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Abstract
We propose a method for solving the split variational inequality problem (SVIP) involving
Lipschitz continuous and pseudomonotone mappings. The proposed method is inspired by
the Halpern subgradient extragradient method for solving the monotone variational inequal-
ity problem with a simple step size. A strong convergence theorem for an algorithm for
solving such a SVIP is proved without the knowledge of the Lipschitz constants of the map-
pings. As a consequence, we get a strongly convergent algorithm for finding the solution
of the split feasibility problem (SFP), which requires only two projections at each iteration
step. A simple numerical example is given to illustrate the proposed algorithm.

Keywords Split variational inequality problem · Split feasibility problem · Halpern
subgradient extragradient method · Strong convergence · Pseudomonotone mapping

Mathematics Subject Classification (2010) 49M37 · 90C26 · 65K15

1 Introduction

Let H1 and H2 be two real Hilbert spaces and A : H1 → H2 is a bounded linear operator.
Let C and Q be two nonempty closed convex subsets of H1 and H2, respectively. Given
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mappings F1 : H1 → H1 and F2 : H2 → H2, the split variational inequality problem (in
short, SVIP) introduced first by Censor et al. [8] is to find a solution x∗ of the variational
inequality problem in the space H1 so that the image y∗ = A(x∗), under a given bounded
linear operator A, is a solution of another variational inequality problem in spaceH2.

More specifically, the SVIP is to find

x∗ ∈ C : 〈F1(x
∗), x − x∗〉 ≥ 0 ∀x ∈ C

such that

y∗ = A(x∗) ∈ Q : 〈F2(y
∗), y − y∗〉 ≥ 0 ∀y ∈ Q.

When F1 = 0 and F2 = 0, the SVIP reduces to the split feasibility problem, shortly SFP,

Find x∗ ∈ C such that A(x∗) ∈ Q,

which was first introduced by Censor and Elfving [4] in finite-dimensional Hilbert spaces
for modeling inverse problems. Recently, it has been found that the SFP can also be
used to model the intensity-modulated radiation therapy [3, 5, 10, 23], and other real-world
problems.

The SVIP was introduced and investigated by Censor et al. [8] in the case when F1 is
α1-inverse strongly monotone onH1 and F2 is α2-inverse strongly monotone onH2. Their
algorithm starts from a given point x0 ∈ H1, for all n ≥ 0, the next iterate is defined as

xn+1 = P
F1,λ
C

(
xn + γA∗ (

P
F2,λ
Q − I

)
(Axn)

)
,

where γ ∈
(
0, 1

‖A‖2
)
, 0 ≤ λ ≤ 2min{α1, α2} and P

F1,λ
C and P

F2,λ
Q stand for PC(I − λF1)

and PQ(I − λF2), respectively. They showed that the sequence {xn} converges weakly to
a solution of the split variational inequality problem, provided that the solution set of the
SVIP is nonempty.

Since the solution set of the variational inequality problem VIP(C, F ), for F : H → H,
coincides with the set of fixed points of the mapping T from H to H by taking T (x) =
PC(x − λF(x)) for all x ∈ H (λ > 0 fixed), the SVIP is an instance of the split common
fixed point problem, shortly SCFPP, which is introduced in 2009 by Censor and Segal [11]

Find x∗ ∈ Fix(U) such that y∗ = A(x∗) ∈ Fix(T ),

where U : H1 → H1 and T : H2 → H2 are given mappings. Many authors proposed
several methods for solving the SCFPP, see [1, 2, 13, 21, 25] and the references therein.

It is well-known (see e.g. [14, p. 1110]) that the projection method for monotone vari-
ational inequality problems (VIPs) may fail to converge. To overcome this difficulty, the
extragradient method, first proposed by Korpelevich [19] for saddle problems, can be
applied to monotone VIPs ensuring convergence. However, the extragradient method may
be costly, since it requires two projections at each step. Motivated by this fact, Censor
et al. [6] introduced an algorithm, which is called the subgradient extragradient method, for
solving the monotone variational inequality problem

VIP(C, F ) Find x∗ ∈ C such that 〈F(x∗), x − x∗〉 ≥ 0 ∀x ∈ C,
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in which the second projection onto the constrained set C is replaced by the one onto a
half-space Tn containing it. Their algorithm is of the form

⎧⎪⎪⎨
⎪⎪⎩

x0 ∈ H,

yn = PC(xn − λF(xn)),

Tn = {ω ∈ H : 〈xn − λF(xn) − yn, ω − yn〉 ≤ 0},
xn+1 = PTn(x

n − λF(yn)).

(1)

It was proved that if F : H → H is monotone on C, L-Lipschitz continuous on H and

the stepsize λ ∈
(
0, 1

L

)
, then the sequence {xn} generated by (1) converges weakly to a

solution x∗ of the VIP(C, F ). Since the inception of the subgradient extragradient method,
they also proposed another modification in Euclidean space (see [9]).

In order to obtain the strong convergence of the subgradient extragradient method,
Censor et al. [7] introduced the following hybrid subgradient extragradient method

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ H,

yn = PC(xn − λF(xn)),

Tn = {ω ∈ H : 〈xn − λF(xn) − yn, ω − yn〉 ≤ 0},
zn = αnx

n + (1 − αn)PTn(x
n − λF(yn)),

Cn = {z ∈ H : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x

0),

(2)

and they proved, under appropriate conditions, that the sequence {xn} generated by (2)
converges strongly to a point u∗ = PSol(C,F )(x

0).
Inspired by the results in [7], Kraikaew and Saejung [20] introduced the following

Halpern subgradient extragradient method for solving VIP(C, F )
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0 ∈ H,

yn = PC(xn − λF(xn)),

Tn = {ω ∈ H : 〈xn − λF(xn) − yn, ω − yn〉 ≤ 0},
zn = PTn(x

n − λF(yn)),

xn+1 = αnx
0 + (1 − αn)z

n,

(3)

where λ ∈
(
0, 1

L

)
, {αn} ⊂ (0, 1), limn→∞ αn = 0 and

∑∞
n=0 αn = ∞. They proved that

the sequence {xn} generated by (3) converges strongly to PSol(C,F )(x
0).

