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Abstract
In this paper, we consider the robust linear infinite programming problem (RLIPc) defined
by

(RLIPc) inf〈c, x〉
subject to x ∈ X, 〈x∗, x〉 ≤ r, ∀(x∗, r) ∈ Ut , ∀t ∈ T ,

where X is a locally convex Hausdorff topological vector space, T is an arbitrary index set,
c ∈ X∗, and Ut ⊂ X∗ × R, t ∈ T are uncertainty sets. We propose an approach to duality
for the robust linear problems with convex constraints (RPc) and establish corresponding
robust strong duality and also, stable robust strong duality, i.e., robust strong duality holds
“uniformly” with all c ∈ X∗. With the different choices/ways of setting/arranging data
from (RLIPc), one gets back to the model (RPc) and the (stable) robust strong duality for
(RPc) applies. By such a way, nine versions of dual problems for (RLIPc) are proposed.
Necessary and sufficient conditions for stable robust strong duality of these pairs of primal-
dual problems are given, for which some cover several known results in the literature while
the others, due to the best knowledge of the authors, are new. Moreover, as by-products,
we obtained from the robust strong duality for variants pairs of primal-dual problems,
several robust Farkas-type results for linear infinite systems with uncertainty. Lastly, as
extensions/applications, we extend/apply the results obtained to robust linear problems with
sub-affine constraints, and to linear infinite problems (i.e., (RLIPc) with the absence of
uncertainty). It is worth noticing even for these cases, we are able to derive new results on
(robust/stable robust) duality for the mentioned classes of problems and new robust Farkas-
type results for sub-linear systems, and also for linear infinite systems in the absence of
uncertainty.
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1 Introduction

In this paper, we are concerned with the linear infinite programming with uncertainty
parameters of the form

(LIPc) inf〈c, x〉
subject to x ∈ X, 〈at , x〉 ≤ bt , ∀t ∈ T ,

where X is a locally convex Hausdorff topological vector space, T is an arbitrary (possi-
ble infinite) index set, c ∈ X∗, at ∈ X∗ and bt ∈ R for each t ∈ T , and the couple
(at , bt ) belongs to an uncertainty set Ut ⊂ X∗ × R. For such a linear infinite programming
(LIPc) with input-parameter uncertainty, its robust counterpart is the robust linear infinite
programing problem (RLIPc) defined as follows:

(RLIPc) inf〈c, x〉
subject to x ∈ X, 〈x∗, x〉 ≤ r, ∀(x∗, r) ∈ Ut , ∀t ∈ T .

The robust linear infinite problems of the model (RLIPc) together with their duality
were considered in several works in the literature such as, [6, 12, 16, 20, 23]. There are
variants of duality results for robust convex problems (see [4, 5, 11, 14–16, 18, 22, 24] and
the references therein), and also for robust vector optimization/multi-objective problems
(see, e.g., [7, 12, 13, 21]). In the mentioned papers, results for robust strong duality are
established for classes of problems from linear to convex, non-convex, and vector problems,
under various (constraint) qualification conditions.

In this paper we propose a way, which can be considered as a unification approach to
duality for the robust linear problems (RLIPc). Concretely, we propose some model for a bit
more general problem, namely, the robust linear problem with convex conical constraints
(RPc) and establish corresponding robust strong duality and also, stable robust strong dual-
ity, i.e., robust strong duality holds “uniformly” with all c ∈ X∗. Then, with the different
choices/ways of setting, we transfer (RLIPc) to the models (RPc), and the (stable) robust
strong duality results for (RPc) apply. By such a way, several forms of dual problems for
(RLIPc) are proposed. Necessary and sufficient conditions for stable robust strong duality
of these pairs of primal-dual problems are given, for which some cover results known in
the literature while the others, due to the best knowledge of the authors, are new. We point
out also that, even in the case with the absence of uncertainty, i.e., in the case where Ut is
singleton for each t ∈ T , the results obtained still lead to new results on duality for robust
linear infinite/semi-infinite problems (see Section 6).

The paper is organized as follows: In Section 2, some preliminaries and basic tools
are introduced. Concretely, we introduce or quote some robust Farkas lemmas for coni-
cal constraint systems under uncertainty, some results on duality of robust linear problems
with convex conical constraints. The model of robust linear infinite problem and its seven
models of robust dual problems are given in Section 3. The main results: Robust stable
strong duality results for (RLIPc) are given in Section 4 together with two more models
of robust dual problems of (RLIPc). Here, the stable strong duality for the seven pairs of
primal-dual problems are established and the ones for two new pairs are mentioned. Some
of these results cover or extend some in [11, 20]. In Section 5, from the duality results
in Section 4, we derive variants of stable robust Farkas lemmas for linear infinite systems
with uncertainty which cover the ones in [12, 16] while the others are new. In Section 6,
as an extension/application of the approach, we get robust strong duality results for lin-
ear problems with sub-affine constraints. We consider a particular case with the absence of
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uncertainty (i.e., in the case where Ut is singleton for each t ∈ T ), the results obtained still
lead to some new results on duality for robust linear infinite/semi-infinite problems, and,
in turn, these results also give rise to several new versions of Farkas lemmas for sub-affine
systems under uncertainty and also, some new versions of Farkas-type results for linear
infinite/semi-infinite systems.

2 Preliminaries and Basic Tools

Let X and Z be locally convex Hausdorff topological vector spaces with topological dual
spaces X∗ and Z∗, respectively. The only topology considered on dual spaces is the weak*-
topology. Let S be a non-empty closed and convex cone in Z. The positive dual cone S+ of
S is S+ := {z∗ ∈ Z∗ : 〈z∗, s〉 ≥ 0 ∀s ∈ S}. Let further, �(X) be the set of all proper, convex
and lower semi-continuous (briefly, lsc) functions on X. Denote by L(X,Z) the space of
all continuous linear mappings from X to Z and R := R ∪ {±∞}, R∞ := R ∪ {+∞}.

2.1 Notations and Preliminaries

We now give some notations which will be used in the sequel. For f : X → R, the domain
and the epigraph of f are defined respectively by

dom f := {x ∈ X : f (x) = +∞},
epi f := {(x, r) ∈ X × R : f (x) ≤ r},

while its conjugate function f ∗ : X → R is

f ∗ (x∗) := sup
x∈X

[〈x∗, x〉 − f (x)
] ∀x∗ ∈ X∗.

Let ≤S be the ordering on Z induced by the cone S, i.e.,

z1 �S z2 if and only if z2 − z1 ∈ S.

We enlarge Z by attaching a greatest element +∞Z and a smallest element −∞Z which
do not belong to Z by the convention, −∞Z �S z �S +∞Z for all z ∈ Z. Denote
Z• := Z ∪ {−∞Z, +∞Z}. Let G : X → Z•. We define

domG := {x ∈ X : G(x) = +∞Z},
epiS G := {(x, z) ∈ X × Z : z ∈ G(x) + S}.

If −∞Z /∈ G(X) and domG = ∅, then we say that G is a proper mapping. We say that G is
S-convex (resp., S-epi closed) if epiS G is a convex subset (resp., a closed subset) of X ×Z.
The mapping G is called positively S-upper semicontinuous1 (positively S-usc, briefly) if
λG is upper semicontinuous (in short, usc) for all λ ∈ S+ (see [1, 2]).

Let T be an index (possibly infinite) set and let RT be the product space endowed with
the product topology and its dual space, R(T ), the so-called space of generalized finite
sequences λ = (λt )t∈T such that λt ∈ R, for each t ∈ T , and with only finitely many λt

different from zero. The supporting set of λ ∈ R
(T ) is supp λ := {t ∈ T : λt = 0}. For a

pair (λ, v) ∈ R
(T ) × R

T , the dual product is defined by

〈λ, v〉 :=
{∑

t∈supp λ λtvt if λ = 0T ,

0 otherwise.

1In [3] this notion is named as star S-usc
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The positive cones in R
T and in R

(T ) are denoted by R
T+ and R(T )

+ , respectively.
S+-Upper Semi-Continuity and Uniform S+-Convexity. Let U = ∅ be a subset of some

topological space. We recall the notions of S+-upper semi-continuity, S+-convexity, and
uniform S+-convexity introduced recently in [13].

Definition 1 [13] Let H : U → Z ∪ {+∞Z}. We say that:

– H is S+-convex if for all (ui, λi) ∈ U × S+ (i = 1, 2) there is (ū, λ̄) ∈ U × S+ such
that (λ1H)(u1) + (λ2H)(u2) ≥ (λ̄H)(ū),

– H is S+-upper semi-continuos (briefly, S+-usc) if for any net (λα, uα, rα)α∈D ⊂ S+ ×
U × R and any (λ̄, ū, r̄) ∈ S+ × U × R, satisfying

{
(λαH)(uα) ≥ rα ∀α ∈ D,

λα
∗
⇀ λ̄, uα → ū, rα → r̄

=⇒ (λ̄H)(ū) ≥ r̄ ,

where the symbol “
∗
⇀” means the convergence with respect to weak∗-topology.

