2 + ‖(Id − T )x − (Id − T )y‖2 ≤ ‖x − y‖2;
(ii) nonexpansive if it is Lipschitz continuous with constant 1, i.e.,

(∀x, y ∈ D) ‖T x − Ty‖ ≤ ‖x − y‖;
(iii) firmly quasinonexpansive if

(∀x ∈ D) (∀y ∈ FixT ) ‖T x − y‖2 + ‖T x − x‖2 ≤ ‖x − y‖2;
(iv) quasinonexpansive if

(∀x ∈ D) (∀y ∈ FixT ) ‖T x − y‖ ≤ ‖x − y‖.
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Fact 2.6 [3, Corollary 4.24] Let D be a nonempty closed convex subset of H and let T :
D → H be nonexpansive. Then FixT is closed and convex.

Definition 2.7 [3, Definition 4.33] Let D be a nonempty subset of H, let T : D → H be
nonexpansive, and let α ∈ ]0, 1[. Then T is averaged with constant α, or α-averaged for
short, if there exists a nonexpansive operator R : D → H such that T = (1 − α)Id + αR.

Fact 2.8 [3, Proposition 4.35] Let D be a nonempty subset of H, let T : D → H be
nonexpansive, and let α ∈ ]0, 1[. Then the following are equivalent:

(i) T is α-averaged.
(ii) (∀x ∈ D) (∀y ∈ D) ‖T x − Ty‖2 + 1−α

α
‖(Id − T )x − (Id − T )y‖2 ≤ ‖x − y‖2.

Fact 2.9 [3, Proposition 4.42] Let D be a nonempty subset of H, let (Ti)i∈I be a finite
family of nonexpansive operators from D to H, let (ωi)i∈I be real numbers in ]0, 1] such
that

∑
i∈I ωi = 1, and let (αi)i∈I be real numbers in ]0, 1[ such that, for every i ∈ I, Ti is

αi-averaged, and set α := ∑
i∈I ωiαi . Then

∑
i∈I ωiTi is α-averaged.

The following result is motivated by [8, Lemma 2.1(iv)].

Proposition 2.10 Assume H = R
n. Let T : R

n → R
n be linear and α-averaged with

α ∈ ]0, 1[. Then ‖T P(FixT )⊥‖ < 1.

Proof If (FixT )⊥ = {0}, then P(Fix T )⊥ = 0 and so T P(Fix T )⊥ = 0. Hence, the required
result is trivial.

Now assume (FixT )⊥ �= {0}. By definition, (FixT )⊥ is a closed linear subspace of Rn.
Since T is α-averaged, thus by Fact 2.8,

(∀x ∈ R
n) (∀y ∈ R

n) ‖T x−Ty‖2+ 1 − α

α
‖(Id−T )x−(Id−T )y‖2 ≤ ‖x−y‖2. (2.1)

Since (FixT )⊥ �= {0}, it is easy to see that

∥∥T P(FixT )⊥
∥∥ = sup

x∈H
‖x‖≤1

∥∥T P(FixT )⊥x
∥∥ y=P

(FixT )⊥x= sup
y∈(FixT )⊥

‖y‖≤1

‖Ty‖ = sup
y∈(FixT )⊥

‖y‖=1

‖Ty‖. (2.2)

Suppose to the contrary that ‖T P(FixT )⊥‖ = 1. Then by (2.2) and by the Bolzano–
Weierstrass Theorem, there exists y ∈ (Fix T )⊥ with ‖y‖ = 1 and ‖T y‖ = 1.

For every x ∈ R
n, substituting y = PFixT x in (2.1), we get,

‖T x − PFixT x‖2 + 1 − α

α
‖x − T x‖2 ≤ ‖x − PFixT x‖2,

which implies that

(∀x �∈ FixT ) ‖T x − PFixT x‖ < ‖x − PFixT x‖. (2.3)

Since FixT ∩ (FixT )⊥ = {0} and since y ∈ (FixT )⊥ and ‖y‖ = 1, so y �∈ FixT . By
Fact 2.2(ii), y ∈ (FixT )⊥ implies that PFixT (y) = 0, thus substituting x = y in (2.3), we
obtain

1 = ‖T y‖ = ‖T y − PFixT y‖ < ‖y − PFixT y‖ = ‖y‖ = 1,

which is a contradiction.
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Definition 2.11 [3, Definition 5.1] Let C be a nonempty subset of H and let (xk)k∈N be a
sequence inH. Then (xk)k∈N is Fejér monotone with respect to C if

(∀x ∈ C) (∀k ∈ N) ‖xk+1 − x‖ ≤ ‖xk − x‖.

Fact 2.12 [3, Proposition 5.4] Let C be a nonempty subset of H and let (xk)k∈N be Fejér
monotone with respect to C. Then (xk)k∈N is bounded.

Fact 2.13 [3, Proposition 5.9] Let C be a closed affine subspace of H and let (xk)k∈N be
a sequence in H. Suppose that (xk)k∈N is Fejér monotone with respect to C. Then the
following hold:

(i) (∀k ∈ N) PCxk = PCx0.
(ii) Suppose that every weak sequential cluster point of (xk)k∈N belongs to C. Then xk ⇀

PCx0.

2.3 The Douglas–RachfordMethod

Definition 2.14 [1, p. 2] Let U and V be closed convex subsets ofH such that U ∩V �= ∅.
The Douglas–Rachford splitting operator is TV,U := PV (2PU − Id) + Id − PU .

It is well known that

Definition 2.15 [11, Definition 9.4] The Friedrichs angle between two linear subspaces U

and V is the angle α(U, V ) between 0 and π
2 whose cosine, c(U, V ) := cosα(U, V ), is

defined by the expression

c(U, V ) = sup
{
|〈u, v〉| | u ∈ U ∩ (U ∩ V )⊥, v ∈ V ∩ (U ∩ V )⊥, ‖u‖ ≤ 1, ‖v‖ ≤ 1

}
.

Fact 2.16 [11, Theorem 9.35] Let U and V be closed linear subspaces of H. Then the
following are equivalent:

(i) c(U, V ) < 1;
(ii) U + V is closed.

Fact 2.17 [1, Theorem 4.1] Let U and V be closed linear subspaces of H and T := TV,U

defined in Definition 2.14. Let n ∈ N \ {0} and let x ∈ H. Denote the c(U, V ) defined in
Definition 2.15 by cF . Then

‖T nx − PFixT x‖ ≤ cn
F ‖x − PFixT x‖ ≤ cn

F ‖x‖.

Lemma 2.18 Let U and V be closed linear subspaces of H and T := TV,U . Let x ∈ H.
Then

PU∩V (x) = PFixT (x) ⇔ x ∈ span(U ∪ V ) ⇔ x ∈ U + V .

Proof By [1, Proposition 3.6], PFixT = PU∩V + PU⊥∩V ⊥ . Moreover, by [11, Theo-
rems 4.6(5) & 4.5(8)], we have U⊥ ∩ V ⊥ = (U + V )⊥ = (span(U ∪ V ))⊥. Hence, by
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Fact 2.2(ii), we obtain that PU∩V (x) = PFixT (x) ⇔ PU⊥∩V ⊥x = 0 ⇔ P(span(U∪V ))⊥x =
0 ⇔ x ∈ ((span(U ∪ V ))⊥)⊥ = span(U ∪ V ) = U + V .

Lemma 2.19 Let U and V be closed linear subspaces of H and T := TV,U . Let x ∈ H.
Let K be a closed linear subspace ofH such that U ∩ V ⊆ K ⊆ U + V . Then

PFixT PKx = PU∩V PKx = PU∩V x.

Proof Since PKx ∈ K ⊆ U + V , by Lemma 2.18,

PFixT PKx = PU∩V PKx.

On the other hand, by assumption, U ∩ V ⊆ K . Hence, by [11, Lemma 9.2], we get
PU∩V PKx = PKPU∩V x = PU∩V x.

2.4 Isometries

Definition 2.20 [15, Definition 1.6-1] A mapping T : H → H is said to be isometric or an
isometry if

(∀x ∈ H) (∀y ∈ H) ‖T x − Ty‖ = ‖x − y‖. (2.4)

Note that in some references, the definition of isometry is the linear operator satisfying
(2.4). In this paper, the definition of isometry follows from [15, Definition 1.6-1] where the
linearity is not required.

Corollary 2.21 Let α ∈ ]0, 1[, and let T : H → H be α-averaged with FixT �= ∅. Assume
that T �= Id. Then T is not an isometry.

Proof Because T �= Id, FixT �= H. Take x ∈ H \ FixT . Then

‖x − T x‖ > 0. (2.5)

By assumption, FixT �= ∅, take y ∈ FixT , that is, y − Ty = 0. Because T : H → H is
α-averaged, by Fact 2.8,

‖T x − Ty‖2 + 1 − α

α
‖(Id − T )x − (Id − T )y‖2 ≤ ‖x − y‖2

⇔ ‖T x − Ty‖2 + 1 − α

α
‖x − T x‖2 ≤ ‖x − y‖2

(2.5)⇒ ‖T x − Ty‖ < ‖x − y‖,
which, by Definition 2.20, imply that T is not isometric.

Definition 2.22 [3, p. 32] If K is a real Hilbert space and T ∈ B(H,K), then the adjoint
of T is the unique operator T ∗ ∈ B(K,H) that satisfies

(∀x ∈ H) (∀y ∈ K) 〈T x, y〉 = 〈x, T ∗y〉.

Lemma 2.23 (i) Let C be a closed affine subspace of H. Then the reflector RC :=
2PC − Id is isometric.

(ii) Let a ∈ H. The translation operator (∀x ∈ H) Tax := x + a is isometric.
(iii) Let T ∈ B(H,H) and let T ∗ be the adjoint of T . Then T is isometric if and only if

T ∗T = Id.
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(iv) The identity operator is isometric.

Proof (i): The result follows from Fact 2.3(iii).
(ii): It is clear from the definitions.
(iii): Assume that T ∗T = Id. Let x ∈ H and y ∈ H. Now ‖T x − Ty‖2 = 〈T x −

Ty, T x−Ty〉 = 〈T (x−y), T (x−y)〉 = 〈x−y, T ∗T (x−y)〉 = 〈x−y, x−y〉 = ‖x−y‖2.
For the proof of the opposite direction, refer to [15, Exercise 8 in p. 207].

(iv): The required result follows easily from (iii).

Clearly, the reflector associated with an affine subspace is affine and not necessarily
linear. The translation operator Ta defined in Lemma 2.23(ii) is not linear whenever a �= 0.

Lemma 2.24 Assume F : H → H and T : H → H are isometric. Then the composition
F ◦ T of T and F is isometric. In particular, the composition of finitely many isometries is
an isometry.

Proof The first statement comes directly from the definition of isometry. Then by induction,
we obtain the last assertion.

Lemma 2.25 Let T : H → H be an isometry. Then the following hold:

(i) T is nonexpansive.
(ii) FixT is closed and convex.

Proof (i): This is trivial from Definition 2.20 and Definition 2.5(ii). (ii): Combine (i) and
Fact 2.6.

2.5 Circumcenter Operators and Circumcenter Mappings

In order to study circumcentered isometry methods, we require facts on circumcenter oper-
ators and circumcenter mappings. Recall that P(H) is the set of all nonempty subsets of
H containing finitely many elements. By [4, Proposition 3.3], we know that the following
definition is well defined.

Definition 2.26 (Circumcenter operator) [4, Definition 3.4] The circumcenter operator is

In particular, when CC(K) ∈ H, that is, CC(K) �= ∅, we say that the circumcenter of K

exists and we call CC(K) the circumcenter of K .

Recall that T1, . . . , Tm−1, Tm are operators fromH toH with ∩m
j=1Fix Tj �= ∅ and that
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Definition 2.27 (Circumcenter mapping) [5, Definition 3.1] The circumcenter mapping
induced by S is

that is, for every x ∈ H, if the circumcenter of the set S(x) defined in Definition 2.26
does not exist, then CCSx = ∅. Otherwise, CCSx is the unique point satisfying the two
conditions below:

(i) CCSx ∈ aff(S(x)) = aff{T1(x), . . . , Tm−1(x), Tm(x)}, and
(ii) {‖CCSx − Ti(x)‖ | i ∈ {1, . . . , m − 1,m}} is a singleton, that is,

‖CCSx − T1(x)‖ = · · · = ‖CCSx − Tm−1(x)‖ = ‖CCSx − Tm(x)‖.
In particular, if for every x ∈ H, CCSx ∈ H, then we say the circumcenter mapping

CCS induced by S is proper. Otherwise, we call the CCS improper.

