**ORIGINAL ARTICLE** 

# $\mathcal{Z}$ -Armendariz Rings and Modules



Afsaneh Nejadzadeh<sup>1</sup> · Afshin Amini<sup>1</sup> · Babak Amini<sup>1</sup> · Habib Sharif<sup>1</sup>

Received: 3 June 2019 / Accepted: 3 October 2019 / Published online: 1 February 2020 © Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2020

### Abstract

In this paper we introduce and study right Z-Armendariz rings. A ring R is said to be right Z-Armendariz if f(x)g(x) = 0 implies that ab is a right singular element of R, where f(x) and g(x) belong to R[x] and a, b are arbitrary coefficients of f(x), g(x). Then we construct some examples of right Z-Armendariz rings by a given one. Finally, we extend this notion for modules.

Keywords Right singular ideal  $\cdot$  Armendariz ring  $\cdot$  Right  $\mathcal{Z}\text{-}Armendariz$  ring  $\cdot$   $\mathcal{Z}\text{-}Armendariz$  module

Mathematics Subject Classification (2010)  $16S36 \cdot 16U99$ 

## **1** Introduction

In this paper, all rings are associative with identity  $1 \neq 0$  and all modules are unital. Let *R* be a ring. The set of nilpotent elements of *R* is denoted by Nil(*R*). A right ideal *I* of *R* is essential, if  $I \cap I' \neq 0$  for any nonzero right ideal *I'* of *R*. An element  $x \in R$  is called right singular, if  $\operatorname{ann}_r(x) = \{a \in R \mid xa = 0\}$  is an essential right ideal of *R*. The set of all right singular elements of *R* is a two-sided ideal and is denoted by  $\mathcal{Z}(R_R)$ .

In [8], Rege and Chhawachharia introduced the notion of Armendariz rings. A ring *R* is Armendariz, if whenever  $f(x) = \sum_{i=0}^{m} a_i x^i$  and  $g(x) = \sum_{j=0}^{n} b_j x^j$  are in R[x], the equation f(x)g(x) = 0 implies that  $a_ib_j = 0$  for every i = 0, 1, ..., m and j = 0, 1, ..., n. In [3, Lemma 1] the authors proved that every reduced ring is Armendariz and in [6, Lemma 7]

Afsaneh Nejadzadeh a.nejadzade@shirazu.ac.ir

> Afshin Amini aamini@shirazu.ac.ir

> Babak Amini bamini@shirazu.ac.ir

Habib Sharif sharif@susc.ac.ir

<sup>&</sup>lt;sup>1</sup> Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71457, Iran

it is proved that every Armendariz ring is Abelian. Motivated by this definition, we call a ring *R* right  $\mathbb{Z}$ -Armendariz, if the above equation implies that  $a_i b_j \in \mathbb{Z}(R_R)$ . It turns out that this notion is not left-right symmetric. We prove that the property of being right  $\mathbb{Z}$ -Armendariz is closed under direct products and finite subdirect products but it is not a Morita invariant property. By an example we show that this property is not preserved under homomorphic images. Also we will prove that a ring *R* is right  $\mathbb{Z}$ -Armendariz if and only if the polynomial ring R[x] is so. However, if *R* is right  $\mathbb{Z}$ -Armendariz, then R[[x]], the ring of formal power series over *R*, is not necessarily right  $\mathbb{Z}$ -Armendariz.

A right *R*-module  $M_R$  is called Armendariz ([1, Proposition 12]), if f(x)g(x) = 0implies that  $m_i r_j = 0$  for any i = 0, 1, ..., m and j = 0, 1, ..., n, where  $f(x) = \sum_{i=0}^{m} m_i x^i \in M[x]$  (the corresponding polynomial module over R[x]) and  $g(x) = \sum_{j=0}^{n} r_j x^j \in R[x]$ . Generalizing this notion, an *R*-module  $M_R$  is called  $\mathbb{Z}$ -Armendariz, if the above equation implies that  $m_i r_j \in \mathbb{Z}(M_R)$  for every i = 0, 1, ..., m and j = 0, 1, ..., m. We show that an *R*-module *M* is  $\mathbb{Z}$ -Armendariz if and only if every (finitely generated) submodule of it is  $\mathbb{Z}$ -Armendariz, and we prove that every right module over a right duo-ring is  $\mathbb{Z}$ -Armendariz. It is proved that the class of  $\mathbb{Z}$ -Armendariz modules is closed under direct sums but it is not closed under infinite direct products. Also it turns out that when *R* is a right  $\mathbb{Z}$ -Armendariz ring, flat *R*-modules and also semisimple *R*-modules are  $\mathbb{Z}$ -Armendariz.

#### 2 *Z*-Armendariz Rings

In this section, we focus on right Z-Armendariz rings and prove some related results. Then we construct some examples of right Z-Armendariz rings.

**Definition 1** A ring *R* is called *right Z-Armendariz*, if for every  $f(x) = \sum_{i=0}^{m} a_i x^i$  and  $g(x) = \sum_{j=0}^{n} b_j x^j$  in R[x], the equation f(x)g(x) = 0 implies that  $a_i b_j \in \mathbb{Z}(R_R)$  for every i = 0, 1, ..., m and j = 0, 1, ..., n.

We define *left* Z-Armendariz rings similarly. If a ring R is both left and right Z-Armendariz, then we say that R is a Z-Armendariz ring.

Obviously every Armendariz ring is  $\mathcal{Z}$ -Armendariz. On the other hand, if R is a right  $\mathcal{Z}$ -Armendariz ring which is right nonsingular, then clearly it is Armendariz. In the following example we show that every commutative ring is  $\mathcal{Z}$ -Armendariz and in Example 4, we generalize this result.

Example 1 Every commutative ring R is Z-Armendariz.

Let  $f(x) = \sum_{i=0}^{m} a_i x^i$ ,  $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$  and f(x)g(x) = 0, which implies that

$$a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + \dots + a_mb_nx^{n+m} = 0.$$

So  $a_0b_0 = 0 \in \mathbb{Z}(R)$ . Multiplying the equation  $a_0b_1 + a_1b_0 = 0$  by  $a_1b_0$ , we have  $(a_1b_0)^2 = 0$ . Since all nilpotent elements of a commutative ring are singular, the nilpotent elements  $a_1b_0$  and  $a_0b_1$  belong to  $\mathbb{Z}(R)$ . Now multiplying the equation  $a_0b_2+a_1b_1+a_2b_0 = 0$  by  $a_2b_0$ , we have  $(a_2b_0)^2 = -a_2b_0a_1b_1 \in Nil(R)$  so that  $a_2b_0 \in Nil(R) \subseteq \mathbb{Z}(R)$ . By continuing this processes we obtain that  $a_ib_j \in Nil(R) \subseteq \mathbb{Z}(R)$ , for every i = 0, 1, ..., m and j = 0, 1, ..., n. So *R* is  $\mathbb{Z}$ -Armendariz.

