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1 Introduction

If we consider the pointwise supremum f := supt∈T ft of a collection of convex functions
ft : X → R ∪ {±∞}, t ∈ T �= ∅, T arbitrary, defined on a separated locally convex space
X, a challenging problem along the recent history of optimization (specially, in the decades
of the 60s and 70s of the 20th century) has been to obtain formulas for the subdifferen-
tial of the supremum, ∂f (x), at any point x of the effective domain of f, in terms of the
subdifferentials of the data functions, ∂ft (x), t ∈ T .

Since many convex functions, such as the Fenchel conjugate, the sum, the composition
with affine applications, etc., can be expressed as the supremum of affine or convex func-
tions, formulas characterizing the subdifferential of the supremum were expected to play
a crucial role in convex and variational analysis, leading to a variety of calculus rules and
allowing a deeper analysis for some relevant problems in this area. For instance, any formula
for the subdifferential of the supremum function can be seen as a useful tool in deriving
KKT-type optimality conditions for a convex optimization problem. This is due to the fact
that any set of convex constraints, even an infinite set, can be replaced by a unique convex
constraint involving the supremum function. An alternative approach consists of replacing
the constraints by the indicator function of the feasible set. It turns out that, under certain
constraint qualifications, its subdifferential (i.e., the normal cone to the feasible set) appears
in the so-called Fermat optimality principle, and its relation with the subdifferential of the
supremum function can be then conveniently exploited.

Let us quote the following paragraph extracted from [15]: “One of the most specific con-
structions in convex or nonsmooth analysis is certainly taking the supremum of a (possibly
infinite) collection of functions. In the years 1965–1970, various calculus rules concerning
the subdifferential of sup-functions started to emerge; working in that direction and using
various assumptions, several authors contributed to this calculus rule: B.N. Pshenichnyi,
A.D. Ioffe, V.L. Levin, R.T. Rockafellar, A. Sotskov, etc.; however, the most elaborated
results of that time were due to M. Valadier (1969); he made use of ε-active indices in taking
the supremum of the collection of functions.”

Therefore, it is clear that the mathematical interest of this topic was widely recognized
since the very beginning of the convex and variational analysis history. A sample of remark-
able contributions to this topic are: Brøndsted [1], Ekeland and Temam [10], Ioffe [17], Ioffe
and Levin [18], Ioffe and Tikhomirov [19], Levin [20], Pschenichnyi [23], Rockafellar [26],
Valadier [30], etc. See, for instance, Tikhomirov [29] to trace out the historical origins of
the issue.

In a series of papers ([3–6, 12–14], etc.) we provided alternative characterizations of the
subdifferential supremum in various settings, and applied them to derive calculus rules in
convex analysis.

In [7] we addressed the problem of characterizing the subdifferential of the supremum of
a compactly-indexed family of extended real-valued convex functions. These assumptions,
which are standard in the literature of convex analysis and non-differentiable semi-infinite
programming, are the compactness of the index set T and the upper semi-continuity of the
constraint functions with respect to the index t . A couple of questions arise in a natural way.
The first basic one is the following: Is it possible to remove these assumptions? A second
more precise question is: By using a compactification of the index set and an appropriate
enlargement of the original family of data functions, is there any chance for getting rid of
these assumptions, but keeping alive the possibility of still applying the theory developed
under them?
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Subdifferential of the Supremum via Compactification of the Index Set

In this framework, we propose in the current paper an approach based on the Stone–
Čech compactification of the index set T , as well as a natural procedure for building an
appropriate enlargement of the original family ensuring the fulfillment of the minimal
requirements of continuity of the functions with respect to the index. Moreover, in contrast
to previous approaches, our characterizations are formulated exclusively in terms of exact
subdifferentials at the nominal point.

Formula (10) constitutes the main result of the paper. It provides an explicit expression of
the subdifferential of the supremum function for any family of convex functions, dropping
the usual standard assumptions in the literature (upper semi-continuity and compactness
conditions; see, e.g. [1, 7, 19, 27, 30]). Namely, compared with the formula

∂f (x) =
⋂

L∈F(x),ε>0
co
{⋃

t∈Tε(x)
∂ε(ft + IL∩dom f )(x)

}
(see (2) and (3) for the definition of F(x) and Tε(x), respectively), which can be easily
derived from the main result in [14, Theorem 4], formula (10) involves the convex hull of the
union of the exact subdifferentials of exclusively the active functions, up to an appropriate
enlargement of the original family of functions.

The paper is structured as follows. After a short section introducing the notation, the main
result in the section devoted to preliminaries is formula (4) in Proposition 1, which slightly
improves Proposition 2 in [6] as it uses the convex hull instead of the closed convex hull.
In Section 3 the compactification process is described in detail, and an appropriate enlarge-
ment of the original family {ft , t ∈ T } is built, through formula (6), in order to guarantee
the (upper-semi) continuity requirements with respect to the index t which allow to apply
the results in [7]. Our main result in Section 3, Theorem 1, provides the aimed characteri-
zation of the subdifferential of f in non-compact frameworks. It comes after some needed
technical lemmas, and some corollaries are also established under certain specific assump-
tions. An example illustrates the compactification approach, and the last section provides
Fritz–John and KKT-type optimality conditions for the convex semi-infinite optimization
problem such that the compact/continuity assumptions in [6, Theorem 5 and Corollary 6]
are again dropped.

2 Notation

Let X be a (real) separated locally convex space, whose topological dual space is X∗, which
is endowed with the w∗-topology. The spaces X and X∗ are paired in duality by the bilinear
form (x∗, x) ∈ X∗ × X 
→ 〈x∗, x〉 := 〈x, x∗〉 := x∗(x). The zero vectors in X and X∗ are
denoted by θ . Closed, convex and balanced neighborhoods of θ are called θ -neighborhoods.
We use the notation R := R∪{−∞,+∞} and R∞ := R∪{+∞}, and adopt the convention
(+∞) + (−∞) = (−∞) + (+∞) = +∞.

Given two nonempty sets A and B in X (or in X∗), we define the algebraic (or
Minkowski) sum by

A + B := {a + b : a ∈ A, b ∈ B}, A + ∅ = ∅ + A = ∅.