Fact 2.28 [5, Proposition 3.10(i)&(iii)] Assume CCS is proper. Then the following hold:

(i) ∩m
j=1FixTj ⊆ FixCCS .

(ii) If T1 = Id, then ∩m
i=1FixTi = FixCCS .

To facilitate the notations, from now on, for any nonempty and finite family of operators
F1, . . . , Ft ,

(2.6)

which is the set consisting of all finite composition of operators from {F1, . . . , Ft }. We use
the empty product convention, so for r = 0, Fi0 · · ·Fi1 = Id.

Proposition 2.29 Let t be a positive integer. Let F1, . . . , Ft be t operators from H to H.
Assume that CCS is proper. Assume that S is a finite subset of �(F1, . . . , Ft ) defined in
(2.6) such that {Id, F1, F2F1, . . . , FtFt−1 · · ·F2F1} ⊆ S or {Id, F1, F2, . . . , Ft } ⊆ S . Then
FixCCS = ∩t

j=1FixFj .

Proof Because each element of S is composition of operators from {F1, . . . , Ft }, and
because (∀i ∈ {1, . . . , t}) ∩t

j=1FixFj ⊆ FixFi , we obtain that

∩t
j=1 FixFj ⊆ ∩T ∈SFixT = FixCCS , (2.7)

where the equality is from Fact 2.28(ii).
On the other hand, if {Id, F1, F2, . . . , Ft } ⊆ S , then clearly ∩T ∈SFixT ⊆ ∩t

j=1FixFj .
Hence, by (2.7), FixCCS = ∩t

j=1FixFj .
Suppose that {Id, F1, F2F1, . . . , FtFt−1 · · · F2F1} ⊆ S . Then for every x ∈ H, by

Definition 2.27,

x ∈ FixCCS ⇒ ‖x −x‖ = ‖x −F1x‖ = ‖x − F2F1x‖ = · · · = ‖x − FtFt−1 · · ·F2F1x‖
⇔ x = F1x = F2F1x = · · · = FtFt−1 · · · F2F1x

⇔ x = F1x = F2x = · · · = Ft−1x = Ftx

⇔ x ∈ ∩t
j=1FixFj ,

which imply that FixCCS ⊆ ∩t
j=1FixFj . Again, by (2.7), FixCCS = ∩t

j=1FixFj .
Therefore, the proof is complete.
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The following example says that the condition “{Id, F1, F2F1, . . . , FtFt−1 · · ·F2F1} ⊆
S” in Proposition 2.29 above is indeed critical. Clearly, for each reflector RU , Fix RU = U .

Example 2.30 AssumeH = R
2. Set U1 := R · (1, 0), U2 := R · (1, 1) and U3 := R · (0, 1).

Assume S = {Id,RU3RU2RU1}. Since (∀x ∈ U2) RU3RU2RU1x = x, CCS = 1
2 (Id +

RU3RU2RU1) and since the set of fixed points of linear and continuous operator is a linear
space, thus ∩3

i=1Ui = {(0, 0)} � U2 = FixCCS .

Fact 2.31 (Demiclosedness principle for circumcenter mappings) [5, Theorem 3.20] Sup-
pose that T1 = Id, that each operator in S = {T1, T2, . . . , Tm} is nonexpansive, and that
CCS is proper. Then FixCCS = ∩m

i=1FixTi and the demiclosedness principle holds for
CCS , that is,

xk ⇀ x,

xk − CCSxk → 0

}
⇒ x ∈ FixCCS . (2.8)

Fact 2.32 [5, Proposition 3.3] Assume m = 2 and S = {T1, T2}. Then CCS is proper.
Moreover, (∀x ∈ H) CCSx = T1x+T2x

2 .

The following result plays a critical role in our calculations of circumcentered reflection
methods in our numerical experiments in Section 6 below.

Proposition 2.33 Assume CCS is proper. Let x ∈ H. Set dx := dim(span{T2x −
T1x, . . . , Tmx − T1x}). Let S̃ := {T1, Ti1 , . . . , Tidx

} ⊆ S be such that1

Ti1x − T1x, . . . , Tidx
x − T1x is a basis of span{T2x − T1x, . . . , Tmx − T1x}.

Then

CCSx = CCS̃x = T1x +
dx∑

j=1

αij (x)(Tij x − T1x),

where
⎛

⎜⎝
αi1(x)

...
αidx

(x)

⎞

⎟⎠ = 1

2
G(Ti1x − T1x, . . . , Tidx

x − T1x)−1

⎛

⎜⎝
‖Ti1x − T1x‖2

...
‖Tidx

x − T1x‖2

⎞

⎟⎠ ,

and G(Ti1x − T1x, . . . , Tidx
x − T1x) is the Gram matrix of Ti1x − T1x, . . . , Tidx

x − T1x.

Proof The desired result follows from [4, Corollary 4.3].

3 Circumcenter Mappings Induced by Isometries

Denote I := {1, . . . , m}. Recall that (∀i ∈ I) Ti : H → H and that

1Note that if card(S(x)) = 1, then dx = 0 and so CCSx = T1x.
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In the remaining part of the paper, we assume additionally that

3.1 Properness of Circumcenter Mapping Induced by Isometries

The following three results generalize Lemma 4.1, Proposition 4.2, and Theorem 4.3
respectively in [5, Section 4] from reflectors associated with affine subspaces to isome-
tries. In view of [6, Theorem 3.14(ii)], we know that isometries are indeed more general
than reflectors associated with affine subspaces. The proofs are similar to those given in
[5, Section 4].

Lemma 3.1 Let x ∈ H. Then

(∀z ∈ ∩m
j=1FixTj ) (∀i ∈ {1, 2, . . . , m}) ‖Tix − z‖ = ‖x − z‖.

Proof Let z ∈ ∩m
j=1FixTj and i ∈ {1, 2, . . . , m}. Since Ti is isometric, and since z ∈

∩m
j=1FixTj ⊆ FixTi , thus ‖Tix − z‖ = ‖Tix − Tiz‖ = ‖x − z‖.

Proposition 3.2 For every z ∈ ∩m
j=1FixTj , and for every x ∈ H, we have

(i) Paff(S(x))(z) ∈ aff(S(x)), and
(ii)

{‖Paff(S(x))(z) − T x‖ | T ∈ S} is a singleton.

Proof Let z ∈ ∩m
j=1FixTj , and let x ∈ H.

(i): Because aff(S(x)) is a nonempty finite-dimensional affine subspace, we know
Paff(S(x))(z) is well-defined. Clearly, Paff(S(x))(z) ∈ aff(S(x)).

(ii): Take an arbitrary but fixed element T ∈ S . Then T x ∈ S(x) ⊆ aff(S(x)). Denote
p := Paff(S(x))(z). By Fact 2.3(ii),

‖z − p‖2 + ‖p − T x‖2 = ‖z − T x‖2. (3.1)

By Lemma 3.1, ‖z − T x‖ = ‖z − x‖. Thus, (3.1) yields that
(∀T ∈ S) ‖p − T x‖ = (‖z − x‖2 − ‖z − p‖2) 1

2 ,

which implies that {‖p − T x‖ | T ∈ S} is a singleton.

The following Theorem 3.3(i) states that the circumcenter mapping induced by isome-
tries is proper, which makes the circumcentered isometry method well-defined and is
therefore fundamental for our study on circumcentered isometry methods.

Theorem 3.3 Let x ∈ H. Then the following hold:

(i) The circumcenter mapping CCS : H → H induced by S is proper; moreover, CCSx

is the unique point satisfying the two conditions below:

(a) CCSx ∈ aff(S(x)), and
(b) {‖CCSx − T x‖ | T ∈ S} is a singleton.

(ii) (∀z ∈ ∩m
j=1FixTj ) CCSx = Paff(S(x))(z).
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(iii) Assume that ∅ �= W ⊆ ∩m
j=1FixTj and that W is closed and convex. Then CCSx =

Paff(S(x))

(
P∩m

j=1FixTj
x
)

= Paff(S(x))(PW x).

Proof (i) and (ii) come from Proposition 3.2 and [5, Proposition 3.6].
Using Lemma 2.25 and the underlying assumptions, we know ∩m

j=1Fix Tj is nonempty,
closed and convex, so P∩m

j=1FixTj
x ∈ ∩m

j=1Fix Tj is well-defined. Hence (iii) comes from
(ii).

3.2 Further Properties of Circumcenter Mappings Induced by Isometries

Similarly to Proposition 2.33, we provide a formula of the circumcenter mapping in the
following result. Because P∩m

i=1Fix Ti
x or PW x is unknown in general, Proposition 2.33 is

more practical.

Proposition 3.4 Let ∅ �= W ⊆ ∩m
j=1FixTj and let W be closed and convex. Let x ∈

H. Set dx := dim(span{T2x − T1x, . . . , Tmx − T1x}). Let S̃ := {T1, Ti1 , . . . , Tidx
} ⊆ S

be such that2

Ti1x − T1x, . . . , Tidx
x − T1x is a basis of span{T2x − T1x, . . . , Tmx − T1x}. (3.2)

Then

CCSx = T1x +
dx∑

j=1

〈
P∩m

i=1FixTi
x − T1x, ej

〉
ej = T1x +

dx∑

j=1

〈PW x − T1x, ej 〉ej ,

where (j ∈ {1, . . . , dx}) ej = Tij
x−T1x−∑j−1

k=1〈Tij
x−T1x,ek〉ek

‖Tij
x−T1x−∑j−1

k=1〈Tij
x−T1x,ek〉ek‖

.

Proof By Theorem 3.3(iii),

CCSx = Paff(S(x))

(
P∩m

j=1FixTj
x
)

= Paff(S(x))(PW x).

By (3.2), we know that

aff(S(x)) = aff{T1x, Ti1x, . . . , Tidx
x} = T1x + span{Ti1x − T1x, . . . , Tidx

x − T1x}.
Substituting (x, x1, . . . , xn,M) by (T1x, Ti1x, . . . , Tidx

x, aff(S(x)) in Lemma 2.4, we
obtain the desired result.

The following result plays an important role for the proofs of the linear convergence of
circumcentered isometry methods.

Lemma 3.5 Let x ∈ H and z ∈ ∩m
j=1FixTj . Then the following hold:

(i) Let F : H → H satisfy (∀y ∈ H) F (y) ∈ aff(S(y)). Then ‖z − CCSx‖2 +
‖CCSx − Fx‖2 = ‖z − Fx‖2;

(ii) If TS ∈ affS , then ‖z − CCSx‖2 + ‖CCSx − TSx‖2 = ‖z − TSx‖2;
(iii) If Id ∈ affS , then ‖z − CCSx‖2 + ‖CCSx − x‖2 = ‖z − x‖2;

2Note that if card(S(x)) = 1, then dx = 0 and so CCSx = T1x.
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(iv) (∀T ∈ S) ‖z − CCSx‖2 + ‖CCSx − T x‖2 = ‖z − x‖2.

Proof Using Theorem 3.3(ii), we obtain

CCSx = Paff(S(x))(z). (3.3)

(i): Since F(x) ∈ aff(S(x)), Fact 2.3(ii) implies

‖z − CCSx‖2 + ‖CCSx − Fx‖2 = ‖z − Fx‖2.
(ii) and (iii) come directly from (i).
Note that (∀T ∈ S) T is isometric and z ∈ ∩m

j=1FixTj ⊆ FixT . Hence, (iv) follows
easily from (ii).

We now present some calculus rules for circumcenter mappings.

Corollary 3.6 Assume (∀T ∈ S) T is linear. Then

(i) CCS is homogeneous, that is (∀x ∈ H) (∀λ ∈ R) CCS(λx) = λCCSx;
(ii) CCS is quasitranslation, that is, (∀x ∈ H) (∀z ∈ ∩m

j=1FixTj ) CCS(x + z) =
CCS(x) + z.

Proof By assumption, (∀T ∈ S) T is linear, so for every α, β ∈ R, and for every x, y ∈ H,

(∀T ∈ S) T (αx + βy) = αT x + βTy.

Note that by Theorem 3.3(i), CCS is proper. By Fact 2.28(i), 0 ∈ ∩m
j=1Fix Tj ⊆

FixCCS . Hence,
(∀x ∈ H) CCS(0x) = 0 = 0CCSx.

Therefore, (i) is from [4, Proposition 6.1] and (ii) comes from [4, Proposition 6.3].

The following result characterizes the fixed point set of circumcenter mappings induced
by isometries under some conditions.

Proposition 3.7 Recall that S = {T1, . . . , Tm−1, Tm}. Then the following hold:

(i) Assume T1 = Id. Then FixCCS = ∩m
j=1FixTj .

