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Abstract

We establish some quantitative strong unique continuation properties for solution of | Pu| <
Cilx|7'|Vu| + Colx|~2|u| where P is a second order elliptic operator. As in (Rev. Mat.
Iberoam. 27: 475-491, 2011), our result is of quantitative nature but requires weaker
conditions on the coefficients of P.
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1 Introduction

Let Pu = ) ;; ax(x)du be a second order elliptic operator in R”, where A = (ay) is
a real, symmetric elliptic matrix. Aronszajn et al. showed in [5] that if A is continuous in
By :={x : |x| < 1} and for some & > 0,

IVA(x)| < C|x|71*¢ fora.e. x € By, 1)
then any u that satisfies
|Pu| < Clx|™"|Vu| + Clx| >+ u] (@)

and vanishes to infinite order at O must vanish identically in Bj. In other words, (2) has the
strong unique continuation property. Earlier results with stronger smoothness assumptions
on A were obtained in [4] and [8].

Alinhac and Baouendi [2] proved the same result for complex-valued A € C°, provided
that A(0) is a multiple of a real positively definite matrix. The necessity of the assumption
on A(0) was shown by an example of Alinhac [1]. Subsequently, Hormander [7] weakened
the smoothness assumption on A to (1). The example of Plis [14] shows that unique contin-
uation may not hold if A is only assumed to belong to the Holder space C* with0 < « < 1.
In [14], A is even Lipschitz outside a hypersurface.
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In [10], Meshkov showed that instead of (2), it suffices to assume
|Pul < Cilx|~"[Vul + Colx|Jul, 3)

provided C is sufficiently small, depending on P. This result was later reproved in [15]
using slightly different Carleman estimates. Meshkov [11] outlined a possible way to con-
struct an example showing the necessity of the smallness condition on Cj. Explicit examples
were later given in [3] and [13]. Related work can be found in [6, 12, 16].

Subsequently, more quantitative properties of unique continuation for (3), namely poly-
nomial lower bound and doubling property were proved by Lin, Nakamura and Wang in
[9]. A key element in the proof of [9] is a three-ball inequality deduced from the Carleman
estimates of [15]. The main result of this note is an improvement on those of [9] and [10],
requiring a weaker condition on VA. As in [9], we use the same Carleman estimates from
[10] and [15]. However, our proof is more direct as it does not use a three-ball inequality.
We next state our result, whose proof is contained in Section 3, after some preparation in
Section 2.

Theorem 1 Let A € C(B1) be a symmetric matrix function and suppose that there exist
positive constants A, §, Cs so that

MEP < R(AW)E, &) <A Ng?, VEeR" x € By,

and
Cs

IVAx)| < W fora.e. x € By. 4)

Furthermore, assume that A(0) is real and positively definite. Then there exist positive
constants R = R(n, A, 8, Cs) and C* = C*(n, X) such that if u satisfies

Cq Co
Pul < L vul + <
|x] |x]

|ul, (%)
with C1 < C* then there exist k, M1, My > 0 depending on u such that for0 <r < R,
lul®> > Myr* (6)
B,

and
/ ul> < Ma | |ul? )
By, B,

Here, B, := {x : |x| <r}.

We note that the fact that k, M1, and M, depend on u is unavoidable, as the example of
spherical harmonics shows. Note also that the properties (6) and (7) are stronger than the
strong unique continuation property, as they imply that a solution u of (3) that vanishes to
infinite order at O must vanish in a neighborhood of 0. Then by using [7, Theorem 2.4], it
follows that u vanishes identically in B.

2 Preliminaries
We first state the two Carleman estimates that will be used in the proof. To simplify the

notation, we assume the constants C, in Lemmas 1 and 2 below are the same. A proof of
the first estimate can be found in [10]. (It was also reproved in [13] and [15].)
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Lemma 1 ([10, Theorem 2]) There exists Co > 0 depending only on n such that for any
t et +Nandu e CPR"\{0}),

Z /_L_2—2|a||x|—21:+2|oz|—n|Dotu|2 < C2/|x|—2z+4—n|Au|2_

Jor|<2

The next estimate was proved in [15, Theorem 1.2] under the slightly stronger assump-
tion (1) on VA. For the sake of completeness, we provide a quick proof.