By co(A), cone(A), and aff(A), we denote the convex, the conical convex (i.e., cone A :=
R+(co A)), and the affine hulls of the set A, respectively. Moreover, int(A) is the interior
of A and cl A and A are indistinctly used for denoting the closure of A. We use ri(A) to
denote the (topological) relative interior of A (i.e., the interior of A in the topology relative
to aff(A) if aff(A) is closed, and the empty set otherwise).
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Associated with A �= ∅ we consider the orthogonal subspace given by

A⊥ := {x∗ ∈ X∗ : 〈x∗, x〉 = 0 for all x ∈ A}.
The following relation is fulfilled⋂

L∈F (A + L⊥) ⊂ cl A, (1)

where F is the family of finite-dimensional linear subspaces of X.
If A ⊂ X is convex and x ∈ X, we define the normal cone to A at x as

NA(x) := {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0 for all y ∈ A},
if x ∈ A, and the empty set otherwise.

Given a function f : X −→ R, its (effective) domain is

dom f := {x ∈ X : f (x) < +∞}.
We say that f is proper when dom f �= ∅ and f (x) > −∞ for all x ∈ X.

Given x ∈ X and ε ≥ 0, the ε-subdifferential of f at x is

∂εf (x) = {x∗ ∈ X∗ : f (y) ≥ f (x) + 〈x∗, y − x〉 − ε for all y ∈ X}
when x ∈ dom f , and ∂εf (x) := ∅ when f (x) /∈ R. The elements of ∂εf (x) are called ε-
subgradients of f at x. The subdifferential of f at x is ∂f (x) := ∂0f (x), whose elements
are called subgradients of f at x.

The support and the indicator functions of A ⊂ X are respectively defined as

σA(x∗) := sup{〈x∗, x〉 : x ∈ A} for x∗ ∈ X∗,
and

IA(x) :=
{

0 if x ∈ A,

+∞ if x ∈ X \ A.

3 Preliminary Results

We give a first characterization of the subdifferential of the supremum

f := sup
t∈T

ft ,

of a family of extended real-valued convex functions {ft , t ∈ T }, defined on a (separated)
real locally convex space X, and indexed by an arbitrary (possibly, infinite) set T .

We shall need the following result which slightly improves Proposition 2 in [6], as it
uses the convex hull instead of the closed convex hull. Our main result, given in Theorem 1,
provides the general characterization of the subdifferential of f in non-necessarily compact
frameworks.

Given x ∈ X and ε ≥ 0, we shall denote

F(x) := {L is a finite-dimensional linear subspace of X containing x}, (2)

Tε(x) := {t ∈ T : ft (x) ≥ f (x) − ε} and T (x) := T0(x). (3)

Proposition 1 Fix x ∈ X. We assume there is some ε0 > 0 such that (i) Tε0(x) is compact
and (ii) for each net (ti )i ⊂ Tε0(x) converging to t ∈ Tε0(x) we have that

lim sup
i

fti (z) ≤ ft (z) for all z ∈ dom f .
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Then

∂f (x) =
⋂

L∈F(x)
co
{⋃

t∈T (x)
∂(ft + IL∩dom f )(x)

}
. (4)

Proof According to [6, Proposition 2], where (4) was established with co instead of co, we
only need to prove that the sets

EL := co
{⋃

t∈T (x)
∂(ft + IL∩dom f )(x)

}
, L ∈ F(x),

are closed under the current hypothesis. Let us denote, for t ∈ T (x) and L ∈ F(x),

g̃t := ft + IL∩dom f , gt := g̃t |L,

so that

dom g̃t = dom ft ∩ (L ∩ dom f ) = L ∩ dom f .

Take a net (u∗
i )i ⊂ EL such that u∗

i → u∗ ∈ X∗. We denote by z∗
i the restriction of u∗

i to
the finite-dimensional subspace L, so that

(z∗
i )i ⊂ co

{⋃
t∈T (x)

∂gt (x)
}

⊂ L∗,

where L∗ is the dual of L. Then, by applying Charathéodory’s Theorem in L∗, for each i

there are some λi,1, . . . , λi,n+1 ≥ 0 with λi,1+· · ·+λi,n+1 = 1, and elements z∗
i,k ∈ ∂gti,k (x)

with ti,k ∈ T (x) and k ∈ K := {1, . . . , n + 1} (hence, the functions gti,k , k ∈ K , are all
proper), such that

z∗
i = λi,1z

∗
i,1 + . . . + λi,n+1z

∗
i,n+1,

where n is the dimension of L.
We may assume that each (λi,k)i , k ∈ K , converges to some λk ≥ 0 such that λ1 + · · · +

λn+1 = 1. Also, since (ti,k)i ⊂ T (x) ⊂ Tε0(x) and this last set is compact by assumption,
we may assume that ti,k → tk ∈ Tε0(x), k ∈ K . Moreover, using again the assumption, we
have

lim sup
i

gti,k (z) ≤ gtk (z) for all z ∈ L ∩ dom f, k ∈ K;

in particular, gtk (z) > −∞ for all z ∈ L ∩ dom f , k ∈ K, and (recall that ti,k ∈ T (x))

f (x) = lim sup
i

gti,k (x) ≤ gtk (x) = ftk (x) ≤ f (x) for all k ∈ K,

showing that tk ∈ T (x) for all k ∈ K . Consequently, taking into account that (ti,k)i ⊂ T (x)

for all k ∈ K , for every z ∈ L ∩ dom f (= dom gtk , k ∈ K) we obtain

〈z∗, z − x〉 = lim
i

〈λi,1z
∗
i,1 + · · · + λi,n+1z

∗
i,n+1, z − x〉

≤ λ1 lim sup
i

gti,1(z) + · · · + λn+1 lim sup
i

gti,n+1(z)

+ lim sup
i

(−λ1gti,1(x) − · · · − λn+1gti,n+1(x))

≤ λ1gt1(z) + · · · + λn+1gtn+1(z) + lim sup
i

(−λ1gti,1(x)−· · ·−λn+1gti,n+1(x))

= λ1gt1(z) + · · · + λn+1gtn+1(z) − f (x)

=
∑

k∈K+
λkgtk (z) −

∑
k∈K+

λkgtk (x),
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where K+ := {k ∈ K : λk > 0}. Hence, using Rockafellar’s subdifferential sum rule [25],
as gtk (z) + IL∩dom f (z) = gtk (z) and ri(dom gtk ) = ri(L ∩ dom f ) �= ∅ for all z ∈ L and all
k ∈ K , we obtain

z∗ ∈ ∂

⎛⎝∑
k∈K+

λkgtk

⎞⎠ (x) =
∑

k∈K+
λk∂gtk (x).

