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Abstract
In this paper we introduce and study right Z-Armendariz rings. A ring R is said to be right
Z-Armendariz if f (x)g(x) = 0 implies that ab is a right singular element of R, where
f (x) and g(x) belong to R[x] and a, b are arbitrary coefficients of f (x), g(x). Then we
construct some examples of right Z-Armendariz rings by a given one. Finally, we extend
this notion for modules.
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1 Introduction

In this paper, all rings are associative with identity 1 �= 0 and all modules are unital. Let R

be a ring. The set of nilpotent elements of R is denoted by Nil(R). A right ideal I of R is
essential, if I ∩ I ′ �= 0 for any nonzero right ideal I ′ of R. An element x ∈ R is called right
singular, if annr (x) = {a ∈ R | xa = 0} is an essential right ideal of R. The set of all right
singular elements of R is a two-sided ideal and is denoted by Z(RR).

In [8], Rege and Chhawachharia introduced the notion of Armendariz rings. A ring R is
Armendariz, if whenever f (x) = ∑m

i=0 aix
i and g(x) = ∑n

j=0 bjx
j are in R[x], the equa-

tion f (x)g(x) = 0 implies that aibj = 0 for every i = 0, 1, . . . , m and j = 0, 1, . . . , n. In
[3, Lemma 1] the authors proved that every reduced ring is Armendariz and in [6, Lemma 7]
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it is proved that every Armendariz ring is Abelian. Motivated by this definition, we call
a ring R right Z-Armendariz, if the above equation implies that aibj ∈ Z(RR). It turns
out that this notion is not left-right symmetric. We prove that the property of being right
Z-Armendariz is closed under direct products and finite subdirect products but it is not a
Morita invariant property. By an example we show that this property is not preserved under
homomorphic images. Also we will prove that a ring R is rightZ-Armendariz if and only if
the polynomial ring R[x] is so. However, if R is right Z-Armendariz, then R[[x]], the ring
of formal power series over R, is not necessarily right Z-Armendariz.

A right R-module MR is called Armendariz ([1, Proposition 12]), if f (x)g(x) = 0
implies that mirj = 0 for any i = 0, 1, . . . , m and j = 0, 1, . . . , n, where f (x) =∑m

i=0 mix
i ∈ M[x] (the corresponding polynomial module over R[x]) and g(x) =∑n

j=0 rj x
j ∈ R[x]. Generalizing this notion, an R-module MR is called Z-Armendariz,

if the above equation implies that mirj ∈ Z(MR) for every i = 0, 1, . . . , m and j =
0, 1, . . . , n. We show that an R-module M is Z-Armendariz if and only if every (finitely
generated) submodule of it is Z-Armendariz, and we prove that every right module over
a right duo-ring is Z-Armendariz. It is proved that the class of Z-Armendariz modules is
closed under direct sums but it is not closed under infinite direct products. Also it turns out
that when R is a right Z-Armendariz ring, flat R-modules and also semisimple R-modules
are Z-Armendariz.

2 Z-Armendariz Rings

In this section, we focus on right Z-Armendariz rings and prove some related results. Then
we construct some examples of right Z-Armendariz rings.

Definition 1 A ring R is called right Z-Armendariz, if for every f (x) = ∑m
i=0 aix

i and
g(x) = ∑n

j=0 bjx
j in R[x], the equation f (x)g(x) = 0 implies that aibj ∈ Z(RR) for

every i = 0, 1, . . . , m and j = 0, 1, . . . , n.
We define left Z-Armendariz rings similarly. If a ring R is both left and right

Z-Armendariz, then we say that R is a Z-Armendariz ring.

Obviously every Armendariz ring is Z-Armendariz. On the other hand, if R is a rightZ-
Armendariz ring which is right nonsingular, then clearly it is Armendariz. In the following
example we show that every commutative ring is Z-Armendariz and in Example 4, we
generalize this result.

Example 1 Every commutative ring R is Z-Armendariz.
Let f (x) = ∑m

i=0 aix
i , g(x) = ∑n

j=0 bjx
j ∈ R[x] and f (x)g(x) = 0, which implies

that

a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x
2 + · · · + ambnx

n+m = 0.

So a0b0 = 0 ∈ Z(R). Multiplying the equation a0b1 + a1b0 = 0 by a1b0, we have
(a1b0)

2 = 0. Since all nilpotent elements of a commutative ring are singular, the nilpotent
elements a1b0 and a0b1 belong toZ(R). Nowmultiplying the equation a0b2+a1b1+a2b0 =
0 by a2b0, we have (a2b0)

2 = −a2b0a1b1 ∈ Nil(R) so that a2b0 ∈ Nil(R) ⊆ Z(R). By
continuing this processes we obtain that aibj ∈ Nil(R) ⊆ Z(R), for every i = 0, 1, . . . , m
and j = 0, 1, . . . , n. So R is Z-Armendariz.
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The following example shows that a (commutative) Z-Armendariz ring need not be
Armendariz.