– H is S+-concave (S+-lsc, resp.) if −H is S+-convex (S+-usc, respectively).

Definition 2 [13] For the collection (Hj )j∈I with Hj : U → Z ∪ {+∞Z}, we say that
(Hj )j∈I is uniformly S+-convex if for all (ui, λi) ∈ U × S+, i = 1, 2, there is (ū, λ̄) ∈
U × S+ such that (λ1Hj)(u1) + (λ2Hj)(u2) ≥ (λ̄Hj )(ū) for all j ∈ I .

The collection (Hj )j∈I is said to be uniformly S+-concave if (−Hj)j∈I is uniformly
S+-convex.

Remark 1 It is worth observing that when H : U → Z ∪ {+∞Z} is S+-usc then H is
positively S-usc [13]. Moreover, in the case where Z = R and S = R+, (and hence,
S+ = R+), the following assertions hold:

(i) If H : U → R∞ is a convex function then H is R+-convex.
(ii) If Hj : U → R∞ is convex for all j ∈ I then (Hj )j∈I is uniformly R+-convex.
(iii) H : U → R∞ is R+-usc if and only if it is usc.

For details, see [13].

2.2 Conical Constrained Systems with Uncertainty

Let U be an uncertainty parameter set, (Gu)u∈U with Gu : X → Z ∪ {+∞Z} be a proper
S-convex and S-epi closed mapping for each u ∈ U . We are concerned with the robust cone
constraint system:

Gu(x) ∈ −S ∀u ∈ U . (1)

Denote

Fu := {x ∈ X : Gu(x) ∈ −S}, u ∈ U , (2)

and F the solution set of (1), i.e.,

F := {x ∈ X : Gu(x) ∈ −S ∀u ∈ U}. (3)

It is clear that F =⋂u∈U Fu. Assume that F = ∅.
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Corresponding to system (1), let us consider the set (also called: robust moment cone
corresponding to system (1))

M0 :=
⋃

(u,λ)∈U×S+
epi(λGu)

∗. (4)

It is easy to check that M0 (generalizing the one in [22, Proposition 2.2]) is a cone in
X∗ × R. Moreover,M0 (and alsoM1 in (9)) leads to the cone M in [20].

We now introduce a version of robust Farkas-type result and some consequences
involving system (1), which will be useful in the sequel.

Proposition 1 (Farkas-type result involving robust system (1)) For all (x∗, r) ∈ X∗ × R,
the next statements are equivalent:

(i) Gu(x) ∈ −S ∀u ∈ U =⇒ 〈x∗, x〉 ≥ r .
(ii) (x∗, r) ∈ −coM0.

Proof It is easy to see that (i) is equivalent to −r ≥ −〈x∗, x〉 for all x ∈ F , which also
means (x∗, r) ∈ −epi δ∗

F . So, to prove the equivalence (i) ⇐⇒ (ii), it suffices to show that
epi δ∗

F = coM0.
Now, for each u ∈ U , Fu is closed and convex subsets of X, and hence, δFu ∈ �(X) and

so δF = supu∈U δFu ∈ �(X). By [25, Lemma 2.2], one gets epi δ∗
F = co

⋃
u∈U epi δ∗

Fu
.

On the other hand, for each u ∈ U , one has epi δ∗
Fu

=⋃λ∈S+ epi(λGu)∗ (see [17]), and so,
epi δ∗

F = coM0 and we are done.

Remark 2 Proposition 1 generalized [23, Theorem 3.1], [12, Theorem 4.2(iii)], [16, The-
orem 5.5], and in some sense, it extends the robust semi-infinite Farkas’ lemmas in [20],
[19, Corollary 3.1.2].

Let ∅ = B ⊂ X∗ and β ∈ R. The function σB(·)−β, where σB(x) := sup{〈x∗, x〉 : x∗ ∈
B}, is known as a sub-affine function [15]. We next give a version of robust Farkas lemma
for a system involving sub-affine functions.

Corollary 1 Let (At )t∈T be a family of nonempty, w∗-closed convex subsets of X∗ and
(bt )t∈T ⊂ R. Then, for each (x∗, r) ∈ X∗ × R, the next statements are equivalent:

(i) σAt (x) ≤ bt ∀t ∈ T =⇒ 〈x∗, x〉 ≥ r .
(ii) (x∗, r) ∈ −co cone

[⋃
t∈T (At × {bt }) ∪ {(0X∗ , 1)}].

Proof Take Z = R, S = R+ (and hence, Z∗ = R and S+ = R
+), U = T , and Gt :=

σAt − bt for each t ∈ T . Then, for any (t, λ) ∈ T × R+, one has

epi(λGt )
∗ = λepi(Gt )

∗ = λepi(σAt − bt )
∗ = λ(At × {bt }) + R+(0X∗ , 1),

M0 =
⋃

t∈T

co cone
[
(At × {bt }) ∪ {(0X∗ , 1)}] ,

and so, coM0 = co cone
[⋃

t∈T (At × {bt }) ∪ {(0X∗ , 1)}]. The conclusion now follows
from Proposition 1.
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2.3 Duality of Robust Linear Problems with Convex Conical Constraints

Let c ∈ X∗. We consider the pair of primal-dual robust problems:

(RPc) inf 〈c, x〉
subject to x ∈ X, Gu(x) ∈ −S ∀u ∈ U ,

(RDc) sup
(u,λ)∈U×S+

inf
x∈X

(〈c, x〉 + λGu(x)).

Let Fu and F be as in (2) and (3). Let further x̄ ∈ F and (ū, λ̄) ∈ U × S+. As x̄ ∈ F ,
Gu(x̄) ∈ −S for all u ∈ U , and in particular, Gū(x̄) ∈ −S. Moreover, as λ̄ ∈ S+, one has
λ̄Gū(x̄) ≤ 0. Therefore, 〈c, x̄〉 + (λ̄Gū)(x) ≤ 〈c, x̄〉, and so,

inf
x∈X

[〈c, x〉 + (λ̄Gū)(x)
] ≤ 〈c, x̄〉 + (λ̄Gū)(x) ≤ 〈c, x̄〉,

leading to

inf
x∈X

[〈c, x〉 + (λ̄Gū)(x)
] ≤ inf

x̄∈A
〈c, x̄〉.

Consequently,

sup
(ū,λ̄)∈U×S+

inf
x∈X

[〈c, x〉 + (λ̄Gū)(x)
] ≤ inf

x̄∈A
〈c, x̄〉, (5)

which means that the weak duality holds for the pair (RPc)–(RDc).

Definition 3 We say that

– the robust strong duality holds for the pair (RPc)–(RDc) if inf(RPc) = max(RDc),
– the stable robust strong duality holds for the pair (RPc)–(RDc) if inf(RPc) =

max(RDc) for all c ∈ X∗.

The next theorem, Theorem 1, can be derived from [16, Theorem 6.3]. However, for the
sake of completeness we will give here a short and direct proof.

Theorem 1 (Characterization of stable robust strong duality for (RPc)) Assume that r0 :=
inf(RPc) > −∞. Then the following statements are equivalent:

(a) M0 is a closed and convex subset of X∗ × R.
(b) The stable robust strong duality holds for the pair (RPc)–(RDc), i.e.,

inf(RPc) = max(RDc) ∀c ∈ X∗.

594



Duality for Robust Linear Infinite Programming Problems Revisited

Proof Take arbitrarily c ∈ X∗. Observe firstly that

sup(RDc) = sup
(u,λ)∈U×S+

inf
x∈X

{〈c, x〉 + (λGu)(x)}

= sup
(u,λ)∈U×S+

[
− sup

x∈X

{〈−c, x〉 − (λGu)(x)}
]

= sup
(u,λ)∈U×S+

[−(λGu)
∗(−c)]

= sup

⎧
⎨

⎩
r : (c, r) ∈ −

⋃

(u,λ)∈U×S+
gph(λGu)

∗
⎫
⎬

⎭

= sup

⎧
⎨

⎩
r : (c, r) ∈ −

⋃

(u,λ)∈U×S+
gph(λGu)

∗ − R+(0X∗ , 1)

⎫
⎬

⎭

= sup

⎧
⎨

⎩
r : (c, r) ∈ −

⋃

(u,λ)∈U×S+

[
gph(λGu)

∗ + R+(0X∗ , 1)
]
⎫
⎬

⎭

= sup

⎧
⎨

⎩
r : (c, r) ∈ −

⋃

(u,λ)∈U×S+
epi(λGu)

∗
⎫
⎬

⎭
= sup {r : (c, r) ∈ −M0} . (6)

Observe also that r0 < +∞ as (RPc) is feasible (i.e., its feasible set F is non-empty) and
so, we can assume that r0 ∈ R.