In the present paper, inspired by the above mentioned works, we present the modified
Halpern subgradient extragradient method for the SVIP when F1 and F2 are Lipschitz
continuous pseudomonotone mappings but the Lipschitz constants are not required to be
known. The strong convergence of the proposed method is established under some suitable
conditions.

The paper is organized as follows. In Section 2, we present some preliminaries that will
be needed in the sequel. Section 3 deals with the algorithm and its convergence analysis.
Finally, in Section 4, we illustrate the proposed method by considering a simple numerical
experiment.

2 Preliminaries

LetC be a nonempty closed convex subset of a real Hilbert spaceH. The strong convergence
of {xn} to x is written as xn → x, while the weak convergence of {xn} to x is denoted by
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xn ⇀ x. Recall that the metric projection fromH onto C, denoted PC , is defined in such a
way that, for each x ∈ H, PC(x) is the unique element in C with the property

‖x − PC(x)‖ = min{‖x − y‖ : y ∈ C}.

Some important properties of the projection operator PC are gathered in the following
lemma.

Lemma 1 ([15])

(i) For given x ∈ H and y ∈ C, y = PC(x) if and only if

〈x − y, z − y〉 ≤ 0 ∀z ∈ C.

(ii) PC is nonexpansive, that is,

‖PC(x) − PC(y)‖ ≤ ‖x − y‖ ∀x, y ∈ H.

(iii) For all x ∈ H and y ∈ C, we have

‖PC(x) − y‖2 ≤ ‖x − y‖2 − ‖PC(x) − x‖2.

For more information on the projection operator PC , see [16, Section 3] and [18].

Definition 1 Let H1 and H2 be two Hilbert spaces and let A : H1 → H2 be a bounded
linear operator. An operator A∗ : H2 → H1 with the property

〈A(x), y〉 = 〈x, A∗(y)〉

for all x ∈ H1 and y ∈ H2, is called the adjoint operator of A.

The adjoint operator of a bounded linear operator A between Hilbert spaces H1, H2
always exists and is uniquely determined. Furthermore, A∗ is a bounded linear operator and
‖A∗‖ = ‖A‖.

Definition 2 ([12, 17]) A mapping F : H → H is said to be

(i) L-Lipschitz continuous onH if

‖F(x) − F(y)‖ ≤ L‖x − y‖ ∀x, y ∈ H;

(ii) monotone on C if

〈F(x) − F(y), x − y〉 ≥ 0 ∀x, y ∈ C;

(iii) pseudomonotone on C if

〈F(y), x − y〉 ≥ 0 =⇒ 〈F(x), x − y〉 ≥ 0 ∀x, y ∈ C.

The next lemmas will be used for proving the convergence of the algorithm proposed in
the next section.

V.P. Huy et al.190



A Strongly Convergent Modified Halpern Subgradient Extragradient...

Lemma 2 Let C be a nonempty closed convex subset of a real Hilbert space H. Let F :
H → H be pseudomonotone on C and L-Lipschitz continuous onH such that the solution
set Sol(C, F ) of the VIP(C, F ) is nonempty. Let x ∈ H, μ ∈ (0, 1), λ > 0 and define

y = PC(x − λF(x)),

z = PT (x − λF(y)),

T = {ω ∈ H : 〈x − λF(x) − y, ω − y〉 ≤ 0},

γ =
⎧⎨
⎩

min

{
μ‖x − y‖

‖F(x) − F(y)‖ , λ

}
if F(x) �= F(y),

λ if F(x) = F(y).

Then for all x∗ ∈ Sol(C, F )

‖z − x∗‖2 ≤ ‖x − x∗‖2 −
(
1 − μ

λ

γ

)
‖x − y‖2 −

(
1 − μ

λ

γ

)
‖y − z‖2.

Proof By the definition of y and Lemma 1, it follows that

〈x − λF(x) − y, z − y〉 ≤ 0 ∀z ∈ C.

Combining this inequality and the definition of T , we get C ⊂ T .
Since x∗ ∈ Sol(C, F ) and y ∈ C, we have, in particular, 〈F(x∗), y − x∗〉 ≥ 0. Using the

pseudomonotonicity on C of F , we get

〈F(y), y − x∗〉 ≥ 0. (4)

From z = PT (x − λF(y)), we have z ∈ T . This together with the definition of T implies

〈x − λF(x) − y, z − y〉 ≤ 0. (5)

Since x∗ ∈ C and C ⊂ T , we get x∗ ∈ T . Thus, using Lemma 1, (4) and (5), we obtain

‖z − x∗‖2 = ‖PT (x − λF(y)) − x∗‖2
≤ ‖x − λF(y) − x∗‖2 − ‖x − λF(y) − z‖2
= ‖x − x∗‖2 − ‖x − z‖2 + 2λ〈x∗ − z, F (y)〉
= ‖x − x∗‖2 − ‖x − z‖2 − 2λ〈F(y), y − x∗〉 + 2λ〈y − z, F (y)〉
≤ ‖x − x∗‖2 − ‖x − z‖2 + 2λ〈y − z, F (y)〉
= ‖x − x∗‖2 + 2λ〈y − z, F (y)〉 − ‖x − y‖2 − ‖y − z‖2 − 2〈y − z, x − y〉
= ‖x − x∗‖2 − ‖x − y‖2 − ‖y − z‖2 + 2〈y − z, λF (y) − x + y〉
= ‖x − x∗‖2 − ‖x − y‖2 − ‖y − z‖2 + 2〈x − λF(x) − y, z − y〉

