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Abstract
We establish some quantitative strong unique continuation properties for solution of |Pu| ≤
C1|x|−1|∇u| + C0|x|−2|u| where P is a second order elliptic operator. As in (Rev. Mat.
Iberoam. 27: 475–491, 2011), our result is of quantitative nature but requires weaker
conditions on the coefficients of P .
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1 Introduction

Let Pu = ∑
kl akl(x)∂klu be a second order elliptic operator in R

n, where A = (akl) is
a real, symmetric elliptic matrix. Aronszajn et al. showed in [5] that if A is continuous in
B1 := {x : |x| ≤ 1} and for some ε > 0,

|∇A(x)| ≤ C|x|−1+ε for a.e. x ∈ B1, (1)

then any u that satisfies

|Pu| ≤ C|x|−1+ε|∇u| + C|x|−2+ε|u| (2)

and vanishes to infinite order at 0 must vanish identically in B1. In other words, (2) has the
strong unique continuation property. Earlier results with stronger smoothness assumptions
on A were obtained in [4] and [8].

Alinhac and Baouendi [2] proved the same result for complex-valued A ∈ C∞, provided
that A(0) is a multiple of a real positively definite matrix. The necessity of the assumption
on A(0) was shown by an example of Alinhac [1]. Subsequently, Hörmander [7] weakened
the smoothness assumption on A to (1). The example of Pliš [14] shows that unique contin-
uation may not hold if A is only assumed to belong to the Hölder space Cα with 0 < α < 1.
In [14], A is even Lipschitz outside a hypersurface.

� Tu Nguyen
natu@math.ac.vn

1 Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet,
Cau Giay, Hanoi, Vietnam

Published online: 22 February 2020

Vietnam Journal of Mathematics (2021) 49:1001–1009

http://crossmark.crossref.org/dialog/?doi=10.1007/s10013-020-00386-3&domain=pdf
mailto: natu@math.ac.vn


In [10], Meshkov showed that instead of (2), it suffices to assume

|Pu| ≤ C1|x|−1|∇u| + C0|x|−2|u|, (3)

provided C1 is sufficiently small, depending on P . This result was later reproved in [15]
using slightly different Carleman estimates. Meshkov [11] outlined a possible way to con-
struct an example showing the necessity of the smallness condition on C1. Explicit examples
were later given in [3] and [13]. Related work can be found in [6, 12, 16].

Subsequently, more quantitative properties of unique continuation for (3), namely poly-
nomial lower bound and doubling property were proved by Lin, Nakamura and Wang in
[9]. A key element in the proof of [9] is a three-ball inequality deduced from the Carleman
estimates of [15]. The main result of this note is an improvement on those of [9] and [10],
requiring a weaker condition on ∇A. As in [9], we use the same Carleman estimates from
[10] and [15]. However, our proof is more direct as it does not use a three-ball inequality.
We next state our result, whose proof is contained in Section 3, after some preparation in
Section 2.

Theorem 1 Let A ∈ C(B1) be a symmetric matrix function and suppose that there exist
positive constants λ, δ, Cδ so that

λ|ξ |2 ≤ �〈A(x)ξ, ξ〉 ≤ λ−1|ξ |2, ∀ξ ∈ R
n, x ∈ B1,

and

|∇A(x)| ≤ Cδ

|x|| log |x||2+δ
for a.e. x ∈ B1. (4)

Furthermore, assume that A(0) is real and positively definite. Then there exist positive
constants R = R(n, λ, δ, Cδ) and C∗ = C∗(n, λ) such that if u satisfies

|Pu| ≤ C1

|x| |∇u| + C0

|x|2 |u|, (5)

with C1 < C∗ then there exist k,M1,M2 > 0 depending on u such that for 0 < r < R,
∫

Br

|u|2 ≥ M1r
k (6)

and ∫

B2r

|u|2 ≤ M2

∫

Br

|u|2. (7)

Here, Br := {x : |x| ≤ r}.

We note that the fact that k, M1, and M2 depend on u is unavoidable, as the example of
spherical harmonics shows. Note also that the properties (6) and (7) are stronger than the
strong unique continuation property, as they imply that a solution u of (3) that vanishes to
infinite order at 0 must vanish in a neighborhood of 0. Then by using [7, Theorem 2.4], it
follows that u vanishes identically in B1.

