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Abstract
The main properties of evenly convex sets and functions have been deeply studied by dif-
ferent authors, and a duality theory for evenly convex optimization problems has been
well developed as well. In this theory, the notion of e′-convexity appears as a necessary
requirement for obtaining important results in strong and stable strong duality. This fact
has motivated the authors to study possible properties of this kind of convexity in sets and
functions, which is closely connected to even convexity.
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1 Introduction

In [10] Wernel Fenchel introduced the concept of evenly convex set in R
n trying to gener-

alize the polarity theory to nonclosed convex sets. A set is e-convex if it can be expressed
as an intersection of an arbitrary family (possibly empty) of open halfspaces. In the litera-
ture dealing with these sets, they are abbreviated as e-convex sets, so we warn the reader to
avoid any possible confusion with e-convex sets in [22]. Characterizations of e-convex sets
can be found in [2] and [12] and their basic properties were studied in [14]. They appear to
be very useful in the study of geometrical properties of the feasible set of a linear inequal-
ity system containing strict inequalities; see [13]. In a natural way, e-convex sets allow the
definition of e-convex functions, introduced in [21] as those extended real-valued functions
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whose epigraghs are e-convex. Moreover, in [15] a suitable conjugation pattern for e-convex
functions defined on locally convex spaces, the c-conjugation, was defined. Its suitability
refers that a proper function is e-convex if and only if it is equal to its double c-conjugate.

Since any closed convex set is e-convex, the class of convex lower semicontiuous func-
tions can be considered as a subclass of the e-convex functions. This fact motivated that
Fajardo et al. in [7] extended some well-known properties of convex lower semicontinuous
functions to e-convex functions. The notion of e′-convexity appeared in that paper, firstly,
trying to obtain the counterpart of a well-known result (see [1, Sect. 2]): Let X be a locally
convex space and f, g : X → R be two proper lower semicontinuous convex functions such
that dom f ∩ dom g �= ∅. Then

cl(epi f ∗ + epi g∗) = epi(f + g)∗, (1)

where f ∗ and g∗ are the Fenchel conjugate functions of f and g, respectively. If we assume
that f and g are e-convex, it is not necessarily true, and if we take c-conjugate functions
instead of Fenchel ones the closure is not an appropriate hull. In [7, Remark 1] it is also
stated that the e-convex hull is not enough to reach the equality, fact that motivated them
to introduce the notion of e′-convexity; see [7, Definition 2]. Moreover, in this paper, and
using the c-conjugation scheme, a Fenchel-type dual problem for a primal one where both
objective function and feasible set are e-convex were built. Optimization problems where
the objective function and the feasible set are e-convex have potential applications in math-
ematical applications, in an analogous way than evenly quasiconvex optimization is used in
[19].

In [3] an alternative dual problem (GDc) for a general primal (GP ) was built by means
of the c-conjugation scheme, via the perturbational approach. Weak duality was assured and
sufficient conditions for Fenchel strong duality, called regularity conditions, were obtained.
In addition, relationships between e-convexity and other closedness-type notions in infi-
nite dimensional locally convex spaces were deduced.These connections were used for
achieving regularity conditions for (GP ) and (GDc), which were particularized for Fenchel
duality case and compared with the one obtained in [7]. Fajardo et al. [5] states the analysis
of regularity conditions for Lagrange duality. In [9] Fenchel–Lagrange duality is consid-
ered, where dual problems are expressed via the c-conjugates of the functions involved in
the primal problem. Fajardo and Vidal [8] studies sufficient conditions and characterizations
for stable strong duality in this generalized framework for Fenchel and Lagrange duali-
ties. In addition, a comparison of the optimal values and solutions of the three alternative
dual problems (Fenchel, Lagrange and Fenchel–Lagrange) is achieved in [6]. Finally, in the
recent paper [4], converse and total duality as well as new results on subdifferential theory
for e-convex functions have been also studied, developed initially in [15] .

E-convex properties have been deeply studied, as the reader can observe, whereas e′-
convexity has been a necessary tool for the achievement of generalized duality results.
Something was asking to be done: the study of interesting properties or characterizations of
e′-convex sets and functions, if there were any. As it will be shown in the following section,
an e′-convex set is defined over the space W ×R, where W = X∗×X∗×R. Since this space
can be a bit difficult to deal with due to its high dimension, we will try to obtain a charac-
terization of such kind of sets, but without using ideas based on separation hyperplanes. To
this aim, and inspired in [10, 11], we shall define two new operators which will allow us
to characterize the e′-convexity of a given subset and, in spirit of [21], we will analyze the
main properties that e′-convex sets and functions inherit from the e-convex case.
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E′-Convex Sets and Functions: Properties and Characterizations

The organization is as follows. In Section 2, we present the main properties for e-convex
sets and functions, together with all the necessary results, in order to make the paper self-
contained. The idea of this section is to give a general perspective of e-convexity, since
its properties have been taken as a reference for the purpose of studying the e′-convexity.
Section 3 is dedicated to the study of the e′-convex sets and Section 4 presents the main
properties of the e′-convex functions. Finally, Section 5 concludes.

2 Preliminaries

Let X be a separated locally convex space, lcs in brief, equipped with the σ(X,X∗) topol-
ogy induced by X∗, its continuous dual space endowed with the σ(X∗, X) topology. The
notation 〈x, x∗〉 stands for the value at x ∈ X of the continuous linear functional x∗ ∈ X∗.
For a set D ⊆ X we denote its convex hull and its closure by conv D and cl D, respectively.
Moreover, if D �= ∅, the indicator function δD : X → R = R ∪ {±∞} is defined by

δD(x) =
{

0 if x ∈ D,

+∞ otherwise.