+2λ〈F(x) − F(y), z − y〉
≤ ‖x − x∗‖2 − ‖x − y‖2 − ‖y − z‖2 + 2λ〈F(x) − F(y), z − y〉. (6)

If F(x) �= F(y) then from the definition of γ , we have

‖F(x) − F(y)‖ ≤ μ

γ
‖x − y‖. (7)
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Using the Cauchy–Schwarz inequality, (7) and the inequality of arithmetic and geometric
means, we obtain

2〈F(x) − F(y), z − y〉 ≤ 2‖F(x) − F(y)‖‖z − y‖
≤ 2

μ

γ
‖x − y‖‖z − y‖

≤ μ

γ

(
‖x − y‖2 + ‖y − z‖2

)
. (8)

Substituting (8) into (6), we get

‖z − x∗‖2 ≤ ‖x − x∗‖2 − ‖x − y‖2 − ‖y − z‖2 + λ
μ

γ

(
‖x − y‖2 + ‖y − z‖2

)

= ‖x − x∗‖2 −
(
1 − μ

λ

γ

)
‖x − y‖2 −

(
1 − μ

λ

γ

)
‖y − z‖2.

If F(x) = F(y) then γ = λ. From (6), we have

‖z − x∗‖2 ≤ ‖x − x∗‖2 − ‖x − y‖2 − ‖y − z‖2

≤ ‖x − x∗‖2 −
(
1 − μ

λ

γ

)
‖x − y‖2 −

(
1 − μ

λ

γ

)
‖y − z‖2.

This completes the proof of Lemma 2.

Lemma 3 Let C be a nonempty closed convex subset of a real Hilbert space H. Let F :
H → H be monotone and L-Lipschitz continuous on H. Assume that λn ≥ a > 0 for
all n, {xn} is a sequence in H satisfying xn ⇀ x and limn→∞ ‖xn − yn‖ = 0, where
yn = PC(xn − λnF (xn)) for all n. Then x ∈ Sol(C, F ).

Proof It follows from xn ⇀ x and limn→∞ ‖xn − yn‖ = 0 that {xn} is bounded and yn ⇀

x. Then {yn}, {F(xn)} are also bounded thanks to yn ⇀ x and the Lipschitz continuity of
F . Since {yn} ⊂ C, yn ⇀ x and C is closed and convex, it is also weakly closed, and thus
x ∈ C.

For all x ∈ C, from yn = PC(xn − λnF (xn)), we have

〈xn − λnF (xn) − yn, x − yn〉 ≤ 0 ∀n.

This together with the monotonicity of F and the Cauchy–Schwarz inequality would imply
that

〈F(x), xn − x〉 ≤ 〈F(xn), xn − x〉
= 〈F(xn), xn−yn〉+ 1

λn
〈xn−yn, yn−x〉+ 1

λn
〈xn−λnF (xn)−yn, x−yn〉

≤ 〈F(xn), xn − yn〉 + 1
λn

〈xn − yn, yn − x〉
≤ ‖F(xn)‖‖xn − yn‖ + 1

λn
‖xn − yn‖‖yn − x‖

≤ ‖F(xn)‖‖xn − yn‖ + 1
a
‖xn − yn‖‖yn − x‖. (9)
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Taking the limit in (9) as n → ∞, using the boundedness of {F(xn)}, {yn}, and recalling
that limn→∞ ‖xn − yn‖ → 0, xn ⇀ x, we obtain 〈F(x), x − x〉 ≤ 0 and hence,

〈F(x), x − x〉 ≥ 0 ∀x ∈ C. (10)

Let xt = (1 − t)x + tx ∈ C for t ∈ [0, 1]. From (10), we have

0 ≤ 〈F(xt ), xt − x〉 = t〈F(xt ), x − x〉.

Then, for all 0 < t ≤ 1

0 ≤ 〈F(xt ), x − x〉 = 〈F(xt ) − F(x), x − x〉 + 〈F(x), x − x〉
≤ L‖xt − x‖‖x − x‖ + 〈F(x), x − x〉
= Lt‖x − x‖2 + 〈F(x), x − x〉.

Taking the limit as t → 0+, we have 〈F(x), x − x〉 ≥ 0, i.e., x ∈ Sol(C, F ).

Lemma 4 ([22, Remark 4.4]) Let {an} be a sequence of nonnegative real numbers. Suppose
that for any integer m, there exists an integer p such that p ≥ m and ap ≤ ap+1. Let n0 be
an integer such that an0 ≤ an0+1 and define, for all integer n ≥ n0, by

τ(n) = max{k ∈ N : n0 ≤ k ≤ n, ak ≤ ak+1}.

Then {τ(n)}n≥n0 is a nondecreasing sequence satisfying limn→∞ τ(n) = ∞ and the
following inequalities hold true:

aτ(n) ≤ aτ(n)+1, an ≤ aτ(n)+1 ∀n ≥ n0.

3 The Algorithm and Convergence Analysis

In this section, we propose a strong convergence algorithm for solving SVIP by using the
modified Halpern subgradient extragradient method. We impose the following assumptions
on the mappings F1 and F2 associated with the SVIP.