Then, using the extension theorem, we can take an extension v∗ of z∗ to X∗ such that

v∗ ∈
∑

k∈K+
λk∂g̃tk (x),

satisfying u∗ − v∗ ∈ L⊥. Therefore

u∗ ∈ v∗ + L⊥ ⊂
∑

k∈K+
λk∂g̃tk (x) + L⊥

⊂
∑

k∈K+
λk∂(g̃tk + IL)(x) =

∑
k∈K+

λk∂g̃tk (x) ∈ EL.

4 Compactification Approach

Given a non-empty family of extended real-valued convex functions

ft : X → R, t ∈ T ,

defined on a (separated) real locally convex space X, and indexed by an arbitrary (possibly,
infinite) set T , we consider the corresponding supremum function

f := sup
t∈T

ft .

Here, in order to apply the methodology proposed in [7], we endow the index set T with
some topology. When no topology is known on T we frequently use the discrete one. We
denote by C(T , [0, 1]) the set of continuous functions from T to [0, 1], and consider the
product space [0, 1]C(T ,[0,1]), which is compact for the product topology (by Tychonoff
theorem). We shall regard the index set T as a subset of [0, 1]C(T ,[0,1]), and write T ⊂
[0, 1]C(T ,[0,1]), by using the mapping d:T → [0, 1]C(T ,[0,1]), which assigns to each t ∈ T

the evaluation function d(t)≡ γt ∈ [0, 1]C(T ,[0,1]), defined as

γt (ϕ) := ϕ(t), ϕ ∈ C(T , [0, 1]).
The closure of T in [0, 1]C(T ,[0,1]) for the product topology is the compact set

T̂ := cl(d(T )), (5)

and is referred to as the Stone–Čech compactification of T , usually denoted by βT .
Remember that for γ ∈ T̂ and a net (γi)i ⊂ T̂ , we have γi → γ when

γi(ϕ) → γ (ϕ) for all ϕ ∈ C(T , [0, 1]).
When T is completely regular; i.e., compact Hausdorff, T̂ is Hausdorff (see, i.e., [22, §38]),
and the convergences in d(T ) and T are the same.
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Next, we enlarge the original family {ft , t ∈ T } by introducing the functions fγ : X →
R, γ ∈ T̂ , defined by

fγ (z) := lim sup
γt→γ, t∈T

ft (z); (6)

that is,

fγ (z) = sup

{
lim sup

i

fti (z)

∣∣∣∣ (ti)i ⊂ T , ϕ(ti) → γ (ϕ),

∀ϕ ∈ C(T , [0, 1])
}

.

Observe that the family {fγ , γ ∈ T̂ } includes the elements of the form fγt , t ∈ T , given by

fγt (z) = lim sup
γs→γt , s∈T

fs(z),

which may not belong to the original family {ft , t ∈ T }, as well as the functions fγ with
γ ∈ T̂ \d(T ).

Remark 1 Observe that, for all t ∈ T and z ∈ X,

fγt (z) ≥ lim sup
s→t, s∈T

fs(z) ≥ ft (z), (7)

and that the first inequality may be strict. Indeed, one may have that fγt (z) = limi fti (z) for
some γti → γt such that (ti )i does not converge to t . This may happen, for instance, when
T is compact but not Hausdorff. On the other side, if T is completely regular, for example
compact Hausdorff, then

fγt (z) = lim sup
s→t, s∈T

fs(z).

The new functions fγ , γ ∈ T̂ , provide the same supremum f as the original ones ft ,
t ∈ T :

Lemma 1 The functions fγ , γ ∈ T̂ , are convex, and we have

sup
γ∈T̂

fγ = sup
t∈T

ft = f .

Proof The convexity of the fγ ’s follows easily from the convexity of the ft ’s. Next, for
each γ ∈ T̂ and z ∈ X, we have

fγ (z) = lim sup
γs→γ, s∈T

fs(z) ≤ f (z),

entailing that supγ∈T̂ fγ ≤ f . In addition, if the sequence (tn)n ⊂ T is such that f (z) =
limn ftn(z), with z ∈ X, then there exist a subnet (ti )i of (tn)n and γ ∈ T̂ such that γti → γ ,
and we get

fγ (z) ≥ lim sup
i

fti (z) = lim
n

ftn(z) = f (z),

showing that supγ∈T̂ fγ ≥ f .

Now, given x ∈ X, with f (x) ∈ R, and ε ≥ 0, we introduce the extended ε-active index
set of f at x by

T̂ε(x) := {
γ ∈ T̂ : fγ (x) ≥ f (x) − ε

} ; (8)

and the extended active index set of f at x

T̂ (x) := T̂0(x) = {
γ ∈ T̂ : fγ (x) = f (x)

}
. (9)
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Moreover, taking into account (7), for each t ∈ T (x) we have that

f (x) ≥ fγt (x) ≥ ft (x) = f (x);
that is,

d(T (x)) ⊂ T̂ (x).

The set T̂ (x) is a nonempty set in spite of the possible emptiness of T (x). More generally,
we have:

Lemma 2 The sets T̂ε(x), ε ≥ 0 and x ∈ dom f , are nonempty and compact.