According to [2], a set C ⊆ X is e-convex, if for every point x0 /∈ C, there exists x∗ ∈ X∗
such that 〈x −x0, x

∗〉 < 0, for all x ∈ C. Since X is assumed to be a nontrivial lcs, X∗ �= 0.
From the definition of e-convex set, the entire space X is e-convex. As a consequence of
Hahn–Banach theorem, every closed or open convex set is e-convex as well.

The class of e-convex sets captures some important properties from the subclass of closed
convex sets. For instance, it is immediate that the intersection of an arbitrary family of e-
convex sets is e-convex. Moreover, if C is an e-convex set, αC is also e-convex, for all
α > 0. Nevertheless, the image of an e-convex set from a linear transformation is not, in
general, an e-convex set. In particular, the sum of two e-convex sets is not necessarily an
e-convex set (see [12, Example 3.1]).

The next two propositions show basic properties of e-convex sets whose proofs in their
respective references have been done in R

n, but they can be extended to general locally
convex spaces with no further difficulties.

Proposition 1 [21, Proposition 1.2] Let C1 ⊆ X and C2 ⊆ Y be two non-empty subsets,
with X and Y locally convex spaces. Then C1 × C2 is e-convex in X × Y if and only if C1
and C2 are e-convex sets in X and Y , respectively.

For a set C ⊆ X, the e-convex hull of C, econv C, is the smallest e-convex set in X

containing C. This operator is well defined because X is e-convex and the class of e-convex
sets is closed under intersection. Moreover, for all C ⊆ X, it always holds C ⊆ conv C ⊆
econv C ⊆ cl C.

Proposition 2 [13, Proposition 2.3] Let C1 ⊆ X and C2 ⊆ Y be non-empty subsets with X

and Y locally convex spaces. Then, it holds

econv(C1 × C2) = econv(C1) × econv(C2).

Considering now a function f : X → R, we denote by

dom f = {x ∈ X : f (x) < +∞}
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the effective domain of f and by

epi f = {(x, r) ∈ X × R : f (x) ≤ r}
its epigraph. We say that f is proper if epi f does not contain vertical lines, i.e., f (x) >

−∞ for all x ∈ X, and dom f �= ∅. By cl f we denote the lower semicontinuous hull of
f , which is the function whose epigraph equals cl(epi f ). A function f is lower semicon-
tinuous, lsc in brief, if for all x ∈ X, f (x) = cl f (x), and e-convex if epi f is e-convex
in X × R. Clearly, any lsc convex function is e-convex, but the converse does not hold in
general as we can see below.

Example 1 (cf. [6, Example 2.1]) Let f : R → R be the function defined as

f (x) =
{

x if x > 0,

+∞ otherwise.

Clearly, epi f = {(x, y) ∈ R
2 | x > 0, y ≥ x} is e-convex in R

2 since for every x0 /∈ epi f ,
there exists a non-trivial hyperplane whose intersection with epi f is empty. However, epi f
is not closed and, consequently, f is not lsc.

The e-convex hull of a function f : X → R, econv f , is defined as the largest e-convex
minorant of f . The next propositions show important properties of e-convex functions
which have been presented in [21] for X = R

n, whose proofs can be generalized to locally
convex spaces with no extra effort.

Proposition 3 [21, Proposition 3.1] Let f : X → R be an e-convex function and α > 0.
Then αf is e-convex.

Proposition 4 [21, Proposition 3.2] Let {fi : X → R, i ∈ I } be a family of e-convex
functions, then f = supi∈I fi is e-convex.

Proposition 5 [21, Proposition 3.3] Let f, g : X → R be two proper e-convex functions.
Then f + g is e-convex.

Based on the generalized convex conjugation theory introduced by Moreau in [17], a
suitable conjugation scheme for e-convex functions is provided in [15]. Let us consider the
space W := X∗ ×X∗ ×R with the coupling functions c : X×W → R and c′ : W ×X → R

given by

c(x, (x∗, u∗, α)) = c′((x∗, u∗, α), x
) :=

{ 〈x, x∗〉 if 〈x, u∗〉 < α,

+∞ otherwise.

Given two functions f : X → R and g : W → R, the c-conjugate of f and the c′-conjugate
of g are defined as the functions f c : W → R and gc′ : X → R, such that

f c(x∗, u∗, α) := sup
x∈X

{c(x, (x∗, u∗, α)) − f (x)},

gc′
(x) := sup

(x∗,u∗,α)∈W

{
c′ ((x∗, u∗, α), x

) − g(x∗, u∗, α)
}
,

respectively, with the conventions (+∞) + (−∞) = (−∞) + (+∞) = (+∞) − (+∞) =
(−∞) − (−∞) = −∞.

Functions of the form x ∈ X → c(x, (x∗, u∗, α)) − β ∈ R, with (x∗, u∗, α) ∈ W and
β ∈ R are called c-elementary, and, in a similar way, functions of the form (x∗, u∗, α) ∈
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W → c′((x∗, u∗, α), x) − β ∈ R with x ∈ X and β ∈ R are called c′-elementary. In
[15] it is shown the following characterization for a proper e-convex function, which can
be understood as the e-convex version of [20, Theorem 12.1] for proper convex and lsc
functions.

Theorem 1 Let f : X → R, not identically +∞ or −∞. Let Ef be the set of c-elementary
functions minorizing f , i.e.,

Ef := {a : X → R : a is c-elementary and a ≤ f }.