(A1) F1 : H1 → H1 is pseudomonotone on C and L1-Lipschitz continuous onH1.
(A2) lim supn→∞〈F1(x

n), y − yn〉 ≤ 〈F1(x), y − y〉 for every sequence {xn}, {yn} inH1
converging weakly to x and y, respectively.

(A3) F2 : H2 → H2 is pseudomonotone on Q and L2-Lipschitz continuous onH2.
(A4) lim supn→∞〈F2(u

n), v − vn〉 ≤ 〈F2(u), v − v〉 for every sequence {un}, {vn} inH2
converging weakly to u and v, respectively.

Remark 1 (i) In finite dimensional spaces conditions (A2) and (A4) automatically follow
from the Lipschitz continuity of F1, F2.

(ii) If F1 and F2 satisfy the assumptions (A1)–(A4), then the solution sets Sol(C, F1)

and Sol(Q, F2) of VIP(C, F1) and VIP(Q, F2) are closed and convex (see e.g. [24]).
Therefore, the solution set � = {x∗ ∈ Sol(C, F1) : Ax∗ ∈ Sol(Q, F2)} of the SVIP is
also closed and convex.
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The algorithm can be expressed as follows:

The following theorem shows the convergence of the algorithm.

Theorem 1 Suppose that the assumptions (A1)–(A4) hold. Then the sequence {xn} gener-
ated by Algorithm 1 converges strongly to an element x∗ ∈ �, where x∗ = P�(x0), provided
the solution set � of the SVIP is nonempty.

Proof The proof of the theorem is divided into several steps.

Step 1 The sequences {xn}, {yn}, {zn}, {tn} and {vn} are bounded.
Since x∗ ∈ �, we have x∗ ∈ Sol(C, F1) and A(x∗) ∈ Sol(Q, F2). From Lemma 2, we
have, for all n ≥ 0

‖wn − A(x∗)‖2 ≤ ‖un − A(x∗)‖2 −
(
1 − μ

μn

μn+1

)
‖un − vn‖2

−
(
1 − μ

μn

μn+1

)
‖vn − wn‖2, (11)
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‖tn − x∗‖2 ≤ ‖yn − x∗‖2 −
(
1 − λ

λn

λn+1

)
‖yn − zn‖2 −

(
1 − λ

λn

λn+1

)
‖zn − tn‖2. (12)

Since F2 is L2-Lipschitz continuous on H2, we get ‖F2(u
n) − F2(v

n)‖ ≤ L2‖un − vn‖.
Thus, by induction, for every n ≥ 0, we have

μn ≥ min

(
μ

L2
, μ0

)
> 0. (13)

By the definition of μn+1, we have μn+1 ≤ μn for all n ≥ 0. This together with (13)
implies that the limit of {μn} exists. We denote limn→∞ μn = μ∗. It is clear that μ∗ ≥
min

(
μ
L2

, μ0

)
> 0.

Using the same argument as above, we have

λn ≥ min

(
λ

L1
, λ0

)
> 0 ∀n ≥ 0 and lim

n→∞ λn = λ∗ ≥ min

(
λ

L1
, λ0

)
> 0.

From limn→∞ μn = μ∗ > 0 and limn→∞ λn = λ∗ > 0, we get limn→∞
(
1 − μ

μn

μn+1

)
=

1 − μ > 0, limn→∞
(
1 − λ λn

λn+1

)
= 1 − λ > 0. This implies that there exists n0 ∈ N such

that 1 − μ
μn

μn+1
> 0 and 1 − λ λn

λn+1
> 0 for all n ≥ n0. By (11) and (12), we get

‖wn − A(x∗)‖ ≤ ‖un − A(x∗)‖ ∀n ≥ n0, (14)

‖tn − x∗‖ ≤ ‖yn − x∗‖ ∀n ≥ n0. (15)

From (14), since un = A(xn), we obtain, for all n ≥ n0

〈A(xn − x∗), wn − un〉 = 〈wn − A(x∗), wn − un〉 − ‖wn − un‖2

= 1

2

[
(‖wn − A(x∗)‖2 − ‖un − A(x∗)‖2) − ‖wn − un‖2

]

≤ −1

2
‖wn − un‖2.

Hence

2δn〈A(xn − x∗), wn − un〉 ≤ −δn‖wn − un‖2 ∀n ≥ n0. (16)

On the other hand

‖yn − x∗‖2 = ‖(xn − x∗) + δnA
∗(wn − un)‖2

= ‖xn − x∗‖2 + ‖δnA
∗(wn − un)‖2 + 2δn〈xn − x∗, A∗(wn − un)〉

≤ ‖xn − x∗‖2 + δ2n‖A∗‖2‖wn − un‖2 + 2δn〈A(xn − x∗), wn − un〉
= ‖xn − x∗‖2 + δ2n‖A‖2‖wn − un‖2 + 2δn〈A(xn − x∗), wn − un〉. (17)

Combining (16) and (17), we obtain

‖yn − x∗‖2 ≤ ‖xn − x∗‖2 − δn(1 − δn‖A‖2)‖wn − un‖2 ∀n ≥ n0. (18)

From (15), (18) and {δn} ⊂ [δ, δ] ⊂
(
0, 1

‖A‖2+1

)
, we get

‖tn − x∗‖ ≤ ‖yn − x∗‖ ≤ ‖xn − x∗‖ ∀n ≥ n0. (19)
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Since λn ≤ λ0, μn ≤ μ0 for all n ≥ 0, F1 is L1-Lipschitz continuous on H1, F2 is
L2-Lipschitz continuous onH2, we have