(ii) Let F1, . . . , Ft be isometries from H to H. Assume that CCS is proper,
and that S is a finite subset of �(F1, . . . , Ft ) defined in (2.6) such that
{Id, F1, F2F1, . . . , FtFt−1 · · ·F2F1} ⊆ S or {Id, F1, F2, . . . , Ft } ⊆ S . Then
FixCCS = ∩t

j=1FixFj = ∩m
j=1FixTj .

Proof (i) is clear from Theorem 3.3(i) and Fact 2.28(ii).
(ii): Combining Theorem 3.3(i) with Proposition 2.29, we obtain FixCCS =

∩t
j=1FixFj . In addition, (i) proved above implies that FixCCS = ∩m

j=1FixTj . Hence, the
proof is complete.

Proposition 3.8 Let F1, . . . , Ft be isometries from H to H. Assume that CCS is
proper, and that S is a finite subset of �(F1, . . . , Ft ) defined in (2.6) such that
{Id, F1, F2F1, . . . , FtFt−1 · · ·F2F1} ⊆ S or {Id, F1, F2, . . . , Ft } ⊆ S . Then

(∀x ∈ H) (∀y ∈ FixCCS) ‖CCSx − y‖2 + ‖CCSx − x‖2 = ‖x − y‖2. (3.4)

In particular, CCS is firmly quasinonexpansive.
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Proof Proposition 3.7(ii) says that in both cases stated in the assumptions, FixCCS =
∩t

j=1FixFj = ∩T ∈SFixT . Combining this result with Lemma 3.5(iii), we obtain (3.4).
Hence, by Definition 2.5(iii), CCS is firmly quasinonexpansive.

Corollary 3.9 Let U1, . . . , Ut be closed affine subspaces in H. Assume that S1 =
{Id,RU1 , . . . ,RUt } and that S2 = {Id,RU1 ,RU2RU1 , . . . ,RUt · · ·RU2RU1}. Then
(i) (∀i ∈ {1, 2}) FixCCSi

= ⋂
T ∈Si

FixT = ∩t
j=1Fix RUj

= ∩t
j=1Uj .

(ii) CCS1 and CCS2 are firmly quasinonexpansive.

Proof We obtain (i) and (ii) by substituting F1 = RU1 , . . . , Ft = RUt in Propositions 3.7
and 3.8, respectively.

In fact, the CCS2 in Corollary 3.9 is the main actor in [8].

4 Circumcenter Methods Induced by Isometries

Recall that S = {T1, . . . , Tm−1, Tm} with ∩m
j=1Fix Tj �= ∅ and that every element of S is

isometric and affine.
Let x ∈ H. The circumcenter method induced by S is

x0 := x and xk := CCS(xk−1) = CCk
Sx, where k = 1, 2, . . . .

Theorem 3.3(i) says that CCS is proper, which ensures that the circumcenter method
induced by S is well defined. Since every element of S is isometric, we say that the
circumcenter method is the circumcenter method induced by isometries.

4.1 Properties of Circumcentered Isometry Methods

In this subsection, we provide some properties of circumcentered isometry methods. All of
the properties are interesting in their own right. Moreover, the following Propositions 4.1
and 4.2 play an important role in the convergence proofs later.

Proposition 4.1 Let x ∈ H. Then the following hold:

(i) (CCk
Sx)k∈N is a Fejér monotone sequence with respect to ∩m

j=1FixTj .

(ii) (∀z ∈ ∩m
j=1FixTj ) the limit limk→+∞ ‖CCk

Sx − z‖ exists.

(iii) (CCk
Sx)k∈N is bounded sequence.

(iv) Assume ∅ �= W ⊆ ∩m
j=1FixTj . Then (CCk

Sx)k∈N is a Fejér monotone sequence with
respect to W .

(v) Assume Id ∈ affS . Then CCS is asymptotically regular, that is for every y ∈ H,

lim
k→∞ CCk

Sy − CCk+1
S y = 0.

Proof For every k ∈ N, substitute x by CCk
Sx in Lemma 3.5(iv) to obtain

(∀T ∈ S) (∀z ∈ ∩m
j=1FixTj ) ‖z−CCk+1

S x‖2+‖CCk+1
S x−T CCk

Sx‖2 = ‖z−CCk
Sx‖2.
(4.1)
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(i): By (4.1), it is clear that
(
∀z ∈ ∩m

j=1FixTj

)
(∀k ∈ N) ‖CCk+1

S x − z‖ ≤ ‖CCk
Sx − z‖. (4.2)

By Definition 2.11, (CCk
Sx)k∈N is a Fejér monotone sequence with respect to ∩m

j=1FixTj .

(ii): By (4.2), clearly (∀z ∈ ∩m
j=1FixTj ) limk→+∞ ‖CCk

Sx − z‖ exists.
(iii): It directly comes from (i) and Fact 2.12.
(iv): The desired result is directly from (i) and Definition 2.11.
(v): Let z ∈ ∩m

j=1FixTj . By (ii) above, we know Lz := limk→+∞ ‖CCk
Sx − z‖ exists.

Since Id ∈ affS , for every k ∈ N, substituting x by CCk
Sx in Lemma 3.5(iii), we have

‖CCk
Sx − CCk+1

S x‖2 = ‖CCk
Sx − z‖2 − ‖CCk+1

S x − z‖2. (4.3)

Summing over k from 0 to infinity in both sides of (4.3), we obtain
∞∑

k=0

‖CCk
Sx − CCk+1

S x‖2 = ‖x − z‖2 − L2
z < +∞,

which yields limk→+∞ CCk
Sx − CCk+1

S x = 0, i.e., CCS is asymptotically regular.

The following results are motivated by [7, Lemmas 1 and 3]. Note that by Lemma 2.25(ii),
∩m

j=1FixTj is always closed and convex.

Proposition 4.2 Let ∅ �= W ⊆ ∩m
j=1Fix Tj such that W is convex and closed. Let x ∈ H.

Then the following hold:

(i) (∀T ∈ S) PW T x = T PW x = PW x and d(x,W) = d(T x,W).
(ii) (∀k ∈ N) CCk

SPW x = PW x.
(iii) Assume W is closed and affine. Then (∀k ∈ N) PW (CCk

Sx) = PW x.
(iv) Let TS ∈ aff(S). Then ‖PW x − CCSx‖2 + ‖CCSx − TSx‖2 = ‖PW x − TSx‖2.

Proof (i): Let T ∈ S . Since W ⊆ ∩m
j=1FixTj ⊆ FixT , thus it is clear that T PW x = PW x.

Moreover, since PW x ∈ W ⊆ ∩m
j=1Fix Tj ⊆ FixT , PW T x ∈ W ⊆ ∩m

i=1FixTi ⊆ FixT and
since T is isometric, thus

‖x − PW x‖ ≤ ‖x − PW T x‖ (by definition of best approximation and PW T x ∈ W)

= ‖T x − PW T x‖ (T is isometric)

≤ ‖T x − PW x‖ (by definition of best approximation and PW x ∈ W)

= ‖x − PW x‖, (T is isometric)

which imply that

‖x − PW x‖ = ‖T x − PW T x‖ = ‖x − PW T x‖. (4.4)

Since W is nonempty, closed and convex, the best approximation of x onto W uniquely
exists. So (4.4) implies that PW T x = PW x and d(x,W) = d(T x,W).

(ii): By assumption and by Fact 2.28(i), PW x ∈ W ⊆ ∩m
j=1Fix Tj ⊆ FixCCS , thus it is

clear that (∀k ∈ N) CCk
SPW x = PW x.

(iii): The required result comes from Proposition 4.1(iv) and Fact 2.13(i).
(iv): By Theorem 3.3(iii), CCSx = Paff(S(x))PW x. Since TS ∈ aff(S), which implies

that TSx ∈ aff(S(x)), thus by Fact 2.3(ii), ‖PW x −CCSx‖2+‖CCSx −TSx‖2 = ‖PW x −
TSx‖2.
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With W = ∩m
j=1FixTj in the following result, we know that (∀x ∈ H) the distance

between CCSx ∈ aff(S(x)) and P∩m
j=1FixTj

x ∈ ∩m
j=1FixTj is exactly the distance between

the two affine subspaces aff(S(x)) and ∩m
j=1FixTj .

Corollary 4.3 Let ∅ �= W ⊆ ∩m
j=1Fix Tj such that W is closed and affine. Let x ∈ H.

Then
‖CCSx − PW x‖ = d(aff(S(x)),W).

Proof By Theorem 3.3(ii), (∀z ∈ ∩m
j=1FixTj ) CCSx = Paff(S(x))(z), which implies that

(∀z ∈ W ⊆ ∩m
j=1FixTj ) ‖CCSx − z‖ = d(aff(S(x)), z). (4.5)

Now taking infimum over all z in W in (4.5), we obtain

d(CCSx,W) = inf
z∈W

‖CCSx − z‖ = inf
z∈W

d(aff(S(x)), z) = d(aff(S(x)),W).

Hence, using Proposition 4.2(iii), we deduce that ‖CCSx − PW x‖ = ‖CCSx −
PW (CCSx)‖ = d(CCSx,W) = d(aff(S(x)),W).

Proposition 4.4 Let ∅ �= W ⊆ ∩m
j=1Fix Tj such that W is closed and affine. Let x ∈ H.

Then the following are equivalent:

(i) CCSx ∈ W ;
(ii) CCSx = PW x;
(iii) (∀k ≥ 1) CCk

Sx = PW x.

Proof “(i) ⇒ (ii)”: If CCSx ∈ W , then CCSx = PW CCSx = PW x using
Proposition 4.2(iii).

“(ii) ⇒ (iii)”: Assume CCSx = PW x. By Fact 2.28(i), PW x ∈ W ⊆ ∩m
j=1FixTj ⊆

FixCCS . Hence,

(∀k ≥ 2) CCk
Sx = CCk−1

S (CCSx) = CCk−1
S (PW x) = PW x.

“(iii) ⇒ (i)”: Take k = 1.

Corollary 4.5 Let ∅ �= W ⊆ ∩m
j=1Fix Tj such that W is closed and affine. Let x ∈ H.

Assume that limk→∞ CCk
Sx �= PW x. Then

(∀k ∈ N) CCk
Sx �∈ W .

Proof We argue by contradiction and thus assume there exists n ∈ N such that CCn
Sx ∈ W .

If n = 0, then, by Fact 2.28(i), (∀k ∈ N) CCk
Sx = x = PW x, which contradicts the

assumption, limk→∞ CCk
Sx �= PW x. Assume n ≥ 1. Then Proposition 4.4 implies (∀k ≥ n)

CCk
Sx = PW CCn−1

S x, which is absurd.

Proposition 4.6 Assume (∀T ∈ S) T is linear. Then

(i) (∀x ∈ H) (∀λ ∈ R) CCk
S(λx) = λCCk

Sx.
(ii) (∀x ∈ H) (∀z ∈ ∩m

j=1Fix Tj ) CCk
S(x + z) = CCk

S(x) + z.

Proof The required results follow easily from Corollary 3.6 and some easy induction.
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4.2 Convergence

In this subsection, we consider the weak, strong and linear convergence of circumcentered
isometry methods.

Theorem 4.7 Assume T1 = Id and ∩m
j=1Fix Tj is an affine subspace ofH. Let x ∈ H. Then

(CCk
Sx) weakly converges to P∩m

j=1FixTj
x and (∀k ∈ N) P∩m

j=1Fix Tj
(CCk

Sx) = P∩m
j=1FixTj

x.

In particular, ifH is finite-dimensional space, then (CCk
Sx)k∈N converges to P∩m

j=1Fix Tj
x.

Proof By Proposition 4.2(iii), we have (∀k ∈ N \ {0}) P∩m
j=1Fix Tj

(CCk
Sx) = P∩m

j=1FixTj
x.

In Proposition 4.1(i), we proved that (CCk
Sx)k∈N is a Fejér monotone sequence with

respect to ∩m
j=1Fix Tj . By assumptions above and Fact 2.13(ii), in order to prove the weak

convergence, it suffices to show that every weak sequential cluster point of (CCk
Sx)k∈N

belongs to ∩m
j=1Fix Tj . Because every bounded sequence in a Hilbert space possesses

weakly convergent subsequence, by Fact 2.12, there exist weak sequential cluster points
of (CCk

Sx)k∈N. Assume x̄ is a weak sequential cluster point of (CCk
Sx)k∈N, that is,

there exists a subsequence (CC
kj

S x)j∈N of (CCk
Sx)k∈N such that CC

kj

S x ⇀ x̄. Applying

Proposition 4.1(v), we know that CCk
Sx − CCS(CCk

Sx) → 0. So CC
kj

S x −
CCS(CC

kj

S x) → 0. Combining the results above with Lemma 2.25(i), Theorem 3.3(i) and
Fact 2.31, we conclude that x̄ ∈ FixCCS = ∩m

j=1Fix Tj .