Example 2 Let R = Z8(+)Z8 with componentwise addition and multiplication
(a, b)(a′, b′) = (aa′, ab′ + ba′). By [8, Example 3.2], R is not Armendariz and by
Example 1, it is Z-Armendariz.

Example 3 For any ring R and n ≥ 2, Mn(R), the ring of all n × n matrices and also the
ring of all n × n upper (lower) triangular matrices over R are not right Z-Armendariz.

Let S = Mn(R) and Eij ∈ S be the matrix unit with 1 in the (i, j)th entry and 0
elsewhere. Let f (x) = E12+E11x and g(x) = E12−E22x ∈ S[x]. We have f (x)g(x) = 0,
but E11E12 = E12 /∈ Z(SS), since annr (E12) ∩ E22S = 0. A similar proof can be used for
the ring of n × n upper (lower) triangular matrices over R.

Proposition 1 Let {Ri}i∈I be a family of rings and R = ∏
i∈I Ri . Then R is right Z-

Armendariz if and only if each Ri is so.

Proof The proof follows from the fact that Z(RR) = ∏
i∈I Z(RiRi

).

To show that the class of right Z-Armendariz rings is closed under finite subdirect
products, we need the following lemma.

Lemma 1 Let I1, . . . , It be ideals of a ring R such that ∩t
k=1Ik = 0. If x + Ik is a right

singular element of the ring R
Ik

for each k = 1, . . . , t , then x ∈ Z(RR).

Proof Let 0 �= y ∈ R. Since ∩t
k=1Ik = 0, we can assume that y /∈ I1. So there exists r1 ∈ R

such that yr1 /∈ I1 and xyr1 ∈ I1. If yr1 ∈ Ik for i = 2, . . . , t , then xyr1 ∈ ∩t
k=1Ik = 0. If

yr1 /∈ I2, then there exists r2 ∈ R such that yr1r2 /∈ I2 and xyr1r2 ∈ I1 ∩ I2. By continuing
this process, we can find r ∈ R with yr �= 0 and xyr = 0. Thus, x ∈ Z(RR).

Theorem 1 A finite subdirect product of right Z-Armendariz rings is right Z-Armendariz.

Proof Suppose that I1, · · · , It are ideals of a ring R such that ∩t
k=1Ik = 0 and for each k =

1, . . . , t , the ring R
Ik

is right Z-Armendariz. Let f (x) = ∑m
i=0 aix

i , g(x) = ∑n
j=0 bjx

j ∈
R[x] and f (x)g(x) = 0. Then aibj + Ik is a right singular element of the ring R

Ik
, for all

k = 1, . . . , t . So by Lemma 1, aibj ∈ Z(RR) for i = 0, 1, . . . , m and j = 0, 1, . . . , n.
Therefore, R is right Z-Armendariz.

Suppose that I1, . . . , In are ideals of a ring R such that R
I1

, . . . , R
In

are right Z-

Armendariz rings. Then R
∩n

k=1Ik
, as a subdirect product of R

I1
, . . . , R

In
is right Z-Armendariz.

Remark 1 In general, a subdirect product of right Z-Armendariz rings is not necessarily

right Z-Armendariz. For example, let R =
[
Z Z

0 Z

]

. By Example 3, R is not right Z-

Armendariz. For any n ≥ 1, suppose that In =
[
0 nZ

0 0

]

. Then ∩∞
n=1In = 0, which implies

that R is a subdirect product of
{

R
In

}∞
n=1

. If Rn := R
In

=
[
Z Zn

0 Z

]

, then Z(RnRn
) =
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[
0 Zn

0 0

]

. So Rn

Z(RnRn )
is reduced and by [3, Lemma 1] it is Armendariz. As we shall see in

Proposition 4, each R
In

is right Z-Armendariz for any n ≥ 1.

In the sequel, we use the following observation. Let R be a ring and S = R[X],
where X is a set of commuting indeterminates over R. Then Z(SS) = Z(RR)[X], see
[7, Exercise 7.35].

Proposition 2 Let R be a ring. Then R is a right Z-Armendariz ring if and only if R[x] is
so.

Proof For the “only if part” let R be a right Z-Armendariz ring and f (t) = f0 + f1t +
· · ·+fnt

n, g(t) = g0 +g1t +· · ·+gmtm ∈ R[x][t] and f (t)g(t) = 0, where fi, gj ∈ R[x]
for each i = 0, 1, . . . , n and j = 0, 1, . . . , m. We show that figj ∈ Z(R[x]R[x]). Let
k = deg f0 +· · ·+deg fn +deg g0 +· · ·+deg gm. Then f (xk) = f0 +f1x

k +· · ·+fnx
kn,

g(xk) = g0 + g1x
k + · · · + gmxkm ∈ R[x] and f (xk)g(xk) = 0. So the product of

each coefficient of fi with every coefficient of gj belongs to Z(RR). Thus, figj ∈
Z(R[x]R[x]).