Proof It is enough to prove that T̂ (x) is nonempty and closed; the general case when ε > 0
is similar. Fix x ∈ dom f . For a sequence (tn)n ⊂ T such that limn ftn(x) = f (x) there
will exist, due to the compactness of T̂ , a subnet (ti )i ⊂ T such that γti → γ ∈ T̂ , and then
(7) ensures that

f (x) = lim
i

fti (x) ≤ lim
i

fγti
(x) ≤ lim sup

γt→γ, t∈T

ft (x) = fγ (x) ≤ f (x);

that is, γ ∈ T̂ (x) and this set is nonempty.
Next, we show that T̂ (x) is closed. We take a net (γi)i ⊂ T̂ (x) that converges to γ (∈ T̂ ).

Then, by the definition of the fγ ’s, for each i we find a net (tij )j ⊂ T such that γtij →j γi

and

f (x) = fγi
(x) = lim

j
ftij (x).

Thus, there exists a diagonal net
(
γtiji

, ftiji
(x)
)

i
⊂ T̂ × R such that γtiji

→i γ and

ftiji
(x) →i f (x); that is,

fγ (x) ≥ lim sup
i

ftiji
(x) = lim

i
ftiji

(x) = f (x),

and so γ ∈ T̂ (x).

Lemma 3 If x ∈ dom f , then

T̂ (x) =
⋂

ε>0
cl
(
d(Tε(x))

)
.

Proof Take γ ∈ T̂ (x). Then there exists a net (ti)i ⊂ T such that γti → γ and

fγ (x) = lim
i

fti (x) = f (x).

Hence, for each ε > 0 there exists an i0 such that

ti ∈ Tε(x) for all i � i0,

where � defines the order in the directed set. In other words, γti ∈d(Tε(x)) for all i � i0.
This entails that γ ∈ cl(d(Tε(x))), and we get γ ∈ ⋂

ε>0 cl(d(Tε(x))), by the arbitrariness
of ε > 0.

Conversely, take γ ∈ ⋂
ε>0 cl(d(Tε(x))). Then, for each integer number k and each

neighborhood U of γ , there exists some γt(k,U)
∈ U with t(k,U) ∈ T 1

k
(x); that is (by (7)),

f (x) − 1

k
≤ ft(k,U)

(x) ≤ fγt(k,U)
(x) ≤ f (x) ≤ 0.
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Since T̂ is compact Hausdorff (coming form the complete regularity of T ), the net
(γt(k,U)

)(k,U) converges and its limit must be equal to γ . Then

0 ≥ f (x) ≥ fγ (x) ≥ lim sup
(k,U)

ft(k,U)
(x) = 0,

and so γ ∈ T̂ (x).

Let us examine the concepts introduced above in a compact (possibly, non-Hausdorff)
framework. We denote by ∼ the equivalence relation on T given by

t1 ∼ t2 ⇐⇒ ϕ(t1) = ϕ(t2) for all ϕ ∈ C(T , [0, 1]),
and by t̃ the equivalence class of t ∈ T . It is known that T̂ and T are homeomorphic when
T is compact Hausdorff.

Lemma 4 Assume that T is compact (possibly, non-Hausdorff). Then, provided that the
mapping t 
−→ ft (x) is continuous on T , the following assertions hold true for each x ∈
dom f :
(i) ft (x) = fs(x) for all s, t ∈ T such that s ∼ t .

(ii)

T̂ (x) =
{

t̃ ∈ T/ ∼ : ft̃ (x) = lim sup
s̃→t̃

fs(x) = f (x)

}
= {

t̃ ∈ T/ ∼ : t ∈ T (x)
}
,

where s̃ → t̃ means that ϕ(s) → ϕ(t) for all ϕ ∈ C(T , [0, 1]).

Proof Under the current hypothesis it can be proved that T̂ and the quotient space T/ ∼ are
homeomorphic, by means of the mapping t̃ ∈ T/ ∼ 
−→ γt ∈ T̂ .

(i) Since f(·)(x) is continuous and T is compact we can easily prove the existence of
m > 0 such that

|ft (x)| ≤ m for all t ∈ T .

Thus, using the positive and the negative parts of f(·)(x), f +
(·)(x) and f −

(·)(x), we have

m−1f +
(·)(x), m−1f −

(·)(x) ∈ C(T , [0, 1]) and so, for all s, t ∈ T such that s ∼ t ,

ft (x) = m
(
m−1f +

t (x) − m−1f −
t (x)

)
= m

(
m−1f +

s (x) − m−1f −
s (x)

)
= fs(x).

(ii) If t̃ ∈ T̂ (x), then there exists a net (ti )i ⊂ T such that

t̃i → t̃ and f (x) = ft̃ (x) = lim
i

fti (x).

Since T is compact we may assume that ti → s ∈ T , and the continuity of f(·)(x) entails

f (x) = lim
i

fti (x) = fs(x);
that is, s ∈ T (x). Now, fix ϕ ∈ C(T , [0, 1]). From the one hand, since t̃i → t̃ , we have that

ϕ(ti) → ϕ(t).

On the other hand, the continuity of ϕ yields

ϕ(ti) → ϕ(s),

and we get ϕ(t) = ϕ(s); that is, t̃ = s̃.
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Conversely, if t̃ ∈ T/ ∼ is such that t ∈ T (x), then by (7) we get

f (x) ≥ lim sup
s̃→t̃

fs(x) = ft̃ (x) ≥ ft (x) = f (x);

and we are done.

Now we give the main result of the paper, for general index sets and dropping both
the upper semi-continuity-type condition and the compactness assumption assumed in
Proposition 1.

Theorem 1 Let {ft , t ∈ T } be a nonempty family of extended real-valued convex functions,
and consider f = supt∈T ft . Then, for every x ∈ dom f , we have

∂f (x) =
⋂

L∈F(x)
co
{⋃

γ∈T̂ (x)
∂(fγ + IL∩dom f )(x)

}
, (10)

where fγ , T̂ (x) and F(x) are defined in (6), (9), and (2), respectively, and T is equipped
with a completely regular topology.

In order to prove Theorem 1, we first establish the following key lemma, which
constitutes the bridge with the compact framework.

Lemma 5 Assume that f is proper and take x ∈ dom f , with f (x) ∈ R, and ε ≥ 0.

(i) Every net (γi)i ⊂ T̂ε(x) has an accumulation point γ ∈ T̂ε(x) such that

lim sup
i

fγi
(z) ≤ fγ (z) for all z ∈ dom f . (11)

(ii) If T is completely regular, then (11) holds for every net (γi)i ⊂ T̂ε(x) converging to
γ ∈ T̂ε(x).