2 Preliminaries

We first state the two Carleman estimates that will be used in the proof. To simplify the
notation, we assume the constants C2 in Lemmas 1 and 2 below are the same. A proof of
the first estimate can be found in [10]. (It was also reproved in [13] and [15].)
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Lemma 1 ([10, Theorem 2]) There exists C2 > 0 depending only on n such that for any
τ ∈ 1

2 + N and u ∈ C∞
0 (Rn\{0}),

∑

|α|≤2

∫

τ 2−2|α||x|−2τ+2|α|−n|Dαu|2 ≤ C2

∫

|x|−2τ+4−n|	u|2.

The next estimate was proved in [15, Theorem 1.2] under the slightly stronger assump-
tion (1) on ∇A. For the sake of completeness, we provide a quick proof.

Lemma 2 Assume that A satisfies (4) with A(0) = Id. Let ϕ(x) = 1
2 | log |x||2. Then there

exists R0 ∈ (0, 1) and positive constants γ0 ≥ 2 and C2 depending only on n, δ and Cδ such
that for γ ≥ γ0 and u ∈ C∞

0 (BR0\{0}),
γ 3

∫

|x|−n| log |x||2e2γ ϕu2 + γ

∫

|x|−n+2e2γ ϕ |∇u|2 ≤ C2

∫

|x|−n+4e2γ ϕ |Pu|2.

For the proof of this lemma, we shall need the following elliptic estimate.

Lemma 3 Suppose the assumptions of Lemma 2 hold. Then there exists R0 ∈ (0, 1) and
positive constants γ0 and C depending only on n, δ and Cδ such that for any γ > γ0 and
u ∈ C∞

0 (BR0\{0}),
∫

|x|−n+4| log |x||−2−δe2γ ϕ |∇2u|2 ≤ 2
∫

|x|−n+4| log |x||−2−δe2γ ϕ |Pu|2

+Cγ 2
∫

|x|−n+2| log |x||−δe2γ ϕ |∇u|2. (8)

Here ∇2u = (∂ij u)ni,j=1 is the Hessian of u.

Proof Since |A(x) − Id| ≤ Cδ| log |x||−1−δ , by triangle inequality, it suffices to prove (8)
with 	u in place of Pu on the right-hand side. By splitting u into real and imaginary parts,
we can further assume u is real-valued. Integrating by parts twice gives

∫

|x|−n+4| log |x||−2−δe2γ ϕ∂iiu∂jju =
∫

|x|−n+4| log |x||−2−δe2γ ϕ |∂ij u|2 + E,

where

|E| ≤ Cγ

∫

|x|−n+3| log |x||−1−δe2γ ϕ |∇2u||∇u|

≤ 1

2n2

∫

|x|−n+4| log |x||−2−δe2γ ϕ |∇2u|2 + Cγ 2
∫

|x|−n+2| log |x||−δe2γ ϕ |∇u|2.

Summing over i and j , we obtain the desired inequality.

Proof of Lemma 2 In view of Lemma 3, to prove Lemma 2, it suffices to show

γ 3
∫

|x|−n| log |x||2e2γ ϕu2 + γ

∫

|x|−n+2e2γ ϕ |∇u|2

≤ C2

∫

|x|−n+4e2γ ϕ |Pu|2 + C2γ
−1

∫

|x|−n+4| log |x||−2−δe2γ ϕ |∇2u|2. (9)

Let v = ueγϕ then eγϕPu = Pγ v where

Pγ v = eγϕP (e−γ ϕv).
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It is easy to see that (9) follows from

γ 3
∫

|x|−n| log |x||2v2 + γ

∫

|x|−n+2|∇v|2

≤ C2

∫

|x|−n+4|Pγ v|2 + C2γ
−1

∫

|x|−n+4| log |x||−2−δ|∇2v|2. (10)

Let ω = x/|x| and t = log |x| for x �= 0, i.e., x = etω. Then

∂j = e−t (ωj ∂t + j),

where j are vector fields on S
n−1 satisfying

∑

j

ωjj = 0,
∑

j

jωj = n − 1, ∗
j = (n − 1)ωj − j .