The following example shows that a (commutative)  $\mathcal{Z}$ -Armendariz ring need not be Armendariz.

*Example* 2 Let  $R = \mathbb{Z}_8(+)\mathbb{Z}_8$  with componentwise addition and multiplication (a, b)(a', b') = (aa', ab' + ba'). By [8, Example 3.2], R is not Armendariz and by Example 1, it is  $\mathcal{Z}$ -Armendariz.

Example 3 For any ring R and  $n \ge 2$ ,  $M_n(R)$ , the ring of all  $n \times n$  matrices and also the ring of all  $n \times n$  upper (lower) triangular matrices over R are not right Z-Armendariz.

Let  $S = M_n(R)$  and  $E_{ij} \in S$  be the matrix unit with 1 in the (i, j)th entry and 0 elsewhere. Let  $f(x) = E_{12} + E_{11}x$  and  $g(x) = E_{12} - E_{22}x \in S[x]$ . We have f(x)g(x) = 0, but  $E_{11}E_{12} = E_{12} \notin \mathcal{Z}(S_S)$ , since  $\operatorname{ann}_r(E_{12}) \cap E_{22}S = 0$ . A similar proof can be used for the ring of  $n \times n$  upper (lower) triangular matrices over R.

**Proposition 1** Let  $\{R_i\}_{i \in I}$  be a family of rings and  $R = \prod_{i \in I} R_i$ . Then R is right  $\mathbb{Z}$ -Armendariz if and only if each  $R_i$  is so.

*Proof* The proof follows from the fact that  $\mathcal{Z}(R_R) = \prod_{i \in I} \mathcal{Z}(R_{iR_i})$ .

To show that the class of right  $\mathcal{Z}$ -Armendariz rings is closed under finite subdirect products, we need the following lemma.

**Lemma 1** Let  $I_1, \ldots, I_t$  be ideals of a ring R such that  $\bigcap_{k=1}^t I_k = 0$ . If  $x + I_k$  is a right singular element of the ring  $\frac{R}{I_k}$  for each  $k = 1, \ldots, t$ , then  $x \in \mathcal{Z}(R_R)$ .

*Proof* Let  $0 \neq y \in R$ . Since  $\bigcap_{k=1}^{t} I_k = 0$ , we can assume that  $y \notin I_1$ . So there exists  $r_1 \in R$  such that  $yr_1 \notin I_1$  and  $xyr_1 \in I_1$ . If  $yr_1 \in I_k$  for i = 2, ..., t, then  $xyr_1 \in \bigcap_{k=1}^{t} I_k = 0$ . If  $yr_1 \notin I_2$ , then there exists  $r_2 \in R$  such that  $yr_1r_2 \notin I_2$  and  $xyr_1r_2 \in I_1 \cap I_2$ . By continuing this process, we can find  $r \in R$  with  $yr \neq 0$  and xyr = 0. Thus,  $x \in \mathcal{Z}(R_R)$ .

**Theorem 1** A finite subdirect product of right Z-Armendariz rings is right Z-Armendariz.

*Proof* Suppose that  $I_1, \dots, I_t$  are ideals of a ring R such that  $\bigcap_{k=1}^t I_k = 0$  and for each  $k = 1, \dots, t$ , the ring  $\frac{R}{I_k}$  is right Z-Armendariz. Let  $f(x) = \sum_{i=0}^m a_i x^i$ ,  $g(x) = \sum_{j=0}^n b_j x^j \in R[x]$  and f(x)g(x) = 0. Then  $a_ib_j + I_k$  is a right singular element of the ring  $\frac{R}{I_k}$ , for all  $k = 1, \dots, t$ . So by Lemma 1,  $a_ib_j \in Z(R_R)$  for  $i = 0, 1, \dots, m$  and  $j = 0, 1, \dots, n$ . Therefore, R is right Z-Armendariz.

Suppose that  $I_1, \ldots, I_n$  are ideals of a ring R such that  $\frac{R}{I_1}, \ldots, \frac{R}{I_n}$  are right Z-Armendariz rings. Then  $\frac{R}{\bigcap_{k=1}^{n} I_k}$ , as a subdirect product of  $\frac{R}{I_1}, \ldots, \frac{R}{I_n}$  is right Z-Armendariz.

*Remark 1* In general, a subdirect product of right  $\mathbb{Z}$ -Armendariz rings is not necessarily right  $\mathbb{Z}$ -Armendariz. For example, let  $R = \begin{bmatrix} \mathbb{Z} & \mathbb{Z} \\ 0 & \mathbb{Z} \end{bmatrix}$ . By Example 3, R is not right  $\mathbb{Z}$ -Armendariz. For any  $n \ge 1$ , suppose that  $I_n = \begin{bmatrix} 0 & n\mathbb{Z} \\ 0 & 0 \end{bmatrix}$ . Then  $\bigcap_{n=1}^{\infty} I_n = 0$ , which implies that R is a subdirect product of  $\left\{\frac{R}{I_n}\right\}_{n=1}^{\infty}$ . If  $R_n := \frac{R}{I_n} = \begin{bmatrix} \mathbb{Z} & \mathbb{Z}_n \\ 0 & \mathbb{Z} \end{bmatrix}$ , then  $\mathbb{Z}(R_{nR_n}) =$ 

 $\begin{bmatrix} 0 & \mathbb{Z}_n \\ 0 & 0 \end{bmatrix}$ . So  $\frac{R_n}{\mathbb{Z}(R_n R_n)}$  is reduced and by [3, Lemma 1] it is Armendariz. As we shall see in Proposition 4, each  $\frac{R}{I_n}$  is right  $\mathbb{Z}$ -Armendariz for any  $n \ge 1$ .

In the sequel, we use the following observation. Let *R* be a ring and S = R[X], where *X* is a set of commuting indeterminates over *R*. Then  $\mathcal{Z}(S_S) = \mathcal{Z}(R_R)[X]$ , see [7, Exercise 7.35].

**Proposition 2** Let R be a ring. Then R is a right Z-Armendariz ring if and only if R[x] is so.

*Proof* For the "only if part" let *R* be a right  $\mathcal{Z}$ -Armendariz ring and  $f(t) = f_0 + f_1 t + \cdots + f_n t^n$ ,  $g(t) = g_0 + g_1 t + \cdots + g_m t^m \in R[x][t]$  and f(t)g(t) = 0, where  $f_i, g_j \in R[x]$  for each  $i = 0, 1, \ldots, n$  and  $j = 0, 1, \ldots, m$ . We show that  $f_i g_j \in \mathcal{Z}(R[x]_{R[x]})$ . Let  $k = \deg f_0 + \cdots + \deg f_n + \deg g_0 + \cdots + \deg g_m$ . Then  $f(x^k) = f_0 + f_1 x^k + \cdots + f_n x^{kn}$ ,  $g(x^k) = g_0 + g_1 x^k + \cdots + g_m x^{km} \in R[x]$  and  $f(x^k)g(x^k) = 0$ . So the product of each coefficient of  $f_i$  with every coefficient of  $g_j$  belongs to  $\mathcal{Z}(R_R)$ . Thus,  $f_i g_j \in \mathcal{Z}(R[x]_{R[x]})$ .