‖zn − x∗‖ = ‖PC(yn − λnF1(y
n)) − PC(x∗)‖

≤ ‖yn − x∗ − λnF1(y
n)‖

= ‖yn − x∗ − λn(F1(y
n) − F1(x

∗)) − λnF1(x
∗)‖

≤ ‖yn − x∗‖ + λn‖F1(y
n) − F1(x

∗)‖ + λn‖F1(x
∗)‖

≤ ‖yn − x∗‖ + λnL1‖yn − x∗‖ + λn‖F1(x
∗)‖

≤ (1 + λ0L1)‖yn − x∗‖ + λ0‖F1(x
∗)‖, (20)

‖vn − A(x∗)‖ = ‖PQ(un − μnF2(u
n)) − PQ(A(x∗))‖

≤ ‖un − A(x∗) − μnF2(u
n)‖

= ‖un − A(x∗) − μn[F2(u
n) − F2(A(x∗))] − μnF2(A(x∗))‖

≤ ‖un − A(x∗)‖ + μn‖F2(u
n) − F2(A(x∗))‖ + μn‖F2(A(x∗))‖

≤ ‖un − A(x∗)‖ + μnL2‖un − A(x∗)‖ + μn‖F2(A(x∗))‖
≤ (1 + μ0L2)‖un − A(x∗)‖ + μ0‖F2(A(x∗))‖
= (1 + μ0L2)‖A(xn − x∗)‖ + μ0‖F2(A(x∗))‖
≤ (1 + μ0L2)‖A‖‖xn − x∗‖ + μ0‖F2(A(x∗))‖. (21)

On the other hand

‖xn+1 − x∗‖ = ‖(1 − αn)(t
n − x∗) + αn(x

0 − x∗)‖
≤ (1 − αn)‖tn − x∗‖ + αn‖x0 − x∗‖. (22)

Using (19) and (22), we have

‖xn+1 − x∗‖ ≤ (1 − αn)‖xn − x∗‖ + αn‖x0 − x∗‖ ∀n ≥ n0.

This implies that

‖xn+1 − x∗‖ ≤ max{‖xn − x∗‖, ‖x0 − x∗‖} ∀n ≥ n0.

So, by induction, we obtain, for every n ≥ n0 that

‖xn − x∗‖ ≤ max{‖xn0 − x∗‖, ‖x0 − x∗‖}.
Hence, the sequence {xn} is bounded and so are the sequences {yn}, {zn}, {tn} and {vn}
thanks to (19), (20) and (21).

Step 2 We prove that {xn} converges strongly to x∗.

We have

‖xn+1 − x∗‖2 = ‖αnx
0 + (1 − αn)t

n − x∗‖2
= ‖tn − x∗ + αn(x

0 − tn)‖2
= ‖tn − x∗‖2 + 2αn〈x0 − tn, tn − x∗〉 + α2

n‖tn − x0‖2, (23)

which together with (19) implies, for all n ≥ n0

0 ≤ ‖yn − x∗‖2 − ‖tn − x∗‖2
≤ ‖xn − x∗‖2 − ‖tn − x∗‖2
= (‖xn − x∗‖2 − ‖xn+1 − x∗‖2) + 2αn〈x0 − tn, tn − x∗〉 + α2

n‖tn − x0‖2. (24)

Let us consider two cases.
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Case 1. There exists n1 such that {‖xn −x∗‖} is decreasing for n ≥ n1. In this case the limit
of {‖xn − x∗‖} exists and we denote limn→∞ ‖xn − x∗‖2 = ξ ≥ 0. It follows from (24),
limn→∞ αn = 0 and the boundedness of {tn} that

lim
n→∞(‖yn − x∗‖2 − ‖tn − x∗‖2) = 0, lim

n→∞(‖xn − x∗‖2 − ‖tn − x∗‖2) = 0. (25)

It follows from (25) that

lim
n→∞(‖xn − x∗‖2 − ‖yn − x∗‖2) = 0. (26)

Combining (12), (25) and limn→∞
(
1 − λ λn

λn+1

)
= 1 − λ > 0, we obtain

lim
n→∞ ‖yn − zn‖ = 0, lim

n→∞ ‖zn − tn‖ = 0. (27)

From (27) and the triangle inequality, we get

lim
n→∞ ‖yn − tn‖ = 0. (28)

Using (18) and {δn} ⊂ [δ, δ] ⊂
(
0, 1

‖A‖2+1

)
, we have

δ(1 − δ‖A‖2)‖wn − un‖2 ≤ ‖xn − x∗‖2 − ‖yn − x∗‖2 ∀n ≥ n0. (29)

Combining (26) and (29), we get

lim
n→∞ ‖wn − un‖ = 0. (30)

Note that, for all n,

‖yn − xn‖ = ‖δnA
∗(wn − un)‖ ≤ δn‖A∗‖‖wn − un‖ ≤ δ‖A‖‖wn − un‖.

It follows from the above inequality and (30) that

lim
n→∞ ‖yn − xn‖ = 0. (31)

From (28) and (31), we have
lim

n→∞ ‖xn − tn‖ = 0. (32)

We now prove that
lim sup
n−→∞

〈x0 − x∗, tn − x∗〉 ≤ 0. (33)

Choose a subsequence {tnk } of {tn} such that
lim sup
n−→∞

〈x0 − x∗, tn − x∗〉 = lim
k→∞〈x0 − x∗, tnk − x∗〉.

Since {tnk } is bounded, we may assume that {tnk } converges weakly to some t ∈ H1.
Therefore

lim sup
n−→∞

〈x0 − x∗, tn − x∗〉 = 〈x0 − x∗, t − x∗〉. (34)

From (32), (28), (27) and tnk ⇀ t , we conclude that xnk , ynk and znk converge weakly to t .
Since {znk } ⊂ C and C is weakly closed then t ∈ C.