From Theorem 4.7, we obtain the well-known weak convergence of the Douglas–
Rachford method next.

Corollary 4.8 Let U1, U2 be two closed affine subspaces in H. Denote TU2,U1 :=
Id+RU2RU1

2 the Douglas–Rachford operator. Let x ∈ H. Then the Douglas–Rachford method
(T k

U2,U1
x)k∈N weakly converges to PFix TU2,U1

x. In particular, if H is finite-dimensional

space, then (T k
U2,U1

x)k∈N converges to PFixTU2,U1
x.

Proof Set S := {Id,RU2RU1}. By Fact 2.32, we know that CCS = TU2,U1 . Since
U1, U2 are closed affine, thus, by Lemma 2.23(i) and Lemma 2.24, RU2RU1 is iso-
metric and, by Lemma 2.25(i) and Fact 2.3(i), RU2RU1 is nonexpansive and affine. So
Fix Id∩FixRU2RU1 = FixRU2RU1 is closed and affine. In addition, by definition of TU2,U1 ,
it is clear that Fix TU2,U1 = FixRU2RU1 .

Hence, the result comes from Theorem 4.7.

We now provide examples of weakly convergent circumcentered reflection methods.

Corollary 4.9 Let U1, . . . , Ut be closed affine subspaces in H. Assume that S1 =
{Id,RU1 , . . . ,RUt } and that S2 = {Id,RU1 ,RU2RU1 , . . . ,RUt · · ·RU2RU1}. Let x ∈ H.
Then both (CCk

S1
x) and (CCk

S2
x) weakly converge to P∩t

j=1Uj
x. In particular, if H is

finite-dimensional space, then both (CCk
S1

x) and (CCk
S2

x) converges to P∩t
j=1Uj

x.
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Proof Since U1, . . . , Ut are closed affine subspaces inH, thus ∩t
j=1Uj is closed and affine

subspace in H. Moreover, by Lemma 2.23(i) and Lemma 2.24, every element of S is iso-
metric. In addition, by Corollary 3.9(i), (∀i ∈ {1, 2}) ⋂

T ∈Si
Fix T = ∩t

j=1Uj . Therefore,
the required results follow from Theorem 4.7.

In fact, in Section 5.2 below, we will show that if H is finite-dimensional space, then
both (CCk

S1
x) and (CCk

S2
x) defined in Corollary 4.9 above linearly converge to P∩t

j=1Uj
x.

Corollary 4.10 Assume that A1, . . . , Ad are orthogonal matrices in R
n×n and that S =

{Id, A1, . . . , Ad}. Let x ∈ R
n. Then (CCk

Sx)k∈N converges to P∩d
j=1FixAj

x.

Proof Since Fix Id = R
n, we have Fix Id

⋂
(∩d

j=1FixAj ) = ∩d
j=1FixAj is a closed linear

subspace in R
n. Moreover, by [17, p. 321], the linear isometries on R

n are precisely the
orthogonal matrices. Hence, the result comes from Lemma 2.23(iv) and Theorem 4.

Remark 4.11 If we replace P∩m
j=1Fix Tj

x by PW x for any ∅ �= W ⊆ ∩m
j=1Fix Tj , the result

showing in Theorem 4.7 may not hold. For instance, consider H = R
n, S = {Id} and

W � R
n being closed and affine and x ∈ R

n \ W . Then CCk
Sx ≡ x �→ PW x.

Let us now present sufficient conditions for the strong convergence of circumcentered
isometry methods.

Theorem 4.12 Let W be a nonempty closed affine subset of ∩m
j=1FixTj , and let x ∈ H.

Then the following hold:

(i) If (CCk
Sx)k∈N has a norm cluster point in W , then (CCk

Sx)k∈N converges in norm to
PW (x).

(ii) The following are equivalent:

(a) (CCk
Sx)k∈N converges in norm to PW (x).

(b) (CCk
Sx)k∈N converges in norm to some point in W .

(c) (CCk
Sx)k∈N has norm cluster points, all lying in W .

(d) (CCk
Sx)k∈N has norm cluster points, one lying in W .

Proof (i): Assume x ∈ W is a norm cluster point of (CCk
Sx)k∈N, that is, there exists a

subsequence (CC
kj

S x)j∈N of (CCk
Sx)k∈N such that limj→∞ CC

kj

S x = x. Now for every
j ∈ N,

‖CC
kj

S x − PW x‖ = ‖CC
kj

S x − PW (CC
kj

S x)‖ (by Proposition 4.2(iii))

≤ ‖CC
kj

S x − x‖ (since x ∈ W).

So
0 ≤ lim

j→∞ ‖CC
kj

S x − PW (x)‖ ≤ lim
j→∞ ‖CC

kj

S x − x‖ = 0.

Hence, limj→+∞ CC
kj

S x = PW (x).
Substitute z in Proposition 4.1(ii) by PW x, then we know that limk→+∞ ‖CCk

Sx −PW x‖
exists. Hence,

lim
k→+∞ ‖CCk

Sx − PW x‖ = lim
j→+∞ ‖CC

kj

S x − PW x‖ = 0,
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from which follows that (CCk
Sx)k∈N converges strongly to PW x.

(ii): By Proposition 4.1 (iv), (CCk
Sx)k∈N is a Fejér monotone sequence with respect to

W . Then the equivalences follow from [2, Theorem 2.16(v)] and (i) above.

To facilitate a later proof, we provide the following lemma.

Lemma 4.13 Let ∅ �= W ⊆ ∩m
j=1Fix Tj such that W is closed and affine. Assume there

exists γ ∈ [0, 1[ such that
(∀x ∈ H) ‖CCSx − PW x‖ ≤ γ ‖x − PW x‖. (4.6)

Then
(∀x ∈ H) (∀k ∈ N) ‖CCk

Sx − PW x‖ ≤ γ k‖x − PW x‖.
Proof Let x ∈ H. For k = 0, the result is trivial.

Assume for some k ∈ N we have

(∀y ∈ H) ‖CCk
Sy − PW y‖ ≤ γ k‖y − PW y‖. (4.7)

Now

‖CCk+1
S x − PW x‖ = ‖CCS(CCk

Sx) − PW (CCk
Sx)‖ (by Proposition 4.2(iii))

(4.6)≤ γ ‖CCk
Sx − PW (CCk

Sx)‖
= γ ‖CCk

Sx − PW x‖ (by Proposition 4.2(iii))
(4.7)≤ γ k+1‖x − PW x‖.

Hence, we obtain the desired result inductively.

The following powerful result will play an essential role to prove the linear convergence
of the circumcenter method induced by reflectors.

Theorem 4.14 Let W be a nonempty, closed and affine subspace of ∩m
j=1Fix Tj .

(i) Assume that there exist F : H → H and γ ∈ [0, 1[ such that (∀y ∈ H) F (y) ∈
aff(S(y)) and

(∀x ∈ H) ‖Fx − PW x‖ ≤ γ ‖x − PW x‖. (4.8)

Then
(∀x ∈ H) (∀k ∈ N) ‖CCk

Sx − PW x‖ ≤ γ k‖x − PW x‖. (4.9)

Consequently, (CCk
Sx)k∈N converges linearly to PW x with a linear rate γ .

(ii) If there exist TS ∈ aff(S) and γ ∈ [0, 1[, such that
(∀x ∈ H) ‖TSx − PW x‖ ≤ γ ‖x − PW x‖,

then (CCk
Sx)k∈N converges linearly to PW x with a linear rate γ .

Proof (i): Using the assumptions and applying Lemma 3.5(i) with (∀x ∈ H) z = PW x, we
obtain that

(∀x ∈ H) ‖CCSx − PW x‖ ≤ ‖Fx − PW x‖ (4.8)≤ γ ‖x − PW x‖.
Hence, (4.9) follows directly from Lemma 4.13.

(ii): Since TS ∈ aff(S) implies that (∀y ∈ H) TSy ∈ aff(S(y)), thus the required result
follows from (i) above by substituting F = TS .

489



H.H. Bauschke et al.

Theorem 4.15 Let TS ∈ aff(S) satisfy that Fix TS ⊆ ∩T ∈SFix T . Then the following hold:

(i) FixTS = ∩T ∈SFixT .
(ii) Let H = R

n. Assume that TS is linear and α-averaged with α ∈ ]0, 1[. For every
x ∈ H, (CCk

Sx)k∈N converges to P∩T ∈SFix T x with a linear rate ‖TSP(∩T ∈SFix T )⊥‖ ∈
[0, 1[.

Proof (i): Clearly, TS ∈ aff(S) implies that ∩T ∈SFix T ⊆ Fix TS . Combining the result
with the assumption, Fix TS ⊆ ∩T ∈SFixT , we get (i).

(ii): Since TS is linear and α-averaged, thus by Fact 2.6, Fix TS is a nonempty closed
linear subspace. It is clear that

TSPFix TS = PFix TS . (4.10)

Using Proposition 2.10, we know

γ := ‖TSP(Fix TS )⊥‖ < 1.

Now for every x ∈ R
n,

‖TSx − PFix TSx‖ (4.10)= ‖TSx − TSPFix TSx‖
= ‖TS(x − PFix TSx)‖ (TS linear)

= ‖TSP(Fix TS )⊥(x)‖ (by Fact 2.2(i))

= ‖TSP(Fix TS )⊥P(Fix TS )⊥(x)‖
≤ ‖TSP(Fix TS )⊥‖‖P(Fix TS )⊥(x)‖
= γ ‖x − PFix TS (x)‖ (by Fact 2.2(i)).

Hence, the desired result follows from Theorem 4.14(ii) by substituting W = Fix TS and (i)
above.

Useful properties of the TS in Theorem 4.15 can be found in the following results.

Proposition 4.16 Let ∅ �= W ⊆ ∩m
j=1Fix Tj such that W is a closed and affine subspace

ofH and let TS ∈ aff(S). Let x ∈ H. Then

(i) (∀k ∈ N) PW (T k
Sx) = T k

SPW x = PW x.
(ii) ‖PW (CCSx) − CCSx‖2 = ‖PW (TSx) − TSx‖2 − ‖CCSx − TSx‖2.
(iii) d(CCSx, W) = ‖CCSx − PW (x)‖ ≤ ‖TSx − PW x‖ = d(TSx, W).

Proof (i): Denote I := {1, . . . , m}. By assumption, TS ∈ aff(S), that is, there exist (αi)i∈I ∈
R

m such that
∑m

i=1 αi = 1 and TS = ∑m
i=1 αiTi . By assumption, W is closed and affine,

thus by Fact 2.3(i), PW is affine. Hence, using Proposition 4.2(i), we obtain that

PW TSx = PW

(
m∑

i=1

αiTix

)
=

m∑

i=1

αiPW Tix =
m∑

i=1

αiPW x = PW x.

Using TS ∈ aff(S) again, we know PW x ∈ W ⊆ ∩m
j=1FixTj ⊆ FixTS . So it is clear that

TSPW x = PW x. Then (i) follows easily by induction on k.
(ii): The result comes from Proposition 4.2(iii), Proposition 4.2(iv) and the item (i) above.
(iii): The desired result follows from Proposition 4.2(iii) and from the (ii) & (i) above.
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Remark 4.17 Recall our global assumptions that S = {T1, . . . , Tm−1, Tm} with
∩m

j=1Fix Tj �= ∅ and that every element of S is isometric. So, by Corollary 2.21, for every
i ∈ {1, . . . , m}, if Ti �= Id, Ti is not averaged. Hence, we cannot construct the operator TS
used in Theorem 4.15(ii) as in Fact 2.9. See also Proposition 5.10 and Lemmas 5.12 and
5.13 below for further examples of TS .