For the "if part" suppose that the polynomial ring R[x] is right  $\mathbb{Z}$ -Armendariz and  $f(x) = \sum_{i=0}^{m} a_i x^i$ ,  $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$  such that f(x)g(x) = 0. Consider  $F(t) = \sum_{i=0}^{m} f_i t^i$  and  $G(t) = \sum_{j=0}^{n} g_j t^j \in R[x][t]$ , where  $f_i = a_i x^i$  and  $g_j = b_j x^j$ . We have F(t)G(t) = 0, so that  $f_i g_j \in \mathbb{Z}(R[x]_{R[x]})$  which implies that  $a_i b_j \in \mathbb{Z}(R_R)$ , for  $i = 0, 1, \ldots, m$  and  $j = 0, 1, \ldots, n$ . Thus, R is right  $\mathbb{Z}$ -Armendariz.

**Corollary 1** A ring R is right Z-Armendariz if and only if the polynomial ring  $S = R[\{x_{\alpha}\}_{\alpha \in A}]$  is right Z-Armendariz.

*Proof* Let *R* be a right  $\mathcal{Z}$ -Armendariz ring and  $f, g \in R[\{x_{\alpha}\}_{\alpha \in A}][t]$  with fg = 0. Then  $f, g \in T[t] = R[x_{\alpha_1}, \ldots, x_{\alpha_n}][t]$  for some finite subset  $\{\alpha_1, \ldots, \alpha_n\} \subseteq A$ . By Proposition 2, the ring  $R[x_{\alpha_1}, \ldots, x_{\alpha_n}]$  is right  $\mathcal{Z}$ -Armendariz, so that  $ab \in \mathcal{Z}(T_T) \subseteq \mathcal{Z}(S_S)$  for each coefficient *a* of *f* and *b* of *g*. Therefore, *S* is right  $\mathcal{Z}$ -Armendariz. The converse is trivial.

*Remark* 2 If *R* is a right  $\mathbb{Z}$ -Armendariz ring, then S = R[[x]], the formal power series ring over *R*, is not necessarily right  $\mathbb{Z}$ -Armendariz. For example, let *K* be a field and  $R = \frac{K(a,b)}{(b^2)}$ . In [2, Example 1], it is shown that *R* is an Armendariz ring but R[[x]] is not. We show that *S* is not right  $\mathbb{Z}$ -Armendariz. Let  $u = (1 - ax) \in S$ . Clearly *u* is a unit in *S* with  $u^{-1} = (1 + ax + a^2x^2 + a^3x^3 + \cdots) \in S$  and  $f = ubu^{-1}$  is such that  $f^2 = 0$ . In the polynomial ring S[y], (b+bfy)(b-fby) = 0 but  $bfb \notin \mathbb{Z}(S_S)$ , since  $\operatorname{ann}_r(bfb) \cap aS = 0$ . Hence, S = R[[x]] is not right  $\mathbb{Z}$ -Armendariz. Also *S* is an example of an Abelian ring which is not right  $\mathbb{Z}$ -Armendariz.

**Proposition 3** Let R be a ring and G be a group. If the group ring RG or R[[x]] is right  $\mathbb{Z}$ -Armendariz, then so is R.

*Proof* Let *S* be one of the rings *RG* or *R*[[*x*]]. We can show that  $\mathcal{Z}(S_S) \cap R \subseteq \mathcal{Z}(R_R)$ . Now the rest of the proof follows easily. **Proposition 4** Let I be an ideal of a ring R such that the factor ring  $\overline{R} = \frac{R}{I}$  is Armendariz. Then for  $f_1, f_2, \ldots, f_n \in R[x]$  the equation  $f_1 f_2 \ldots f_n \in I[x]$  implies that  $a_1 a_2 \ldots a_n \in I$ , where  $a_i$  is an arbitrary coefficient of  $f_i$  for  $i = 1, 2, \ldots, n$ . In particular, if  $I \subseteq \mathbb{Z}(R_R)$ , then R is right  $\mathbb{Z}$ -Armendariz.

*Proof* Suppose that  $f_1, f_2, \ldots, f_n \in R[x]$  such that  $f_1 f_2 \ldots f_n \in I[x]$ . Then in R[x], we have  $\overline{f_1 f_2} \ldots \overline{f_n} = 0$ . By [1, Proposition 1],  $a_1 a_2 \ldots a_n \in I$  where  $a_i$  is an arbitrary coefficient of  $f_i$  for  $i = 1, 2, \ldots, n$ .

**Corollary 2** Let R be a ring. If Nil(R) is an ideal of R contained in  $Z(R_R)$ , then R is right Z-Armendariz.

*Proof* The factor ring  $\frac{R}{\text{Nil}(R)}$  is reduced and by [3, Lemma 1], it is Armendariz. So by Proposition 4, *R* is right  $\mathbb{Z}$ -Armendariz.

Recall that a ring R is *right duo*, if all right ideals are two-sided, also a ring R is called *reversible*, if ab = 0 implies that ba = 0 for all  $a, b \in R$ .

*Example 4* Right duo rings and reversible rings are examples of right  $\mathcal{Z}$ -Armendariz rings. By an easy calculation, we can show that  $\frac{R}{\mathcal{Z}(R_R)}$  is reduced, whenever *R* is a right duo or a reversible ring. So by [3, Lemma 1], it is Armendariz. Now, applying Proposition 4, we get that *R* is right  $\mathcal{Z}$ -Armendariz.

The next example shows that for a ring R, being Z-Armendariz is not left-right symmetric and also it is not preserved under homomorphic images.

*Example 5* Let  $R = \begin{bmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_4 \end{bmatrix}$ . Since  $\mathcal{Z}(R_R) = \begin{bmatrix} 0 & \mathbb{Z}_2 \\ 0 & 2\mathbb{Z}_4 \end{bmatrix} = \operatorname{Nil}(R)$ , Corollary 2 implies that *R* is right  $\mathcal{Z}$ -Armendariz. However, it is not left  $\mathcal{Z}$ -Armendariz, because for  $f(x) = E_{12} + E_{11}x$  and  $g(x) = E_{12} - E_{22}x \in R[x]$ , where  $E_{ij}$ 's are those introduced in Example 3, we have f(x)g(x) = 0, but  $E_{11}E_{12} = E_{12} \notin \mathcal{Z}(RR)$ , since  $\operatorname{ann}_l(E_{12}) \cap RE_{11} = 0$ . Note that *R* is an example of a noncommutative right  $\mathcal{Z}$ -Armendariz ring which is not Armendariz. Moreover, let  $I = \begin{bmatrix} 0 & 0 \\ 0 & 2\mathbb{Z}_4 \end{bmatrix}$ . Then  $\frac{R}{I}$  is isomorphic to  $\begin{bmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{bmatrix}$  which is not right  $\mathcal{Z}$ -Armendariz by Example 3. Therefore, a homomorphic image of a right  $\mathcal{Z}$ -Armendariz ring need not be right  $\mathcal{Z}$ -Armendariz.