Then f is a proper e-convex function if and only if f = sup{a : a ∈ Ef }.

Definition 1 [7, p. 379] A function g : W → R is e′-convex if it is the pointwise supremum
of sets of c′-elementary functions, and the e′-convex hull of an extended real valued function
g defined on W , denoted by e′conv g, is the largest e′-convex minorant of it.

It is immediate that the epigraph of a c′-elementary function is the intersection of an open
and a closed half-spaces in W × R, therefore it is an e-convex set. We conclude that any
c′-elementary function is e-convex, so it follows directly that any e′-convex function is e-
convex. The following theorem has been proved in [16, Proposition 6.1, Proposition 6.2, and
Corollary 6.1], containing what can be understood as the counterpart of Fenchel–Moreau
theorem for e-convex and e′-convex functions.

Theorem 2 Let f : X → R ∪ {+∞} and g : W → R. Then

i) f c is e′-convex and gc′
is e-convex.

ii) econv f = f cc′
and e′conv g = gc′c.

iii) f is e-convex if and only if f cc′ = f and g is e′-convex if and only if gc′c = g.
iv) f cc′ ≤ f and gc′c ≤ g.

Remark 1 [7, p. 379] According to iii) in Theorem 2, given f : X → R ∪ {+∞}, we say
that it is e-convex in x ∈ X if f (x) = f cc′

(x). Given g : W → R, it is said to be e′-convex
in (x∗, y∗, α) ∈ W when g(x∗, y∗, α) = gc′c(x∗, y∗, α).

The next result follows from Theorem 2 and Remark 12 in [15].

Theorem 3 Let f : X → R be a proper convex function. Then f is e-convex if and only if
f is lsc in econv(dom f ).

3 E′-convex Sets

In this section we will study some algebraic properties of the class of e′-convex sets as well
as a characterization of them by using general operators instead of supporting hyperplanes.
To this aim, we begin recalling the definition of e′-convex set from [7].

Definition 2 [7, Definition 2] A set D ⊆ W × R is e′-convex if there exists an e′-convex
function k : W → R such that D = epi k. The e′-convex hull of an arbitrary set D ⊆ W ×R

is defined as the smallest e′-convex set containing D, and it will be denoted by e′conv D.
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This type of envelope allowed to obtain the counterpart of (1) with the c-conjugation
scheme in [7]:

e′conv(epi f c + epi gc) = epi(f + g)c

under a certain additivity hypothesis between the sets Ef and Eg . See [7, Corollary 5] for
more details.

As described in the Introduction, e′-convex sets are important in the establishment of
regularity conditions for strong and stable strong duality on e-convex optimization prob-
lems. For this reason, the rest of the section aims to investigate further properties as well
as a characterization of this class of sets. As any e′-convex function is e-convex as well, it
follows that any e′-convex set is e-convex.

3.1 Characterization of e′-convex Sets

Given C ⊆ R
n and F ⊆ R

n × R, Fenchel in [10] and Goberna et al. in [11] defined, on the
one hand, the negative polar of C and, on the other hand, the weak dual cone of C and the
symmetrical expression of K , as the sets

Ce := {y ∈ R
n | 〈x, y〉 < 1 for all x ∈ C},

C≤ :=
{(

a

b

)
∈ R

n × R | 〈a, x〉 ≤ b for all x ∈ C

}
,

F≤ :=
{
x ∈ R

n | 〈a, x〉 ≤ b for all

(
a

b

)
∈ F

}
,

respectively. Using these operators, in [10] and [11] it was shown that a set C ⊆ R
n is

e-convex if and only if

C = Cee or C = (C≤)≤, (2)

so a natural question arises: is it possible to adapt these operators into the e′-convexity
scheme keeping somehow these characterizations? Without further ado, we will define two
new operators which can be viewed as their e′-convex counterparts.

Definition 3 Let K ⊆ W × R. We define the General Dual Cone (GDC) of K as the set

KGDC := {(x, γ ) ∈ X × R | c′((x∗, y∗, α), x) − γ ≤ β for all (x∗, y∗, α, β) ∈ K}
and, by convention, we establish that (∅W×R)GDC = X × R, being ∅W×R the empty set of
the space W × R.

Let us observe that (W ×R)GDC = ∅X×R, and that in general, KGDC is not necessarily
a cone. For instance, if

K = {(x, y, α, β) ∈ R
4 | x − β ≤ 0 and y − α < 0},

we have KGDC = {1}×R+, which clearly is not a cone. We can ensure that KGDC is a cone
if its projection onto R

2 reduces to the origin, which can be proved easily. Nevertheless,
although KGDC is not necessarily a cone, we have kept this word in the name because
KGDC represents the generalization of C≤ in our context. In the following proposition we
give conditions guaranteeing the nonemptiness of KGDC if K is nonempty and proper.
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Proposition 6 Let us assume thatX is a reflexive space, and thatK ⊂ W ×R is a nonempty
convex set such that its projections onto X∗ × R

K1 := {(x∗, β) | (x∗, y∗, α, β) ∈ K for some (y∗, α) ∈ X∗ × R},
K2 := {(y∗, α) | (x∗, y∗, α, β) ∈ K for some (x∗, β) ∈ X∗ × R},

verify that K1 is closed, with 0 ∈ K1, K2 is compact, K1 ∩ (−K2) = ∅, the projection of K1
onto R is bounded from below but not from above, the projection of K1 onto X∗ is bounded
and the projection of K2 onto R is bounded from below by 0, then KGDC is nonempty.