Let (D0, . . . , Dn) = (i∂t , i1, . . . , in). We denote by Dv the vector (D0v, . . . , Dnv) and
by D2v the matrix DjDkv, 0 ≤ j, k ≤ n. Then (10) takes the form

γ 3
∫

|v|2t2dtdω+γ

∫

|Dv|2dtdω ≤ C2

∫ (
|e2tPγ v|2 + γ −1t−2−δ|D2v|2

)
dtdω. (11)

We have

Pu = e−2t
n∑

k,l=1

akl(e
tω)(ωk∂t − ωk + k)(ωl∂t + l)u

= e−2t

⎡

⎣∂2
t u + (n − 2)∂tu + 	ωu +

∑

j+|α|≤2

Cj,α(t, ω)∂
j
t αu

⎤

⎦ ,

and consequently,

e2tPγ v = (∂t − γ t)2v + (n − 2)(∂t − γ t)v + 	ωv +
∑

j+|α|≤2

Cj,α(t, ω)(∂t − γ t)jαv

= ∂2
t v + 	ωv + [(n − 2) − 2γ t]∂tv + [γ 2t2 − (n − 2)γ t − γ ]v

+
∑

j+|α|≤2

Cj,α(t, ω)(∂t − γ t)jαv.

Let

Qv = ∂2
t v + 	ωv − 2γ t∂t v +

[
γ 2t2 − 2γ

]
v +

∑

j+|α|=2

Cj,α(t, ω)(∂t − γ t)jαv.

Since by (4), Cj,α are bounded, it follows that

|e2tPγ v − Qv| ≤ C(γ |tv| + |Dv|).
Thus, by triangle inequality, it suffices to prove (11) with Qv in place of e2tPγ v on the
right-hand side. The last term of Qv can be written as

∑

j+|α|=2

Cj,α(t, ω)(∂t − γ t)jαv =
∑

|α|≤2

(Vα,0 + iVα,1)(t, ω)(γ t)2−|α|Dαv,

where the real-valued functions Vα,k’s are linear combinations of Cj,α’s.
Let

Mv = ∂2
t v + 	ωv + γ 2t2v +

∑

|α|≤2

Vα,0(t, ω)(γ t)2−|α|Dαv
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and
Nv = −2γ t∂t v − 2γ v +

∑

|α|≤2

iVα,1(t, ω)(γ t)2−|α|Dαv.

Then ‖Qv‖2
L2 = ‖Mv + Nv‖2

L2 ≥ 2�〈Mv, Nv〉. The right-hand side consists of the
following terms:

T1 = 2�〈∂2
t v, −2γ t∂t v − 2γ v〉 = 6γ ‖∂tv‖2,

T2 = 2�〈	ωv, −2γ t∂t v − 2γ v〉 = 2γ ‖v‖2,

T3 = 2�〈γ 2t2v,−2γ t∂t v − 2γ v〉 = 2γ 3‖tv‖2,

T4 = 2�
〈

∑

|α|≤2

Vα,0(t, ω)(γ t)2−|α|Dαv, −2γ v

〉

≥ −1

2
γ 3‖tv‖2 − C

∑

|α|≤2

γ 3−2|α|
∥
∥
∥t−δ−|α|Dαv

∥
∥
∥

2
.

Here we have used Cauchy–Schwarz at the last line. The remaining terms have the form

�
〈
Wα,β(t, ω)(γ t)4−|α|−|β|Dαv, Dβv

〉
,

where Wα,β are real-valued function satisfying |Wα,β|+|DWα,β| = O(|t |−1−δ). Integrating
by parts |α| + |β| times gives

�
〈
Wα,β(γ t)4−|α|−|β|Dαv, Dβv

〉
= �

〈
Wα,β(γ t)4−|α|−|β|Dβv, Dαv

〉

+
∑

|α′|+|β′|
<|α|+|β|

�
〈
Zα′,β′(γ t)4−|α|−|β|Dα′

v, Dβ′
v
〉

.

Hence,

�
〈
Wα,β(γ t)4−|α|−|β|Dαv, Dβv

〉
= 1

2

∑

|α′|+|β′|
<|α|+|β|

�
〈
Zα′,β′(γ t)4−|α|−|β|Dα′

v, Dβ′
v
〉

.

Here, Zα′,β′ = O(|t |−1−δ). Applying Cauchy–Schwarz, we see that the right-hand side is
bounded in absolute value by

C
∑

|α|≤2

γ 3−2|α|‖t 2−δ
2 −|α|Dαv‖2.