Every Armendariz ring is Abelian [6, Lemma 7]. But a  $\mathbb{Z}$ -Armendariz ring is not necessarily Abelian. For example, let  $R = \begin{bmatrix} \mathbb{Z}_4 & 2\mathbb{Z}_4 \\ 0 & \mathbb{Z}_4 \end{bmatrix}$ . We have  $\mathcal{Z}(R_R) = \mathcal{Z}(_RR) = \begin{bmatrix} 2\mathbb{Z}_4 & 2\mathbb{Z}_4 \\ 0 & 2\mathbb{Z}_4 \end{bmatrix}$ . So  $\frac{R}{\mathbb{Z}(R_R)} = \frac{R}{\mathbb{Z}(_RR)}$  is reduced and so it is Armendariz. Therefore, according to Proposition 4, R is  $\mathbb{Z}$ -Armendariz. However, R is not Abelian.

Now, we need the following lemma whose proof is the same as the proof of [5, Lemma 7].

**Lemma 2** If a, b, c are elements in a right Z-Armendariz ring R such that ab = 0 and  $ac^nb = 0$  for some  $n \in \mathbb{N}$ , then  $acb \in Z(R_R)$ .

*Proof* We have f(x)g(x) = 0, where f(x) = a(1 - cx) and  $g(x) = (1 + cx + \dots + c^{n-1}x^{n-1})b$ . Thus,  $acb \in \mathcal{Z}(R_R)$ .

**Proposition 5** If *R* is a right Z-Armendariz ring and idempotents lift modulo  $Z(R_R)$ , then the ring  $\bar{R} = \frac{R}{Z(R_R)}$  is Abelian.

*Proof* Let  $\bar{e} \in Id(R)$ . By the hypothesis, we can assume that  $e \in Id(R)$ . Thus, it is sufficient to show that for any  $r \in R$ ,  $er - re \in \mathcal{Z}(R_R)$ . Let a = e, b = (1 - e) and c = er(1 - e). Clearly ab = 0 and  $c^2 = 0$ . By Lemma 2,  $er - ere = acb \in \mathcal{Z}(R_R)$ . Similarly, we have  $re - ere \in \mathcal{Z}(R_R)$ . So  $er - re \in \mathcal{Z}(R_R)$ .

**Proposition 6** Every right Z-Armendariz ring is Dedekind-finite.

*Proof* Suppose that *R* is a right  $\mathbb{Z}$ -Armendariz ring and uv = 1 for some  $u, v \in R$ . The element c = v(1 - vu) is nilpotent of nilpotency index two. If we put a = vu and b = 1 - vu, then by Lemma 2,  $v(1 - vu) = acb \in \mathbb{Z}(R_R)$ . Thus,  $uv(1 - vu) = (1 - vu) \in Id(R) \cap \mathbb{Z}(R_R) = 0$ .

*Remark 3* Let *R* be a ring and  $\Gamma$  be an infinite set. Then the ring of column (respectively, row) finite  $\Gamma \times \Gamma$  matrices over *R* is not Dedekind-finite and so is neither left nor right  $\mathcal{Z}$ -Armendariz.

Note that the converse of Proposition 6 is not true in general. For example, the matrix ring  $M_n(F)$ , where F is any field and  $n \ge 2$  is Dedekind-finite but is neither left nor right  $\mathbb{Z}$ -Armendariz (Example 3). Therefore, the class of (right)  $\mathbb{Z}$ -Armendariz rings lies strictly between the classes of Armendariz and Dedekind-finite rings.

Recall that a ring R is subdirectly irreducible, if every representation of R as a subdirect product of other rings is trivial, equivalently the intersection of all nonzero ideals of R is nonzero.

*Example 6* A subdirectly irreducible ring is not necessarily right  $\mathcal{Z}$ -Armendariz. Let *R* be the ring of  $\mathbb{N} \times \mathbb{N}$  column finite matrices over a field *F*. Then *R* has exactly one nonzero proper ideal and so it is subdirectly irreducible. However, *R* is not right  $\mathcal{Z}$ -Armendariz.

For the rest of this section we construct some right  $\mathcal{Z}$ -Armendariz rings by a given one.

**Proposition 7** Let R be a ring and  $e \in Id(R)$  such that eR(1 - e) = 0. If R is a right Z-Armendariz ring, then so is S = eRe.

*Proof* First, we show that  $\mathcal{Z}(R_R) \cap S \subseteq \mathcal{Z}(S_S)$ . Let  $a \in \mathcal{Z}(R_R) \cap S$  and  $0 \neq s \in S$ . There exists  $r \in R$  such that  $sr \neq 0$  and asr = 0. Thus, as(ere) = 0 and  $s(ere) \neq 0$ , since eR(1-e) = 0. This implies that  $a \in \mathcal{Z}(S_S)$ . Now, suppose that  $f(x) = \sum_{i=0}^{m} a_i x^i$  and  $g(x) = \sum_{j=0}^{n} b_j x^j \in S[x]$  such that f(x)g(x) = 0. So  $a_i b_j \in \mathcal{Z}(R_R) \cap S \subseteq \mathcal{Z}(S_S)$  for every i = 0, 1, ..., m and j = 0, 1, ..., n.

**Proposition 8** Let *R* be a ring and *M* be an ideal of *R* containing an element *r* such that  $ann_l(r) = 0$ . Then the ring  $S = \left\{ \begin{bmatrix} a & m \\ 0 & a \end{bmatrix} \mid a \in R \text{ and } m \in M \right\}$  is right  $\mathbb{Z}$ -Armendariz if and only if *R* is a right  $\mathbb{Z}$ -Armendariz ring.