Proof In first place, lets us observe that KGDC is nonempty if and only if there exits
(x, γ ) ∈ X × R such that K1 ⊂ H

≤
(x,−1),γ and K2 ⊂ H<

(x,−1),0, where

H
≤
(x,−1),γ = {(x∗, β) ∈ X∗ × R | 〈x, x∗〉 − γ ≤ β},

H<
(x,−1),0 = {(y∗, α) ∈ X∗ × R | 〈x, y∗〉 − α < 0}.

Under the hypothesis, with X reflexive, according to Theorem 1.1.5 in [23], there exist
(x, δ) ∈ (X × R) \ {0} and α1, α2 ∈ R verifying, for all (x∗, β) ∈ K1 and (y∗, α) ∈ K2,

〈x, x∗〉 + δβ ≤ α1 < α2 ≤ 〈x, −y∗〉 − δα. (3)

Let us observe that, since 0 ∈ K1, α1 ≥ 0. Since the projection of K1 onto R is not bounded
from above, but its projection onto X∗ is bounded, δ ≤ 0. We distinguish two cases. In the
case δ = 0, naming inf(x∗,β)∈K1{β} = C1 and inf(y∗,α)∈K2{α} = C2 ≥ 0 by hypothesis, we
have

〈x, x∗〉 − β ≤ α1 − C1 = γ and 〈x, y∗〉 − α < −α1 − C2 ≤ 0

for all (x∗, β) ∈ K1 and (y∗, α) ∈ K2, and (x, γ ) ∈ KGDC .
On the other hand, if δ < 0, multiplying by 1

|δ| in (3) and naming z = 1
|δ|x and γ = 1

|δ|α1,
we have

〈z, x∗〉 − β ≤ γ and 〈z, y∗〉 − α < 0,

for all (x∗, β) ∈ K1 and (y∗, α) ∈ K2, and (z, γ ) ∈ KGDC .

Remark 2 The hypothesis about K1 and K2 in the above proposition can be replaced by the
hypothesis 0 /∈ cl(K1 + K2), keeping the hypothesis about their projections onto X∗ and R

and that 0 ∈ K1, and applying Theorem 1.1.7 in [23].

Definition 4 Let H ⊆ X ×R. We define the General Symmetrical Expression (GSE) of H

as the set

HGSE := {(x∗, y∗, α, β) ∈ W × R | c′((x∗, y∗, α), x) − γ ≤ β for all (x, γ ) ∈ H }
and, by convention, we establish that (∅X×R)GSE = W × R, being ∅X×R the empty set of
the space X × R.

Observing that (X × R)GSE = ∅W×R, we present the following proposition concerning
nonemptiness of the General Symmetrical Expression of a nonempty and proper set.

Proposition 7 Given a nonempty convex set H ⊂ X ×R such that H as well as its projec-
tion onto X have nonempty interior, the projection of H onto R is bounded from below but
not from above, the projection of H onto X∗ is bounded, then HGSE is nonempty.
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Proof In this case, HGSE is nonempty if and only if there exists (x∗, y∗, α, β) ∈ W × R

such that H ⊂ H
≤
(x∗,−1),β ∩ H<

(y∗,0),α , where

H
≤
(x∗,−1),β = {(x, γ ) ∈ X × R | 〈x, x∗〉 − γ ≤ β},
H<

(y∗,0),α = {(x, γ ) ∈ X × R | 〈x, y∗〉 < α}.
According to the hypothesis, applying Corollary 1.1.4 in [23] to H and to its projection onto
X, there exist supporting hyperplanes to both convex sets, i.e.,

〈x, x∗〉 + δγ ≤ β and 〈x, y∗〉 ≤ α

for all (x, γ ) ∈ H . Taking into account the hypothesis, δ ≤ 0. In the case δ = 0, it holds
(x∗, y∗, β − C, α + 1) ∈ HGSE , where C = inf(x,γ )∈H {γ }. If δ < 0, we can argue as in the
proof of Proposition 6 leading to HGSE �= ∅.

Now, we study which properties are verified by these operators. First and foremost,
applying their definitions it is not difficult to prove that given an arbitrary set K ⊆ W × R,
the following inclusion

K ⊆ (KGDC)GSE (4)

is always fulfilled. To obtain the opposite containment, we need some extra results.

Proposition 8 Let K ⊆ W × R and H ⊆ X × R. Then, the set KGDC is e-convex and the
set HGSE is e′-convex.

Proof To begin with, suppose that the sets K and H are nonempty. To see that KGDC is
e-convex, we define the function f : X → R such that

f (x) = sup
(x∗,y∗,α,β)∈K

{c(x, (x∗, y∗, α)) − β},

with K ⊆ W ×R. This function is e-convex by definition and it is easy to see that (x, γ ) ∈
epi f if and only if c(x, (x∗, y∗, α)) − β ≤ γ for all (x∗, y∗, α, β) ∈ K . This fact is
equivalent to c′((x∗, y∗, α), x) − γ ≤ β for all (x∗, y∗, α, β) ∈ K , which means that
(x, γ ) ∈ KGDC due to Definition 3. In this way, KGDC = epi f and KGDC is an e-convex
set of X × R.

Now we move onto the second part. Let us define g : W → R such that

g(x) = sup
(x,β)∈H

{c′((x∗, y∗, α), x) − β},

with H ⊆ X × R. Similarly, but applying Definition 4, we conclude that HGSE = epi g
and, consequently, HGSE is an e′-convex set in W × R.

Finally, for the nonproper case, it is a direct consequence of Definitions 3 and 4.