Remark 4.18 (Relationship to [6]) In this present paper, we study systematically on the cir-
cumcentered isometry method. We first show that the circumcenter mapping induced by
isometries is proper which makes the circumcentered isometry method well-defined and
gives probability for any study on circumcentered isometry methods. Then we consider
the weak, strong and linear convergence of the circumcentered isometry method. In addi-
tion, we provide examples of linear convergent circumcentered reflection methods in R

n

and some applications of circumcentered reflection methods. We also display performance
profiles showing the outstanding performance of two of our new circumcentered reflec-
tion methods without theoretical proofs. The paper plays a fundamental role for our study
of [6]. In particular, Theorem 4.14(i) and Theorem 4.15(ii) are two principal facts used in
some proofs of [6] which is an in-depth study of the linear convergence of circumcentered
isometry methods. Indeed, in [6], we first show the corresponding linear convergent cir-
cumcentered isometry methods for all of the linear convergent circumcentered reflection
methods in Rn shown in this paper. We provide two sufficient conditions for the linear con-
vergence of circumcentered isometry methods in Hilbert spaces with first applying another
operator on the initial point. In fact, one of the sufficient conditions is inspired by Proposi-
tion 5.18 in this paper. Moreover, we present sufficient conditions for the linear convergence
of circumcentered reflection methods in Hilbert space. In addition, we find some circum-
centered reflection methods attaining the known linear convergence rate of the accelerated
symmetric MAP in Hilbert spaces, which explains the dominant performance of the CRMs
in the numerical experiments in this paper.

5 Circumcenter Methods Induced by Reflectors

As Lemma 2.23(i) showed, the reflector associated with any closed and affine subspace is
isometry. This section is devoted to study particularly the circumcenter method induced by
reflectors. In the whole section, we assume that t ∈ N \ {0} and that

U1, . . . , Ut are closed affine subspaces inH with ∩t
i=1 Ui �= ∅,

and set that

Suppose S is a finite set such that

We assume that

RUir
· · ·RUi1

is the representative element of the set S .
In order to prove some convergence results on the circumcenter methods induced by reflec-
tors later, we consider the linear subspace parU paralleling to the associated affine subspace
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U . We denote

L1 := parU1, . . . , Lt := parUt . (5.1)

We set

Note that if Id ∈ S , then the corresponding element in SL is Id.
For example, if S = {Id,RU1 ,RU2RU1 ,RU3RU1}, then SL = {Id,RL1 ,RL2RL1 ,RL3RL1}.

5.1 Properties of Circumcentered ReflectionMethods

Lemma 5.1 ∩t
i=1Ui is closed and affine. Moreover, ∅ �= ∩t

i=1Ui ⊆ ∩T ∈SFix T .

Proof By the underlying assumptions, ∩t
i=1Ui is closed and affine.

Take an arbitrary but fixed RUir
· · ·RUi1

∈ S . If RUir
· · ·RUi1

= Id, then ∩t
i=1Ui ⊆ H =

Fix Id. Assume RUir
· · ·RUi1

�= Id. Let x ∈ ∩t
i=1Ui . Since (∀j ∈ {1, . . . , t}) ∩t

i=1Ui ⊆
Uj = FixRUj

, thus clearly RUir
· · ·RUi1

x = x. Hence, ∩t
i=1Ui ⊆ ∩T ∈SFix T as required.

Lemma 5.1 tells us that we are able to substitute the W in all of the results in Section 4
by the ∩t

i=1Ui . Therefore, the circumcenter methods induced by reflectors can be used in
the best approximation problem associated with the intersection ∩t

i=1Ui of finitely many
affine subspaces.

Lemma 5.2 Let x ∈ H and let z ∈ ∩t
i=1Ui . Then the following hold:

(i) (∀RUir
· · ·RUi1

∈ S) RUir
· · ·RUi1

x = z + RLir
· · ·RLi1

(x − z).
(ii) S(x) = z + SL(x − z).
(iii) (∀k ∈ N) CCk

Sx = z + CCk
SL

(x − z).

Proof (i): Let RUir
· · ·RUi1

∈ S . Since for every y ∈ H and for every i ∈ {1, . . . , t},
RUi

y = Rz+Li
y = 2Pz+Li

y − y = 2(z +PLi
(y − z))− y = z + (2PLi

(y − z)− (y − z)) =
z + RLi

(y − z), where the third and the fifth equality is by using Fact 2.1, thus

(∀y ∈ H) (∀i ∈ {1, . . . , t}) RUi
y = z + RLi

(y − z). (5.2)

Then assume for some k ∈ {1, . . . , r − 1},
RUik

· · ·RUi1
x = z + RLik

· · ·RLi1
(x − z). (5.3)

Now

RUik+1
RUik

· · ·RUi1
x

(5.3)= RUik+1

(
z + RLik

· · ·RLi1
(x − z)

)

(5.2)= z + RLik+1
RLik

· · ·RLi1
(x − z).

Hence, by induction, we know (i) is true.
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(ii): Combining the result proved in (i) above with the definitions of the set-valued
operator S and SL, we obtain

S(x) =
{
RUir

· · ·RUi2
RUi1

x | RUir
· · ·RUi2

RUi1
∈ S

}

=
{
z + RLir

· · ·RLi2
RLi1

(x − z) | RUir
· · ·RUi2

RUi1
∈ S

}

= z +
{
RLir

· · ·RLi2
RLi1

(x − z) | RUir
· · ·RUi2

RUi1
∈ S

}

= z + SL(x − z).

(iii): By [4, Proposition 6.3], for everyK ∈ P(H) and y ∈ H,CC(K+y) = CC(K)+y.
Because z ∈ ∩t

i=1Ui ⊆ ∩T ∈SFixT , by Definition 2.27,

(∀y ∈ H) CCSy = CC(S(y))
(ii)= CC(z + SL(y − z)) = z + CC(SL(y − z))

= z + CCSL
(y − z). (5.4)

Assume for some k ∈ N,

(∀y ∈ H) CCk
Sy = z + CCk

SL
(y − z). (5.5)

Now

CCk+1
S x = CCS

(
CCk

Sx
)

= CCS
(
z + CCk

SL
(x − z)

)
(by (5.5))

= z + CCSL

(
z + CCk

SL
(x − z) − z

)
(by (5.4))

= z + CCk+1
SL

(x − z).

Hence, by induction, we know (iii) is true.

The following Proposition 5.3 says that the convergence of the circumcenter methods
induced by reflectors associated with linear subspaces is equivalent to the convergence
of the corresponding circumcenter methods induced by reflectors associated with affine
subspaces. In fact, Proposition 5.3 is a generalization of [7, Corollary 3].

Proposition 5.3 Let x ∈ H and let z ∈ ∩t
i=1Ui . Then (CCk

Sx)k∈N converges to P∩t
i=1Ui

x

(with a linear rate γ ∈ [0, 1[) if and only if (CCk
SL

(x − z))k∈N converges to P∩t
i=1Li

(x − z)

(with a linear rate γ ∈ [0, 1[).

Proof By Lemma 5.2(iii), we know that (∀k ∈ N) CCk
Sx = z+CCk

SL
(x−z). Moreover, by

Fact 2.1, P∩t
i=1Ui

x = Pz+∩t
i=1Li

x = z + P∩t
i=1Li

(x − z). Hence, the equivalence holds.

The proof of Proposition 5.5 requires the following result.

Lemma 5.4 Let x ∈ H and let RUir
· · ·RUi1

∈ S . Let L1, L2, . . . , Lt be the closed linear

subspaces defined in (5.1). Then RUir
· · ·RUi1

x − x ∈ (∩t
i=1Li)

⊥, that is,

(∀z ∈ ∩t
i=1Li) 〈RUir

· · ·RUi1
x − x, z〉 = 0.

Proof By Lemma 5.2(i), for every z ∈ ∩t
i=1Li ,

〈RUir
· · ·RUi1

x−x, z〉 = 〈z+RLir
· · ·RLi1

(x−z)−x, z〉 = 〈RLir
· · ·RLi1

(x−z)−(x−z), z〉.
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Hence, it suffices to prove

(∀y ∈ H) (∀z ∈ ∩t
i=1Li) 〈RLir

· · ·RLi1
y − y, z〉 = 0.

Let y ∈ H and z ∈ ∩t
i=1Li . Take an arbitrary j ∈ {1, 2, . . . , t}. By Fact 2.2(i) 〈RLj

(y) −
y, z〉 = 〈2(PLj

− Id)y, z〉 = 〈−2PL⊥
j
y, z〉 = 0, which yields that

(∀w ∈ H) (∀d ∈ {1, 2, . . . , t}) 〈RLd
(w) − w, z〉 = 0. (5.6)

Recall
∏0

j=1 RLij
= Id. So we have

RLir
RLir−1

· · ·RLi1
(y) − y =

r−1∑

j=0

(
RLij+1

RLij
· · ·RLi1

(y) − RLij
· · ·RLi1

(y)
)
. (5.7)

Hence,

〈
RLir

RLir−1
· · ·RLi1

(y) − y, z
〉

(5.7)=
〈

r−1∑

j=0

(
RLij+1

RLij
· · ·RLi1

(y) − RLij
· · ·RLi1

(y)
)

, z

〉

=
r−1∑

j=0

〈
RLij+1

(
RLij

· · ·RLi1
(y)

)
− RLij

· · ·RLi1
(y), z

〉

(5.6)= 0.

Hence, the proof is complete.

Proposition 5.5 Assume Id ∈ S . Let L1, L2, . . . , Lt be the closed linear subspaces defined
in (5.1). Let x ∈ H. Then the following hold:

(i) CCSx − x ∈ (∩t
i=1Li)

⊥, that is, (∀z ∈ ∩t
i=1Li) 〈CCSx − x, z〉 = 0.

(ii) (∀k ∈ N) CCk
Sx − x ∈ (∩t

i=1Li)
⊥, that is,

(∀k ∈ N) (∀z ∈ ∩t
i=1Li) 〈CCk

Sx − x, z〉 = 0. (5.8)

Proof (i): By Theorem 3.3(i), we know that CCS is proper. Hence, by Proposition 2.33 and
Id ∈ S , there exist n ∈ N and α1, . . . , αn ∈ R and T1, . . . , Tn ∈ S such that

CCSx = x +
n∑

j=1

αj (Tj x − x). (5.9)

Let z ∈ ∩t
i=1Li . Since {T1, . . . , Tn} ⊆ S , by Lemma 5.4,

∑n
j=1 αj 〈Tjx − x, z〉 = 0.

Therefore,

〈CCSx − x, z〉 (5.9)=
n∑

j=1

αj 〈Tjx − x, z〉 = 0.

Hence, (i) is true.
(ii): When k = 0, (5.8) is trivial. By (i),

(∀y ∈ H) (∀z ∈ ∩t
i=1Li) 〈CCSy − y, z〉 = 0. (5.10)
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Then for every k ∈ N \ {0}, and for every z ∈ ∩m
i=1Li ,

〈CCk
Sx − x, z〉 =

〈
k−1∑

i=0

(
CCi+1

S (x) − CCi
S(x)

)
, z

〉

=
〈

k−1∑

i=0

(
CCS(CCi

S(x)) − CCi
S(x)

)
, z

〉

=
k−1∑

i=0

〈
CCS(CCi

S(x)) − CCi
S(x), z

〉

(5.10)= 0.

Hence, (ii) holds.

Remark 5.6 Assume Id ∈ S . Let x ∈ H, and let k ∈ N. Then

P∩t
i=1Ui

x − P∩t
i=1Ui

CCk
Sx = z + P∩t

i=1Li
(x − z) − z − P∩t

i=1Li
(CCk

S (x) − z) (by Fact 2.1)

= P∩t
i=1Li

(x − z) − P∩t
i=1Li

CCk
SL

(x − z) ( by Lemma 5.2(iii))

= P∩t
i=1Li

((x − z) − CCk
S (x − z)) = 0 (by Proposition 5.5(ii)).

In fact, we proved (∀x ∈ H) P∩t
i=1Ui

CCk
Sx = P∩t

i=1Ui
x which is a special case of

Proposition 4.2(iii).

In the remainder of this subsection, we consider cases when the initial points of
circumcentered isometry methods are drawn from special sets.

Lemma 5.7 Let x be inH. Then the following hold:

(i) Suppose x ∈ aff(∪t
i=1Ui). Then affS(x) ⊆ aff(∪t

i=1Ui) and (∀k ∈ N) CCk
Sx ∈

aff(∪t
i=1Ui).

(ii) Suppose x ∈ span(∪t
i=1Ui). Then affS(x) ⊆ spanS(x) ⊆ span(∪t

i=1Ui) and (∀k ∈
N) CCk

Sx ∈ span(∪t
i=1Ui).

Proof (i): Let RUir
· · ·RUi1

be an arbitrary but fixed element in S . If r = 0,
RUir

· · ·RUi1
x = x ∈ aff(∪t

i=1Ui). Assume r ≥ 1. Since i1 ∈ {1, . . . , t}, PUi1
x ∈

aff(∪t
i=1Ui). So

RUi1
x = 2PUi1

x − x ∈ aff(∪t
i=1Ui).