*Proof* By some calculations we can show that

$$\mathcal{Z}(S_S) = \left\{ \begin{bmatrix} a & m \\ 0 & a \end{bmatrix} \in S \mid a \in \mathcal{Z}(R_R) \right\}.$$

Suppose that R is a right Z-Armendariz ring and F(x)G(x) = 0, where F(x) =Suppose that *R* is a fight  $\mathcal{D}$ -Amendalizing and P(x)O(x) = 0, where  $P(x) = \sum_{i=0}^{m} \begin{bmatrix} a_i & m_i \\ 0 & a_i \end{bmatrix} x^i$  and  $G(x) = \sum_{j=0}^{n} \begin{bmatrix} b_j & m'_j \\ 0 & b_j \end{bmatrix} x^j$ . So we have f(x)g(x) = 0, where  $f(x) = \sum_{i=0}^{m} a_i x^i$  and  $g(x) = \sum_{j=0}^{n} b_j x^j$ . Since *R* is right  $\mathcal{Z}$ -Armendariz,  $a_i b_j \in \mathcal{Z}(R_R)$ , which implies that  $\begin{bmatrix} a_i & m_i \\ 0 & a_i \end{bmatrix} \begin{bmatrix} b_j & m'_j \\ 0 & b_j \end{bmatrix} \in \mathcal{Z}(S_S)$  for every  $i = 0, 1, \dots, m$  and  $j = 0, 1, \dots, n$ . Therefore, *S* is a right  $\mathcal{Z}$ -Armendariz ring. Now, suppose that *S* is a right  $\mathcal{Z}$ -Armendariz ring. Now, suppose that *S* is a right  $\mathcal{Z}$ -Armendariz ring. right Z-Armendariz ring and f(x)g(x) = 0, where  $f(x) = \sum_{i=0}^{m} a_i x^i$  and  $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$ . So F(x)G(x) = 0 where  $F(x) = \sum_{i=0}^{m} \begin{bmatrix} a_i & 0 \\ 0 & a_i \end{bmatrix} x^i$  and  $G(x) = \sum_{i=0}^{m} a_i x^i$ .  $\sum_{j=0}^{n} \begin{bmatrix} b_{j} & 0\\ 0 & b_{j} \end{bmatrix} x^{j} \in S[x]. \text{ So } \begin{bmatrix} a_{i} & 0\\ 0 & a_{i} \end{bmatrix} \begin{bmatrix} b_{j} & 0\\ 0 & b_{j} \end{bmatrix} \in \mathcal{Z}(S_{S}) \text{ for every } i = 0, 1, \dots, m \text{ and } j = 0, 1, \dots, n, \text{ which implies that } a_{i}b_{j} \in \mathcal{Z}(R_{R}). \text{ Thus, } R \text{ is right } \mathcal{Z}\text{-Armendariz.} \qquad \Box$ 

**Corollary 3** Let R be a ring. Then R is right  $\mathbb{Z}$ -Armendariz if and only if the ring  $\frac{R[x]}{\langle x^2 \rangle}$  is so.

*Proof* The ring  $\frac{R[x]}{\langle x^2 \rangle}$  is isomorphic to the ring  $S = \left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \mid a, b \in R \right\}$ . Now, apply  $\square$ Proposition 8.

**Proposition 9** For a ring R, the following are equivalent

- (1)
- *R* is right Z-Armendariz;  $\frac{R[x]}{\langle x \rangle^n} \text{ is right } Z\text{-Armendariz for every } n \in \mathbb{N};$   $\frac{R[x]}{\langle x \rangle^n} \text{ is right } Z\text{-Armendariz for some } n \in \mathbb{N}.$ (2)

*Proof* The proof follows from the fact that the ring  $\frac{R[x]}{(x)^n}$  is isomorphic to the ring

$$S = \left\{ \begin{bmatrix} a_1 & a_2 & \dots & a_n \\ 0 & a_1 & \dots & a_{n-1} \\ \vdots & & \vdots \\ 0 & 0 & \dots & a_1 \end{bmatrix} \mid a_i \in R, i = 1, \dots, n \right\}$$
  
and  $\mathcal{Z}(S_S) = \left\{ \begin{bmatrix} a_1 & a_2 & \dots & a_n \\ 0 & a_1 & \dots & a_{n-1} \\ \vdots & & \vdots \\ 0 & 0 & \dots & a_1 \end{bmatrix} \in S \mid a_1 \in \mathcal{Z}(R_R) \right\}.$ 

**Proposition 10** Let R be a ring and M be an ideal of R such that  $M \subseteq \mathcal{Z}(R_R)$ . Then R is right Z-Armendariz if and only if the ring  $S = \begin{bmatrix} R & M \\ 0 & R \end{bmatrix}$  is so.

*Proof* It is not difficult to show that  $\mathcal{Z}(S_S) = \left\{ \begin{bmatrix} a & m \\ 0 & b \end{bmatrix} \in S \mid a, b \in \mathcal{Z}(R_R) \right\}$ . The rest of the proof is similar to the proof of Proposition 8 

137

Springer

**Proposition 11** Let R and S be rings,  $_RM_S$  be an (R, S)-bimodule and  $T = \begin{bmatrix} R & M \\ 0 & S \end{bmatrix}$ . If R is Armendariz, S is right Z-Armendariz and  $Z(M_S) = M$ , then T is right Z-Armendariz.

Proof First note that  $\begin{bmatrix} 0 & M \\ 0 & Z(S_S) \end{bmatrix} \subseteq Z(T_T)$ . Now suppose that  $f(x) = \sum_{i=0}^m a_i x^i$ ,  $g(x) = \sum_{j=0}^n b_j x^j \in T[x]$  and f(x)g(x) = 0, where  $a_i = \begin{bmatrix} r_i & m_i \\ 0 & s_i \end{bmatrix}$  and  $b_j = \begin{bmatrix} r'_j & m'_j \\ 0 & s'_j \end{bmatrix}$ . Thus,  $(\sum_{i=0}^m r_i x^i)(\sum_{j=0}^n r'_j x^j) = 0$  in R[x] and  $(\sum_{i=0}^m s_i x^i)(\sum_{j=0}^n s'_j x^j) = 0$  in S[x]. Since R is Armendariz and S is right Z-Armendariz, for any  $i = 0, 1, \ldots, m$  and  $j = 0, 1, \ldots, n$  we have  $r_i r'_j = 0$  and  $s_i s'_j \in Z(S_S)$  and hence  $a_i b_j \in Z(T_T)$ .

*Remark 4* Let *R* and *S* be rings,  $_RM_S$  be an (R, S)-bimodule and  $T = \begin{bmatrix} R & M \\ 0 & S \end{bmatrix}$ . If  $M_S$  is not a singular *S*-module, then *T* is not a right  $\mathcal{Z}$ -Armendariz ring. For if  $m \in M - \mathcal{Z}(M_S)$ , then

$$\left( \begin{bmatrix} 0 & m \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} x \right) \left( \begin{bmatrix} 0 & m \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} x \right) = 0.$$
  
But  $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & m \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & m \\ 0 & 0 \end{bmatrix} \notin \mathcal{Z}(T_T).$ 

**Proposition 12** Let R be a ring and S be a multiplicatively closed set of central regular elements of R. Then R is right Z-Armendariz if and only if the ring  $T = RS^{-1}$  is so.

*Proof* It is easy to see that  $\frac{a}{s} \in \mathcal{Z}(T_T)$  if and only if  $a \in \mathcal{Z}(R_R)$ . Now the rest of the proof is straightforward.

**Corollary 4** A ring R is right Z-Armendariz if and only if the ring

$$R\left[x_1, x_1^{-1}, \ldots, x_n, x_n^{-1}\right]$$

is right Z-Armendariz.