Proof (i) Fix a net (γi)i ⊂ T̂ε(x) and, due to the compactness of T̂ε(x) established in
Lemma 2, let γ ∈ T̂ε(x) be such that γi → γ (without loss of generality). Take z ∈ dom f ,
so that fγ (z) ≤ f (z) < +∞. Next, for each i there will exist a net (tij )j ⊂ T such that

γtij →j γi , fγi
(z) = lim

j
ftij (z).

For every fixed δ > 0 we may suppose, without loss of generality, that for all i

ftij (z) ≥ fγi
(z) − δ eventually on j .

Then there exists a diagonal net (tiji
)i ⊂ T such that γtiji

→i γ and

ftiji
(z) ≥ fγi

(z) − δ for all i.

Consequently,
fγ (z) ≥ lim sup

i

ftiji
(z) ≥ lim sup

i

fγi
(z) − δ,

and we get, as δ ↓ 0,
fγ (z) ≥ lim sup

i

fγi
(z).

(ii) Fix a net (γi)i∈I ⊂ T̂ε(x) such that γi → γ ∈ T̂ε(x), and take z ∈ dom f with
fγ (z) < +∞. By assertion (i) the inequality (11) holds for some accumulation point of
(γi)i , which must be γ (because T̂ is Hausdorff).
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Proof (of Theorem 1) By Lemma 1, the functions {fγ , γ ∈ T̂ } are convex and satisfy

f = sup
γ∈T̂

fγ .

According to Lemma 2, the sets T̂ε(x) are compact for every ε ≥ 0, while Lemma 5(ii)
entails the upper semi-continuity of the mappings γ 
−→ fγ (z), z ∈ dom f . Consequently,
Proposition 1 applies and yields the desired formula.

Corollary 1 If f|aff(dom f ) is continuous on ri(dom f ) (assumed to be nonempty), then for
every x ∈ X

∂f (x) = co
{⋃

γ∈T̂ (x)
∂(fγ + Idom f )(x)

}
. (12)

Proof Under the current assumption, for every L ∈ F(x) and γ ∈ T̂ (x) such that L ∩
ri(dom f ) �= ∅ we have that (see, e.g., [3, Theorem 15(iii)])

∂(fγ + IL∩dom f )(x) = ∂
(
(fγ + Idom f ) + IL

)
(x) = cl(∂(fγ + Idom f )(x) + L⊥).

Now, given a convex neighborhood U ⊂ X∗ of the origin, we choose L ∈ F(x) such that
L ∩ ri(dom f ) �= ∅ and L⊥ ⊂ U . Then Theorem 1 yields

∂f (x) ⊂ co
{⋃

γ∈T̂ (x)
∂(fγ + IL∩dom f )(x)

}
= co

{⋃
γ∈T̂ (x)

cl
(
∂(fγ + Idom f )(x) + L⊥)}

⊂ co
{⋃

γ∈T̂ (x)
∂(fγ + Idom f )(x)

}
+ U + U,

and we get, by intersecting over the U ’s,

∂f (x) ⊂ co
{⋃

γ∈T̂ (x)
∂(fγ + Idom f )(x)

}
.

The conclusion follows as the opposite inclusion is straightforward.

Theorem 2 If f is finite and continuous at some point, then for every x ∈ X

∂f (x) = co
{⋃

γ∈T̂ (x)
∂fγ (x)

}
+ Ndom f (x). (13)

Proof Fix x ∈ dom f . By taking into account that fγ ≤ f , Corollary 1 yields

∂f (x) = co
{⋃

γ∈T̂ (x)
∂(fγ + Idom f )(x)

}
= co

{⋃
γ∈T̂ (x)

∂fγ (x) + Ndom f (x)
}

= ∂σ⋃
γ∈T̂ (x) ∂fγ (x)+Ndom f (x)(θ)

= ∂(σ⋃
γ∈T̂ (x) ∂fγ (x) + σNdom f (x))(θ). (14)

Additionally, for a neighborhood Ux0 of x0 ∈ int(dom f ) such that Ux0 ⊂ dom f , we have

σNdom f (x)(Ux0 − x) ≤ 0,

showing that σNdom f (x) is continuous at x0 − x. At the same time, we have

σ⋃
γ∈T̂ (x) ∂fγ (x)(x0 − x) ≤ sup

γ∈T̂ (x)

(fγ (x0) − fγ (x)) ≤ f (x0) − f (x) < +∞,
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and so, thanks to the Moreau–Rockafellar sum rule, (14) implies that

∂f (x) = ∂
(
σ⋃

γ∈T̂ (x) ∂fγ (x) + σNdom f (x)

)
(θ)

= ∂σ⋃
γ∈T̂ (x) ∂fγ (x)(θ) + ∂σNdom f (x)(θ)

= co
{⋃

γ∈T̂ (x)
∂fγ (x)

}
+ Ndom f (x).

The following corollary is a straightforward consequence of Theorems 1 and 2. We
introduce the functions f̃t : X → R, t ∈ T , given by

f̃t (z) := lim sup
s→t, s∈T

fs(z), (15)

and denote
T̃ (x) := {t ∈ T : f̃t (x) = f (x)}. (16)

Corollary 2 Assume that T is compact Hausdorff. Then, for every x ∈ dom f , we have

∂f (x) =
⋂

L∈F(x)
co
{⋃

t∈T̃ (x)
∂(f̃t + IL∩dom f )(x)

}
.

If, in addition, f is finite and continuous at some point, then for every x ∈ dom f

∂f (x) = Ndom f (x) + co
{⋃

t∈T̃ (x)
∂f̃t (x)

}
.

Proof Since T is compact Hausdorff; hence, completely regular, we have that T ≡ T̂ and,
for all t ∈ T and z ∈ X,

fγt (z) = lim
γs→γt , s∈T

fs(z) = lim
s→t, s∈T

fs(z) = f̃t (z).

In other words, the first formula is a consequence of Theorem 1. Similarly, the second
statement of the theorem follows from Theorem 2.