Summing up all the terms, we obtain

2�〈Mv, Nv〉 ≥ γ 3‖tv‖2 + γ ‖Dv‖2 − Cγ −1‖t−1− δ
2 D2v‖2.

This gives the desired inequality (11).

We will also need the following Caccioppoli type estimate. Since the proof follows
standard arguments, we will skip it. For 0 < a < b let A(a, b) = {x : a ≤ |x| ≤ b}.

Lemma 4 There exist C = C(n, λ) > 0 such that if C3 = C(1 + C0 + C2
1 + C2

δ ) then for
any u satisfying (5) and 0 < r < 1

2 ,
∫

A(5r/4,7r/4)

|x|−n+2|∇u|2dx ≤ C3

∫

A(r,2r)

|x|−n|u|2dx.
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3 Proof of Theorem 1

In this proof, C denotes a constant depending only on n and λ, whose value may change
from line to line. By a change of variable which may change the values of R and C∗ by
a factor of λ, we can assume A(0) = Id. Under this additional assumption, we will prove
Theorem 1 with C∗ = 1

4
√

C2
. By using [7, Theorem 2.4], it suffices to consider the case u

does not vanish identically on any balls in B1.
For 0 < r < R0/8 where R0 is the constant which appears in Lemma 2, let ζ be a

smooth cut-off function satisfying χA(7r/4,5R0/8) ≤ ζ ≤ χA(5r/4,7R0/8) and |∂αζ(x)| ≤
10|x|−|α|, ∀x ∈ R

n and |α| ≤ 2. Here, χE denotes the characteristic function of the set E.
Let v = ζu and E = A(5r/4, 7r/4) ∪ A(5R0/8, 7R0/8). Then

|Pv| = |ζPu + 2ajk(∂j ζ )(∂ku) + ajk∂jkζu|
≤ ζ

(
C1|x|−1|∇u| + C0|x|−2|u|

)
+ C

(
|x|−1|∇u| + |x|−2|u|

)
χE

≤ C1|x|−1|∇v| + C0|x|−2|v| + C
(
|x|−1|∇u| + |x|−2|u|

)
χE .

Applying Lemma 2 to v and using the above inequality, we have

γ 3
∫

|x|−ne2γ ϕ |v|2dx + γ

∫

|x|−n+2e2γ ϕ |∇v|2dx

≤ C2

∫

|x|−n+4e2γ ϕ |Pv|2dx

≤ 4C2

∫

|x|−n+4e2γ ϕ
(
C2

0 |x|−4|v|2 + C2
1 |x|−2|∇v|2

)
dx

+4C2C
2
∫

E

|x|−n+4e2γ ϕ
(
|x|−4|u|2 + |x|−2|∇u|2

)
dx. (12)

Assuming γ ≥ γ1 := max{γ0, 2C
2/3
0 C

1/3
2 , 8C2

1C2}, the first term on the right-hand side of
(12) can be absorbed by its left-hand side. Thus, we deduce that

2
∫

|x|−ne2γ ϕ |v|2dx ≤ 4C2C
2
∫

E

|x|−n+4e2γ ϕ
(
|x|−4|u|2 + |x|−2|∇u|2

)
dx.

Using Lemma 4 to bound the gradient terms on the right-hand side, we get

2
∫

A(2r,
R0
2 )

|x|−ne2γ ϕ |u|2dx ≤ C4e
2γ ϕ(r)

∫

A(r,2r)

|x|−n|u|2dx

+C4e
2γ ϕ

(
R0
2

) ∫

A
(

R0
2 ,R0

) |x|−n|u|2dx, (13)

where C4 = 32C2C
2(C3 + 1).

We now fix

γ = max

⎧
⎪⎪⎨

⎪⎪⎩
γ1,

log

(

C4
∫

A
(

R0
2 ,R0

) |x|−n|u|2/ ∫

A
(

R0
4 ,

R0
3

) |x|−n|u|2
)

2ϕ
(

R0
3

)
− 2ϕ

(
R0
2

)

⎫
⎪⎪⎬

⎪⎪⎭
.