Lemma 2 Assume that A satisfies (4) with A(0) = Id. Let p(x) = %I log |x| |2. Then there
exists Ry € (0, 1) and positive constants yo > 2 and C, depending only on n, § and Cs such
that for y > yo and u € C§°(Bg,\{0}),

Y3 / 1" log || %27 #u® + y / [PV < f 427 Pu?,

For the proof of this lemma, we shall need the following elliptic estimate.

Lemma 3 Suppose the assumptions of Lemma 2 hold. Then there exists Ry € (0, 1) and
positive constants yy and C depending only on n, § and Cs such that for any y > yo and
u € C°(Br,\{0}),

[ 0 I < 2 [ 1 g 20 P
072 [ 1 log el v ®)
Here Viy = (aiJ”)Zi=l is the Hessian of u.
Proof Since |A(x) — Id| < Cs|log lx|] =18, by triangle inequality, it suffices to prove (8)

with Au in place of Pu on the right-hand side. By splitting « into real and imaginary parts,
we can further assume u is real-valued. Integrating by parts twice gives

/|x|—"+“|log|x||—2—5e2”aﬁua,-ju=f|x|—”+4|log 720 o ul + E,

where
(B = Cy [ 17 log 71227 ul 9
1
<53 / x| 7" log |x|| 7> 72e*?|V2ul* 4 Cy? / x| 7" log x| ° € | Vul?.
Summing over i and j, we obtain the desired inequality. O

Proof of Lemma 2 In view of Lemma 3, to prove Lemma 2, it suffices to show
y* [ g P 4y [ e ul
<G f x| 7R Pul? + Coy / x| 7" log [x[| 770 ? | VU2 (9)
Let v = ue?? then e”¥ Pu = P, v where

Pyv=¢"’P(e"%v).
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It is easy to see that (9) follows from
y3/|x|*"|1og|x||2v2+y/|x|*"+2|Vv|2
< Cz/le_"+4|Pyv|2+C2)/_1/|x|_"+4|10g|x||_2_5|V2U|2- (10)

Let w = x/|x| and t = log |x| for x # 0, i.e., x = e'w. Then
aj = e"(wja, + Qj),

where Q; are vector fields on "~ ! satisfying
Y wiQ;=0, Y Quy=n—1, Q=n-Do;-Q;
J J

Let (Do, ..., Dy) = (i9;,i21, ...,1i2,). We denote by Dv the vector (Dgv, ..., D,v) and
by D?v the matrix D;jDyv,0 < j,k < n. Then (10) takes the form

y3/|v|2t2dtdw+yf|Dv|2dtdw < (12/ (|e2thv|2+y_lt_2_8|D2v|2> dtdw. (11
We have

n
Pu = e Y ap(e' o) (oxd, — op + Q) (@9 + Qu
k=1

e U+ (= 2du+ A+ Y Cralt, )3 Q% |,
Jtlal=2

and consequently,
eeryv =@ —yD+m—2)0 —y)v+ Ayv + Z Cjalt,w)(0 — Yy Q%
Jlel<2
8t2v + Apv + [(n —2) —2yt]o;v + [)/2t2 —(n—=2yt—ylv

+ Z Cj,a(fvw)(az—yt)jQ"‘v.
Jtlel<2

Let
Qv = 3t2v + Apv — 2ytoiv + [yztz — 2)/] v+ Z Cjalt,w)(0 — yt)anv.
JHle]=2
Since by (4), C; o are bounded, it follows that
le* Pyv — Q| < C(y|tv| + | Dv)).
Thus, by triangle inequality, it suffices to prove (11) with Qv in place of e P,v on the
right-hand side. The last term of Qv can be written as
Y Cialt, )@ —y1) Q% =Y (Voo +iVa,)(t, o) (y1)* ™ D%,
JHlel=2 lor|<2

where the real-valued functions V; x’s are linear combinations of Cj 4’s.
Let
Mv = 8,21) + Apv + y2t2v + Z Vao(t, ) (yt)> 14 p*y

| =2
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and
Nv = —2ytd;v —2yv + Z iVy(t, ) (yt)> 14 D%y,

o|<2

Then ||Qv||i2 = [|Mv + Nv||i2 > 2R (Mv, Nv). The right-hand side consists of the
following terms:

Ti = 2R(02%v, —2y1d,v — 2yv) = 6y [|d,v]%,
T, = 20 (Ayv, —2ytov — 2yv) = 2y||£2v||2,
T3 = 2R(y*t%v, —2ytd,v — 2yv) = 293 ||tv||%,

Ty = 2m< > Vaolt, o) (y)*~*ID%, —2yv>
] <2
1 3 2 322la| || ,—8—|a| po 2
> =3yl = ¢ Y2y e pey

lo|=2

Here we have used Cauchy—Schwarz at the last line. The remaining terms have the form
‘TS<WO,’[3(t, w) ()= Bl pay, DBv>,
where W, g are real-valued function satisfying Wy g+ |D W, g| = o(t|71-9). Integrating
by parts |«| + |B] times gives
S<Wa73(yt)47‘a‘7‘B|D“U, D%) =3 (Wa,ﬁ(yt)“*'“'*'ﬁ‘DBv, D“v)
+ 3 fs<Za/,ﬁ/(yt)4—'“'—'5'D“’v,Dﬁ’v>.

lo/|+1B']
<le|+IBI

Hence,

1 ’ /
5<Wa,ﬁ(yz)4*'“"”3'D°‘v, DBU> _ . Z S(Za/,ﬁ/(yt)“*'“'*'ﬁ'D“ v. DP U>.
l/|+B/|
<lo|+IB|

Here, Zy p = O(|t|~'=?%). Applying Cauchy—Schwarz, we see that the right-hand side is
bounded in absolute value by

2-8
C Z )/3_2|a|||tT_|a|DaU”2.

|o|<2

Summing up all the terms, we obtain
2R (M, Nv) = P lev]2 + y | Dvl> = Cy = =1 =5 D)%
This gives the desired inequality (11). O

We will also need the following Caccioppoli type estimate. Since the proof follows
standard arguments, we will skip it. For 0 < a < blet A(a, b) = {x : a < |x| < b}.

Lemma 4 There exist C = C(n, A) > 0 such that if C3 = C(1 + Co + C12 + Cg) then for
any u satisfying (5) and 0 < r < %,

/ x| "2 | Vul*dx < C3/ x| " |u)?dx.
A(5r/4,7r/4) A(r,2r)
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3 Proof of Theorem 1

In this proof, C denotes a constant depending only on n and A, whose value may change
from line to line. By a change of variable which may change the values of R and C* by
a factor of A, we can assume A(0) = Id. Under this additional assumption, we will prove
Theorem 1 with C* = ﬁ. By using [7, Theorem 2.4], it suffices to consider the case u
does not vanish identically on any balls in Bj.

For 0 < r < Ro/8 where Ry is the constant which appears in Lemma 2, let { be a
smooth cut-off function satisfying x a(7r/4,5r,/8) < ¢ =< X.A(5r/4,7Ry/8) and [0%Z(x)| <
10|x| 71!, Vx € R" and |a| < 2. Here, xr denotes the characteristic function of the set E.

Letv = ¢u and E = A(5r/4, 7r/4) U A(5R0/8, TRo/8). Then
Pl = 18 P+ 2a;1(0;0) @t) + ajdjud
¢ (CalxI ™1Vl + Colx| 21ul) + € (1|~ 1Vul + x1 2Jul) e

A

IA

Cilx|™ IVl + Colx 2ol + € (11~ IVul + |2 ul) 2.