The following corollary shows how to deduce Valadier’s formula ([30]), given in the
compact setting (see [19, Theorem 3, p. 201] and [31, Theorem 2.4.18]).

Corollary 3 Assume that T is compact Hausdorff. Let U ⊂ X be an open set such that:

(i) ft (x) ∈ R for all t ∈ T and x ∈ U ,
(ii) t ∈ T 
−→ ft (x) is upper semi-continuous for each x ∈ U ,

(iii) x ∈ U 
−→ ft (x) is continuous for each t ∈ T .

Then for every x ∈ U we have

∂f (x) = co
{⋃

t∈T (x)
∂ft (x)

}
.

Proof Assume first that X is a Banach space. Then, using classical arguments (see, e.g.,
[19, 31]), it is shown that the supremum function f = supt∈T ft is finite and, so, continuous
on U . Thus, by Corollary 2, for each x ∈ U we have

∂f (x) = Ndom f (x) + co
{⋃

t∈T̃ (x)
∂f̃t (x)

}
= co

{⋃
t∈T̃ (x)

∂f̃t (x)
}

, (17)
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where f̃t and T̃ (x) are defined in (15) and (16), respectively.
Take t ∈ T̃ (x). On the one hand, using the compactness assumption, there exist some

net (ti )i ⊂ T and t ∈ T such that f (x) = limi fti (x) and (ti )i converges to t ∈ T . But we
have, due to assumption (ii),

f (x) = lim sup
i

fti (x) ≤ ft (x),

and so t ∈ T (x).
On the other hand, also by assumption (ii), for all z ∈ U we have

f̃t (z) = lim sup
s→t

fs(z) ≤ ft (z),

and both functions f̃t and ft coincide at x. Consequently, ∂f̃t (x) ⊂ ∂ft (x) and (17) yields

∂f (x) = co
{⋃

t∈T̃ (x)
∂f̃t (x)

}
⊂ co

{⋃
t∈T (x)

∂ft (x)
}

.

Thus, we are done since the opposite inclusion is straightforward.
We consider now the case when X is any locally convex space. We fix x ∈ U and

x∗ ∈ ∂f (x). Given an L ∈ F(x), we introduce the convex functions gt : L → R, t ∈ T ,
defined as

gt := (ft + IL)|L;
that is, gt is the restriction of ft + IL to L, and consider the associated supremum

g := sup
t∈T

gt = (f + IL)|L.

Therefore, since the family {gt , t ∈ T } satisfies the requirements of the paragraph above,
we obtain

∂g(x) = co
{⋃

t∈T (x)
∂gt (x)

}
.

Now, take x∗ ∈ ∂f (x), so that x̂∗ := x∗|L ∈ ∂g(x) = co
{⋃

t∈T (x) ∂gt (x)
}

. Then, thanks

to the fact that L∗ is isomorphic to the quotient space X∗/L⊥, for every θ -neighborhood
V ⊂ X∗ we have that

x̂∗ ∈ co
{⋃

t∈T (x)
∂gt (x)

}
+ V|L,

where V|L := {u∗|L : u∗ ∈ V } is a θ -neighborhood in X∗/L⊥. In other words, there are
u∗ ∈ V , λ1, . . . , λk ≥ 0, t1, . . . , tk ∈ T (x) and x̂∗

1 , · · · , x̂∗
k ∈ L∗ such that λ1+· · ·+λk = 1,

x̂∗
j ∈ ∂gtj (x), j = 1, . . . , k, k ≥ 1, and

x̂∗ = λ1x̂
∗
1 + · · · + λkx̂

∗
k + u∗|L.

Moreover, by the Hahn–Banach theorem, we extend x̂∗
1 , . . . , x̂∗

k to x∗
1 , . . . , x∗

k ∈ X∗, which
satisfy

〈x∗, u〉 = λ1〈x∗
1 , u〉 + · · · + λk〈x∗

k , u〉 + 〈u∗, u〉 for all u ∈ L;
that is, x∗ ∈ λ1x

∗
1 + · · · + λkx

∗
k + u∗ + L⊥. But x∗

j ∈ ∂(ftj + IL)(x), j = 1, . . . , k, and so

x∗ ∈ co
{⋃

t∈T (x)
∂(ft + IL)(x)

}
+ V + L⊥

= co
{⋃

t∈T (x)
∂ft (x)

}
+ V + L⊥,

where the last equality follows by applying the Moreau–Rockafellar sum rule (thanks to
assumption (iii)). Finally, because L and V were arbitrarily chosen, we deduce that x∗ ∈
co
{⋃

t∈T (x) ∂ft (x)
}

(see (1)), and the inclusion “⊂” follows.

581



R. Correa et al.

Corollary 4 Assume that X = R
n. Then (12) and (13) hold with co instead of co.

Proof Similarly as in the proof Proposition 1, we can prove that the set

co
{⋃

γ∈T̂ (x)
∂(fγ + Idom f )(x)

}
is closed and (12) holds with co instead of co; that is,

∂f (x) = co
{⋃

γ∈T̂ (x)
∂(fγ + Idom f )(x)

}
. (18)

In addition, if f is finite and continuous at some point in dom f , then each function fγ

(≤ f ), γ ∈ T̂ (x), is finite and continuous at the same point, and (18) yields (13) with co
instead of co,

∂f (x) = co
{⋃

γ∈T̂ (x)
∂(fγ + Idom f )(x)

}
= co

{⋃
γ∈T̂ (x)

∂fγ (x)
}

+ Ndom f (x).

Example 1 Consider the family of convex functions g2n+1, h2n, n ∈ N, defined on R as

g2n+1(z) := max

{
nz

n + 1
, 0

}
, h2n(z) := max

{ −nz

n + 1
, 0

}
.

We introduce the family {fn, n ∈ N} such that f2n+1 := g2n+1 and f2n := h2n, together
with the supremum function

f = sup
n∈N

fn = sup
n∈N

{g2n+1, h2n} .

Obviously,

f (x) = |x| and ∂f (x) =
⎧⎨⎩

[−1, 1] if x = 0,

{−1} if x > 0,

{1} if x > 0,

and

T (x) =
{
N if x = 0,

∅ if x �= 0.