Assume for some j ∈ {1, . . . , r − 1},
RUij

· · ·RUi1
x ∈ aff(∪t

i=1Ui).

Now since ij+1 ∈ {1, . . . , t}, thus PUij+1
(RUij

· · ·RUi1
x) ∈ aff(∪t

i=1Ui). Hence,

RUij+1
RUij

· · ·RUi1
x = 2PUij+1

(
RUij

· · ·RUi1
x
)

− RUij
· · ·RUi1

x ∈ aff(∪t
i=1Ui).

Hence, we have inductively proved RUir
· · ·RUi1

x ∈ aff(∪t
i=1Ui).

Since RUir
· · ·RUi1

x ∈ S(x) is chosen arbitrarily, we conclude that S(x) ⊆ aff(∪t
i=1Ui)

which in turn yields affS(x) ⊆ aff(∪t
i=1Ui).

Moreover, by Theorem 3.3(i), CCSx ∈ affS(x) ⊆ aff(∪t
i=1Ui). Therefore, an easy

inductive argument deduce (∀k ∈ N) CCk
Sx ∈ aff(∪t

i=1Ui).
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(ii): Using the similar technique showed in the proof of (i), we know that x ∈
span(∪t

i=1Ui) implies that S(x) ⊆ span(∪t
i=1Ui). The remaining part of the proof is similar

with the proof in (i), so we omit it.

Corollary 5.8 Assume U1, . . . , Ut are closed linear subspaces in H. Then the following
hold:

(i) CCSP(∩t
i=1Ui)

⊥ = CCS − P∩t
i=1Ui

= P(∩t
i=1Ui)

⊥CCS .

(ii) Let x ∈ (∩t
i=1Ui)

⊥. Then (∀k ∈ N) CCk
Sx ∈ (∩t

i=1Ui)
⊥.

Proof (i): Let x ∈ H. By Fact 2.2(i), we get P(∩t
i=1Ui)

⊥ = Id − P∩t
i=1Ui

. By Lemma 5.1,

−P∩t
i=1Ui

x ∈ ∩t
i=1Ui ⊆ ∩t

j=1Fix Tj . Applying Corollary 3.6(ii) with z = −P∩t
i=1Ui

x, we
obtain CCS(x − P∩t

i=1Ui
x) = CCSx − P∩t

i=1Ui
x. Hence,

CCS
(
P(∩t

i=1Ui)
⊥x

)
= CCS

(
x − P∩t

i=1Ui
x
)

= CCSx − P∩t
i=1Ui

x. (5.11)

On the other hand, substituting W = ∩t
i=1Ui in Proposition 4.2(iii), we obtain that

P(∩t
i=1Ui)

⊥(CCSx) = CCSx − P∩t
i=1Ui

CCSx = CCSx − P∩t
i=1Ui

x. (5.12)

Thus, (5.11) and (5.12) yield

CCSP(∩t
i=1Ui)

⊥ = CCS − P∩t
i=1Ui

= P(∩t
i=1Ui)

⊥CCS .

(ii): By (i), CCSx = CCSP(∩t
i=1Ui)

⊥x = P(∩t
i=1Ui)

⊥CCSx ∈ (∩t
i=1Ui)

⊥, which implies
that

(∀y ∈ (∩t
i=1Ui)

⊥) CCSy ∈ (∩t
i=1Ui)

⊥.
Hence, we obtain (ii) by induction.

The following example tells us that in Corollary 5.8(i), the condition “U1, . . . , Ut are
linear subspaces inH” is indeed necessary.

Example 5.9 Assume H = R
2 and U1 := {(x1, x2) ∈ R

2 | x2 = 1} and U2 := {(x1, x2) ∈
R
2 | x2 = x1 + 1}. Assume S = {Id,RU1 ,RU2}. Let x := (1, 0). Since U1 ∩ U2 = {(0, 1)}

and since (U1 ∩ U2)
⊥ = {(x1, x2) ∈ R

2 | x2 = 0}, thus
CCSP(U1∩U2)

⊥x = (0, 1) �= (0, 0) = CCSx − PU1∩U2x = P(U1∩U2)
⊥CCSx.

5.2 Linear Convergence of Circumcentered ReflectionMethods

This subsection is motivated by [8, Theorem 3.3]. In particular, [8, Theorem 3.3] is Proposi-
tion 5.10 below for the special case when {Id,RU1 ,RU2RU1 , . . . ,RUtRUt−1 · · ·RU2RU1} =
S and U1, . . . , Ut are linear subspaces. The operator TS defined in Proposition 5.10 below
is the operator A defined in [8, Lemma 2.1].

Proposition 5.10 Assume thatH = R
n and that

{Id,RU1 ,RU2RU1 , . . . ,RUtRUt−1 · · ·RU2RU1} ⊆ S .
Let L1, . . . , Lt be the closed linear subspaces defined in (5.1). Define TS : R

n → R
n

by TS := 1
t

∑t
i=1 Ti , where T1 := 1

2 (Id + PL1) and (∀i ∈ {2, . . . , t}) Ti := 1
2 (Id +

PLi
RLi−1 · · · RL1). Let x ∈ H. Then (CCk

Sx)k∈N converges to P∩t
i=1Ui

x with a linear rate
‖TSP(∩t

i=1Li)
⊥‖ ∈ [0, 1[ .
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Proof Now

T1 = 1

2
(Id + PL1) = 1

2

(
Id + Id + RL1

2

)
= 3

4
Id + 1

4
RL1

∈ aff{Id,RL1 ,RL2RL1 , . . . ,RLtRLt−1 · · ·RL2RL1},
and for every i ∈ {2, . . . , t},

Ti = 1

2
(Id + PLi

RLi−1 · · ·RL1)

= 1

2

(
Id +

(
RLi

+ Id

2

)
RLi−1 · · ·RL1

)

= 1

2
Id + 1

4
RLi

RLi−1 · · ·RL1 + 1

4
RLi−1 · · ·RL1

∈ aff{Id,RL1 ,RL2RL1 , . . . ,RLtRLt−1 · · ·RL2RL1},
which yield that

TS = 1

t

t∑

i=1

Ti ∈ aff{Id,RL1 ,RL2RL1 , . . . ,RLtRLt−1 · · ·RL2RL1} ⊆ aff(SL).

Using [8, Lemma 2.1(i)], we know the TS is linear and 1
2 -averaged, and by [8, Lemma 2.1(ii)],

Fix TS = ∩t
i=1Li . Hence, by Theorem 4.15(ii) and Lemma 5.1, we obtain that for every

y ∈ H, (CCk
SL

y)k∈N converges to P∩t
i=1Li

y with a linear rate ‖TSP(∩t
i=1Li)

⊥‖ ∈ [0, 1[ .
Therefore, the desired result follows from Proposition 5.3.

Remark 5.11 In fact, [8, Lemma 2.1(ii)] is Fix TS = ∩t
i=1Li . In the proof of

[8, Lemma 2.1(ii)], the authors claimed that “it is easy to see that Fix Ti = Li”. We pro-
vide more details here. For every i ∈ {1, . . . , m}, by [3, Proposition 4.49], we know that
Fix Ti = Fix PLi

∩ FixRLi−1 · · ·RL1 ⊆ Li . As [8, Lemma 2.1(ii)] proved that Fix TS ⊆
∩m

i=1Fix Ti , we get that Fix TS ⊆ ∩m
i=1Li . On the other hand, by definition of TS , we have

∩m
i=1Li ⊆ Fix TS . Altogether, Fix TS = ∩m

i=1Li , which implies that [8, Lemma 2.1(ii)] is
true.

The idea of the proofs in the following two lemmas is obtained from [8, Lemma 2.1].

Lemma 5.12 Assume that H = R
n and that {Id,RU1 , . . . ,RUt−1 ,RUt } ⊆ S . Let

L1, . . . , Lt be the closed linear subspaces defined in (5.1). Define the operator TS : Rn →
R

n as TS := 1
t

∑t
i=1 PLi

. Then the following hold:

(i) TS ∈ aff(SL).
(ii) TS is linear and firmly nonexpansive.
(iii) Fix TS = ∩t

i=1Li = ∩F∈SL
FixF .

Proof (i): Now (∀i ∈ {1, . . . , t}), PLi
= Id+RLi

2 , so

TS = 1

t

t∑

i=1

PLi
= 1

t

t∑

i=1

Id + RLi

2
∈ aff{Id,RL1 , . . . ,RLt−1 ,RLt } ⊆ aff(SL).

(ii): Let i ∈ {1, . . . , t}. Because PLi
is firmly nonexpansive, it is 1

2 -averaged. Using
Fact 2.9, we know TS is 1

2 -averaged, that is, it is firmly nonexpansive. In addition, because
(∀i ∈ {1, . . . , t}) Li is linear subspace implies that PLi

is linear, we know that TS is linear.
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(iii): The projection is firmly nonexpansive, so it is quasinonexpansive. Hence, the result
follows from [3, Proposition 4.47] and Theorem 4.15(i).

Lemma 5.13 Assume that H = R
n and that {Id,RU1 , . . . ,RUt−1 ,RUt } ⊆ S . Let

L1, . . . , Lt be the closed linear subspaces defined in (5.1). Define the operator TS : Rn →
R

n by TS := 1
t

∑t
i=1 Ti , where (∀i ∈ {1, 2, . . . , t}) Ti := 1

2 (Id + PLi
). Then

(i) TS ∈ aff(SL).
(ii) TS is linear and firmly nonexpansive.
(iii) Fix TS = ∩t

i=1Li = ∩F∈SL
FixF .

Proof (i): Now for every i ∈ {1, . . . , t}, Ti = 1
2 (Id + PLi

) = 1
2

(
Id + Id+RLi

2

)
= 3

4 Id +
1
4RLi

. Hence,

TS = 1

t

t∑

i=1

Ti = 1

t

t∑

i=1

(
3

4
Id + 1

4
RLi

)
∈ aff{Id,RL1 ,RL2 , . . . ,RLt } ⊆ aff(SL).

The proofs for (ii) and (iii) are similar to the corresponding parts of the proof in Lemma 5.12.

Proposition 5.14 Assume thatH = R
n and {Id,RU1 , . . . ,RUt−1 ,RUt } ⊆ S . Then for every

x ∈ H, (CCk
Sx)k∈N converges to P∩t

i=1Ui
x with a linear rate

∥∥( 1
t

∑t
i=1 PLi

)P(∩t
i=1Li)

⊥
∥∥.

Proof Combining Lemma 5.12 and Theorem 4.15(ii), we know that for every y ∈ H,
(CCk

SL
y)k∈N converges to P∩t

i=1Li
y with a linear rate

∥∥( 1
t

∑t
i=1 PLi

)P(∩t
i=1Li)

⊥
∥∥.

Hence, the required result comes from Proposition 5.3.

Proposition 5.15 Assume that H = R
n and {Id,RU1 ,RU2 , . . . ,RUt } ⊆ S . Denote TS :=

1
t

∑t
i=1 Ti where (∀i ∈ {1, 2, . . . , t}) Ti := 1

2 (Id + PLi
). Let x ∈ R

n. Then (CCk
Sx)k∈N

linearly converges to P∩t
i=1Ui

x with a linear rate
∥∥TSP(∩t

i=1Li)
⊥
∥∥.

Proof Using the similar method used in the proof of Proposition 5.14, and using
Lemma 5.13 and Theorem 4.15(ii), we obtain the required result.

Clearly, we can take S = {Id,RU1 ,RU2 , . . . ,RUt } in Propositions 5.14 and 5.15. In
addition, Propositions 5.14 and 5.15 tell us that for different TS ∈ aff(SL), we may obtain
different linear convergence rates of (CCk

Sx)k∈N.

5.3 Accelerating the Douglas–RachfordMethod

In this subsection, we consider the case when t = 2.

Lemma 5.16 Let L1, L2 be the closed linear subspaces defined in (5.1). Let z ∈ L1 + L2.
Denote T := TL2,L1 defined in Definition 2.14. Assume L1 ∩ L2 ⊆ ∩F∈SL

FixF . Then

(∀k ∈ N) PL1∩L2(z) = PL1∩L2

(
CCk

SL
z
)

= PFixT
(
CCk

SL
z
)
.
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Proof Using Lemma 5.7(ii), we get (CCk
SL

z)k∈N ⊆ span(L1 ∪L2) = L1 +L2. Combining
Lemma 5.1, Proposition 4.2(iii) (by taking W = L1 ∩L2) with Lemma 2.18, we obtain that
(∀k ∈ N) PFix T z = PL1∩L2z = PL1∩L2(CCk

SL
z) = PFix T (CCk

SL
z).