For the “if part” suppose that the polynomial ring R[x] is right Z-Armendariz and
f (x) = ∑m

i=0 aix
i , g(x) = ∑n

j=0 bjx
j ∈ R[x] such that f (x)g(x) = 0. Consider

F(t) = ∑m
i=0 fit

i and G(t) = ∑n
j=0 gj t

j ∈ R[x][t], where fi = aix
i and gj = bjx

j .
We have F(t)G(t) = 0, so that figj ∈ Z(R[x]R[x]) which implies that aibj ∈ Z(RR), for
i = 0, 1, . . . , m and j = 0, 1, . . . , n. Thus, R is right Z-Armendariz.

Corollary 1 A ring R is right Z-Armendariz if and only if the polynomial ring S =
R[{xα}α∈A] is right Z-Armendariz.

Proof Let R be a right Z-Armendariz ring and f, g ∈ R[{xα}α∈A][t] with fg = 0. Then
f, g ∈ T [t] = R[xα1 , . . . , xαn ][t] for some finite subset {α1, . . . , αn} ⊆ A. By Proposi-
tion 2, the ring R[xα1 , . . . , xαn ] is right Z-Armendariz, so that ab ∈ Z(TT ) ⊆ Z(SS) for
each coefficient a of f and b of g. Therefore, S is right Z-Armendariz. The converse is
trivial.

Remark 2 If R is a right Z-Armendariz ring, then S = R[[x]], the formal power series
ring over R, is not necessarily right Z-Armendariz. For example, let K be a field and R =
K〈a,b〉
〈b2〉 . In [2, Example 1], it is shown that R is an Armendariz ring but R[[x]] is not. We

show that S is not right Z-Armendariz. Let u = (1 − ax) ∈ S. Clearly u is a unit in S with
u−1 = (1 + ax + a2x2 + a3x3 + · · · ) ∈ S and f = ubu−1 is such that f 2 = 0. In the
polynomial ring S[y], (b+bfy)(b−f by) = 0 but bf b /∈ Z(SS), since annr (bf b)∩aS = 0.
Hence, S = R[[x]] is not right Z-Armendariz. Also S is an example of an Abelian ring
which is not right Z-Armendariz.

Proposition 3 Let R be a ring and G be a group. If the group ring RG or R[[x]] is right
Z-Armendariz, then so is R.

Proof Let S be one of the rings RG or R[[x]]. We can show that Z(SS) ∩ R ⊆ Z(RR).
Now the rest of the proof follows easily.
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Proposition 4 Let I be an ideal of a ring R such that the factor ring R̄ = R
I
is Armendariz.

Then for f1, f2, . . . , fn ∈ R[x] the equation f1f2 . . . fn ∈ I [x] implies that a1a2 . . . an ∈
I , where ai is an arbitrary coefficient of fi for i = 1, 2, . . . , n. In particular, if I ⊆ Z(RR),
then R is right Z-Armendariz.

Proof Suppose that f1, f2, . . . , fn ∈ R[x] such that f1f2 . . . fn ∈ I [x]. Then in R̄[x],
we have f̄1f̄2 . . . f̄n = 0. By [1, Proposition 1], a1a2 . . . an ∈ I where ai is an arbitrary
coefficient of fi for i = 1, 2, . . . , n.

Corollary 2 Let R be a ring. If Nil(R) is an ideal of R contained in Z(RR), then R is right
Z-Armendariz.

Proof The factor ring R
Nil(R)

is reduced and by [3, Lemma 1], it is Armendariz. So by
Proposition 4, R is right Z-Armendariz.

Recall that a ring R is right duo, if all right ideals are two-sided, also a ring R is called
reversible, if ab = 0 implies that ba = 0 for all a, b ∈ R.

Example 4 Right duo rings and reversible rings are examples of right Z-Armendariz rings.
By an easy calculation, we can show that R

Z(RR)
is reduced, whenever R is a right duo or a

reversible ring. So by [3, Lemma 1], it is Armendariz. Now, applying Proposition 4, we get
that R is right Z-Armendariz.

The next example shows that for a ring R, being Z-Armendariz is not left-right
symmetric and also it is not preserved under homomorphic images.