We prove t ∈ Sol(C, F1).
Indeed, let x ∈ C. From the definition of znk and Lemma 1, we have

〈ynk − λnk
F1(y

nk ) − znk , x − znk 〉 ≤ 0 ∀k.

Since λnk
> 0 for every k, it follows from the above inequality that

〈F1(y
nk ), x − znk 〉 ≥ 〈ynk − znk , x − znk 〉

λnk

. (35)

197



From limk→∞ ‖ynk − znk‖ = 0, limk→∞ λnk
= λ∗ > 0 and the boundedness of {znk }, we

get

lim
k→∞

〈ynk − znk , x − znk 〉
λnk

= 0.

Using (35), condition (A2) and the weak convergence of two sequences {ynk }, {znk } to t , we
have

0 ≤ lim sup
k−→∞

〈F1(y
nk ), x − znk 〉 ≤ 〈F1(t), x − t〉,

i.e., t ∈ Sol(C, F1).
On the other hand

‖wn − A(x∗)‖2 = ‖un − A(x∗) − (un − wn)‖2
= ‖un − A(x∗)‖2 − 2〈un − A(x∗), un − wn〉 + ‖un − wn‖2
= ‖un − A(x∗)‖2 − 2〈A(xn − x∗), un − wn〉 + ‖un − wn‖2
≥ ‖un − A(x∗)‖2 − 2‖A(xn − x∗)‖‖un − wn‖ + ‖un − wn‖2
≥ ‖un − A(x∗)‖2 − 2‖A‖‖xn − x∗‖‖un − wn‖ + ‖un − wn‖2. (36)

Combining (11) and (36) yields(
1 − μ

μn

μn+1

)
‖un − vn‖2 +

(
1 − μ

μn

μn+1

)
‖vn − wn‖2

≤ 2‖A‖‖xn − x∗‖‖un − wn‖ − ‖un − wn‖2.
Using the above inequality, limn→∞ ‖un − wn‖ = 0, limn→∞

(
1 − μ

μn

μn+1

)
= 1 − μ > 0

and the fact that {xn} is bounded, we obtain
lim

n→∞ ‖un − vn‖ = 0.

From xnk ⇀ t , we get unk = A(xnk ) ⇀ A(t). This together with limn→∞ ‖un − vn‖ = 0
implies vnk ⇀ A(t). Since {vnk } ⊂ Q and Q is closed and convex, it is also weakly closed,
and thus A(t) ∈ Q.

We prove A(t) ∈ Sol(Q, F2).
Indeed, let y ∈ Q. From the definition of vnk and Lemma 1, we get

〈unk − μnk
F2(u

nk ) − vnk , y − vnk 〉 ≤ 0 ∀k. (37)

Since μnk
> 0 for every k, it follows from (37) that

〈F2(u
nk ), y − vnk 〉 ≥ 〈unk − vnk , y − vnk 〉

μnk

. (38)

Since limk→∞ ‖unk −vnk‖ = 0, limk→∞ μnk
= μ∗ > 0 and the sequence {vnk } is bounded,

we get

lim
k→∞

〈unk − vnk , y − vnk 〉
μnk

= 0.

Using (38), condition (A4) and the weak convergence of {unk }, {vnk } to A(t), we obtain

0 ≤ lim sup
k−→∞

〈F2(u
nk ), y − vnk 〉 ≤ 〈F2(A(t)), y − A(t)〉,

i.e., A(t) ∈ Sol(Q, F2).
It follows from t ∈ Sol(C, F1) and A(t) ∈ Sol(Q, F2) that t ∈ �. Which together with

x∗ = P�(x0) implies that 〈x0 − x∗, t − x∗〉 ≤ 0. So, from (34), we have lim supn→∞〈x0 −
x∗, tn − x∗〉 ≤ 0.
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From limn→∞ ‖xn − x∗‖2 = ξ and (25), we have

lim
n→∞ ‖tn − x∗‖2 = ξ . (39)

From limn→∞ αn = 0, the boundedness of {tn}, (33) and (39), we obtain
lim sup
n−→∞

(2〈x0 − tn, tn − x∗〉 + αn‖tn − x0‖2) = 2 lim sup
n−→∞

〈x0 − tn, tn − x∗〉
= 2 lim sup

n−→∞
[〈x0−x∗, tn−x∗〉−‖tn−x∗‖2]

≤ −2ξ . (40)

Assume, to get a contradiction, that ξ > 0, and choose ε = ξ > 0. It follows from (40) that
there exists n2 ≥ 0 such that

2〈x0 − tn, tn − x∗〉 + αn‖tn − x0‖2 ≤ −2ξ + ξ = −ξ ∀n ≥ n2. (41)

Then, from (19) and (23), we get

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + αn

[
2〈x0 − tn, tn − x∗〉 + αn‖tn − x0‖2

]
∀n ≥ n0,

which together with (41) implies

‖xn+1 − x∗‖2 − ‖xn − x∗‖2 ≤ −αnξ ∀n ≥ n3 = max(n0, n2).

Thus, after a summation, we obtain

‖xn+1 − x∗‖2 − ‖xn3 − x∗‖2 ≤ −ξ

⎛
⎝

n∑
j=n3

αj

⎞
⎠ ∀n ≥ n3.

Therefore, we arrive at a contradiction

ξ

⎛
⎝

n∑
j=n3

αj

⎞
⎠ ≤ ‖xn3 − x∗‖2 ∀n ≥ n3

because
∑∞

n=0 αn = ∞. Hence ξ = 0, which implies xn → x∗.