Applying Lemma 2 to v and using the above inequality, we have

y3/|x|_”e2y‘p|v|2dx+y/|x|_"+2ezy‘p|Vv|2dx
<C f x| 7" 42| Po|?dx
< 4C2/ x| 4 e27¢ (C(’§‘|x|—4|v|2 n C12|x|_2|Vv|2> dx
+4C2C2/E x| 4219 <|x|_4|u|2+ |x|_2|Vu|2) dx. (12)

Assuming y > y := max{yp, 2C§/3C21/3, 8C12C2}, the first term on the right-hand side of
(12) can be absorbed by its left-hand side. Thus, we deduce that

2/ x| "2 [v]?dx < 4C2C2f e 742 (el + 1|72 Vul?) dix.
E
Using Lemma 4 to bound the gradient terms on the right-hand side, we get

2/ x| e |u)?dx < C4e2W<’>/ x| 7" |u|>dx
AQr, %) A(r,2r)
Ry
+c4e2”"(2)/ g X uPdx, o (3)
A1)

where Cy = 32C2C%(C3 + 1).
We now fix

log <c4 Ja(% xo) e~ ful?/ [, B ) |x|—"|u|2>

20 (%) ~20 (%)

y = max { 1,

For this choice of y,

2050
Cye (2 ) /.:4(’;0,R

R

x| ™" |ul? < x| e ¢ |u)?,
Ry
0) A 23
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hence the last term on the right-hand side of (13) can be absorbed by the left-hand side,
giving

/ KU < Cyer e f e . (14)
.A<2r. ®> A(r,2r)

2

Note that this would give a lower bound that is worse than polynomial. We will use
Lemma 1 to improve upon (14) to reach the conclusion. Let Ry € (0, R/8] satisfy

1
log R;| > max {(2\/c2c5<5y +log ao)“ , (8coczcs>ﬁ}

and n be a smooth cut-off function such that x 47,/4,58,/8) < 1 < X.A(5r/4,7R,/8) and
[0%n(x)| < 10|x|71*!, Vx € R” and || < 2.
From [VA(x)| < Cs|x|~!|log |x||~27% and A(0) = Id, we see that
|A(x) —Id| < Cs|log|x||'7 < Cs|log Ri|"!™%  Vx € Bg,.

Appplying Lemma 1 to w = nu, we obtain

IA

2
2/12—2j|x|—2r+2j—n|vjw|2
=0

C2/|x|—2T+4—n|Aw|2

IA

2C2/|x|—2T+4—n|Pw|2
+2C2Cg.|10gR]|72725/|x|721'+4*n|v2w|2.

Choosing T = Lﬁ| log Ry |'*?], the last term can be absorbed by the left-hand side,

hence we obtain
1_2/.|x|—21—n|w|2+/|x|—21+2—n|vw|2 §2C2/|x|_2r+4_n|Pw|2 (15)

Note that by our choice of C*, Ry, and t, we have 2> 16C3C2 and 1 > 16C]2C2. Hence,
using the same arguments that lead to (13) from Lemma 2, we obtain from (15) that

2f P s co [l R [ e
AQr,Ry) A(r,2r) A(R1,2R})

(16)
From our choice of R; and 7, we have

T > (Sy +1og C4)|log Ry|,
1

. . . _ 2
which implies that for Ry = 5 Ry,

(2R2)—2T€—2V¢(R2)+2y<p(2R1) > C%szf-
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Hence, for 0 < r < R»/2, using (14) we have

f X2 = 2Ry / el
AQr,Ry) A(R2,2R2)
> C471(2R2)721672y<p(R2) / . |x|7ne2y<pu2
AR 5)
> C4—1(2R2)—27e—ZVw(R2)+2V¢(2R1)/ |x|_”|u|2
A(R1,2R)
>

C4R;2f/ ] ™" Jue]
A(R1,2Ry)

Thus, the last term of (16) can be absorbed by its left-hand side. Hence, for r < Ry /2,

f x| 72 u)? < c4r‘2’/ x| ™" |ue) % (17)
AQr,Ry) A(r,2r)

From this, (6) follows with k = 2t 4+ n and

M] — C4—1/ |x|_2T_"|M|2.
A(R1/2,Ry)

Moreover, we can deduce from (17) that

/ |M|2 S42‘E+Vlc4/ |M|2
AQ2r,4r) A(r,2r)

Adding f By, |u|? to both sides, it follows that

1
/ u)? > 27/ |u)?.
By, 42T Cy 41 Jp,,

Thus, (7) follows with M, = 427+1Cy + 1
To finish the proof, note that for r € (R2/2, Ro/8], (6) and (7), possibly with different
M, and M5, follow from (14).
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