Example 5 Let R =
[
Z2 Z2
0 Z4

]

. Since Z(RR) =
[
0 Z2
0 2Z4

]

= Nil(R), Corollary 2 implies

that R is right Z-Armendariz. However, it is not left Z-Armendariz, because for f (x) =
E12+E11x and g(x) = E12−E22x ∈ R[x], where Eij ’s are those introduced in Example 3,
we have f (x)g(x) = 0, but E11E12 = E12 /∈ Z(RR), since annl (E12) ∩ RE11 = 0.
Note that R is an example of a noncommutative right Z-Armendariz ring which is not

Armendariz. Moreover, let I =
[
0 0
0 2Z4

]

. Then R
I
is isomorphic to

[
Z2 Z2
0 Z2

]

which is

not right Z-Armendariz by Example 3. Therefore, a homomorphic image of a right Z-
Armendariz ring need not be right Z-Armendariz.

Every Armendariz ring is Abelian [6, Lemma 7]. But a Z-Armendariz ring is not nec-

essarily Abelian. For example, let R =
[
Z4 2Z4
0 Z4

]

. We have Z(RR) = Z(RR) =
[
2Z4 2Z4
0 2Z4

]

. So R
Z(RR)

= R
Z(RR)

is reduced and so it is Armendariz. Therefore, according

to Proposition 4, R is Z-Armendariz. However, R is not Abelian.
Now, we need the following lemma whose proof is the same as the proof of [5, Lemma 7].

Lemma 2 If a, b, c are elements in a right Z-Armendariz ring R such that ab = 0 and
acnb = 0 for some n ∈ N, then acb ∈ Z(RR).

Proof We have f (x)g(x) = 0, where f (x) = a(1 − cx) and g(x) = (1 + cx + · · · +
cn−1xn−1)b. Thus, acb ∈ Z(RR).
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Proposition 5 If R is a right Z-Armendariz ring and idempotents lift modulo Z(RR), then
the ring R̄ = R

Z(RR)
is Abelian.

Proof Let ē ∈ Id(R̄). By the hypothesis, we can assume that e ∈ Id(R). Thus, it is sufficient
to show that for any r ∈ R, er − re ∈ Z(RR). Let a = e, b = (1 − e) and c = er(1 − e).
Clearly ab = 0 and c2 = 0. By Lemma 2, er − ere = acb ∈ Z(RR). Similarly, we have
re − ere ∈ Z(RR). So er − re ∈ Z(RR).

Proposition 6 Every right Z-Armendariz ring is Dedekind-finite.

Proof Suppose that R is a right Z-Armendariz ring and uv = 1 for some u, v ∈ R. The
element c = v(1 − vu) is nilpotent of nilpotency index two. If we put a = vu and b =
1 − vu, then by Lemma 2, v(1 − vu) = acb ∈ Z(RR). Thus, uv(1 − vu) = (1 − vu) ∈
Id(R) ∩ Z(RR) = 0.

Remark 3 Let R be a ring and � be an infinite set. Then the ring of column (respectively,
row) finite � × � matrices over R is not Dedekind-finite and so is neither left nor right
Z-Armendariz.

Note that the converse of Proposition 6 is not true in general. For example, the matrix
ring Mn(F), where F is any field and n ≥ 2 is Dedekind-finite but is neither left nor right
Z-Armendariz (Example 3). Therefore, the class of (right) Z-Armendariz rings lies strictly
between the classes of Armendariz and Dedekind-finite rings.

Recall that a ring R is subdirectly irreducible, if every representation of R as a subdirect
product of other rings is trivial, equivalently the intersection of all nonzero ideals of R is
nonzero.

Example 6 A subdirectly irreducible ring is not necessarily right Z-Armendariz. Let R be
the ring of N × N column finite matrices over a field F . Then R has exactly one nonzero
proper ideal and so it is subdirectly irreducible. However, R is not right Z-Armendariz.

For the rest of this section we construct some right Z-Armendariz rings by a given one.

Proposition 7 Let R be a ring and e ∈ Id(R) such that eR(1 − e) = 0. If R is a right
Z-Armendariz ring, then so is S = eRe.

Proof First, we show that Z(RR) ∩ S ⊆ Z(SS). Let a ∈ Z(RR) ∩ S and 0 �= s ∈ S. There
exists r ∈ R such that sr �= 0 and asr = 0. Thus, as(ere) = 0 and s(ere) �= 0, since
eR(1 − e) = 0. This implies that a ∈ Z(SS). Now, suppose that f (x) = ∑m

i=0 aix
i and

g(x) = ∑n
j=0 bjx

j ∈ S[x] such that f (x)g(x) = 0. So aibj ∈ Z(RR) ∩ S ⊆ Z(SS) for
every i = 0, 1, . . . , m and j = 0, 1, . . . , n.

Proposition 8 Let R be a ring and M be an ideal of R containing an element r such that

annl (r) = 0. Then the ring S =
{[

a m

0 a

]

| a ∈ R and m ∈ M

}

is right Z-Armendariz if

and only if R is a right Z-Armendariz ring.
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Proof By some calculations we can show that

Z(SS) =
{[

a m

0 a

]

∈ S | a ∈ Z(RR)

}

.