Now our purpose is to analyze the behaviour of the operators GDC and GSE regard-
ing inclusion and intersection. The proofs of the following lemmas are consequences of
Definitions 3 and 4 and, for this reason, we have omitted them.

Lemma 1 Let K ⊆ W × R and H ⊆ X × R. If L ⊆ K and J ⊆ H , then KGDC ⊆ LGDC

and HGSE ⊆ JGSE .

Lemma 2 Let K1, K2 ⊆ W × R and H1, H2 ⊆ X × R. Then

(i) KGDC
1 ∩ KGDC

2 ⊆ (K1 ∩ K2)
GDC .
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(ii) (H1)GSE ∩ (H2)GSE ⊆ (H1 ∩ H2)GSE .

Motivated by (2), we establish the main result of this section.

Proposition 9 Let K ⊆ W × R, then K is e′-convex if and only if

K =
(
KGDC

)
GSE

. (5)

Proof First, let us suppose that K is e′-convex. If K = ∅W×R, as we have seen in Defi-
nitions 3 and 4, KGDC = X × R and (KGDC)GSE = (X × R)GSE = ∅W×R, so (5) is
fulfilled. If K = W ×R, applying (4) we easily get

(
KGDC

)
GSE

= W ×R. Hence, we can
assume that K is a proper subset of W × R. By hypothesis K is e′-convex, so there exists a
function h : W → R such that

h(·) = sup
(x,γ )∈�

{c′(·, x) − γ }, (6)

where � ⊆ X × R and epi h = K . As K is a proper set, � �= ∅X×R and by using
Definition 3, � ⊆ KGDC since K = epi h = ⋂

(x,γ )∈� epi{c′(·, x) − γ }. In this way, by
virtue of Lemma 1 we have (

KGDC
)

GSE
⊆ �GSE . (7)

From Definition 4 and (6), we obtain that �GSE = epi h = K , and by (7), (KGDC)GSE ⊆
�GSE = K . Finally, applying (4), we get (5).

The converse is a direct application of Proposition 8 to the set H = KGDC .

Remark 3 By virtue of (4), K is e′-convex if and only if(
KGDC

)
GSE

⊆ K .

Remark 4 Applying (4) and Proposition 8 we have that, for every K ⊆ W × R, it holds
K ⊆ e′conv K ⊆ (KGDC)GSE . Using Lemma 1 and Proposition 9, a simple calculation
shows that (KGDC)GSE = e′conv K .

3.2 Properties of e′-convex Sets

This section focuses on the analysis of those properties which do not hold when e-convexity
is replaced by e′-convexity. From the definition of e′-convex set and the fact that every e′-
convex function is e-convex, it is natural to wonder what kind of differences separates the
class of e-convex sets which are epigraphs and are contained in W × R, from the class of
e′-convex sets.

E-convex sets which are closed are important in convex optimization, but they are not
included in the family of e′-convex sets.

Proposition 10 No proper closed convex set which is the epigraph of a certain function
g : W → R is e′-convex.

Proof Let K ⊆ W ×R be a proper e′-convex set. By Definition 2, we have that there exists
a function h : W → R defined as

h(y∗, z∗, α) = sup
(x,β)∈S

{c′((y∗, z∗, α), x) − β},
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where S ⊂ X × R, which satisfies

K = epi h =
⋂

(x,β)∈S

epi(c(x, ·) − β). (8)

Now, the idea is to prove that K cannot be closed, and to do that, we shall check that given
any (x∗, y∗, α, γ ) ∈ K , the point (x∗, 0, 0, γ ) ∈ cl K \ K . It is clear that (x∗, 0, 0, γ ) /∈ K

because this point does not belong to any epigraph of the c′-elementary functions that build
epi h. By (8), K is the solution set of the system

{〈(x,−1), (x∗, γ )〉 ≤ β, 〈(x, −1), (y∗, α)〉 < 0 for all (x, β) ∈ S}.
Bearing in mind that [12, Proposition 1.1] can be extended to general locally convex spaces,
we have

cl K =
⋂

(x,β)∈S

{
(x∗, y∗, α, γ ) ∈ W | 〈(x, −1), (x∗, γ )〉 ≤ β, 〈(x, −1), (y∗, α)〉 ≤ 0

}
.

To conclude the proof, a matter of computation shows that (x∗, 0, 0, γ ) ∈ cl K since it
comes from a point (x∗, y∗, α, γ ) which belongs to K .

Remark 5 In view of the above proposition, a necessary condition for an e-convex set in
W × R to be e′-convex is not to be closed.

Now, once we know that the class of e′-convex sets and the class of closed convex sets
have no element in common, let us continue our work analyzing what kind of properties the
family of e′-convex sets does verify. It is clear that the class of e′-convex sets is closed under
intersections, moreover, as a consequence of the monotonicity of the e′conv hull operator,

e′conv

(⋂
i∈I

Ki

)
⊆

⋂
i∈I

e′conv(Ki),

where {Ki}i∈I is an arbitrary family of sets in W × R.

Proposition 11 Let γ > 0 and K ⊆ W × R be e′-convex, then γK is e′-convex.