• [ (a) =⇒ (b)] Assume that (a) holds. As r0 = inf(RPc), one has

Gu ∈ −S, ∀u ∈ U =⇒ 〈c, x〉 ≥ r0. (7)

As (a) holds, it follows from Proposition 1 that

(c, r0) ∈ −coM0 = −M0 = −
⋃

(u,λ)∈U×S+
epi(λGu)

∗,

and so, by (6) and the weak duality (5), we get

r0 ≤ sup{r : (c, r) ∈ −M0} = sup(RDc) ≤ r0 = inf(RPc),

yielding r0 = sup{r : (c, r) ∈ −M0} = sup(RDc) = inf(RPc). As r0 ∈ {r : (c, r) ∈
−M0} there exist (ū, λ̄) ∈ U × S+ satisfying (by (4))

r0 = −(λ̄Gū)
∗(−c) = max(RDc) = inf(RPc),

which means that (b) holds.
• [(b)=⇒ (a)] Assume that (b) holds. To prove (a), it suffices to show that coM0 ⊂ M0.

Take (c, r) ∈ −coM. It follows from Proposition 1 that (7) holds with r0 = r , which,
taking (b) and (6) into account, entails

r ≤ r0 = inf(RPc) = max(RDc) = max
(u,λ)∈U×S+[−(λGu)

∗(−c)].

This means that there exists (ū, λ̄) ∈ U × S+ such that (−c,−r0) ∈ epi(λ̄Gū)
∗. Now, as

r ≤ r0, one has (−c, −r) ∈ epi(λ̄Gū)
∗, and hence, (c, r) ∈ −M0. We have proved that

coM0 ⊂ M0 and the proof is complete.

We now provide some sufficient conditions for the convexity and closedness of the
robust moment cone M0. Assume from now to end this section that U is a subset of some
topological vector space. The next result is a consequence of [13, Propositions 5.1, 5.2].
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Proposition 2 Assume that U is a subset of some topological vector space and int S = ∅.
Then

(i) If the collection (u �→ Gu(x))x∈X is uniformly S+-concave, thenM0 is convex.
(ii) If U is a compact set, Z is a normed space, u �→ Gu(x) is S+-usc for all x ∈ X, and

the following Slater-type condition holds:

(C0) ∀u ∈ U , ∃xu ∈ X : Gu(xu) ∈ −int S,

thenM0 is closed.

Remark 3 If U is a singleton then it is easy to see that the assumption of Proposition 2(i)
automatically holds, and consequently, M0 is convex. Moreover, if the Slater condition
(C0) holds thenM0 is closed.

Remark 4 It is worth noticing that the Proposition 2 and the next Corollary 2 constitute gen-
eralizations of Proposition 2 and Corollary 1 in [20], respectively. Propositions 6–7 on the
sufficient conditions for the convexity and closedness of moment cones are of the same line
of generalization which show the role played by the Slater constraint qualification condition.

Corollary 2 (Sufficient condition for stable robust strong duality of (RPc)) Assume that the
following conditions hold:

(i) U is a compact set, Z is a normed space,
(ii) (u �→ Gu(x))x∈X is uniformly S+-concave,
(iii) u �→ Gu(x) is S+-usc for all x ∈ X,
(iv) The Slater-condition (C0) holds.

Then, the stable robust strong duality holds for the pair (RPc)–(RDc).

Proof The conclusion follows from Theorem 1 and Proposition 2.

Example 1 Let X, Z, and S be as in this section. Let further U be an uncertainty set,
(Au)u∈U ⊂ L(X,Z), (ωu)u∈U ⊂ Z.

Let c ∈ X∗ and consider the problem (RLPc)
2:

(RLPc) inf〈c, x〉 (8)

subject to Au(x) ∈ ωu − S, ∀u ∈ U , x ∈ X.

It is clear that (RLPc) a special case of (RPc) when setting Gu(x) := Au(x) − ωu, u ∈ U .
Denote λAu an element of X∗ defined by (λAu)(x) = 〈λ, Au(x)〉, for all x ∈ X.

Then the setM0 defined in (4) becomes

M1 := {(λAu, 〈λ, ωu〉), (u, λ) ∈ U × S+} + R+(0X∗ , 1). (9)

The dual problem of (RLPc) (specialized from (RDc)), turns to be

(RLDc) sup−〈λ, ωu〉
subject to (u, λ) ∈ U × S+, c = −λAu.

2The model of Problem (RLPc) was considered in [12] where some characterizations of its solutions were
proposed.
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We get from Theorem 1 characterization of stable robust strong duality for (RLPc) as
follows:

The following statements are equivalent:

(a) M1 is a closed and convex subset of X∗ × R,
(b) The stable robust strong duality holds for the pair (RLPc)–(RLDc), i.e.,

inf(RLPc) = max(RLDc) ∀c ∈ X∗.

3 Robust Linear Infinite Problem and its Robust Duals

We retain the notations in Section 2 and let c ∈ X∗.

3.1 Statement of Robust Linear Infinite Problems and their Robust Duals

Consider the linear infinite programming with uncertain input-parameters of the form:

(ULIPc) inf〈c, x〉
subject to 〈at , x〉 ≤ bt ∀t ∈ T , x ∈ X,

where (at , bt ) belongs to an uncertainty set Ut with ∅ = Ut ⊂ X∗ × R for all t ∈ T .
The robust counterpart of (ULIPc) is

(RLIPc) inf〈c, x〉
subject to 〈x∗, x〉 ≤ r, ∀(x∗, r) ∈ Ut ∀t ∈ T , x ∈ X.

Assume that the problem (RLIPc) is feasible for each c ∈ X∗, i.e.,
F := {x ∈ X : 〈x∗, x〉 ≤ r ∀(x∗, r) ∈ Ut , ∀t ∈ T } = ∅ ∀c ∈ X∗

and set
U :=

∏

t∈T

Ut and V :=
⋃

t∈T

Ut . (10)

By convention, we write v=(v1, v2)∈X∗×R and u=(ut )t∈T ∈U , with ut =(u1t , u
2
t )∈Ut .

For brevity, we also write: u = (u1t , u
2
t )t∈T ∈ U instead of u = ((u1t , u

2
t ))t∈T ∈ U .

The robust problem of the model (RLIPc) was considered in several earlier works such
as [12, 20] (where X = R

n, i.e., a robust semi-infinite linear problem), [24] where X is a
Banach space, T is finite, objective function is a convex function, and for each t ∈ T , Ut

has a special form (problem (SP), p. 2335), and in [11] with a bit more general on constraint
linear inequalities, concretely, for all t ∈ T , (x∗, r) is a function defined on Ut instead of
(x∗, r) ∈ Ut .

We now propose variants of robust dual problems for (RLIPc):

(RLID1
c) sup[−λv2]

s.t. v ∈ V , λ ≥ 0, c = −λv1,

(RLID2
c) sup

⎡

⎣−
∑

u∈supp λ

λuu
2
t

⎤

⎦

s.t. t ∈ T , λ ∈ R
(U )
+ , c = −

∑

u∈supp λ

λuu
1
t ,
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(RLID3
c) sup

⎡

⎣−
∑

t∈supp λ

λtu
2
t

⎤

⎦

s.t. u ∈ U , λ ∈ R
(T )
+ , c = −

∑

t∈supp λ

λtu
1
t ,

(RLID4
c) sup

λ≥0, t∈T

inf
x∈X

sup
v∈Ut

[
〈c + λv1, x〉 − λv2

]
,

(RLID5
c) sup

λ≥0, u∈U
inf
x∈X

sup
t∈T

[
〈c + λu1t , x〉 − λu2t

]
,

(RLID6
c) sup

⎡

⎣−
∑

v∈supp λ

λvv
2

⎤

⎦

s.t. λ ∈ R
(V )
+ , c = −

∑

v∈supp λ

λvv
1,

(RLID7
c) sup

λ≥0
inf
x∈X

sup
v∈V

[
〈c + λv1, x〉 − λv2

]
.

It is worth observing firstly that (RLID3
c) and (RLID6

c) are (ODP) and (DRSP) in [20],
respectively. These two classes are also special case of (OLD) and (RLD) in [22] (where the
constraint functions are affine) and of (RLDO ) and (RLDC) in [11], respectively.

The “robust strong duality (and also, stable robust strong duality) holds for the pair
(RLIPc)–(RLIDi

c)”, i = 1, 2, . . . , 7, is understood as in Definition 3. Note that robust
strong duality holds for (RLIPc)–(RLID3

c) is known as “primal worst equals dual best
problem” with the attainment of dual problem [11, 20].