Suppose that R is a right Z-Armendariz ring and F(x)G(x) = 0, where F(x) =
∑m

i=0

[
ai mi

0 ai

]

xi and G(x) = ∑n
j=0

[
bj m′

j

0 bj

]

xj . So we have f (x)g(x) = 0, where

f (x) = ∑m
i=0 aix

i and g(x) = ∑n
j=0 bjx

j . Since R is right Z-Armendariz, aibj ∈
Z(RR), which implies that

[
ai mi

0 ai

] [
bj m′

j

0 bj

]

∈ Z(SS) for every i = 0, 1, . . . , m and

j = 0, 1, . . . , n. Therefore, S is a right Z-Armendariz ring. Now, suppose that S is a
right Z-Armendariz ring and f (x)g(x) = 0, where f (x) = ∑m

i=0 aix
i and g(x) =

∑n
j=0 bjx

j ∈ R[x]. So F(x)G(x) = 0 where F(x) = ∑m
i=0

[
ai 0
0 ai

]

xi and G(x) =
∑n

j=0

[
bj 0
0 bj

]

xj ∈ S[x]. So
[

ai 0
0 ai

] [
bj 0
0 bj

]

∈ Z(SS) for every i = 0, 1, . . . , m and

j = 0, 1, . . . , n, which implies that aibj ∈ Z(RR). Thus, R is right Z-Armendariz.

Corollary 3 Let R be a ring. Then R is rightZ-Armendariz if and only if the ring R[x]
〈x2〉 is so.

Proof The ring R[x]
〈x2〉 is isomorphic to the ring S =

{[
a b

0 a

]

| a, b ∈ R

}

. Now, apply

Proposition 8.

Proposition 9 For a ring R, the following are equivalent

(1) R is right Z-Armendariz;
(2) R[x]

〈x〉n is right Z-Armendariz for every n ∈ N;

(3) R[x]
〈x〉n is right Z-Armendariz for some n ∈ N.

Proof The proof follows from the fact that the ring R[x]
〈x〉n is isomorphic to the ring

S =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎣

a1 a2 . . . an

0 a1 . . . an−1
...

...
0 0 . . . a1

⎤

⎥
⎥
⎥
⎦

| ai ∈ R, i = 1, . . . , n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

and Z(SS) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎣

a1 a2 . . . an

0 a1 . . . an−1
...

...
0 0 . . . a1

⎤

⎥
⎥
⎥
⎦

∈ S | a1 ∈ Z(RR)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Proposition 10 Let R be a ring and M be an ideal of R such that M ⊆ Z(RR). Then R is

right Z-Armendariz if and only if the ring S =
[

R M

0 R

]

is so.

Proof It is not difficult to show that Z(SS) =
{[

a m

0 b

]

∈ S | a, b ∈ Z(RR)

}

. The rest of

the proof is similar to the proof of Proposition 8.
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Proposition 11 Let R and S be rings, RMS be an (R, S)-bimodule and T =
[

R M

0 S

]

. If R

is Armendariz, S is right Z-Armendariz and Z(MS) = M , then T is right Z-Armendariz.

Proof First note that

[
0 M

0 Z(SS)

]

⊆ Z(TT ). Now suppose that f (x) = ∑m
i=0 aix

i , g(x) =
∑n

j=0 bjx
j ∈ T [x] and f (x)g(x) = 0, where ai =

[
ri mi

0 si

]

and bj =
[

r ′
j m′

j

0 s′
j

]

. Thus,

(
∑m

i=0 rix
i)(

∑n
j=0 r ′

j x
j ) = 0 in R[x] and (

∑m
i=0 six

i)(
∑n

j=0 s′
j x

j ) = 0 in S[x]. Since R

is Armendariz and S is right Z-Armendariz, for any i = 0, 1, . . . , m and j = 0, 1, . . . , n
we have rir

′
j = 0 and sis

′
j ∈ Z(SS) and hence aibj ∈ Z(TT ).

Remark 4 Let R and S be rings, RMS be an (R, S)-bimodule and T =
[

R M

0 S

]

. If MS is

not a singular S-module, then T is not a right Z-Armendariz ring. For if m ∈ M −Z(MS),
then ([

0 m

0 0

]

+
[
1 0
0 0

]

x

)([
0 m

0 0

]

−
[
0 0
0 1

]

x

)

= 0.

But

[
1 0
0 0

] [
0 m

0 0

]

=
[
0 m

0 0

]

/∈ Z(TT ).

Proposition 12 Let R be a ring and S be a multiplicatively closed set of central regular
elements of R. Then R is right Z-Armendariz if and only if the ring T = RS−1 is so.

Proof It is easy to see that a
s

∈ Z(TT ) if and only if a ∈ Z(RR). Now the rest of the proof
is straightforward.

Corollary 4 A ring R is right Z-Armendariz if and only if the ring

R
[
x1, x

−1
1 , . . . , xn, x

−1
n

]

is right Z-Armendariz.