Proof We shall prove that γK is the epigraph of an e′-convex function. By hypothesis K is
e′-convex, so there exists an e′-convex function h : W → R such that

h(y∗, z∗, α) := sup
(x,b)∈S

{c′((x∗, y∗, α), x) − b},

with S ⊂ X × R in such a way that epi h = K . Now, let us define the function

H(x∗, y∗, α) := γ h

(
1

γ
x∗, 1

γ
y∗, 1

γ
α

)
(9)

for all (x∗, y∗, α) ∈ W , with γ > 0 by hypothesis, and take an arbitrary point
(x∗, y∗, α, β) ∈ epi H . By virtue of (9),

γ h

(
x∗

γ
,

1

γ
y∗, 1

γ
α

)
≤ β,

or, equivalently, (
1

γ
x∗, 1

γ
y∗, 1

γ
α,

1

γ
β,

)
∈ epi h = K,
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so we can conclude that (x∗, y∗, α, β) ∈ γK . The converse inclusion is analogous.
Consequently, epi H = γK and we only have to prove that H is e′-convex. Since

c′
((

x∗

γ
,

1

γ
y∗, 1

γ
α

)
, x

)
= 1

γ
c′((x∗, y∗, α), x),

we can write

H(x∗, y∗, α) = γ sup
(x,b)∈S

{
1

γ
c′((x∗, y∗, α), x) − b

}
.

Defining the set T := {(x, γ b) ∈ X × R | (x, b) ∈ S}, since γ is assumed to be strictly
positive, we obtain

H(x∗, y∗, α) = sup
(x,b)∈S

{c′((x∗, y∗, α), x) − γ b}

= sup
(x,β)∈T

{c′((x∗, y∗, α), x) − β},

and we conclude that H is an e′-convex function.

The next result was of interest in [8].

Lemma 3 [8, Lemma 3.2] Let C ⊆ W ×R be a non-empty set. Then, C is e′-convex if and
only if for all x∗ ∈ X∗ and δ ∈ R, C + {(x∗, 0, 0, δ)} is e′-convex.

Remark 6 In general, we cannot assure that the sum of an e′-convex set and a point will be
e′-convex. To show this fact, we need the following result.

Proposition 12 [8, Proposition 2.7] A necessary condition for a non-empty set K ⊆ R
4 to

be e′-convex is that the boundary of its projection onto R2, corresponding to the second and
third coordinates, contains the origin.

Next example illustrates what is pointed out in Remark 6.

Example 2 Let X = R and C ⊆ R
4 be the e′-convex set

C = epi c(1, ·) = {(x, y, α, β) ∈ R
4 | x − β ≤ 0, y − α < 0}.

Let us define

C′ := C + {(1, 1, 0, 0)} = {(x, y, α, β) ∈ R
4 | x − β ≤ 1, y − α < 1}.

Then, since

PrR2(C
′) = {(y, α) ∈ R

2 | y − α < 1},
it is clear that 02 does not belong to bd(PrR2(C′)) and, due to Proposition 12, we see that C′
is not e′-convex.

4 E′-convex Functions

This section is divided in two parts. The first part will focus on the analysis of the main prop-
erties that the e′-convex functions satisfy. Finally, we will conclude the section obtaining
sufficient conditions to ensure when an e′-convex function has an e-convex domain.
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4.1 Properties of e′-convex Functions

In this section we shall study if the class of e′-convex functions is closed under certain
operations that preserve e-convexity. Recall from the definition of an e-convex function that
the indicator function of an e-convex set is evidently an e-convex function.

Applying the definition of e′-convex function and due to Proposition 12, it is not diffi-
cult to show that the family of e′-convex functions is closed under the supremum operator.
Moreover, following similar steps as in the last part of the proof of Proposition 11, we have
the following result.

Proposition 13 Let γ > 0 and h : W → R be an e′-convex function, then γ h is e′-convex.

As the following result shows, certain indicator functions can be e′-convex as well.

Proposition 14 Let x̂∗ ∈ X∗ and A = {x̂∗} × {0} × R++ ⊆ W . Then, δA : W → R is an
e′-convex function.

Proof According to Remark 1, it is enough to prove that δc′c
A (x∗, y∗, α) = δA(x∗, y∗, α)

for every (x∗, y∗, α) ∈ W and, then, the function δA will be e′-convex. Since, for all x ∈ X,

δc′
A(x) = sup

(x∗,y∗,α)∈A

{c(x, (x∗, y∗, α)) − δA(x∗, y∗, α)}

= sup
(x̂∗,0,α)∈A

{c(x, (x̂∗, 0, α))} = 〈x, x̂∗〉,

we have that dom δc′
A = X and, consequently,

δc′c
A (x∗, y∗, α) = sup

x∈X

{c(x, (x∗, y∗, α)) − 〈x, x̂∗〉}.

Now, we have to study two different cases. The first one is when (x∗, y∗, α) ∈ A, i.e.,
(x∗, y∗, α) = (x̂∗, 0, α), with α > 0, then

δc′c
A (x̂∗, 0, α) = sup

x∈X

{c(x, (x̂∗, 0, α)) − 〈x, x̂∗〉} = 0 = δA(x̂∗, 0, α).

Let us analyze what happens with (x∗, y∗, α) /∈ A. If y∗ �= 0X∗ , we can always find x ∈ X

such that 〈x, y∗〉 ≥ α, independently of the value of α. If y∗ = 0X∗ and α ≤ 0, we have
that δc′c

A (x∗, 0, α) = +∞. Finally, if y∗ = 0X∗ , α > 0 and x∗ �= x̂∗, then a matter of
computation shows that

δc′c
A (x∗, 0, α) = sup

x∈X

{〈x, x∗〉 − 〈x, x̂∗〉} = sup
x∈X

{〈x, x∗ − x̂∗〉} = +∞.

Hence, for every (x∗, y∗, α) /∈ A, we get

δc′c
A (x∗, y∗, α) = +∞ = δA(x∗, y∗, α),

concluding that the function δA is e′-convex.