*Proof* Consider the multiplicatively closed set

$$S = \left\{ x_1^{i_1} x_2^{i_2} \dots x_n^{i_n} \mid i_1, i_2, \dots, i_n \ge 0 \right\}$$

in  $R[x_1, x_2, ..., x_n]$ . Now, apply Proposition 12 and Corollary 1.

**Corollary 5** Let R be a ring. Then R[[x]] is a right Z-Armendariz ring if and only if R((x)), the Laurent series ring over R, is so.

*Proof* Use Proposition 12 when  $S = \{1, x, x^2, ...\} \subseteq R[[x]]$ .

**Proposition 13** Let R be a ring and consider the ring

$$S = \{(a, b) \in R \times R \mid a - b \in \mathcal{Z}(R_R)\}$$

with component-wise addition and multiplication. Then R is right Z-Armendariz if and only if S is so.

*Proof* Let *R* be right  $\mathcal{Z}$ -Armendariz. If

$$F(x) = \sum_{i=0}^{m} (a_i, b_i) x^i, \quad G(x) = \sum_{j=0}^{n} (a'_j, b'_j) x^j \in S[x]$$

and F(x)G(x) = 0, then f(x)g(x) = 0, where  $f(x) = \sum_{i=0}^{m} a_i x^i$  and  $g(x) = \sum_{j=0}^{n} a'_j x^j \in R[x]$ . So  $a_i a'_j \in \mathcal{Z}(R_R)$  for i = 0, 1, ..., m and j = 0, 1, ..., n. Similarly, we can show that  $b_i b'_j \in \mathcal{Z}(R_R)$ . Thus,  $(a_i, b_i)(a'_j, b'_j) \in \mathcal{Z}(R_R) \times \mathcal{Z}(R_R) \subseteq \mathcal{Z}(S_S)$ . So S is right Z-Armendariz.

Now, suppose that S is right Z-Armendariz. If  $f(x) = \sum_{i=0}^{m} a_i x^i$ ,  $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$  and f(x)g(x) = 0, then  $(\sum_{i=0}^{m} (a_i, a_i)x^i)(\sum_{j=0}^{n} (b_j, b_j)x^j) = 0$  in S[x]. So for any i, j we have  $(a_i, a_i)(b_j, b_j) \in \mathbb{Z}(S_S)$ . Thus,  $a_i b_j \in \mathbb{Z}(R_R)$ . Therefore, R is right Z-Armendariz.

#### 3 Z-Armendariz Modules

Recall that a right *R*-module *M* is Armendariz if f(x)g(x) = 0 implies that mr = 0, where  $f(x) \in M[x], g(x) \in R[x], m$  is an arbitrary coefficient of f(x) and *r* is an arbitrary coefficient of g(x) [1]. In [4], it is shown that the class of Armendariz modules is closed under direct products and submodules, and also every flat module over an Armendariz ring is Armendariz. In general a homomorphic image of an Armendariz module need not be Armendariz [4, Example 2.12]. However, as we shall see below, for an Armendariz module  $M_R$ , the factor module  $\frac{M}{Z(M_R)}$  is Armendariz too. But first we need a lemma.

**Lemma 3** Let  $M_R$  be a right *R*-module. Then  $\mathcal{Z}(M[x]_{R[x]}) = \mathcal{Z}(M_R)[x]$ .

*Proof* The proof is similar to [7, Exercise 7.35], for the right singular ideal of a polynomial ring.  $\Box$ 

**Proposition 14** If  $M_R$  is an Armendariz R-module, then so is  $\overline{M} = \frac{M}{\mathcal{Z}(M_P)}$ .

*Proof* Assume that  $f(x) = \sum_{i=0}^{m} m_i x^i \in M[x]$  and  $g(x) = \sum_{j=0}^{n} r_j x^j \in R[x]$  such that  $f(x)g(x) \in \mathcal{Z}(M_R)[x] = \mathcal{Z}(M[x]_{R[x]})$ . We will show that for every i = 0, 1, ..., m and  $j = 0, 1, ..., n, m_i r_j \in \mathcal{Z}(M_R)$ . All coefficients of f(x)g(x) are in  $\mathcal{Z}(M_R)$ , so that for every nonzero  $c \in R$  there exists  $r \in R$  such that  $cr \neq 0$  and f(x)g(x)cr = 0. Since  $M_R$  is Armendariz,  $m_i r_j cr = 0$  for every i = 0, 1, ..., m and j = 0, 1, ..., n and therefore,  $m_i r_j \in \mathcal{Z}(M_R)$ .

A similar technique can be used to show that for any Armendariz ring R, the factor rings  $\frac{R}{Z(R_R)}$  and  $\frac{R}{Z(R_R)}$  are Armendariz. Note that the converse of this statement is not true, for example, let R be a commutative ring. Then  $\frac{R}{Z(R)}$  is reduced and so is Armendariz. However, commutative rings are not necessarily Armendariz.

In the rest of this section, we study Z-Armendariz modules as a generalization of Armendariz modules.

**Definition 2** A right *R*-module  $M_R$  is called  $\mathbb{Z}$ -Armendariz, if the equation f(x)g(x) = 0implies that  $m_i r_j \in \mathbb{Z}(M_R)$  for every i = 0, 1, ..., m and j = 0, 1, ..., n, where  $f(x) = \sum_{i=0}^{m} m_i x^i \in M[x]$  and  $g(x) = \sum_{i=0}^{n} r_j x^j \in R[x]$ . Clearly every Armendariz module (for example, every vector space over a division ring) is  $\mathbb{Z}$ -Armendariz. Also every singular right *R*-module is  $\mathbb{Z}$ -Armendariz and if  $M_R$  is a non-singular  $\mathbb{Z}$ -Armendariz module, then  $M_R$  is Armendariz. A ring *R* is right  $\mathbb{Z}$ -Armendariz, if  $R_R$  is a  $\mathbb{Z}$ -Armendariz module.

**Proposition 15** The class of Z-Armendariz modules over a ring R, is closed under submodules and arbitrary direct sums.

*Proof* The proof follows from the fact that if  $N_R \leq M_R$ , then  $\mathcal{Z}(N_R) = \mathcal{Z}(M_R) \cap N$  and for a family of right *R*-modules  $\{M_i\}_{i \in I}, \mathcal{Z}(\bigoplus_{i \in I} M_i) = \bigoplus_{i \in I} \mathcal{Z}(M_i)$ .

**Corollary 6** A ring R is right Z-Armendariz if and only if every submodule of a free right *R*-module is Z-Armendariz.

**Corollary 7** Every semisimple right module over a right Z-Armendariz ring is Z-Armendariz.

**Proof** By Proposition 15, it is sufficient to prove the corollary for simple modules. Suppose that R is a right  $\mathbb{Z}$ -Armendariz ring and  $M_R$  is a simple module. By [7, Exercise 7.12A], every simple module over an arbitrary ring is either singular or projective. According to Corollary 6,  $M_R$  is a  $\mathbb{Z}$ -Armendariz module.