Proof Consider the multiplicatively closed set

S =
{
x

i1
1 x

i2
2 . . . xin

n | i1, i2, . . . , in ≥ 0
}

in R[x1, x2, . . . , xn]. Now, apply Proposition 12 and Corollary 1.

Corollary 5 Let R be a ring. Then R[[x]] is a right Z-Armendariz ring if and only if
R((x)), the Laurent series ring over R, is so.

Proof Use Proposition 12 when S = {1, x, x2, . . . } ⊆ R[[x]].

Proposition 13 Let R be a ring and consider the ring

S = {(a, b) ∈ R × R | a − b ∈ Z(RR)}
with component-wise addition and multiplication. ThenR is rightZ-Armendariz if and only
if S is so.
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Proof Let R be right Z-Armendariz. If

F(x) =
m∑

i=0

(ai, bi)x
i, G(x) =

n∑

j=0

(a′
j , b

′
j )x

j ∈ S[x]

and F(x)G(x) = 0, then f (x)g(x) = 0, where f (x) = ∑m
i=0 aix

i and g(x) =∑n
j=0 a′

j x
j ∈ R[x]. So aia

′
j ∈ Z(RR) for i = 0, 1, . . . , m and j = 0, 1, . . . , n. Similarly,

we can show that bib
′
j ∈ Z(RR). Thus, (ai, bi)(a

′
j , b

′
j ) ∈ Z(RR) × Z(RR) ⊆ Z(SS). So

S is right Z-Armendariz.
Now, suppose that S is rightZ-Armendariz. If f (x) = ∑m

i=0 aix
i , g(x) = ∑n

j=0 bjx
j ∈

R[x] and f (x)g(x) = 0, then (
∑m

i=0(ai, ai)x
i)(

∑n
j=0(bj , bj )x

j ) = 0 in S[x]. So for
any i, j we have (ai, ai)(bj , bj ) ∈ Z(SS). Thus, aibj ∈ Z(RR). Therefore, R is right
Z-Armendariz.

3 Z-Armendariz Modules

Recall that a right R-module M is Armendariz if f (x)g(x) = 0 implies that mr = 0, where
f (x) ∈ M[x], g(x) ∈ R[x], m is an arbitrary coefficient of f (x) and r is an arbitrary
coefficient of g(x) [1]. In [4], it is shown that the class of Armendariz modules is closed
under direct products and submodules, and also every flat module over an Armendariz ring
is Armendariz. In general a homomorphic image of an Armendariz module need not be
Armendariz [4, Example 2.12]. However, as we shall see below, for an Armendariz module
MR , the factor module M

Z(MR)
is Armendariz too. But first we need a lemma.

Lemma 3 Let MR be a right R-module. Then Z(M[x]R[x]) = Z(MR)[x].

Proof The proof is similar to [7, Exercise 7.35], for the right singular ideal of a polynomial
ring.

Proposition 14 If MR is an Armendariz R-module, then so is M̄ = M
Z(MR)

.

Proof Assume that f (x) = ∑m
i=0 mix

i ∈ M[x] and g(x) = ∑n
j=0 rj x

j ∈ R[x] such that
f (x)g(x) ∈ Z(MR)[x] = Z(M[x]R[x]). We will show that for every i = 0, 1, . . . , m and
j = 0, 1, . . . , n, mirj ∈ Z(MR). All coefficients of f (x)g(x) are in Z(MR), so that for
every nonzero c ∈ R there exists r ∈ R such that cr �= 0 and f (x)g(x)cr = 0. Since MR

is Armendariz, mirj cr = 0 for every i = 0, 1, . . . , m and j = 0, 1, . . . , n and therefore,
mirj ∈ Z(MR).

A similar technique can be used to show that for any Armendariz ring R, the factor
rings R

Z(RR)
and R

Z(RR)
are Armendariz. Note that the converse of this statement is not true,

for example, let R be a commutative ring. Then R
Z(R)

is reduced and so is Armendariz.
However, commutative rings are not necessarily Armendariz.

In the rest of this section, we study Z-Armendariz modules as a generalization of
Armendariz modules.

Definition 2 A right R-module MR is called Z-Armendariz, if the equation f (x)g(x) = 0
implies that mirj ∈ Z(MR) for every i = 0, 1, . . . , m and j = 0, 1, . . . , n, where f (x) =∑m

i=0 mix
i ∈ M[x] and g(x) = ∑n

j=0 rj x
j ∈ R[x].
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Clearly every Armendariz module (for example, every vector space over a division ring)
isZ-Armendariz. Also every singular right R-module isZ-Armendariz and if MR is a non-
singular Z-Armendariz module, then MR is Armendariz. A ring R is right Z-Armendariz,
if RR is a Z-Armendariz module.