Remark 7 It has been impossible to characterize the sets in W whose indicator function is
e′-convex. We would just want to point out that a little change in the description of the set
in the above proposition leads to a non-e′-convex function, as the following example shows.

Example 3 Let W = R
3 and A = {(1, 1)} × R++. In this case epi δA = {(1, 1, α, β) :

α > 0, β ≥ 0}, and its projection on the second and third coordinate is the set {1} × R++,
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whose boundary does not contain the origin. According to Proposition 12, epi δA is not an
e′-convex set.

Next proposition establishes one of the main differences between the classes of e-convex
and e′-convex functions. It shows that the class of e′-convex functions has empty intersec-
tion with the class of lsc and convex functions, being its proof a direct consequence of
Proposition 10.

Proposition 15 No proper closed convex function g : W → R can be e′-convex.

Recalling Proposition 5, the sum of two proper e-convex functions is e-convex as well.
However, this fact is no longer true for e′-convex functions as the following example shows.

Example 4 Let h1, h2 : R3 → R be two e′-convex functions defined as

h1(y
∗, z∗, α) = c′((y∗, z∗, α), 1) and

h2(y
∗, z∗, α) = c′((y∗, z∗, α),−1).

If we define the function h := h1 + h2, a matter of computation yields

dom h = dom h1 ∩ dom h2

= (R × {(z∗, α) ∈ R
2 | z∗ < α}) ∩ (R × {(z∗, α) ∈ R

2 | − z∗ < α})
= R × {(z∗, α) ∈ R

2 | − α < z∗ < α} =: �,

and

h(y∗, z∗, α) =
{

0 if − α < z∗ < α,

+∞ otherwise.

Now, taking into account that the function

hc′
(x) = sup

(y∗,z∗,α)∈�

{c′((y∗, z∗, α), x) − h(y∗, z∗, α)}

= sup
(y∗,z∗,α)∈�

{c′((y∗, z∗, α), x)}

has dom hc′ = {0}, we get, for instance,

hc′c(1, 2, 1) = sup
x∈{0}

{
〈x, 1〉 − hc′

(x)
}

= 0,

but h(1, 2, 1) = +∞ since (1, 2, 1) /∈ dom h. Hence, a straightforward application of
Theorem 2 shows that h is not e′-convex.

Remark 8 Example 4 also allows us to show that the necessary condition for a set in R
4

to be e′-convex stated in Proposition 12 is not sufficient: the set � × R ⊂ R
4 verifies that

necessary condition, but it is not an e′-convex set, since h is not e′-convex, being h the only
function such that � × R = epi h. In fact, h = δ�×R.

To conclude this subsection, we would like to point out that the characterization offered
by Theorem 3 for e-convex functions has no meaning when we try to translate it into the
subclass of proper e′-convex functions. The reason for this is that if a function h is defined
on W , it does not make any sense to talk about the properties of h on e′conv(dom h), which
is a subset of W ×R. In the following section we will present some results about the domain
of an e′-convex function.

419



M.D. Fajardo, J. Vidal

4.2 Domain of e′-convex Functions

In this section we shall study conditions to know when an e′-convex function has an e-
convex domain. Results for e-convex functions defined on R

n can be found in [21].
The next results will be of interest in the sequel.

Definition 5 [23, Chapter 1] Let M ⊆ Y be a linear subspace of a general vector space Y

and let A ⊆ Y be a non-empty subset. The algebraic interior of A with respect to M is

aintMA = {a ∈ Y | ∀x ∈ M, ∃δ > 0 | ∀λ ∈ [0, δ], a + λx ∈ A} .

If M = aff(A − A), being aff A the affine hull of A, aintMA is denoted by iA and it is
called the relative algebraic interior of A. Moreover, if A ⊆ Y is convex, the segment
[a, x[= {(1 − λ)a + λx | λ ∈ [0, 1[} ⊆ iA for all a ∈ iA and x ∈ A.

Lemma 4 [23, Proposition 2.1.4] Let f : X → R be a convex function. If there exists
x0 ∈ X such that f (x0) = −∞, then f (x) = −∞ for every x ∈ i(dom f ).

The next proposition extends Lemma 2.5 in [21] to locally convex spaces.

Proposition 16 If f : X → R is e-convex such that f (x0) = −∞ for some x0 ∈ dom f ,
then f (x) = −∞ for all x ∈ dom f .

Proof Since f is e-convex, it is also convex, so applying Lemma 4, f (x) = −∞ for all
x ∈ i(dom f ). Take x ∈ dom f \i(dom f ) with f (x) ∈ R. Then, (x, f (x) − 1) /∈ epi f , so
by virtue of the e-convexity of f , there exists (x∗, γ ) ∈ X∗ × R such that

〈(x − x, λ − f (x) + 1), (x∗, γ )〉 < 0 (10)

for all (x, λ) ∈ epi f . Since x ∈ dom f \i(dom f ), the segment [a, x[⊆ i(dom f ) for all
a ∈ i(dom f ). Defining xλ = λx + (1 − λ)a for all λ ∈ [0, 1[, f (xλ) = −∞ for all
λ ∈ [0, 1[, and

(xλ, f (x)), (xλ, f (x) − 2)

belong to epi f , for all λ ∈ [0, 1[. Replacing them in (10) we get

〈(xλ − x, 1), (x∗, γ )〉 < 0, 〈(xλ − x,−1), (x∗, γ )〉 < 0,

respectively. Making λ → 1, we get γ = 0. Taking γ = 0 in (10), we have 〈x − x, x∗〉 < 0
for all (x, λ) ∈ epi f , which is a contradiction since x ∈ dom f . Hence, f (x) = −∞.