Case 2. Suppose that for any integer m, there exists an integer n such that n ≥ m and
‖xn − x∗‖ ≤ ‖xn+1 − x∗‖. According to Lemma 4, there exists a nondecreasing sequence
{τ(n)}n≥N of N such that limn→∞ τ(n) = ∞ and the following inequalities hold

‖xτ(n) − x∗‖ ≤ ‖xτ(n)+1 − x∗‖, ‖xn − x∗‖ ≤ ‖xτ(n)+1 − x∗‖ ∀n ≥ N . (42)

Choose n4 ≥ N such that τ(n) ≥ n0 for all n ≥ n4. From (42) and (22), we get

‖xτ(n) − x∗‖ ≤ ‖xτ(n)+1 − x∗‖
≤ (1 − ατ(n))‖tτ (n) − x∗‖ + ατ(n)‖x0 − x∗‖ ∀n ≥ n4. (43)

From (43), we have

‖xτ(n) − x∗‖ − ‖tτ (n) − x∗‖ ≤ ατ(n)‖x0 − x∗‖ − ατ(n)‖tτ (n) − x∗‖ ∀n ≥ n4,

which together with (19) implies, for all n ≥ n4, that

ατ(n)‖x0 − x∗‖ − ατ(n)‖tτ (n) − x∗‖ ≥ ‖xτ(n) − x∗‖ − ‖tτ (n) − x∗‖
≥ ‖xτ(n) − x∗‖ − ‖yτ(n) − x∗‖
≥ 0.
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Then, it follows from the above inequality, the boundedness of {tn} and limn→∞ αn = 0 that

lim
n→∞(‖xτ(n) − x∗‖ − ‖tτ (n) − x∗‖) = 0, lim

n→∞(‖xτ(n) − x∗‖ − ‖yτ(n) − x∗‖) = 0. (44)

From (44) and the boundedness of {xn}, {yn} and {tn}, we obtain
lim

n→∞(‖xτ(n) − x∗‖2 − ‖tτ (n) − x∗‖2) = 0,

lim
n→∞(‖xτ(n) − x∗‖2 − ‖yτ(n) − x∗‖2) = 0.

Arguing similarly as in the first case, we can conclude that

lim sup
n−→∞

〈x0 − x∗, tτ (n) − x∗〉 ≤ 0.

Then, the boundedness of {tn} and limn→∞ αn = 0 yield

lim sup
n−→∞

〈x0 − x∗, xτ(n)+1 − x∗〉 = lim sup
n−→∞

〈x0 − x∗, tτ (n) − x∗ + ατ(n)(x
0 − tτ (n))〉

= lim sup
n−→∞

〈x0 − x∗, tτ (n) − x∗〉 ≤ 0. (45)

Using the inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 ∀x, y ∈ H1,

as well as (19) and (42), we obtain, for all n ≥ n4

‖xτ(n)+1 − x∗‖2 = ‖(1 − ατ(n))(t
τ(n) − x∗) + ατ(n)(x

0 − x∗)‖2
≤ ‖(1 − ατ(n))(t

τ(n) − x∗)‖2 + 2〈ατ(n)(x
0 − x∗), xτ(n)+1 − x∗〉

= (1 − ατ(n))
2‖tτ (n) − x∗‖2 + 2ατ(n)〈x0 − x∗, xτ(n)+1 − x∗〉

≤ (1 − ατ(n))‖tτ (n) − x∗‖2 + 2ατ(n)〈x0 − x∗, xτ(n)+1 − x∗〉
≤ (1 − ατ(n))‖xτ(n) − x∗‖2 + 2ατ(n)〈x0 − x∗, xτ(n)+1 − x∗〉
≤ (1 − ατ(n))‖xτ(n)+1 − x∗‖2 + 2ατ(n)〈x0 − x∗, xτ(n)+1 − x∗〉.

In particular, since ατ(n) > 0

‖xτ(n)+1 − x∗‖2 ≤ 2〈x0 − x∗, xτ(n)+1 − x∗〉 ∀n ≥ n4.

Combining the above inequality with (42), we get

‖xn − x∗‖2 ≤ 2〈x0 − x∗, xτ(n)+1 − x∗〉 ∀n ≥ n4. (46)

Taking the limit in (46) as n → ∞, and using (45), we obtain

lim sup
n−→∞

‖xn − x∗‖2 ≤ 0,

which implies xn → x∗. This complete the proof of Theorem 1.

Remark 2 Theorem 1 is still true if the assumptions (A1)–(A4) are replaced by the following
assumptions:

(A) F1 : H1 → H1 is monotone onH1 and L1-Lipschitz continuous onH1.
(B) F2 : H2 → H2 is monotone onH2 and L2-Lipschitz continuous onH2.

Proof Note that in the proof of Theorem 1, the assumptions (A2) and (A4) are used to prove
t ∈ Sol(C, F1) and A(t) ∈ Sol(Q, F2), respectively. Now we will prove t ∈ Sol(C, F1) and
A(t) ∈ Sol(Q, F2) by using assumptions (A), (B) and Lemma 3.
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Indeed, from assumption (A), zn = PC(yn − λnF1(y
n)), limn→∞ ‖yn − zn‖ = 0, λn ≥

min
(

λ
L1

, λ0

)
> 0, ynk ⇀ t and Lemma 3, we imply t ∈ Sol(C, F1).

Using the same argument, from (B), vn = PQ(un −μnF2(u
n)), limn→∞ ‖un −vn‖ = 0,

μn ≥ min
(

μ
L2

, μ0

)
> 0, unk ⇀ A(t) and Lemma 3, we have A(t) ∈ Sol(Q, F2).

When F1 = F2 = 0, we have the following corollary from Algorithm 1 and Theorem 1.