In the next example we see that an infinite direct product of Z-Armendariz modules is not necessarily Z-Armendariz.

*Example* 7 Let  $R = \begin{bmatrix} \mathbb{Z} & \mathbb{Z} \\ 0 & \mathbb{Z} \end{bmatrix}$ . For every  $n \ge 2$ ,  $M_n = \begin{bmatrix} \mathbb{Z} & \mathbb{Z} \\ 0 & \mathbb{Z} \end{bmatrix}$  is a right *R*-module with  $\mathcal{Z}(M_n) = \begin{bmatrix} 0 & \mathbb{Z} \\ 0 & 0 \end{bmatrix}$ . Since  $\mathbb{Z}$  is an Armendariz ring, one can show that  $M_n$  is a  $\mathbb{Z}$ -Armendariz *R*-module. Now consider  $M = \prod_{n\ge 2} M_n$ . Put  $a = \left( \begin{bmatrix} 0 & \overline{1} \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & \overline{1} \\ 0 & 0 \end{bmatrix}, \dots \right)$ ,  $b = \left( \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \dots \right) \in M$  and  $f(x) = a - bx \in M[x]$  and  $g(x) = E_{12} + E_{22}x \in R[x]$ , where  $E_{ij}$ 's are those introduced in Example 3. We have f(x)g(x) = 0. But  $aE_{22} = a$  is not contained in  $\mathbb{Z}(M_R)$ , since  $\operatorname{ann}_r(a) = \begin{bmatrix} \mathbb{Z} & \mathbb{Z} \\ 0 & 0 \end{bmatrix}$ , which is not an essential right ideal.

**Proposition 16** A module  $M_R$  is  $\mathbb{Z}$ -Armendariz if and only if every finitely generated submodule of M is  $\mathbb{Z}$ -Armendariz.

*Proof* The only if part follows from Proposition 15. For the if part, note that for any  $f \in M[x]$  there exists a finitely generated submodule N of M such that  $f \in N[x]$ .

**Corollary 8** Let R be a ring such that every finitely generated right R-module can be embedded in a free module (for example, let R be a quasi-Frobenious ring). Then the following are equivalent:

- (1) *R* is a right Z-Armendariz ring;
- (2) Every right R-module is  $\mathcal{Z}$ -Armendariz.
- (3) Every cyclic right *R*-module is *Z*-Armendariz.

*Proof* (1)  $\Rightarrow$  (2) Let  $M_R$  be an *R*-module and  $K_R$  be a finitely generated submodule of  $M_R$ . Since  $K_R$  can be embedded in a free *R*-module, by Proposition 15, it is  $\mathbb{Z}$ -Armendariz. Now Proposition 16 implies that  $M_R$  is  $\mathbb{Z}$ -Armendariz. The proofs of (2)  $\Rightarrow$  (3) and (3)  $\Rightarrow$  (1) are clear.

**Proposition 17** Let I be a right ideal of a ring R such that I is not contained in  $Z(R_R)$  and  $Z(R_R)$  is a prime ideal of R. If  $I_R$  is a Z-Armendariz module, then R is a right Z-Armendariz ring.

*Proof* Let  $f(x) = \sum_{i=0}^{m} a_i x^i$ ,  $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$  and f(x)g(x) = 0. For every  $a \in I$  and  $r \in R$ , we have af(x)g(x)r = 0. Obviously,  $af(x) \in I[x]$ , so that  $aa_ib_jr \in \mathcal{Z}(I_R) \subseteq \mathcal{Z}(R_R)$ . Thus,  $Ia_ib_jR \subseteq \mathcal{Z}(R_R)$  for any i = 0, 1, ..., m and j = 0, 1, ..., n. As  $\mathcal{Z}(R_R)$  is a prime ideal and  $I \not\subseteq \mathcal{Z}(R_R)$ , we have  $a_ib_j \in \mathcal{Z}(R_R)$ . Therefore, R is right  $\mathcal{Z}$ -Armendariz.

**Proposition 18** Every flat right R-module over a right Z-Armendariz ring R is Z-Armendariz.

*Proof* In view of the fact that for any modules  $F_R$  and  $M_R$  and any *R*-homomorphism  $\varphi$ :  $F \to M$ ,  $\varphi(\mathcal{Z}(F_R)) \subseteq \mathcal{Z}(M_R)$ , the proof is similar to the proof of [4, Theorem 2.15].  $\Box$ 

The proof of the following lemma is similar to the proof of [1, Proposition 1].

**Lemma 4** Let  $M_R$  be an Armendariz module,  $f \in M[x]$  and  $g_1, g_2, \ldots, g_n \in R[x]$ . If  $fg_1g_2 \cdots g_n = 0$ , then  $mb_1b_2 \cdots b_n = 0$ , where m is an arbitrary coefficient of f and  $b_i$  is an arbitrary coefficient of  $g_i$  for  $i = 1, 2, \ldots, n$ .

**Proposition 19** Let  $M_R$  be a right *R*-module and  $\frac{M}{K}$  be an Amendariz module for some submodule *K* of  $\mathcal{Z}(M_R)$ . For any  $f \in M[x]$  and  $g_1, g_2, \ldots, g_n \in R[x]$ , if  $fg_1g_2 \cdots g_n \in K[x]$ , then  $mb_1b_2 \cdots b_n \in K$ , where *m* is any coefficient of *f* and  $b_i$  is any coefficient of  $g_i$  for  $i = 1, 2, \ldots, n$ . In particular,  $M_R$  is a  $\mathcal{Z}$ -Armendariz module.

Proof Using Lemma 4, the proof is clear.

Similar to the case for the Armendariz modules (Proposition 14), we have the following result.

**Proposition 20** Let R be a ring. If  $M_R$  is a  $\mathbb{Z}$ -Armendariz module, then so is the factor module  $\overline{M} = \frac{M}{\mathbb{Z}(M_R)}$ .

Proof Suppose that  $\bar{f}(x) = \sum_{i=0}^{m} \bar{a}_i x^i \in \bar{M}[x]$  and  $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$  such that  $\bar{f}(x)g(x) = \bar{0}$  in  $\frac{M}{Z(M_R)}[x]$ . We show that  $\bar{a}_i b_j \in \mathcal{Z}\left(\frac{M}{Z(M_R)}\right)$  for any i = 0, 1, ..., m and j = 0, 1, ..., n. We have  $f(x)g(x) \in \mathcal{Z}(M_R)[x]$ , where  $f(x) = \sum_{i=0}^{m} a_i x^i$ . Since every coefficient of f(x)g(x) is a singular element of M, for every nonzero element  $c \in R$ , there exists  $r \in R$  such that  $cr \neq 0$  and f(x)g(x)cr = 0. Now  $a_i b_j cr \in \mathcal{Z}(M_R)$  for i = 0, 1, ..., m and j = 0, 1, ..., n, since  $M_R$  is  $\mathcal{Z}$ -Armendariz. Hence,  $\bar{a}_i b_j cr = \bar{0}$  in  $\frac{M}{\mathcal{Z}(M_R)}$ . Thus,  $\bar{a}_i b_j \in \mathcal{Z}\left(\frac{M}{\mathcal{Z}(M_R)}\right)$ .