Proposition 15 The class of Z-Armendariz modules over a ring R, is closed under
submodules and arbitrary direct sums.

Proof The proof follows from the fact that if NR ≤ MR , then Z(NR) = Z(MR) ∩ N and
for a family of right R-modules {Mi}i∈I , Z(⊕i∈IMi) = ⊕i∈IZ(Mi).

Corollary 6 A ring R is right Z-Armendariz if and only if every submodule of a free right
R-module is Z-Armendariz.

Corollary 7 Every semisimple right module over a right Z-Armendariz ring is Z-
Armendariz.

Proof By Proposition 15, it is sufficient to prove the corollary for simple modules. Suppose
that R is a right Z-Armendariz ring and MR is a simple module. By [7, Exercise 7.12A],
every simple module over an arbitrary ring is either singular or projective. According to
Corollary 6, MR is a Z-Armendariz module.

In the next example we see that an infinite direct product of Z-Armendariz modules is
not necessarily Z-Armendariz.

Example 7 Let R =
[
Z Z

0 Z

]

. For every n ≥ 2, Mn =
[
Z Zn

0 Z

]

is a right R-module with

Z(Mn)=
[
0 Zn

0 0

]

. Since Z is an Armendariz ring, one can show thatMn is aZ-Armendariz

R-module. Now consider M = ∏
n≥2 Mn. Put a =

([
0 1̄
0 0

]

,

[
0 1̄
0 0

]

, . . .

)

, b =
([

1 0
0 0

]

,

[
1 0
0 0

]

, . . .

)

∈ M and f (x) = a−bx ∈ M[x] and g(x) = E12+E22x ∈ R[x],
where Eij ’s are those introduced in Example 3. We have f (x)g(x) = 0. But aE22 = a is

not contained in Z(MR), since annr (a) =
[
Z Z

0 0

]

, which is not an essential right ideal.

Proposition 16 A module MR is Z-Armendariz if and only if every finitely generated
submodule of M is Z-Armendariz.

Proof The only if part follows from Proposition 15. For the if part, note that for any f ∈
M[x] there exists a finitely generated submodule N of M such that f ∈ N [x].

Corollary 8 Let R be a ring such that every finitely generated right R-module can be
embedded in a free module (for example, let R be a quasi-Frobenious ring). Then the
following are equivalent:

(1) R is a right Z-Armendariz ring;
(2) Every right R-module is Z-Armendariz.
(3) Every cyclic right R-module is Z-Armendariz.
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Proof (1) ⇒ (2) Let MR be an R-module and KR be a finitely generated submodule of MR .
Since KR can be embedded in a free R-module, by Proposition 15, it is Z-Armendariz.
Now Proposition 16 implies that MR is Z-Armendariz. The proofs of (2) ⇒ (3) and (3) ⇒
(1) are clear.

Proposition 17 Let I be a right ideal of a ring R such that I is not contained in Z(RR)

and Z(RR) is a prime ideal of R. If IR is a Z-Armendariz module, then R is a right Z-
Armendariz ring.

Proof Let f (x) = ∑m
i=0 aix

i , g(x) = ∑n
j=0 bjx

j ∈ R[x] and f (x)g(x) = 0. For every
a ∈ I and r ∈ R, we have af (x)g(x)r = 0. Obviously, af (x) ∈ I [x], so that aaibj r ∈
Z(IR) ⊆ Z(RR). Thus, IaibjR ⊆ Z(RR) for any i = 0, 1, . . . , m and j = 0, 1, . . . , n.
As Z(RR) is a prime ideal and I �⊆ Z(RR), we have aibj ∈ Z(RR). Therefore, R is right
Z-Armendariz.

Proposition 18 Every flat right R-module over a right Z-Armendariz ring R is Z-
Armendariz.

Proof In view of the fact that for any modules FR and MR and any R-homomorphism ϕ :
F → M , ϕ(Z(FR)) ⊆ Z(MR), the proof is similar to the proof of [4, Theorem 2.15].

The proof of the following lemma is similar to the proof of [1, Proposition 1].

Lemma 4 Let MR be an Armendariz module, f ∈ M[x] and g1, g2, . . . , gn ∈ R[x]. If
fg1g2 · · · gn = 0, then mb1b2 · · · bn = 0, where m is an arbitrary coefficient of f and bi is
an arbitrary coefficient of gi for i = 1, 2, . . . , n.

Proposition 19 Let MR be a right R-module and M
K

be an Amendariz module for some
submodule K of Z(MR). For any f ∈ M[x] and g1, g2, . . . , gn ∈ R[x], if fg1g2 · · · gn ∈
K[x], then mb1b2 · · · bn ∈ K , where m is any coefficient of f and bi is any coefficient of gi

for i = 1, 2, . . . , n. In particular, MR is a Z-Armendariz module.

Proof Using Lemma 4, the proof is clear.