3.2 Relationship Between the Values of Dual Problems andWeak Duality

In this subsection we will establish some relations between the values of the dual problems
(RLIDi

c) to each other and the weak duality to each of the dual pairs (RLIPc)–(RLIDi
c),

i = 1, 2, . . . , 7.

Proposition 3 One has

sup(RLID1
c) ≤ sup(RLID2

c)

sup(RLID3
c)

≤ sup(RLID6
c). (11)

Proof Observe that, for k = 1, 2, 3, 6, it holds sup(RLIDk
c) = supEk with

E1 := {α : v ∈ V , λ ≥ 0, (c, α) = −λv},

E2 :=
⎧
⎨

⎩
α : t ∈ T , λ ∈ R

(U )
+ , (c, α) = −

∑

u∈supp λ

λuut

⎫
⎬

⎭
,

E3 :=
⎧
⎨

⎩
α : u ∈ U , λ ∈ R

(T )
+ , (c, α) = −

∑

t∈supp λ

λtut

⎫
⎬

⎭
,

E6 :=
⎧
⎨

⎩
α : λ ∈ R

(V )
+ , (c, α) = −

∑

v∈supp λ

λvv

⎫
⎬

⎭
.
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So, to prove (11), it suffices to verify that Ei ⊂ Ej for (i, j) ∈ {(1, 2), (1, 3), (2, 6), (3, 6)}.
• [E1 ⊂ E2] Take ᾱ ∈ E1. Then, there are v̄ ∈ V and λ̄ ≥ 0 such that (c, v̄) = −λ̄v̄.

Now, take t̄ ∈ T and ū ∈ U such that ūt̄ = v̄. Define λ̄ ∈ R
(U )
+ by λ̄ū = λ̄ and λ̄u = 0

whenever u = ū. Then, it is easy to see that

−
∑

u∈supp λ̄

λ̄uut̄ = −λ̄ūūt̄ = −λ̄v̄ = (c, ᾱ),

yielding ᾱ ∈ E2.
• [E1 ⊂ E3] Can be done by using the same argument as in the proof of E1 ⊂ E2, just

replace λ̄ ∈ R
(U )
+ by λ̄ ∈ R

(T )
+ such that λ̄t̄ = λ̄ and λ̄t = 0 for all t = t̄ .

• [E2 ⊂ E6] Take ᾱ ∈ E2. Then, there exists (t̄ , λ̄) ∈ T × R
(U )
+ satisfying

−
∑

u∈supp λ̄

λ̄uut̄ = (c, ᾱ).

Consider the set-valued mapping K : V ⇒ U defined by

K(v) := {u ∈ supp λ̄ : ut̄ = v
}
.

It is easy to see that the decomposition supp λ̄ =⋃v∈V K(v) holds. Moreover, as supp λ̄ is

finite, domK is also finite (where domK := {v ∈ V : K(v) = ∅}). Take λ̂ ∈ R
(V )
+ such

that λ̂v =∑u∈K(v) λ̄u if v ∈ domK and λ̂v = 0 if v /∈ domK. Then, one has

−
∑

v∈supp λ̂

λ̂vv = −
∑

v∈domK

∑

u∈K(v)

λ̄uut̄ = −
∑

u∈supp λ̄

λ̄uut̄ = (c, ᾱ),

yielding ᾱ ∈ E6.
• [E3 ⊂ E6] Similar to the proof of [E2 ⊂ E6].

Proposition 4 One has

sup(RLID1
c) ≤ sup(RLID4

c)

sup(RLID5
c)

≤ sup(RLID7
c). (12)

Proof It is worth noting firstly that, for any non-empty sets Y1 and Y2, any function f : Y1×
Y2 → R, it always holds

sup
y1∈Y1

inf
y2∈Y2

f (y1, y2) ≤ inf
y2∈Y2

sup
y1∈Y1

f (y1, y2). (13)

By a simple calculation, one easily gets

sup(RLID1
c) = sup

λ≥0, v∈V
inf
x∈X

(〈c + λv1, x〉 − λv2)

= sup
λ≥0, t∈T

sup
w∈Ut

inf
x∈X

(〈c + λw1, x〉 − λw2)

= sup
λ≥0, u∈U

sup
t∈T

inf
x∈X

[〈c + λu1t , x〉 − λu2t ]

(as V =⋃t∈T Ut = {ut : u ∈ U , t ∈ T }). So, according to (13),

sup(RLID1
c) ≤ sup

λ≥0, t∈T

inf
x∈X

sup
w∈Ut

[〈c + λw1, x〉 − λw2] = sup(RLID4
c),

sup(RLID1
c) ≤ sup

λ≥0, u∈U
inf
x∈X

sup
t∈T

[〈c + λu1t , x〉 − λu2t ] = sup(RLID5
c).
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The other desired inequalities in (14) follow from (13) in a similar way as above.

The weak duality for the primal-dual pairs of problems (RLIPi
c)–(RLID

i
c), i =

1, 2, . . . , 7, will be given in the next proposition.

Proposition 5 (Weak duality) One has

sup(RLID6
c)

sup(RLID7
c)

≤ inf(RLIPc). (14)

Consequently, sup(RLIDi
c) ≤ inf(RLIPc) for all i = 1, 2, . . . , 7.

Proof • Proof of sup(RLID6
c) ≤ inf(RLIPc): Take λ̄ ∈ R

(V )
+ , and x̄ ∈ X such that

c = −∑v∈supp λ λ̄vv
1 and

〈v1, x̄〉 − v2 ≤ 0, ∀vV . (15)

Then it is easy to see that −∑v∈supp λ̄ v2 ≤ −∑v∈supp λ̄〈v1, x̄〉 = 〈c, x̄〉. So, by the

definitions of (RLID6
c) one has sup(RLID6

c) ≤ 〈c, x̄〉 for any x̄ ∈ X satisfying (15),
which yields sup(RLID6

c) ≤ inf(RLIPc).
• Proof of sup(RLID7

c) ≤ inf(RLIPc): Take λ̄ ≥ 0 and x̄ ∈ X such that (15) holds.
For all v ∈ V , as (15) holds, one has 〈c + λ̄v1, x̄〉 − λ̄v2 ≤ 〈c, x̄〉. This yields that
supv∈V [〈c + λ̄v1, x̄〉 − λ̄v2] ≤ 〈c, x̄〉 which, in turn, amounts for

inf
x∈X

sup
v∈V

[〈c + λ̄v1, x〉 − λ̄v2] ≤ 〈c, x̄〉.

The conclusion follows.

4 Robust Stable Strong Duality for (RLIPc)

In this section, we will establish variants of stable robust strong duality results for (RLIPc).
Some of them cover the ones in [20, 22] and the others are new.

Let us introduce variants of robust moment cones of (RLIPc):

N1 := coneV + R+(0X∗ , 1), N2 :=
⋃

t∈T

co cone[Ut ∪ {(0X∗ , 1)}],

N3 :=
⋃

u∈U

co cone[u(T ) ∪ {(0X∗ , 1)}], N4 :=
⋃

t∈T

cone co[Ut + R+(0X∗ , 1)],

N5 :=
⋃

u∈U

cone co[u(T ) + R+(0X∗ , 1)], N6 := co cone
[
V ∪ {(0X∗ , 1)}] ,

N7 := cone co
[
V + R+(0X∗ , 1)

]
,

where u(T ) := {ut : t ∈ T } if u ∈ U .
Observe that N3 is M	f in [12], and N3 and N6 were introduced in [20] and known as

“robust moment cone” and “characteristic cone”, respectively.

Theorem 2 (1st characterization of stable robust strong duality for (RLIPc)) For i ∈
{1, 2, . . . , 5}, consider the following statements:

(ci) Ni is a closed and convex subset of X∗ × R.
(di) The stable robust strong duality holds for the pair (RLIPc)–(RLIDi

c).
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Then, one has [(ci ) ⇔ (di )] for all i ∈ {1, 2, . . . , 5}.
Proof •[(c1) ⇔ (d1)] Set Z = R, S = R+, U = V , Av = v1 and ωv = v2 for all
v = (v1, v2) ∈ V . Then, (RLIPc) has the form of (RLPc) in (8). In such a setting, the
robust moment coneM1 in (9) reduces to

M1 = {(λAv, 〈λ, ωv〉) : v ∈ V , λ ≥ 0} + R+(0X∗ , 1)

= {λv : v ∈ V , λ ≥ 0} + R+(0X∗ , 1)

= coneV + R+(0X∗ , 1) = N1.