For this choice of γ ,

C4e
2γ ϕ

(
R0
2

) ∫

A
(

R0
2 ,R0

) |x|−n|u|2 ≤
∫

A
(

R0
4 ,

R0
3

) |x|−ne2γ ϕ |u|2,
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hence the last term on the right-hand side of (13) can be absorbed by the left-hand side,
giving

∫

A
(

2r,
R0
2

) |x|−ne2γ ϕ |u|2 ≤ C4e
2γ ϕ(r)

∫

A(r,2r)

|x|−n|u|2. (14)

Note that this would give a lower bound that is worse than polynomial. We will use
Lemma 1 to improve upon (14) to reach the conclusion. Let R1 ∈ (0, R0/8] satisfy

| log R1| ≥ max

{(
2
√

C2Cδ(5γ + log C4)
) 1

δ
, (8C0C2Cδ)

1
1+δ

}

and η be a smooth cut-off function such that χA(7r/4,5R1/8) ≤ η ≤ χA(5r/4,7R1/8) and
|∂αη(x)| ≤ 10|x|−|α|, ∀x ∈ R

n and |α| ≤ 2.
From |∇A(x)| ≤ Cδ|x|−1| log |x||−2−δ and A(0) = Id, we see that

|A(x) − Id| ≤ Cδ| log |x||−1−δ ≤ Cδ| log R1|−1−δ ∀x ∈ BR1 .

Appplying Lemma 1 to w = ηu, we obtain

2∑

j=0

∫

τ 2−2j |x|−2τ+2j−n|∇jw|2 ≤ C2

∫

|x|−2τ+4−n|Δw|2

≤ 2C2

∫

|x|−2τ+4−n|Pw|2

+2C2C
2
δ | log R1|−2−2δ

∫

|x|−2τ+4−n|∇2w|2.

Choosing τ = � 1
2
√

C2Cδ
| log R1|1+δ�, the last term can be absorbed by the left-hand side,

hence we obtain

τ 2
∫

|x|−2τ−n|w|2 +
∫

|x|−2τ+2−n|∇w|2 ≤ 2C2

∫

|x|−2τ+4−n|Pw|2. (15)

Note that by our choice of C∗, R1, and τ , we have τ 2 ≥ 16C2
0C2 and 1 ≥ 16C2

1C2. Hence,
using the same arguments that lead to (13) from Lemma 2, we obtain from (15) that

2
∫

A(2r,R1)

|x|−2τ−n|u|2 ≤ C4r
−2τ

∫

A(r,2r)

|x|−n|u|2 + C4R
−2τ
1

∫

A(R1,2R1)

|x|−n|u|2.

(16)
From our choice of R1 and τ , we have

τ ≥ (5γ + log C4)| log R1|,

which implies that for R2 = 1
2R2

1,

(2R2)
−2τ e−2γ ϕ(R2)+2γ ϕ(2R1) ≥ C2

4R−2τ
1 .
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Hence, for 0 < r < R2/2, using (14) we have
∫

A(2r,R1)

|x|−2τ−n|u|2 ≥ (2R2)
−2τ

∫

A(R2,2R2)

|x|−n|u|2

≥ C−1
4 (2R2)

−2τ e−2γ ϕ(R2)

∫

A
(

2R2,
R0
2

) |x|−ne2γ ϕu2

≥ C−1
4 (2R2)

−2τ e−2γ ϕ(R2)+2γ ϕ(2R1)

∫

A(R1,2R1)

|x|−n|u|2

≥ C4R
−2τ
1

∫

A(R1,2R1)

|x|−n|u|2.

Thus, the last term of (16) can be absorbed by its left-hand side. Hence, for r < R2/2,
∫

A(2r,R1)

|x|−2τ−n|u|2 ≤ C4r
−2τ

∫

A(r,2r)

|x|−n|u|2. (17)

From this, (6) follows with k = 2τ + n and

M1 = C−1
4

∫

A(R1/2,R1)

|x|−2τ−n|u|2.

Moreover, we can deduce from (17) that
∫

A(2r,4r)

|u|2 ≤ 42τ+nC4

∫

A(r,2r)

|u|2.

Adding
∫
B2r

|u|2 to both sides, it follows that
∫

B2r

|u|2 ≥ 1

42τ+nC4 + 1

∫

B4r

|u|2.

Thus, (7) follows with M2 = 42τ+nC4 + 1
To finish the proof, note that for r ∈ (R2/2, R0/8], (6) and (7), possibly with different

M1 and M2, follow from (14).
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