**Corollary 9** Let R be a right nonsingular ring. Then for every  $\mathbb{Z}$ -Armendariz right R-module M, the factor module  $\frac{M}{\mathbb{Z}(M_R)}$  is Armendariz.

*Proof* By Proposition 20,  $\frac{M}{\mathcal{Z}(M_R)}$  is  $\mathcal{Z}$ -Armendariz and by [7, Theorem 7.21],  $\mathcal{Z}\left(\frac{M}{\mathcal{Z}(M_R)}\right) = 0$ . Therefore,  $\frac{M}{\mathcal{Z}(M_R)}$  is an Armendariz module.

The proof of the next result is similar to the proof of Proposition 2.

**Proposition 21** Let  $M_R$  be an R-module. Then  $M_R$  is  $\mathcal{Z}$ -Armendariz if and only if  $M[x]_{R[x]}$  is so.

Note that if  $\theta$  :  $R \rightarrow S$  is a ring homomorphism and M is an S-module, then M is an R-module via  $mr = m\theta(r)$ .

**Proposition 22** Let  $\theta$  :  $R \rightarrow S$  be a ring epimorphism. If  $M_S$  is a  $\mathbb{Z}$ -Armendariz S-module, then  $M_R$  is  $\mathbb{Z}$ -Armendariz as an R-module.

*Proof* Observe that  $\mathcal{Z}(M_S) \subseteq \mathcal{Z}(M_R)$ , now the rest of the proof is clear.

In the next theorem, we show that over a right duo-ring, every right module is  $\mathcal{Z}$ -Armendariz. But first we state the following lemma.

**Lemma 5** Let R be a right duo-ring and  $M_R$  be a right R-module. If  $mr^2 \in \mathcal{Z}(M_R)$  for some  $m \in M$  and  $r \in R$ , then  $mr \in \mathcal{Z}(M_R)$ .

*Proof* Suppose that  $mr^2 \in \mathcal{Z}(M_R)$  and  $mr \notin \mathcal{Z}(M_R)$ . So there exists  $a \in R - \{0\}$  such that  $\operatorname{ann}_r(mr) \cap aR = 0$ . On the other hand,  $mr^2ab = 0$  for some  $b \in R$  such that  $ab \neq 0$ . Thus, mr(rab) = 0, which implies that  $rab \in \operatorname{ann}_r(mr) \cap aR = 0$ . Hence,  $ab \in \operatorname{ann}_r(mr) \cap aR = 0$ , which is a contradiction.

**Theorem 2** For a right duo-ring R, every right R-module is Z-Armendariz.

*Proof* Let  $f(x) = \sum_{i=0}^{m} m_i x^i \in M[x]$  and  $g(x) = \sum_{j=0}^{n} r_j x^j \in R[x]$  such that f(x)g(x) = 0. We will show that  $m_i r_j \in \mathcal{Z}(M_R)$  for every i = 0, 1, ..., m and j = 0, 1, ..., n. We prove by induction on i + j. Clearly  $m_0 r_0 = 0 \in \mathcal{Z}(M_R)$ . Suppose that the statement is true when i + j < k. If i + j = k, we multiply the equation

$$m_0 r_k + m_1 r_{k-1} + \dots + m_k r_0 = 0 \tag{1}$$

by  $r_0$ . Since *R* is a right duo-ring, for each i = 0, 1, ..., (k - 1), we have  $m_i r_{k-i} r_0 = m_i r_0 r'_i$  for some  $r'_i \in R$ . By the induction hypotheses,  $m_i r_0 \in \mathcal{Z}(M_R)$  for i < k. Thus,  $m_k r_0^2 \in \mathcal{Z}(M_R)$ . By Lemma 5,  $m_k r_0 \in \mathcal{Z}(M_R)$ . Now multiplying (1), by  $r_1$ , we deduce that  $m_{k-1}r_1^2 \in \mathcal{Z}(M_R)$  and again by Lemma 5,  $m_{k-1}r_1 \in \mathcal{Z}(M_R)$ . By continuing this proses, we have  $m_i r_{k-i} \in \mathcal{Z}(M_R)$  for every i = 0, 1, ..., k.

*Remark 5* (1) We show that the converse of Theorem 2 is not true. Recall that a ring is right distributive if its lattice of right ideals is distributive. By [10, Corollary 7], over a right distributive ring, any right module is Armendariz (and hence  $\mathcal{Z}$ -Armendariz). But there is a right distributive ring which is not right duo ([9, Example 7.1.6]).

143

(2) Recall that an *R*-module  $M_R$  is Dedekind-finite if  $M \cong M \oplus N$  (for some *R*-module  $N_R$ ) implies that N = 0. We show that a  $\mathbb{Z}$ -Armendariz module is not necessarily Dedekind-finite. For example, let *R* be a commutative ring and  $M = R^{(\mathbb{N})}$ . By Theorem 2, *M* is a  $\mathbb{Z}$ -Armendariz module but clearly it is not Dedekind-finite.

## References

- Anderson, D.D., Camillo, V.: Armendariz rings and Gaussian rings. Commun. Algebra 26, 2265–2272 (1998)
- 2. Antoine, R.: Examples of Armendariz rings. Commun. Algebra 38, 4130-4143 (2010)
- 3. Armendariz, E.P.: A note on extensions of Baer and P.P.-rings. J. Aust. Math. Soc. 18, 470–473 (1974)
- Buhphang, A., Rege, M.B.: Semi-commutative modules and Armendariz modules. Arab. J. Math. Sci. 8, 53–65 (2002)
- Huh, C., Lee, Y., Smoktunwicz, A.: Armendariz rings and semicommutative rings. Commun. Algebra 30, 751–761 (2002)
- 6. Kim, N.K., Lee, Y.: Armendariz rings and reduced rings. J. Algebra 223, 477-488 (2000)
- Lam, T.Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics, vol. 189. Springer, New York (1999)
- 8. Rege, M.B., Chhawchharia, S.: Armendariz rings. Proc. Jpn. Acad. Ser. A Math. Sci. 73, 14–17 (1997)
- 9. Ziembowski, M.: Right Gaussian rings and related topics. Ph.D. Thesis, University of Edinburgh (2010)
- Zhou, Y., Ziembowski, M.: Distributive modules and Armendariz modules. J. Math. Soc. Jpn. 67, 789– 796 (2015)

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.