Thus, if we apply (4) in Proposition 1, we reach a false conclusion as the assumption there
is not satisfied in this case:

∂f (x) =
{ ] − 1, 1[ if x = 0,

∅ if x �= 0.

The Stone–Čech compactification of N is given by

N̂ = N∪
{

lim
i

γni
: (ni)i ⊂ N, ni → +∞

}
= N∪

{
lim

i
γ2ni

, lim
i

γ2ni+1 : (ni)i ⊂ N, ni → +∞
}

,

whereas the fγ ’s, γ ∈ N̂, take the form

fγ =
{

g2n+1 if γ = γ2n+1 ≡ 2n + 1,

h2n if γ = γ2n ≡ 2n,

for γ ∈ N, and
fγ = lim sup

γn→γ
fn
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for γ ∈ N̂ \ N. Equivalently, we consider the family{
g2n+1, h2n, n ∈ N; gγ̄ , hγ̄

}
,

where gγ̄ , hγ̄ : R → R are defined as

gγ̄ (z) = lim sup
n→∞

g2n+1(z) = max{z, 0},
hγ̄ (z) = lim sup

n→∞
h2n(z) = max{−z, 0}.

It is easily checked that this new family has the same properties as the original one, {fγ , γ ∈
N̂}. In other words, we have enlarged the original family of functions by adding gγ̄ and hγ̄ .
Therefore, applying (10), we get

∂f (0) = co
{⋃

n∈T (0)
∂g2n+1(0)

⋃
∂gγ̄ (0)

⋃
n∈T (0)

∂h2n(0)
⋃

∂hγ̄ (0)
}

= co

{⋃
n≥1

[
n

n + 1
, 0

]⋃
[0, 1]

⋃
n≥1

[ −n

n + 1
, 0

]⋃
[−1, 0]

}
= [−1, 1],

and, for x �= 0, say x = 1,

∂f (1) = ∂gγ̄ (1) = {1}.
Observe that the presence of the new functions gγ̄ and hγ̄ is necessary, since the subdiffer-
entials at 0 of the data functions g2n+1 and h2n do not lead us to the whole subdifferential
of the supremum function f, as they do not include the subgradients −1 and 1.

In order to decompose the subdifferential term involved in formula (10) we need to
impose some additional continuity or lower semi-continuity conditions on the initial func-
tions. The assumption in Theorem 2 gives the first example, where the continuity of the
supremum function allows to characterize ∂f (x) by means only of the sets ∂fγ (x). We give
next an alternative representation of ∂f (x) by means of the ε-subdifferentials of the fγ ’s,
under the condition

cl f = sup
t∈T

(clft ), (19)

where clf and clft are the closed hulls (lower semi-continuous regularizations) of the
respective functions.

Proposition 2 If (19) holds, then for every x ∈ dom f

∂f (x) =
⋂

ε>0,L∈F(x)
co
{⋃

γ∈T̂ (x)
∂εfγ (x) + NL∩dom f (x)

}
,

where fγ , T̂ (x) andF(x) are defined in (6), (9), and (2), respectively, and T is a completely
regular topological space.

Proof It suffices to apply [7, Theorem 3.8] to the family {fγ , γ ∈ T̂ }.

We discuss next a nonconvex counterpart of formula (10), under the following condition
introduced in [21],

f ∗∗ = sup
t∈T

f ∗∗
t , (20)

where f ∗∗ and f ∗∗
t are the biconjugates of the respective functions. In the convex case, and

assuming that the conjugates f ∗ and f ∗
t are proper, (19) is equivalent to the last relation.
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Proposition 3 Let {ft , t ∈ T } be a nonempty family of extended real-valued non-
necessarily convex functions, and consider f = supt∈T ft . If condition (20) holds, then for
every x ∈ dom f

∂f (x) =
⋂

L∈F(x)
co
{⋃

γ∈T̂ (x)
∂(fγ + IL∩dom f )(x)

}
=
⋂

ε>0,L∈F(x)
co
{⋃

γ∈T̂ (x)
∂εfγ (x) + NL∩dom f (x)

}
,

where fγ , T̂ (x), and F(x) are defined in (6), (9), and (2), respectively, and T is equipped
with a completely regular topology.

Proof Assume that ∂f (x) �= ∅, so that f (x) = f ∗∗(x) and ∂f (x) = ∂f ∗∗(x). Then, by
applying Theorem 1 to the family {f ∗∗

t , t ∈ T }, we obtain

∂f (x) = ∂f ∗∗(x) =
⋂

L∈F(x)
co
{⋃

γ∈T̂ 1(x)
∂(gγ + IL∩dom f )(x)

}
, (21)

where gγ : X → R, γ ∈ T̂ , are defined by

gγ (z) := lim sup
γt→γ, t∈T

f ∗∗
t (z),

and
T̂ 1(x) := {

γ ∈ T̂ : gγ (x) = f (x)
}

.

Observe that for every γ ∈ T̂ 1(x) we have that

f (x) = lim sup
γt→γ, t∈T

f ∗∗
t (x) ≤ lim sup

γt→γ, t∈T

ft (x) = fγ (x) ≤ f (x),

and so γ ∈ T̂ (x) = {γ ∈ T̂ : fγ (x) = f (x)}. Moreover, since

gγ (z) = lim sup
γt→γ, t∈T

f ∗∗
t (z) ≤ lim sup

γt→γ, t∈T

ft (z) = fγ (z) for all z ∈ X,

we deduce that for all L ∈ F(x)

∂
(
gγ + IL∩dom f

)
(x) ⊂ ∂

(
fγ + IL∩dom f

)
(x).

Thus, the inclusion “⊂” in the first statement follows from (21), and we are done since the
opposite inclusion is easily verified.

The second statement follows similarly by using Proposition 2 instead of Theorem 1.

5 An Application to Optimality Conditions

In this section, we revise the optimality conditions for convex semi-infinite programming
established in [6], by removing the compactness of the set indexing the constraints.