It is easy to see that the robust dual problem (RLDc) of the resulting robust problem (RLPc)

now turns be exactly (RLID1
c), and so, the equivalence [(c1) ⇔ (d1)] follows directly from

Theorem 1 (see also Example 1).
•[(c2) ⇔ (d2)] SetZ = R

U , S = R
U+ (and consequently,Z∗ = R

(U ) and S+ = R
(U )
+ ),

U = T , At = (u1t )u∈U and ωt = (u2t )u∈U for all t ∈ T . Then the problem (RLIPc)

possesses the form (RLPc). In this setting, the setM1 in (9) becomes

M1 =
{
(λAt , 〈λ, ωt 〉) : t ∈ T , λ ∈ R

(U )
+
}

+ R+(0X∗ , 1)

=
⎧
⎨

⎩

⎛

⎝
∑

u∈supp λ

λuu
1
t ,

∑

u∈supp λ

λuu
1
t

⎞

⎠ : t ∈ T , λ ∈ R
(U )
+

⎫
⎬

⎭
+ R+(0X∗ , 1)

=
⎧
⎨

⎩

∑

u∈supp λ

λuut : t ∈ T , λ ∈ R
(U )
+

⎫
⎬

⎭
+ R+(0X∗ , 1)

=
⎡

⎣
⋃

t∈T

⎧
⎨

⎩

∑

u∈supp λ

λuut : λ ∈ R
(U )
+

⎫
⎬

⎭

⎤

⎦+ R+(0X∗ , 1)

=
[
⋃

t∈T

co coneUt

]

+ R+(0X∗ , 1) (note that {ut : u ∈ U } = Ut )

=
⋃

t∈T

[
co coneUt + R+(0X∗ , 1)

] =
⋃

t∈T

co cone
[
Ut ∪ {(0X∗ , 1)}] = N2,

and the dual problem of (RLDc) (in the new format) has the form (RLID2
c). The equivalence

[(c2) ⇔ (d2)] then follows from Theorem 1.
•[(c3) ⇔ (d3)] We transform (RLIPc) to (RLPc) by setting: Z = R

T , S = R
T+ (hence,

Z∗ = R
(T ) and S+ = R

(T )
+ ), U = U , Au = (u1t )t∈T and ωu = (u2t )t∈T for all u ∈ U .

Then, one has

M1 =
{
(λAu, 〈λ, ωu〉) : u ∈ U , λ ∈ R

(T )
+
}

+ R+(0X∗ , 1)

=
⎧
⎨

⎩

∑

t∈supp λ

λtut : u ∈ U , λ ∈ R
(T )
+

⎫
⎬

⎭
+ R+(0X∗ , 1)

=
[
⋃

u∈U

co cone u(T )

]

+ R+(0X∗ , 1) (note that {ut : t ∈ T } = u(T ))

=
⋃

u∈U

co cone [u(T ) ∪ {(0X∗ , 1)}] = N3
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and the dual problem (RLDc) of the resulting problem (RLPc) is exactly (RLID3). The
desired equivalence follows from Theorem 1.

•[(c4) ⇔ (d4)]We now consider another way of transforming (RLIPc) to the form (RPc)

by letting Z = R, S = R+, U = T , and Gt : X → R such that Gt(x) = supv∈Ut
[〈v1, x〉 −

v2] for all t ∈ T . Then, one has (see (4))

M0 =
⋃

t∈T ,λ≥0

epi(λGt )
∗ =

⋃

t∈T , λ≥0

λepi(Gt )
∗

=
⋃

t∈T

cone epi(Gt )
∗ =

⋃

t∈T

cone epi

[

sup
v∈Ut

(〈v1, ·〉 − v2)

]∗

=
⋃

t∈T

cone co
⋃

v∈Ut

epi
(
〈v1, ·〉 − v2

)∗

(the last equalities follows from [25, Lemma 2.2]). On the other hand, for each t ∈ T and
v ∈ Ut , by simple calculation one gets epi(〈v1, ·〉 − v2)∗ = v + R+(0X∗ , 1). So,

M0 =
⋃

t∈T

cone co
⋃

v∈Ut

[v + R+(0X∗ , 1)] =
⋃

t∈T

cone co[Ut + R+(0X∗ , 1)] = N4.

It is easy to see that the dual problem (RDc) of the resulting problem (RPc) is nothing else
but (RLID4

c), and the equivalence [(c4) ⇔ (d4)] is a consequence of Theorem 1.
•[(c5) ⇔ (d5)] Again, we transform (RLIPc) to (RPc) but by another setting: Z = R,

S = R+, U = U , and Gu : X → R such that Gu(x) = supt∈T [〈u1t , x〉 − u2t )] for all
u ∈ U . Then, one has (see (4))

M0 =
⋃

u∈U , λ≥0

epi(λGu)
∗ =

⋃

u∈U

cone epi(Gu)
∗

=
⋃

u∈U

cone epi

[
sup
t∈T

(〈u1t , ·〉 − u2t )

]∗
=
⋃

u∈U

cone co
⋃

t∈T

epi(〈u1t , ·〉 − u2t )
∗

=
⋃

u∈U

cone co
⋃

t∈T

[ut + R+(0X∗ , 1)] =
⋃

u∈U

cone co[u(T ) + R+(0X∗ , 1)] = N5,

and the robust dual problem (RDc) of the new problem (RPc) is exactly (RLID5
c). The

desired equivalence again follows from Theorem 1.

Remark 5 Theorem 2 with i = 3 is [20, Theorem 2] while i = 6 (i = 3, resp.) is similar to
[11, Proposition 5.2(ii)] with i = C (i = O, resp.).

Theorem 3 (2nd characterization for stable robust strong duality for (RLIPc)) For i = 6, 7,
consider the next statements:

(ci ) Ni is a closed subset of X∗ × R.
(di ) The stable robust strong duality holds for the pair (RLIPc)–(RLIDi

c).

Then [(ci ) ⇔ (di )] for i = 6, 7.
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Proof •[(c6) ⇔ (d6)] The robust problem (RLIPc) turns to be (RLPc) if we set Z = R
V ,

S = R
V+ , U to be a singleton, A = (v1)v∈V and ω = (v2)v∈V . In such a setting, one gets

M1 =
{
(λA, 〈λ, ω〉) : λ ∈ R

(V )
+
}

+ R+(0X∗ , 1)

=
⎧
⎨

⎩

∑

v∈supp λ

λvv : λ ∈ R
(V )
+

⎫
⎬

⎭
+ R+(0X∗ , 1)

= co coneV + R+(0X∗ , 1) = co cone
[
V ∪ {(0X∗ , 1)}] = N6,

while the robust dual problem of the new problem (RLPc) (i.e., (RLDc)) is non other than
(RLID6

c). The equivalence [(c6) ⇔ (d6)] now follows from Theorem 1 and the fact that
the robust moment cone is always convex whenever U is a singleton (see Proposition 2 and
Remark 3).

•[(c7) ⇔ (d7)] Set Z = R, S = R, U to be a singleton, and G = supv∈V (〈v1, ·〉 − v2).
The problem (RLIPc) now becomes (RPc). On the other hand, one has (see (4))

M0 =
⋃

λ≥0

epi(λG)∗ = cone epi(λG)∗

= cone epi

[
sup
v∈V

(〈v1, ·〉 − v2)

]∗
= cone co

⋃

v∈V

epi(〈v1, ·〉 − v2)∗

= cone co
⋃

v∈V

[v + R+(0X∗ , 1)] = cone co
[
V + R+(0X∗ , 1)

] = N7,

while the dual problem of (RDc) of the new problem (RPc) is (RLID7
c). The equivalence

[(c7) ⇔ (d7)] is a consequence of Theorem 1, Proposition 2 (see also Remark 3).

Remark 6 There may have sone more ways of transforming (RLIPc) to the form of (RPc)
which give rise to some more robust dual problems for (RLIPc), for instance,

(α) Set Z = R
T , S = R

T+, U to be a singleton, and G = (
supv∈Ut

[〈v1, ·〉 − v2])
t∈T

.
Then (RLIPc) reduces to the form of (RPc) with no uncertainty as now U is a singleton. In
this setting, the moment coneM0 becomes

M0 =
⋃

λ∈R(T )
+

epi

[
∑

t∈T

λt sup
v∈Ut

(〈v1, ·〉 − v2)

]∗
=: N8,

and the robust dual problems now collapses to

(RLID8
c) sup

λ∈R(T )
+

inf
x∈X

⎡

⎣〈c, x〉 +
∑

t∈supp λ

λt sup
v∈Ut

(
〈v1, x〉 − v2

)
⎤

⎦ .

(β) Set Z = R
U , S = R

U+ , U to be a singleton, and G = (supt∈T [〈u1t , ·〉 − u2t )])u∈U .
Then, the problem (RLIPc) turns to be of the model (RPc), and one has

M0 = co cone
⋃

u∈U

co
[
u(T ) + R+(0X∗ , 1)

] =: N9.