Similar to the case for the Armendariz modules (Proposition 14), we have the following
result.

Proposition 20 Let R be a ring. If MR is a Z-Armendariz module, then so is the factor
module M̄ = M

Z(MR)
.

Proof Suppose that f̄ (x) = ∑m
i=0 āix

i ∈ M̄[x] and g(x) = ∑n
j=0 bjx

j ∈ R[x] such that

f̄ (x)g(x) = 0̄ in M
Z(MR)

[x]. We show that āibj ∈ Z
(

M
Z(MR)

)
for any i = 0, 1, . . . , m

and j = 0, 1, . . . , n. We have f (x)g(x) ∈ Z(MR)[x], where f (x) = ∑m
i=0 aix

i . Since
every coefficient of f (x)g(x) is a singular element of M , for every nonzero element c ∈ R,
there exists r ∈ R such that cr �= 0 and f (x)g(x)cr = 0. Now aibj cr ∈ Z(MR) for
i = 0, 1, . . . , m and j = 0, 1, . . . , n, since MR is Z-Armendariz. Hence, āibj cr = 0̄ in

M
Z(MR)

. Thus, āibj ∈ Z
(

M
Z(MR)

)
.
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Corollary 9 Let R be a right nonsingular ring. Then for every Z-Armendariz right R-
module M , the factor module M

Z(MR)
is Armendariz.

Proof By Proposition 20, M
Z(MR)

is Z-Armendariz and by [7, Theorem 7.21],

Z
(

M
Z(MR)

)
= 0. Therefore, M

Z(MR)
is an Armendariz module.

The proof of the next result is similar to the proof of Proposition 2.

Proposition 21 LetMR be anR-module. ThenMR isZ-Armendariz if and only ifM[x]R[x]
is so.

Note that if θ : R → S is a ring homomorphism and M is an S-module, then M is an
R-module via mr = mθ(r).

Proposition 22 Let θ : R → S be a ring epimorphism. If MS is aZ-Armendariz S-module,
then MR is Z-Armendariz as an R-module.

Proof Observe that Z(MS) ⊆ Z(MR), now the rest of the proof is clear.

In the next theorem, we show that over a right duo-ring, every right module is
Z-Armendariz. But first we state the following lemma.

Lemma 5 Let R be a right duo-ring and MR be a right R-module. If mr2 ∈ Z(MR) for
some m ∈ M and r ∈ R, then mr ∈ Z(MR).

Proof Suppose that mr2 ∈ Z(MR) and mr /∈ Z(MR). So there exists a ∈ R − {0} such
that annr (mr) ∩ aR = 0. On the other hand, mr2ab = 0 for some b ∈ R such that
ab �= 0. Thus, mr(rab) = 0, which implies that rab ∈ annr (mr) ∩ aR = 0. Hence,
ab ∈ annr (mr) ∩ aR = 0, which is a contradiction.

Theorem 2 For a right duo-ring R, every right R-module is Z-Armendariz.

Proof Let f (x) = ∑m
i=0 mix

i ∈ M[x] and g(x) = ∑n
j=0 rj x

j ∈ R[x] such that
f (x)g(x) = 0. We will show that mirj ∈ Z(MR) for every i = 0, 1, . . . , m and
j = 0, 1, . . . , n. We prove by induction on i + j . Clearly m0r0 = 0 ∈ Z(MR). Suppose
that the statement is true when i + j < k. If i + j = k, we multiply the equation

m0rk + m1rk−1 + · · · + mkr0 = 0 (1)

by r0. Since R is a right duo-ring, for each i = 0, 1, . . . , (k − 1), we have mirk−i r0 =
mir0r

′
i for some r ′

i ∈ R. By the induction hypotheses, mir0 ∈ Z(MR) for i < k. Thus,
mkr

2
0 ∈ Z(MR). By Lemma 5, mkr0 ∈ Z(MR). Now multiplying (1), by r1, we deduce that

mk−1r
2
1 ∈ Z(MR) and again by Lemma 5, mk−1r1 ∈ Z(MR). By continuing this proses,

we have mirk−i ∈ Z(MR) for every i = 0, 1, . . . , k.

Remark 5 (1) We show that the converse of Theorem 2 is not true. Recall that a ring is
right distributive if its lattice of right ideals is distributive. By [10, Corollary 7], over a right
distributive ring, any right module is Armendariz (and hence Z-Armendariz). But there is a
right distributive ring which is not right duo ([9, Example 7.1.6]).
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(2) Recall that an R-module MR is Dedekind-finite if M ∼= M ⊕ N (for some R-
module NR) implies that N = 0. We show that a Z-Armendariz module is not necessarily
Dedekind-finite. For example, let R be a commutative ring and M = R(N). By Theorem 2,
M is a Z-Armendariz module but clearly it is not Dedekind-finite.
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