Aside [6], a significant precedent of the results in this section can be found in [11, Chap-
ter 7], where KKT conditions are established for convex semi-infinite optimization with
finite-valued functions, using a closedness condition which is implied by some version
of Slater’s qualification. Many KKT conditions exist in the literature which are obtained
via different approaches: approximate subdifferentials of the data functions ([3, 16]), the
exact subdifferentials at close points [28], Farkas–Minkowski-type closedness criteria [8]
in convex semi-infinite optimization, strong CHIP-like qualifications for convex optimiza-
tion with non necessarily convex C1-constraints [2] (see, also, [9] for locally Lipschitz
constraints), among others.
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Here we consider the following optimization problem

(P) : inf
ft (x)≤0, t∈T

f0(x),

where T is a completely regular topological space, and ft : Rn → R∞, for t ∈ T ∪ {0}
(we assume, without loss of generality, that 0 /∈ T ), are proper and convex. Problem (P) is
equivalent to

inf
f (x)≤0

f0(x),

where
f := sup

t∈T

ft .

Let the set T̂ and the convex functions fγ : Rn → R∞, γ ∈ T̂ , be as defined in (5) and (6),
respectively. We also denote

Â(x) := {γ ∈ T̂ : fγ (x) = 0},
so that, by Lemma 3, for every feasible point x ∈ R

n for (P) we have

Â(x) =
⋂

ε>0
cl (d(Aε(x))) ,

where
Aε(x) := {t ∈ T : ft (x) ≥ −ε}, ε > 0.

The following theorem establishes Fritz–John-type necessary optimality conditions for
problem (P). The main feature of this result and the subsequent corollary is the absence of
any compactness and continuity assumptions on the index set and the mappings t 
−→ ft (z),
as they were required in [6, Theorem 5].

Theorem 3 Assume that x̄ is an optimal solution of (P). Then we have

(a)

0n ∈ co
{
∂(f0 + Idom f )(x̄) ∪

⋃
γ∈Â(x̄)

∂(fγ + Idom f0∩dom f )(x̄)
}

.

(b) Moreover, under the condition

ri(dom fγ ) ∩ ri(dom f ) �= ∅ for all γ ∈ Â(x̄) ∪ {0},
we have

0n ∈ co
{
∂f0(x̄) ∪

⋃
γ∈Â(x̄)

∂fγ (x̄)
}

+ Ndom f (x̄) + Ndom f0(x̄),

Proof We consider the supremum function g : Rn → R∞, defined as

g(x) := sup{f0(x) − f0(x̄), ft (x), t ∈ T } = max {f0(x) − f0(x̄), f (x)} ,

so that dom g = dom f0 ∩ dom f . It is easily verified that x̄ is a global minimum of g; that
is, 0n ∈ ∂g(x̄).

We endow the set T ∪ {0} with the topology generated by the open sets of T and {0},
which makes it completely regular. Then the compactification of T ∪ {0} can be identified
with T̂ ∪ {0}. Consequently, and according to Corollary 4, x̄ satisfies

0n ∈ ∂g(x̄) = co
{
∂(f0 + Idom f )(x̄) ∪

⋃
γ∈Â(x̄)

∂(fγ + Idom f0∩dom f )(x̄)
}

,

which is condition (a).
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(b) Under the current assumptions, by using the classical sum rule ([25]), we get from
the one hand

∂
(
f0 + Idom f

)
(x̄) = ∂f0(x̄) + Ndom f (x̄),

and from the other hand, since

fγ + Idom f0∩dom f = fγ + Idom f + Idom f0 and dom (fγ + Idom f ) = dom f,

we obtain

∂
(
fγ + Idom f0∩dom f

)
(x̄) = ∂fγ (x̄) + Ndom f0(x̄) + Ndom f (x̄).

Thus, the conclusion follows from (a).

Remark 2 In particular, if f (x̄) < 0, then the last condition reads

0n ∈ ∂
(
f0 + Idom f

)
(x̄),

as fγ (x̄) ≤ f (x̄) < 0 for all γ ∈ Â, and so Â(x̄) = ∅.

Remark 3 Observe that the strong Slater condition; i.e., the existence of some x0 ∈ dom f0
such that f (x0) < 0, does not imply that x0 is an interior point of the feasible set. This is
what happens in the following example. Take T := [0, +∞[, f0 ≡ 0 and let ft : R → R,
t ∈ T , be defined as

ft (x) := max{tx − 1,−tx − 1}.
The point 0 is a strong Slater point, but 0 /∈ int({x ∈ R : ft (x) ≤ 0, t ∈ T }).

We derive next the KKT conditions for problem (P) under the Slater qualification.

Corollary 5 Under the strong Slater condition; that is,

f (x0) < 0 for some x0 ∈ dom f0,

the point x̄ is optimal for (P) if and only if

0n ∈ ∂
(
f0 + Idom f

)
(x̄) + cone

{⋃
γ∈Â(x̄)

∂
(
fγ + Idom f0∩dom f

)
(x̄)
}

. (22)

Proof Assume first that f (x̄) = 0. By Theorem 3(a), x̄ is optimal if and only if either

0n ∈ co
{⋃

γ∈Â(x̄)
∂
(
fγ + Idom f0∩dom f

)
(x̄)
}

(23)

or (22) holds.
Moreover, by Theorem 1 we have that

co
{⋃

γ∈Â(x̄)
∂
(
fγ + Idom f0∩dom f

)
(x̄)
}

= ∂

(
sup
t∈T

(
ft + Idom f0∩dom f

))
(x̄)

= ∂
(
f + Idom f0

)
(x̄),

and so relation (23) is equivalent to

0n ∈ co
{⋃

γ∈Â(x̄)
∂
(
fγ + Idom f0∩dom f

)
(x̄)
}

= ∂
(
f + Idom f0

)
(x̄),

equivalently, f (x) ≥ f (x̄) = 0 for all x ∈ dom f0; and this contradicts the strong Slater
condition.

Finally, if f (x̄) < 0, then (22) follows by Theorem 3(a).
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31. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

588


	Subdifferential of the Supremum via Compactification of the Index Set
	Abstract
	Introduction
	Notation
	Preliminary Results
	Compactification Approach
	An Application to Optimality Conditions
	References