The corresponding dual problem is

(RLID9
c) sup

λ∈R(U )
+

inf
x∈X

⎡

⎣〈c, x〉 +
∑

u∈supp λ

λu sup
t∈T

(
〈u1t , x〉 − u2t

)
⎤

⎦ .
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For the mentioned cases, we get also the relation between the values of these two dual
problems:

sup(RLID6
c) ≤ sup(RLID8

c) and sup(RLID6
c) ≤ sup(RLID9

c),

and weak duality hold as well:

sup(RLID8
c)

sup(RLID9
c)

≤ inf(RLIPc).

Moreover, under some suitable conditions, robust strong duality holds, similar to the ones
in [11, Proposition 5.2(ii)].

Remark 7 From Propositions 3–5 and Remark 6, we get an overview of the relationship
between the values of robust dual problems and weak duality of each pair of primal-dual
problems which can be described as in the next figure:

where by a −→ b we mean a ≤ b.

As we have seen from the previous theorems and from the previous section, the closed-
ness and convexity of robust moment cones play crucial roles in closing the dual gaps for
the primal-dual pairs of robust problems. In the left of this section, we will give some suf-
ficient conditions for the mentioned properties of these cones whose proofs are rather long
and will be put in the last section: Appendices.

Proposition 6 (Convexity of moment cones) The next assertions hold:

(i) If V is convex thenN1 is convex.
(ii) If {x∗ ∈ X∗ : (x∗, r) ∈ Ut } is convex for all t ∈ T thenN3 is convex.
(iii) Assume that T is a convex subset of some vector space, and that, for all t ∈ T ,

Ut = U1
t × U2

t with U1
t ⊂ X∗ and U2

t ⊂ R. Assume further that, for each t ∈ T and
x ∈ X, the function t �→ supx∗∈U1

t
〈x∗, x〉 is affine and the function t �→ infU2

t is
convex. Then,N4 is convex.

(iv) The setsN6,N7 are convex3.

Proof See Appendix A.

Proposition 7 (Closedness of moment cones) The following assertions are true.

(i) If V is compact and

∀v ∈ V , ∃x̄ ∈ X : 〈v1, x̄〉 < v2, (16)

3N8,N9 are also convex.
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thenN1 is closed.
(ii) If T is compact, t �→ supv∈Ut

[〈v1, x〉 − v2] is usc for all x ∈ X, and

∀t ∈ T , ∃xt ∈ X : sup
v∈Ut

[〈v1, xt 〉 − v2] < 0, (17)

thenN4 is closed.
(iii) If Ut is compact for all t ∈ T , u �→ supt∈T [〈u1t , x〉 − u2t ] is usc for all x ∈ X, and

∀u ∈ U , ∃xu ∈ X : sup
t∈T

[〈u1t , xu〉 − u2t ] < 0,

thenN5 is closed.
(iv) If the following condition holds

∃x ∈ X : sup
v∈V

[〈v1, x〉 − v2] < 0,

thenN7 is closed.

Proof See Appendix B.

5 Farkas-Type Results for Infinite Linear Systems with Uncertainty

We retain the notations used in Sections 2, 3, and 4.
Let c ∈ X∗, T be an index set (possibly infinite), and let Ut be uncertainty set for each

t ∈ T . Consider the robust linear system of the form

〈x∗, x〉 ≤ r, ∀(x∗, r) ∈ Ut , ∀t ∈ T ,

which is the constraint system of the problem (RLIPc) considered in Section 4.
Based on the stable strong robust duality results established in Section 4, we can derive

the next robust Farkas-type results for the linear systems with uncertainty parameters (for a
short survey on Farkas-type results, see, e.g., [10]).

Corollary 3 (Robust Farkas lemma for linear system I) Let V be the set defined by (10).
The following statements are equivalent:

(i) For all (c, s) ∈∗ ×R such that inf(RLIPc) > −∞, the next assertions are equivalent:

(α) 〈x∗, x〉 ≤ r ∀(x∗, r) ∈ V =⇒ 〈c, x〉 ≥ s.,

(β) ∃(x̄∗, r̄) ∈ V , ∃λ̄ ≥ 0 :
{

λ̄x̄∗ = −c,

λ̄r̄ ≤ −s.

(ii) coneV + R+(0X∗ , 1) is convex and closed.

Proof Take (c, s) ∈ X∗ × R. Set 
 := {(x∗, r, λ) : (x∗, r) ∈ V , λ ∈ R+, λx∗ = −c}
and �(x∗, r, λ) = −λr for all (x∗, r, λ) ∈ 
. So, sup(RLID1

c) = sup(x∗,r,λ)∈
 �(x∗, r, λ).
From the statements of the problems (RLIPc) and (RLID1

c), one has

(α) ⇐⇒ inf(RLIPc) ≥ s, (18)

(β) ⇐⇒
(
∃(x̄∗, r̄, λ̄) ∈ 
 : sup(RLID1

c) ≥ �(x̄∗, r̄, λ̄) = −λ̄r̄ ≥ s
)
. (19)
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• [(ii) =⇒ (i)] Assume that (ii) holds. Then it follows from Theorem 2 (with i = 1),

(ii) ⇐⇒
(
the stable robust strong duality holds for the pair (RLIPc)−(RLID1

c)
)

⇐⇒
(
∀c ∈ X∗, inf(RLIPc) = max(RLID1

c)
)
. (20)

So, for c ∈ X∗, if (α) holds then inf(RLIPc) ≥ s and hence, we get from (20),

inf(RLIPc) = max(RLIDc) = �(x̄∗, r̄, λ̄) = −λ̄r̄ ≥ s,

for some (x̄∗, r̄, λ̄) ∈ 
, which means that (β) holds, and so [(α) =⇒ (β)].
Conversely, if (β) holds, then from (19) and the weak duality of the primal-dual pair

(RLIPc)–(RLID1
c), one gets the existence of (x̄∗, r̄, λ̄) ∈ 
 such that

inf(RLIPc) ≥ sup(RLID1
c) ≥ �(x̄∗, r̄, λ̄) = −λ̄r̄ ≥ s,

yielding (α). So, [(β) =⇒ (α)] and consequently, we have proved that [(ii) =⇒ (i)].
•[(i) =⇒ (ii)] Assume that (i) holds. Take s = inf(RLIPc) ∈ R and c ∈ X∗. Then (α)

holds and as (i) holds, (β) holds as well. This, together with the weak duality, yields, for
some (x̄∗, r̄, λ̄) ∈ 
 (see (19)),

inf(RLIPc) ≥ sup(RLID1
c) = �(x̄∗, r̄, λ̄) = −λ̄r̄ ≥ s = inf(RLIPc),

meaning that the robust dual problem (RLID1
c) attains and inf(RLIPc) = max(RLID1

c).
Since c ∈ X∗ is arbitrary, the stable robust strong duality holds for the pair (RLIPc)–
(RLID1

c). The fulfillment of (ii) now follows from Theorem 2 (with i = 1).

Remark 8 Assume that V is a convex and compact subset of X∗ × R and that the Slater-
type condition (16) holds. According to Propositions 6 and 7, one has N1 := coneV +
R+(0X∗ , 1) is closed and convex. So, it follows from Corollary 3, (α) and (β) in Corollary 3
are equivalent. This observation may apply to some of the next corollaries.

The next versions of robust Farkas lemmas follows from the same way as Corollary 3,
using Theorem 2 with i = 2, 3, and i = 4.

Corollary 4 (Robust Farkas lemma for linear system II) The following statements are
equivalent:

(i) For all (c, s) ∈ X∗×R such that inf(RLIPc) > −∞, the next assertions are equivalent:

(α) 〈x∗, x〉 ≤ r ∀(x∗, r) ∈ V =⇒ 〈c, x〉 ≥ s,

(γ ) ∃t̄ ∈ T , ∃λ̄ ∈ R
(U )
+ :

{∑
u∈supp λ λ̄uu

1
t̄

= −c,∑
u∈supp λ λ̄uu

2
t̄

≤ −s.

(ii)
⋃

t∈T co cone[Ut ∪ {(0X∗ , 1)}] is convex and closed.

Corollary 5 (Robust Farkas lemma for linear system III), [16, Theorem 5.6], [20, Corol-
lary 3], [12, Theorem 6.1(i)]) The following statements are equivalent:

(i) For all (c, s) ∈ X∗×R, such that inf(RLIPc) > −∞, the next assertions are equivalent:

(α) 〈x∗, x〉 ≤ r ∀(x∗, r) ∈ V =⇒ 〈c, x〉 ≥ s,

(δ) ∃ū ∈ U , ∃λ̄ ∈ R
(T )
+ :

{∑
t∈supp λ λ̄t ū

1
t = −c,∑

t∈supp λ λ̄t ū
2
t ≤ −s.
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(ii)
⋃

u∈U co cone[u(T ) ∪ {(0X∗ , 1)}] is convex and closed, where u(T ) := {ut : t ∈ T }
for all u ∈ U .