Proposition 17 Let f : X → R be an improper function such that f (x0) = −∞ for some
x0 ∈ dom f . Then, f is e-convex if and only if dom f is e-convex and f ≡ −∞ on its
domain.

Proof It is a direct consequence of Propositions 1 and 16, and that epi f = dom f × R if
f ≡ −∞ on its domain.

Having in mind that any e′-convex function is e-convex, the following results come from
Propositions 16 and 17 directly.

Corollary 1 Let h : W → R be a function such that h(y∗
0 , z∗

0, α0) = −∞ for some
(y∗

0 , z∗
0, α0) ∈ dom h. Then, if h is e′-convex, h equals −∞ over dom h.
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Corollary 2 Let h : W → R be an improper convex function. If h is e′-convex, then dom h

is e-convex.

Corollary 3 Let h1, h2 be two e′-convex functions with at least one of them improper. Then
h1 + h2 is e′-convex and it has e-convex domain.

The purpose for the rest of the section is to analyze the proper case. First of all, we
establish the following result, which comes directly form the fact that any e′-convex function
is e-convex as well and the generalization of [21, Proposition 2.7] for general spaces. As
it happened for e-convex functions (see [21, Example 2.8]), the converse in the following
result does not hold in general.

Proposition 18 Let h : W → R be a proper e′-convex function which is upper bounded on
its domain. Then dom h is e-convex.

Now, let h : W → R be a proper e′-convex function such that

h(·) = sup
(x,β)∈S

{
c′(·, x) − β

}
(11)

being S an arbitrary proper subset of X × R. Pursuing the objective of finding conditions
for the domain of a general e′-convex function to be e-convex could be too ambitious. The
reason is that the arbitrariness of S complicates the development of the aforementioned
conditions over the domain.

Let us see an equivalent formula to express the domain of a general function h defined
as in (11). On the one hand,

dom h =
{
(x∗, y∗, α) ∈ dom(c′(·, x) − β) for all (x, β) ∈ S, sup

S

{〈x, x∗〉 − β
}

< +∞
}

.

On the other hand, defining the sets

D :=
{

x∗ ∈ X∗ | sup
(x,β)∈S

〈x, x∗〉 − β < ∞
}

,

C(x,β) := {
(y∗, α) ∈ X∗ × R | 〈x, y∗〉 < α

}
for all (x, β) ∈ S, (12)

the following equality offers no difficulty to be checked

dom h = D ×
⋂

(x,β)∈S

C(x,β). (13)

Let us observe that actually the sets C(x,β) are open half-spaces:

C(x,β) = H<
(x,−1),0 = {(y∗, α) ∈ X∗ × R | 〈(x,−1), (y∗, α)〉 < 0},

therefore, they are e-convex sets. Since the class of e-convex sets is closed under intersection
and finite product, if the set D were an e-convex subset of X∗, dom h would be e-convex in
W . Let us assume that D �= ∅.

Lemma 5 If sup(x,β)∈S,x∗∈D{〈x, x∗〉−β} is finite, then the set D defined in (12) is e-convex
in X∗.

Proof Take any constant M ∈ R such that 〈x, x∗〉 ≤ M for all (x, β) ∈ S and x∗ ∈ D.
For any point x∗ /∈ D, there exists (x, β̄) ∈ S such that 〈x, x∗〉 > M . Since (x, β̄) ∈ S,

421



M.D. Fajardo, J. Vidal

〈x, x∗〉 ≤ M for all x∗ ∈ D. Then 〈x, x∗〉 ≤ M < 〈x, x∗〉, for all x∗ ∈ D or, equivalently,
〈x, x∗ − x∗〉 < 0 for all x∗ ∈ D, concluding that D is e-convex in X∗.

The next result establishes a sufficient condition for an e′-convex function to have e-
convex domain.

Proposition 19 Let h : W → R be the function defined in (11). If S and the set D in (12)
are bounded, then dom h is e-convex.

Proof According to [18, Theorem 6.4.1], the image of a bounded set through a continuous
linear functional is also bounded, so the supremum in Lemma 5 is finite. Hence, D is e-
convex and dom h is e-convex in W .

Finally, we conclude showing that the converse in Proposition 19 does not hold in general
as we can see in the following example.

Example 5 Let h : W → R be a function such that

h(·) = sup
(x,β)∈R×R+

{
c′(·, x) − β

}
.

Hence, dom h = {0} × {0} × R++, which is e-convex, h is e′-convex by its definition, but
the set S is not bounded.

5 Conclusions

In this paper we investigate not only basic algebraic properties of the e′-convex sets and
functions, but also a characterization of e′-convex sets. This characterization is moti-
vated by the general dual cone and general symmetric expression operators. In addition,
we prove that the class of e′-convex sets does not intersect with the family of closed
and convex sets of appropriate dimension. We also study which properties from e-convex
sets remain still true for the family of e′-convex sets. Regarding e′-convex functions, we
have studied some properties that they inherit from e-convex functions. Finally, we have
analyzed sufficient conditions to guarantee when an e′-convex function has an e-convex
domain.

There are still some areas for future research. For example, it would be worthwhile inves-
tigating further conditions over the arbitrary set S in (11) implying the e-convexity of the
domain of the function. Another possible continuation might be to give more precise char-
acterizations of e′-convex sets in terms of supporting hyperplanes as was done in the case
of e-convex sets.
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