Corollary 5.17 Let L1, L2 be the closed linear subspaces defined in (5.1). Assume L1 ∩
L2 ⊆ ∩F∈SL

FixF . Let x ∈ H. Let K be a closed linear subspace ofH such that

L1 ∩ L2 ⊆ K ⊆ L1 + L2.

Denote T := TL2,L1 defined in Definition 2.14. Then

(∀k ∈ N) PL1∩L2x = PFix T PKx = PL1∩L2PKx

= PL1∩L2

(
CCk

SL
PKx

)
= PFixT

(
CCk

SL
PKx

)
.

Proof Because PKx ∈ K ⊆ L1 + L2. Then Lemma 2.19 implies that

PL1∩L2x = PL1∩L2PKx = PFix T PKx.

Applying Lemma 5.16 with z = PKx, we get the desired result.

Using Corollary 5.17, Proposition 4.2(iv), Facts 2.16 and 2.17, and an idea similar to the
proof of [7, Theorem 1], we obtain the following more general result, which is motivated by
[7, Theorem 1]. In fact, [7, Theorem 1] reduces to Proposition 5.19(i) when H = R

n and
S = {Id,RU1 ,RU2RU1}.

Proposition 5.18 Let L1, L2 be the closed linear subspaces defined in (5.1). Assume L1 ∩
L2 ⊆ ∩F∈SL

FixF . Let K be a closed affine subspace ofH such that for KL = parK ,

L1 ∩ L2 ⊆ KL ⊆ L1 + L2.

Denote T := TU2,U1 and TL := TL2,L1 defined in Definition 2.14. Denote the c(L1, L2)

defined in Definition 2.15 by cF . Assume there exists d ∈ N \ {0} such that T d ∈ affS . Let
x ∈ H. Then

(∀k ∈ N) ‖CCk
SPKx − PU1∩U2x‖ ≤ (cF )dk‖PKx − PU1∩U2x‖.

Proof By definition, T d ∈ affS means that T d
L ∈ affSL. Using Corollary 5.17, we get

(∀n ∈ N) PL1∩L2x = PFix TL
PKL

x = PL1∩L2PKL
x

= PL1∩L2

(
CCn

SL
PKL

x
) = PFix TL

(
CCn

SL
PKL

x
)
. (5.13)

Since T d
L ∈ affSL, Proposition 4.2(iv) implies that

(∀y ∈ H) ‖CCSL
(y) − PL1∩L2y‖ ≤ ‖T d

L (y) − PL1∩L2y‖. (5.14)

Using Fact 2.17, we get

(∀y ∈ H) ‖T d
L y − PFix TL

y‖ ≤ cd
F ‖y − PFix TL

y‖. (5.15)

If k = 0, then the result is trivial. Thus, we assume that for some k ≥ 0, we have

‖CCk
SL

PKL
x − PL1∩L2x‖ ≤ (cF )dk‖PKL

x − PL1∩L2x‖. (5.16)
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Then

‖CCk+1
SL

PKL
x − PL1∩L2x‖ (5.13)= ‖CCSL

(CCk
SL

PKL
x) − PL1∩L2(CCk

SL
PKL

x)‖
(5.14)≤ ‖T d

L (CCk
SL

PKL
x) − PL1∩L2(CCk

SL
PKL

x)‖
(5.13)= ‖T d

L (CCk
SL

PKL
x) − PFix TL

(CCk
SL

PKL
x)‖

(5.15)≤ cd
F ‖CCk

SL
PKL

x − PFixTL
(CCk

SL
PKL

x)‖
(5.13)= cd

F ‖CCk
SL

PKL
x − PL1∩L2x‖

(5.16)≤ cd
F (cF )dk‖PKL

x − PL1∩L2
x‖

= (cF )d(k+1)‖PKL
x − PL1∩L2x‖.

Hence, we have inductively proved

(∀k ∈ N) (∀y ∈ H) ‖CCk
SL

PKL
y − PL1∩L2y‖ ≤ (cF )dk‖PKL

y − PL1∩L2y‖. (5.17)

Let u ∈ U1 ∩ U2. By Lemma 5.2(iii), we know that (∀k ∈ N) (∀y ∈ H) CCk
Sy = u +

CCk
SL

(y − u) and by Fact 2.1, we have P∩2
i=1Ui

y = Pu+∩2
i=1Li

y = u + P∩2
i=1Li

(y − u).

Hence, we obtain that for every k ∈ N and for every x ∈ H,

‖CCk
S(PKx) − PU1∩U2x‖ = ‖u + CCk

SL
(PK(x) − u) − u − PL1∩L2(x − u)‖

= ‖CCk
SL

(PKL
(x − u)) − PL1∩L2(x − u)‖

(5.17)≤ (cF )dk‖PKL
(x − u) − PL1∩L2(x − u)‖

= (cF )dk‖u + PKL
(x − u) − (

u + PL1∩L2(x − u)
) ‖

= (cF )dk‖PKx − PU1∩U2x‖.
Therefore, the proof is complete.

Let us now provide an application of Proposition 5.18.

Proposition 5.19 Assume that U1, U2 are two closed affine subspaces with parU1 +parU2
being closed. Let x ∈ H. Let cF be the cosine of the Friedrichs angle between parU1 and
parU2. Then the following hold:

(i) Assume that {Id,RU2RU1} ⊆ S . Then each of the three sequences (CCk
S(PU1x))k∈N,

(CCk
S(PU2x))k∈N, and (CCk

S(PU1+U2x))k∈N converges linearly to PU1∩U2x. More-
over, their rates of convergence are no larger than cF ∈ [0, 1[ .

(ii) Assume that {Id,RU2RU1 ,RU2RU1RU2RU1} ⊆ S . Then the sequences
(CCk

S(PU1x))k∈N, (CCk
S(PU2x))k∈N, and (CCk

S(PU1+U2x))k∈N converge linearly to
PU1∩U2x. Moreover, their rates of convergence are no larger than c2F .

Proof Clearly, under the conditions of each statement, parU1 ∩ parU2 ⊆ ∩F∈SL
FixF . In

addition, we are able to substitute KL in Proposition 5.18 by any one of parU1, parU2 or
parU1 + parU2.

(i): Since {Id,RU2RU1} ⊆ S ,

TU2,U1 := Id + RU2RU1

2
∈ aff{Id,RU2RU1} ⊆ affS .
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Substitute d = 1 in Proposition 5.18 to obtain

(∀k ∈ N) ‖CCk
SPKL

x − PU1∩U2x‖ ≤ ck
F ‖PKL

x − PU1∩U2x‖.
Because parU1 + parU2 is closed, by Fact 2.16, we know that cF ∈ [0, 1[ .

(ii): Since {Id,RU2RU1 ,RU2RU1RU2RU1} ⊆ S , by [5, Proposition 4.13(i)], we know that

T 2
U2,U1

=
(
Id + RU2RU1

2

)2

∈ affS .

The remainder of the proof is similar to the proof in (i) above. The only difference is that
this time we substitute d = 2 but not d = 1.

The following example shows that the special address for the initial points in Proposi-
tion 5.19 is necessary.

Example 5.20 Assume thatU1,U2 are two closed linear subspaces inH such thatU1+U2 is
closed. Assume S = {Id,RU2RU1}. Let x ∈ H\ (U1+U2). Clearly, U1∩U2 ⊆ ∩T ∈SFix T .
But

lim
k→∞ CCk

Sx = PFixCCSx �∈ U1 ∩ U2.

Proof By definition of S and by Fact 2.32, CCS = TU2,U1 , where the TU2,U1 is the
Douglas–Rachford operator defined in Definition 2.14. By assumptions, Facts 2.16 and 2.17
imply that (CCk

Sx)k∈N converges linearly to PFixCCSx. So

lim
k→∞ CCk

Sx = PFixCCSx. (5.18)

Since x �∈ U1 + U2 = U1 + U2, Lemma 2.18 yields that

PFixCCSx �= PU1∩U2x. (5.19)

Assume to the contrary PFixCCSx ∈ U1 ∩ U2. By Theorem 4.12(ii) and (5.18), we get
PFixCCSx = PU1∩U2x, which contradicts (5.19).

Therefore, limk→∞ CCk
Sx = PFixCCSx �∈ U1 ∩ U2.

5.4 Best Approximation for the Intersection of Finitely Many Affine Subspaces

In this subsection, our main goal is to apply Proposition 5.19(i) to find the best approxi-
mation onto the intersection of finitely many affine subspaces. Unless stated otherwise, let
I := {1, . . . , N} with N ≥ 1 and let HN be the real Hilbert space obtained by endow-
ing the Cartesian product with the usual vector space structure and with the inner
product (x, y) �→ ∑N

i=1〈xi, yi〉, where x = (xi)i∈I and y = (yi)i∈I (for details, see
[3, Proposition 29.16]).

Let (∀i ∈ I) Ci be a nonempty closed convex subset ofH. Define two subsets ofHN :

which are both closed and convex (in fact, D is a linear subspace).

Fact 5.21 [3, Propositions 29.3 and 29.16] Let x := (xi)i∈I. Then

(i) PCx = (
PCi

xi

)
i∈I.

(ii) PDx =
(

1
N

∑
i∈I xi

)

i∈I.
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The following two results are clear from the definition of the sets C and D.

Lemma 5.22 Let x ∈ H. Then (x, . . . , x) ∈ C ∩ D ⇔ x ∈ ∩i∈ICi .

Proposition 5.23 Let x ∈ H. Then PC∩D(x, . . . , x) =
(
P∩N

i=1Ci
x, . . . , P∩N

i=1Ci
x
)
.

Fact 5.24 [3, Corollary 5.30] Let t be a strictly positive integer, set J := {1, . . . , t}, let
(Uj )j∈J be a family of closed affine subspaces of H such that ∩t

j=1Uj �= ∅. Let x0 ∈ H.
Set (∀n ∈ N) xn+1 := PUt · · · PU1xn. Then xn → P∩t

j=1Uj
x0.

Using Fact 5.24 and Proposition 5.23, we obtain the following interesting by-product,
which can be treated as a new method to solve the best approximation problem associated
with ∩N

i=1Ci .

Proposition 5.25 Assume (∀i ∈ I) Ci is a closed affine subspace of H with ∩N
i=1Ci �= ∅.

Let x ∈ H. Then the following hold:

(i) PC∩D(x, . . . , x) = limk→∞(PDPC)k(x, . . . , x).
(ii) Denote by Q := 1

N
(PC1 + · · · + PCN

), then

Qkx → P∩m
i=1Ci

x.

Proof Since (∀i ∈ I) Ci is closed affine subspace ofH with ∩N
i=1Ci �= ∅, thus C is closed

affine subspace ofHN and C ∩ D �= ∅. By definition of D, it is a linear subspace ofHN .
(i): The result is from Fact 5.24 by taking t = 2 and considering the two closed affine

subspaces C and D inHN .
(ii): Combine Fact 5.21, Proposition 5.23 with the above (i) to obtain the desired results.

Fact 5.26 [2, Lemma 5.18] Assume each set Ci is a closed linear subspace. Then C⊥
1 +

· · · + C⊥
N is closed if and only if D + C is closed.

The next proposition shows that we can use the circumcenter method induced by reflec-
tors to solve the best approximation problem associated with finitely many closed affine
subspaces. Recall that for each affine subspace U , we denote the linear subspace paralleling
U as parU , i.e., parU := U − U .

Proposition 5.27 Assume U1, . . . , Ut are closed affine subspaces in H, with ∩t
i=1Ui �= ∅

and (parU1)
⊥+· · ·+(parUt)

⊥ being closed. Set J := {1, . . . , t}, andD := {(x, . . . ,

x) ∈ Ht | x ∈ H}. Assume {Id,RCRD} ⊆ S or {Id,RDRC} ⊆ S . Let x ∈ H and set x :=
(x, . . . , x) ∈ Ht ∩ D. Then (CCk

Sx)k∈N converges to PC∩Dx = (P∩t
i=1Ui

x, . . . , P∩t
i=1Ui

x)

linearly.