Corollary 6 (Robust Farkas lemma for linear system IV) The following statements are
equivalent:

(i) For all (c, s) ∈ X∗ × R, such that inf(RLIPc) > −∞, x ∈ X, the next assertions are
equivalent:

(α) 〈x∗, x〉 ≤ r, ∀(x∗, r) ∈ V =⇒ 〈c, x〉 ≥ s,
(ε) ∃t̄ ∈ T , ∃λ̄ ≥ 0 such that ∀x ∈ X, ∀ε > 0, ∃(x∗

0 , r0) ∈ Ut̄ satisfying

〈c + λ̄x∗
0 , x〉 − λ̄r0 ≥ s − ε,

(ii)
⋃

t∈T cone co[Ut + R+(0X∗ , 1)] is convex and closed.

Remark 9 It worth noting that robust Farkas-type results can be established in the same
way as in the previous corollaries, corresponding to the stable robust strong duality for pairs
(RLIPc)–(RLID

j
c ) with j = 5, . . . , 9. The results corresponding to i = 6 can be considered

as a version of [20, Corollary 4] with V replacing gphU .

6 Linear Infinite Problems with Sub-affine Constraints

The results in previous sections for robust linear infinite problems (RLIPc) (c ∈ X∗)
can be extended to a rather broader class of robust problems by a similar approaching.
Here we consider a concrete class of problems: The robust linear problems with sub-affine
constraints.

Denote by P0(X
∗) the set of all the nonempty, w∗-closed convex subsets of X∗. Let

T be a possibly infinite index set, (Ut )t∈T ⊂ P0(X
∗) × R be a collection of nonempty

uncertainty sets. We introduce the sets

V :=
⋃

t∈T

Ut and U =
∏

t∈T

Ut .

By convention, for each V ∈ P0(X
∗) × R, we write V = (V 1, V 2) with V 1 ⊂ X∗ and

V 2 ∈ R. In some case, we also considered V = (V 1, V 2) ∈ P0(X
∗) × R as a subset of

the set X∗ × R by identifying V with V 1 × {V2}. In the same way, for U ∈ U, we write
U = (Ut )t∈T with Ut = (U1

t , U2
t ) ∈ Ut for each t ∈ T .

For each c ∈ X∗, consider the robust linear problem with sub-affine constraints:

(RSAPc) inf〈c, x〉
subject to σAt (x) ≤ bt , ∀(At , bt ) ∈ Ut , ∀t ∈ T , x ∈ X.

Here σAt denotes the support function of the setAt ⊂ X∗, i.e., σAt (x) := supx∗∈At
〈x∗, x〉.

We now introduce two robust dual problems for (RSAPc):

(RSAD1
c) inf−λv2

subject to V ∈ V, v = (v1, v2) ∈ V, λ ≥ 0, c = −λv1.
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(RSAD2
c) inf−

∑

U∈supp λ

λUv2U

subject to (vU )U∈U ∈ (Ut )U∈U, c = −
∑

U∈supp λ

λUv1U , t ∈ T , λ ∈ R
(U)
+ .

We can state stable robust strong duality for the pairs (RSAPc)–(RSAD1
c) and (RSAPc)–

(RSAD2
c) which are consequences of Theorem 1.

Corollary 7 (Stable robust strong duality for (RSAPc)) Consider the following statements:

(g1) R1 := coneU + R+(0X∗ , 1) is a closed and convex subset of X∗ × R.
(g2) R2 :=⋃t∈T co cone [Ut ∪ {(0X∗ , 1)}] is a closed and convex subset of X∗ × R.
(h1) The stable robust strong duality holds for the pair (RSAPc)–(RSAD1

c).
(h2) The stable robust strong duality holds for the pair (RSAPc)–(RSAD2

c).

Then, it holds [(g1) ⇔ (h1)]. If for any V = (V 1, V 2) ∈ V, V 1 is a w∗-compact subset of
X∗ then [(g2) ⇔ (h2)].

Proof We transform (RSAPc) to the model (RPc) in two different ways, for which the dual
problems in each of such a way is (RSAD1

c) or (RSAD2
c), and then Theorem 1 applies.

• Proof of [(g1) ⇔ (h1)]: We transform (RSAPc) to (RPc) by the setting Z = R,
S = R

+, U = V and GV (·) = σV 1(·) − V 2 for all V = (V 1, V 2) ∈ V. ThenM0 becomes

M0 =
⋃

(V ,λ)∈V×R+
epi(λGV )∗ = coneU + R+(0X∗ , 1) = R1

and the dual problem (RDc) is nothing else but (RSAD1
c). The equivalence [(g1) ⇔ (h1)]

follows from Theorem 1.
• Proof of [(g2) ⇔ (h2)]: Take Z = R

U, S = R
U+, U = T , Gt = (σU1

t
(·) − U2

t )U∈U
for all t ∈ T . Then the problem (RSAPc) turns to the model (RPc) and in this setting, the
moment coneM0 becomes:

M0 =
⋃

(t,λ)∈T ×R
(U)
+

epi(λGt )
∗ =

⋃

(t,λ)∈T ×R
(U)
+

epi

⎛

⎝
∑

U∈supp λ

λUσU1
t
(·) − U2

t

⎞

⎠

∗
(21)

while the dual problem (RDc) now becomes exactly (RSAD2
c).

Assume that V 1 is a w∗-compact subset of X∗ for all V = (V 1, V 2) ∈ V. Then, σV 1 is
continuous on X for all V = (V 1, V 2) ∈ V. This, together with (21), yields

M0 =
⋃

(t,λ)∈T ×R
(U)
+

∑

U∈supp λ

λU epi
(
σU1

t
(·) − U2

t

)∗ =
⋃

t∈T

co cone
[
Ut ∪ {(0X∗ , 1)}] = R2,

and the equivalence [(g2) ⇔ (h2)] follows from Theorem 1.

Using the same argument as the one in Section 5 to get some versions of (stable) robust
Farkas lemma for systems involved sub-affine functions with uncertain parameters. For
instance, from the equivalence [(g1) ⇔ (h1)] in Corollary 7 we get
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Corollary 8 The following statements are equivalent:

(i) For all (c, s) ∈ X∗ × R, next assertions are equivalent:

(α′′) σAt (x) ≤ bt , ∀(At , bt ) ∈ Ut , ∀t ∈ T =⇒ 〈c, x〉 ≥ s.

(β′′) ∃V̄ ∈ V, ∃(x̄∗, r̄) ∈ V̄ , ∃λ̄ ≥ 0 :
{

λ̄x̄∗ = −c,

λ̄r̄ ≤ −s.

(ii) coneU + R+(0X∗ , 1) is a closed and convex subset of X∗ × R.

To conclude this section, we consider an application of the results for (RLIPc)) (the same,
for (RSAPc)) to the linear infinite programming problems. It turns out that even in this
simple case, we are able to derive new results on duality for this class of problems and new
Farkas-type results for systems associated to the problems in the absence of uncertainty.

Example 2 (Linear infinite programming problems) Consider a linear infinite programming
problem of the model

(LIPc) inf〈c, x〉
s.t. x ∈ X, 〈at , x〉 ≤ bt , ∀t ∈ T ,

where T is an arbitrary (possible infinite) index set, c ∈ X∗, at ∈ X∗, and bt ∈ R for all
t ∈ T . It is clear that the problem is a special case of (RLIPc) and also (RSAPc). In the case
where X = R

n this problem is often known as linear semi-infinite problem (see [19] and
also, [8, 9] for applications of this model in finance).

We consider (LIPc) in a new look: a special case of (RLIPc) where all uncertainty sets
Ut , t ∈ T , are singletons for all t ∈ T , say, Ut = {(at , bt )}, and then U = ∏t∈T Ut is also
a singleton, say U = {((at , bt ))t∈T }, while V = {(at , bt ) : t ∈ T }. Then

• All the three “robust” dual problems (RLID1
c), (RLID2

c), (RLID4
c) of the problem

(LIPc) (considered as (RLIPc)) collapse to

(LID1
c) sup[−λbt ]

subject to t ∈ T , λ ≥ 0, c = −λat ,

and in this situation, the three moments conesN1,N2, andN4 reduce to

E1 :=
⋃

t∈T

co cone{(at , bt ), (0X∗ , 1)}.

• The dual problems (RLID3
c), (RLID6

c), (RLID8
c) of the new-formulated problem

(RLIPc) collapse to

(LID2
c) sup

⎡

⎣−
∑

t∈supp λ

λtbt

⎤

⎦

subject to λ ∈ R
(T )
+ , c = −

∑

t∈supp λ

λtat ,

and moment conesN3,N6, andN8 reduce to:

E2 := co cone{(at , bt ), t ∈ T ; (0X∗ , 1)}.
The dual problem (LID2

c) introduced in [19] when X = R
n, an in such a setting, when

the uncertainty sets are all singletons, the dual problems (ODP) and (RDSP) in [20] also
collapse to (LID2

c).

609



N. Dinh et al.

• The dual problems (RLID5
c), (RLID7

c), (RLID9
c) of the resulting problem (RLIPc)

reduce to:

(LID3
c) sup

λ≥0
inf
x∈X

sup
t∈T

[〈c, x〉 + 〈λat , x〉 − λbt ] ,

while “robust” moment conesN5,N7, andN9 reduce to:

E3 := cone co{(at , bt ), t ∈ T ; (0X∗ , 1)}.
Moreover, for all c ∈ X∗, one has (see Remark 7),

sup(LID1
c) ≤ sup(LID2

c)

sup(LID3
c)

≤ inf(LIPc).

Now, from Theorems 2 and 3, we get principles for stable robust strong duality for (LIPc)

which state as follows:

(i) The next two statements are equivalent:

(e1) E1 is a closed and convex subset of X∗ × R.
(f1) The stable robust strong duality holds for the pair (LIPc)–(LID1

c).

(ii) For each i = 2, 3, the following statements are equivalent:

(ei) Ei is a closed subset of X∗ × R.
(fi) The stable robust strong duality holds for the pair (LIPc)–(LIDi

c).

Similar to what is done in the Section 5, the duality results of the primal-dual pairs of
problems (LIPc)–(LID

j
c ), j = 1, 2, 3 will give rise to some new variants of generalized

Farkas lemmas for linear infinite systems. Realize this process for j = 2 we will get a
version of Farkas lemma which covers [19, Corollary 3.1.2] (where X = R

n) while with
j = 1 and j = 3, the resulting versions of Farkas lemmas for linear infinite systems
obtained, due to the best knowledge of the authors, are new, which state as follows:

Farkas lemma for linear infinite systems: Consider the statements:

(i) For all (c, s) ∈ X∗ × R, next assertions are equivalent:

(α′) 〈at , x〉 ≤ bt , ∀t ∈ T =⇒ 〈c, x〉 ≥ s.
(β′) ∃t̄ ∈ T , ∃λ̄ ≥ 0 : λ̄at̄ = −c and λ̄bt̄ ≤ −s.

(ii) For all (c, s) ∈ X∗ × R, next assertions are equivalent:

(α′) 〈at , x〉 ≤ bt , ∀t ∈ T =⇒ 〈c, x〉 ≥ S.
(δ′) ∃λ̄ ≥ 0 : [∀x ∈ X, ∀ε > 0, ∃t0 ∈ T : 〈c + λ̄at0 , x〉 − λ̄bt0 + ε ≥ s].

(iii)
⋃

t∈T co cone{(at , bt ), (0X∗ , 1)} is a closed and convex subset of X∗ × R.
(iv) cone co{(at , bt ), t ∈ T ; (0X∗ , 1)} is a closed subset of X∗ × R.

Then [(i) ⇔ (iii)] and [(ii) ⇔ (iv)].
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Appendix A: Proof of Proposition 6

(i) From the proof of Theorem 2 for the case i = 1, we can see that the problem (RLIPc)

can be transformed to (RPc) with Z = R, S = R+, U = V , Gv(·) = v1(·)−v2 for all
v ∈ V , and in such a case,M0 = N1. Observe that the functions v �→ 〈v1, x〉 − v2,
x ∈ X, are concave (actually, they are affine). Together with the fact that V is convex
and Z = R, the collection (v �→ Gv(x))x∈X is uniformly R+-concave. So, in the
light of Proposition 2(i),M0 is convex, and so isN1.

(ii) By the same argument as above, to prove N3 is convex, it is sufficient to show that
the collection (u �→ Gu(x))x∈X is uniformly R

(T )
+ -concave with U = U , Z = R

T

and Gu(·) = (〈u1t , ·〉 − u2t )t∈T for all u ∈ U (the setting in the proof of Theorem 2

for the case i = 3). Now, take arbitrarily λ, μ ∈ R
(T )
+ and u,w ∈ U . Let λ̄ ∈ R

(T )
+

and ū ∈ U such that λ̄t = λt + μt , ū2t = min{u2t , w2
t } and

ū1t =
{

1
λ̄t

(λtu
1
t + μtw

1
t ) if λt + μt = 0,

u1t otherwise

(ū ∈ U as {x∗ ∈ X∗ : (x∗, r) ∈ Ut } is convex for all t ∈ T ). Then, it is easy to check
that

λt (〈u1t , x〉 − u2t ) + μt(〈w1
t , x〉 − w2

t ) ≤ λ̄t (〈ū1t , x〉 − ū2t ) ∀t ∈ T , ∀x ∈ X,

and consequently,
∑

t∈T

λ1t (〈u1t , x〉 − u2t ) +
∑

t∈T

λ2t (〈w1
t , x〉 − w2

t ) ≤
∑

t∈T

λ̄t (〈ū1t , x〉 − ū1t ) ∀x ∈ X,

which means λGu(x) + μGw(x) ≤ λ̄Gū(x) for all x ∈ X, yielding the uniform
R

(T )
+ -concavity of the collection (u �→ Gu(x))x∈X. The conclusion now follows from

Proposition 2(i).
(iii) Recall that N4 is a specific form of M0 with Z = R, S = R+, U = T , and Gt(·) =

supv∈Ut
[〈v1, ·〉 − v2] for all t ∈ T (the setting in the proof of Theorem 2 for the case

i = 4). Now, for each t ∈ T and x ∈ X, as Ut = U1
t × U2

t (with U1
t ⊂ X∗ and

U2
t ⊂ R), it holds

Gt(x) = sup
x∗∈U1

t

〈x∗, x〉 − inf
r∈U2

t

r = sup
x∗∈U1

t

〈x∗, x〉 − infU2
t .

So, for all x ∈ X, because T is convex, t �→ supx∗∈U1
t
〈x∗, x〉 is affine, and t �→ infU2

t

is convex, the function t �→ Gt(x) is concave. This accounts for the uniform R
(T )
+ -

concavity of the collection (t �→ Gt(x))x∈X. The conclusion again follows from
Proposition 2(i).

(iv) Consider the ways of transforming (RLIPc) to (RPc) in the proofs of Theorem 3 for
the case i = 6, 7. Note that, in these ways, the uncertain set U is always a single-
ton. So, the corresponding qualifying sets (i.e, N6 and N7) are always convex (see
Remark 3).

Appendix B: Proof of Proposition 7

Recall thatNi , i = 1, 2, . . . , 7, are specific forms ofM0 following the corresponding ways
transforming of (RLIPc) to (RPc) considered in the proofs of Theorems 2 and 3. So, to
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prove that Ni is closed, we make use of Proposition 2(ii), which provides some sufficient
condition for the closedness of the robust moment coneM0.

(i) For i = 1, let us consider the way of transforming (RLIPc) to (RPc) by settingZ = R,
S = R+, U = V , and Gv(·) = 〈v1, ·〉 − v2 for all v ∈ V . For all x ∈ X, it is easy
to see that the function v �→ Gv(x) = 〈v1, x〉 − v2 is continuous, and hence, it is
R

+-usc (see Remark 1(iii)). Moreover, gphU is compact, R is normed space, and
(16) ensures the fulfilling of condition (C0) in Proposition 2. The closedness of N1
follows from Proposition 2(ii).

(ii) For i = 4, consider the way of transforming with the settingZ = R, S = R+, U = T ,
and Gt(·) = supv∈Ut

[〈v1, ·〉 − v2] for all t ∈ T . One has that U = T is a compact
set, that t �→ Gt(x) = supv∈Ut

[〈v1, x〉 − v2] is usc and hence, it is R+-usc, and that
Slater-type condition (C0) holds (as (17) holds). The conclusion now follows from
Proposition 2(ii).

(iii) Consider the way of transforming which corresponds to i = 5, i.e., we consider
Z = R, S = R+, U = U , and Gu(·) = supt∈T [〈u1t , ·〉 − u2t ] for all u ∈ U . As
U = ∏

t∈T Ut , the assumption that Ut is compact for all t ∈ T which entails the
compactness of U . The other assumptions ensure the fulfillment of conditions in
Proposition 2(ii) and the conclusion follows from this very proposition.

(iv) For i = 7, using the same argument as above in transforming (RLIPc) to (RPc) in the
proof of Theorem 3. As by this way, the uncertainty set is a singleton, and hence,N7
is convex (see Remark 3). Now from Proposition 2(ii), Slater-type condition ensures
the closedness of the robust moment coneN7, as desired.
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