Proof Denote . Clearly, CL = parC. Now parU1, . . . , parUt are closed
linear subspaces implies that CL is closed linear subspace. It is clear that D = parD is a
closed linear subspace. Because (parU1)

⊥ + · · ·+ (parUt)
⊥ is closed, by Fact 5.26, we get

CL+D is closed. Then using Proposition 5.19(i), we know there exists a constant cF ∈ [0, 1[
such that

(∀k ∈ N) (∀y∈D) ‖CCk
SL

y−PCL∩Dy‖=‖CCk
SL

PDy−PCL∩Dy‖ ≤ ck
F ‖PDy−PCL∩Dy‖,
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which imply that (CCk
SL

(x−u))k∈N linearly converges to PCL∩D(x−u) for any u ∈ ∩t
i=1Ui

and u = (u, . . . , u). Hence, by Proposition 5.3, we conclude that (CCk
Sx)k∈N linearly

converges to PC∩Dx. Since by Proposition 5.23, PC∩Dx =
(
P∩t

i=1Ui
x, . . . , P∩t

i=1Ui
x
)
, thus

(CCk
Sx)k∈N linearly converges to

(
P∩t

i=1Ui
x, . . . ,P∩t

i=1Ui
x
)
.

6 Numerical Experiments

In order to explore the convergence rate of the circumcenter methods, in this section we
use the performance profile introduced by Dolan and Moré [13] to compare circumcenter
methods induced by reflectors developed in Section 5 with the Douglas–Rachford method
(DRM) and the method of alternating projections (MAP) for solving the best approxima-
tion problems associated with linear subspaces. (Recall that by Proposition 5.3, for any
convergence results on circumcenter methods induced by reflectors associated with lin-
ear subspaces, we will obtain the corresponding equivalent convergence result on that
associated with affine subspaces.)

In the whole section, given a pair of closed and linear subspaces, U1, U2, and a initial
point x0, the problem we are going to solve is to

Denote the cosine of the Friedrichs angle between U1 and U2 by cF . It is well known that
the sharp rate of the linear convergence of DRM and MAP for finding PU1∩U2x0 are cF and
c2F respectively (see, [1, Theorem 4.3] and [11, Theorem 9.8] for details). Hence, if cF is
“small”, then we expect DRM and MAP converge to PU1∩U2x0 “fast”, but if cF ≈ 1, the
two classical solvers should converge to PU1∩U2x0 “slowly”. The cF associated with the
problems in each experiment below is randomly chosen from some certain range.

6.1 Numerical Preliminaries

Dolan and Moré define a benchmark in terms of a set P of benchmark problems, a set S
of optimization solvers, and a convergence measure matrix T. Once these components of a
benchmark are defined, performance profile can be used to compare the performance of the
solvers.

We assume H = R
1000. In every one of our experiment, we randomly generate 10 pairs

of linear subspaces, U1, U2 with Friedrichs angles in certain range. We create pairs of linear
subspaces with particular Friedrichs angle by [14]. For each pair of subspaces, we choose
randomly 10 initial points, x0. This results in a total of 100 problems, that constitute our set
P of benchmark problems. Set

S1 := {Id, RU1 , RU2}, S2 := {Id, RU1 , RU2RU1},
S3 := {Id, RU1 , RU2 , RU2RU1}, S4 := {Id, RU1 , RU2 , RU2RU1 , RU1RU2 , RU1RU2RU1}.
Notice that

CCS2 is the C–DRM operator CT in [7]

and hence, it is also the CRM operator C in [8] when m = 2.
Our test algorithms and sequences to monitor are as the Table 1.
Hence, our set S of optimization solvers is subset of the set consists of the six algorithms

above.
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Table 1 Forming the set of solvers S

Algorithm Sequence to monitor

Douglas–Rachford method PU1 (
1
2 (Id + RU2RU1 ))

k(x0)

Method of alternating projections (PU2PU1 )
k(x0)

Circumcenter method induced by S1 (CCS1 )
k(x0)

Circumcenter method induced by S2 (CCS2 )
k(x0)

Circumcenter method induced by S3 (CCS3 )
k(x0)

Circumcenter method induced by S4 (CCS4 )
k(x0)

For every i ∈ {1, 2, 3, 4}, we calculate the operator CCSi
by applying Proposition 2.33,

and for notational simplicity,

We use 10−6 as the tolerance employed in our stopping criteria and we terminate the algo-
rithm when the number of iterations reaches 106 (in which case the problem is declared
unsolved). For each problem p with the exact solution being x = PU1∩U2x0, and for each
solver s, the performance measure considered in the whole section is either

(6.1)

or

(6.2)
where a

(k)
p,s is the kth iteration of solver s to solve problem p. We would not have access

to x = PU1∩U2x0 in applications, but we use it here to see the true performance of the
algorithms. After collecting the related performance matrices, T = (tp,s)100×card(S), we use
the perf.m file in Dolan and Moré [12] to generate the plots of performance profiles. All
of our calculations are implemented in Matlab.

6.2 Performance Evaluation

In this subsection, we present the performance profiles from four experiments. (We ran
many other experiments and the results were similar to the ones shown here.) The cosine
of the Friedrichs angels of the four experiments are from [0.01, 0.05[, [0.05, 0.5[, [0.5, 0.9[
and [0.9, 0.95[ respectively. In each one of the four experiments, we randomly generate
10 pairs of linear subspaces with the cosine of Friedrichs angles, cF , in the corresponding
range, and as we mentioned in the last subsection, for each pair of subspaces, we choose
randomly 10 initial points, x0, which gives us 100 problems in each experiment. The out-
puts of every one of our four experiments are the pictures of performance profiles with
performance measure shown in (6.1) (the left-hand side pictures in Figs. 1 and 2) and with
performance measure shown in (6.2) (the right-hand side ones in Figs. 1 and 2).

According to Fig. 1, we conclude that when cF ∈ [0.01, 0.5[, CCS4 needs the smallest
number of iterations to satisfy the inequality shown in (6.1), that MAP is the fastest to attain
the inequality shown in (6.2), and thatCCS3 takes the second place in terms of both required
number of iterations and run time. Note that the circumcentered reflection methods need
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Fig. 1 Performance profiles on six solvers for cF ∈ [0.01, 0.5[

to solve the linear system (see Proposition 2.33). Hence, it is reasonable that MAP is the
the fastest although MAP needs more number of iterations than circumcentered reflection
methods.

From Fig. 2(a) and (b), we know that when cF ∈ [0.5, 0.9[, the number of iterations
required by CCS2 and CCS3 are similar (the lines from CCS2 and CCS3 almost overlap)
and dominate the other 4 algorithms, and CCS2 is the fastest followed closely by MAP
and CCS3 . By Fig. 2(c) and (d), we find that when cF ∈ [0.9, 0.95[ in which case MAP
and DRM are very slow for solving the best approximation problem, CCS3 needs the least
number of iterations and is the fastest in every one of the 100 problems.

Note that inR1000, the calculation of projections takes the majority time in the whole time
to solve the problems. As we mentioned before, we apply the Proposition 2.33 to calculate
our circumcenter mappings: CCS1 , CCS2 , CCS3 and CCS4 . Because the largest number of
the operators in our S is 6 (attained for S4), the size of the Gram matrix in Proposition 2.33
is less than or equal 5×5. As it is shown in Fig. 2(a) and (c), the methods CCS2 , CCS3 , and

505



H.H. Bauschke et al.

 Performance ratio 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 P
er

ce
nt

ag
e 

of
 p

ro
bl

em
s 

so
lv

ed
 

Performance Profile on Number of Iterations in R1000 ( cF  [0.5,0.9[ )

DRM
MAP
CCS

1

CCS
2

CCS
3

CCS
4

(a)

1 1.5 2 2.5 3 3.5 4 4.5 5 31 2 4 5 6 7

 Performance ratio 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 P
er

ce
nt

ag
e 

of
 p

ro
bl

em
s 

so
lv

ed
 

Performance Profile on Run Time in R1000 ( cF  [0.5,0.9[ )

DRM
MAP
CCS

1

CCS
2

CCS
3

CCS
4

(b)

 Performance ratio 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 P
er

ce
nt

ag
e 

of
 p

ro
bl

em
s 

so
lv

ed
 

Performance Profile on Number of Iterations in R1000 ( cF  [0.9,0.95[ )

DRM
MAP
CCS

1

CCS
2

CCS
3

CCS
4

(c)

8 10 12 14 16 18 202 4 6 2 4 6 8 10 12 14 16 18 20 22

 Performance ratio 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 P

er
ce

nt
ag

e 
of

 p
ro

bl
em

s 
so

lv
ed

 
Performance Profile on Run Time in R1000 ( cF  [0.9,0.95[ )
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Fig. 2 Performance profiles on six solvers for cF ∈ [0.5, 0.95[

CCS4 need fewer iterations to solve the problems than MAP and DRM. It is well-known
that MAP and DRM are very slow when cF is close to 1. It is not surprising that Fig. 2(b)
shows that CCS2 is the fastest when for cF ∈ [0.5, 0.9[ and Fig. 2(d) illustrates that CCS3

is the fastest for cF ∈ [0.9, 0.95[.
The main conclusions that can be drawn from our experiments are the following.
When cF ∈ [0.01, 0.5[ is small, CCS4 is the winner in terms of number of iterations and

MAP is the best solver with consideration of the required run time. CCS3 takes the second
place in performance profiles with both of the performance measures (6.1) and (6.2) for
cF ∈ [0.01, 0.5[.

When cF ∈ [0, 5, 0.9[, Behling, Bello Cruz and Santos’ method CCS2 is the opti-
mal solver and the performance of CCS3 is outstanding for both the required number of
iterations and run time.

When cF ∈ [0, 9, 0.95[, CCS3 is the best option with regard to both required number of
iterations and run time.

Altogether, if the user does not have an idea about the range of cF , then we recommend
CCS3 .
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7 Concluding Remarks

Generalizing some of our work in [5] and using the idea in [7], we showed the proper-
ness of the circumcenter mapping induced by isometries, which allowed us to study the
circumcentered isometry methods. Sufficient conditions for the (weak, strong, linear) con-
vergence of the circumcentered isometry methods were presented. In addition, we provided
certain classes of linear convergent circumcentered reflection methods and established some
of their applications. Numerical experiments suggested that three (including the C–DRM
introduced in [7]) out of our four chosen circumcentered reflection methods dominated the
DRM and MAP in terms of number of iterations for every pair of linear subspaces with the
cosine of Friedrichs angle cF ∈ [0.01, 0.95[. Although MAP is fastest to solve the related
problems when cF ∈ [0.01, 0.5[ and C–DRM is the fastest when cF ∈ [0.5, 0.9[, one of
our new circumcentered reflection methods is a competitive choice when we have no prior
knowledge on the Friedrichs angle cF .

We showed the weak convergence of certain class of circumcentered isometry meth-
ods in Theorem 4.7. Naturally, we may ask whether strong convergence holds. If S
consists of isometries and ∩T ∈SFix T �= ∅, then Theorem 3.3(i) shows the proper-
ness of CCS . Assuming additionally that (CCk

Sx)k∈N has a norm cluster in ∩T ∈SFixT ,
Theorem 4.12(i) says that (CCk

Sx)k∈N converges to P∩T ∈SFixT x. Another question is: Can
one find more general condition on S such that CCS is proper and (CCk

Sx)k∈N has a norm
cluster in ∩T ∈SFix T for some x ∈ H? These are interesting questions to explore in future
work.
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13. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program

91, 201–213 (2002)
14. Gearhart, W.B., Koshy, M.: Acceleration schemes for the method of alternating projections. J. Comput.

Appl. Math 26, 235–249 (1989)
15. Kreyszig, E.: Introductory Functional Analysis with Applications. John Wiley & Sons, Inc., New York

(1989)
16. Lindstrom, S.B.: Computable centering methods for spiraling algorithms and their duals, with motiva-

tions from the theory of Lyapunov functions. arXiv:2001.10784 (2020)
17. Meyer, C.: Matrix Analysis and Applied Linear Algebra. SIAM Philadelphia, PA (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

508

http://www.mcs.anl.gov/ more/cops/
http://arxiv.org/abs/2001.10784

	Circumcentered Methods Induced by Isometries
	Abstract
	Introduction
	Auxiliary Results
	Projections
	Firmly Nonexpansive Mappings
	The Douglas–Rachford Method
	Isometries
	Circumcenter Operators and Circumcenter Mappings

	Circumcenter Mappings Induced by Isometries
	Properness of Circumcenter Mapping Induced by Isometries
	Further Properties of Circumcenter Mappings Induced by Isometries

	Circumcenter Methods Induced by Isometries
	Properties of Circumcentered Isometry Methods
	Convergence

	Circumcenter Methods Induced by Reflectors
	Properties of Circumcentered Reflection Methods
	Linear Convergence of Circumcentered Reflection Methods
	Accelerating the Douglas–Rachford Method
	Best Approximation for the Intersection of Finitely Many Affine Subspaces

	Numerical Experiments
	Numerical Preliminaries
	Performance Evaluation

	Concluding Remarks
	References