Corollary 1 Let C and Q be two nonempty closed convex subset of two real Hilbert spaces
H1 and H2, respectively. Suppose that positive sequences {αn}, {δn} satisfy the following
conditions ⎧

⎨
⎩

{δn} ⊂ [δ, δ] ⊂
(
0,

1

‖A‖2 + 1

)
,

{αn} ⊂ (0, 1), limn→∞ αn = 0,
∑∞

n=0 αn = ∞.

Let {xn} be the sequence generated by x0 ∈ H1 and

xn+1 = αnx
0 + (1 − αn)PC(xn + δnA

∗(PQ(Axn) − Axn)) ∀n ≥ 0.

Then the sequence {xn} converges strongly to an element x∗ ∈ �, where x∗ = P�(x0),
provided the solution set � = {x∗ ∈ C : Ax∗ ∈ Q} of the SFP is nonempty.

4 Numerical Results

LetH1 = R
4 with the norm ‖x‖ = (x2

1 +x2
2 +x2

3 +x2
4 )

1
2 for x = (x1, x2, x3, x4)

T ∈ R
4 and

H2 = R
2 with the standard norm ‖y‖ = (y2

1+y2
2 )

1
2 . LetA(x) = (x1+x3+x4, x2+x3−x4)

T

for all x = (x1, x2, x3, x4)
T ∈ R

4 then A is a bounded linear operator from R
4 into R

2

with ‖A‖ = √
3. For y = (y1, y2)

T ∈ R
2, let B(y) = (y1, y2, y1 + y2, y1 − y2)

T , then
B is a bounded linear operator from R

2 into R
4 with ‖B‖ = √

3. Moreover, for any x =
(x1, x2, x3, x4)

T ∈ R
4 and y = (y1, y2)

T ∈ R
2, 〈A(x), y〉 = 〈x, B(y)〉, so B = A∗ is an

adjoint operator of A.
Let

C = {(x1, x2, x3, x4)T ∈ R
4 : x1 − x2 − x3 + 2x4 ≥ −1}

and define a mapping F1 : R4 → R
4 by F1(x) = (sin ‖x‖ + 2)a0 for all x ∈ R

4, where
a0 = (1,−1,−1, 2)T ∈ R

4. It is easy to verify that F1 is pseudomonotone on R
4.

Furthermore, for all x, y ∈ R
4, we have

‖F1(x) − F1(y)‖ = ‖a0‖| sin ‖x‖ − sin ‖y‖|
= √

7| sin ‖x‖ − sin ‖y‖|
≤ √

7|‖x‖ − ‖y‖|
≤ √

7‖x − y‖.
So F1 is

√
7-Lipschitz continuous on R

4.
It is easy to see that the solution set Sol(C, F1) of VIP(C, F1) is given by

Sol(C, F1) = {(x1, x2, x3, x4)T ∈ R
4 : x1 − x2 − x3 + 2x4 = −1}.

Now let Q = {(u1, u2)T ∈ R
2 : 2u1 − 3u2 ≥ −4} and define another mapping F2 : R2 →

R
2 by F2(u) = (sin ‖u‖ + 3)b0 for all u ∈ R

2, where b0 = (2,−3)T ∈ R
2. Similarly,
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F2 is pseudomonotone on R
2,

√
13-Lipschitz continuous on R

2 and that the solution set
Sol(Q, F2) of VIP(Q, F2) is given by

Sol(Q, F2) = {(u1, u2)T ∈ R
2 : 2u1 − 3u2 = −4}.

The solution set � of the SVIP is given by

� = {(x1, x2, x3, x4)T ∈ Sol(C, F1) : A(x1, x2, x3, x4) ∈ Sol(Q, F2)}
= {(x1, x2, x3, x4)T ∈ R

4 : x1 − x2 − x3 + 2x4 = −1,

2(x1 + x3 + x4) − 3(x2 + x3 − x4) = −4}
= {(x1, x2, x3, x4)T ∈ R

4 : x1 − x2 − x3 + 2x4 = −1, 2x1 − 3x2 − x3 + 5x4 = −4}
= {(2a − b + 1, a + b + 2, a, b)T : a, b ∈ R}.

Select a random starting point x0 = (−1, 1, 2,−3)T for the Algorithm 1. We choose μ =
0.7, μ0 = 1, λ = 0.4, λ0 = 2, αn = 1

n+2 , δn = n+1
6n+8 . An elementary computation

shows that {αn} ⊂ (0, 1), limn→∞ αn = 0,
∑∞

n=0 αn = ∞, {δn} ⊂
[
1
8 ,

1
6

]
⊂

(
0, 1

4

)
=(

0, 1
‖A‖2+1

)
.

Suppose x = (2a − b + 1, a + b + 2, a, b)T ∈ � then

‖x − x0‖ =
√

(2a − b + 2)2 + (a + b + 1)2 + (a − 2)2 + (b + 3)2

=
√
6a2 + 3b2 − 2ab + 6a + 4b + 18

=
√
1

3
(3b − a + 2)2 + 1

51
(17a + 11)2 + 243

17

≥
√
243

17
.

The above equality holds if and only if 3b − a + 2 = 0 and a = − 11
17 . So, we obtain

a = − 11
17 , b = − 15

17 .
Therefore

x∗ = P�(x0) =
(
10

17
,
8

17
,−11

17
,−15

17

)T

.

With ε = 10−9, the approximate solution obtained after 225081 iterations (with elapsed
time 118.6242 seconds) is

x225081 = (0.5882, 0.4705,−0.6468,−0.8823)T ,

which is a good approximation to x∗ =
(
10
17 ,

8
17 ,− 11

17 ,− 15
17

)T

.

Table 1 presents the numerical result of Algorithm 1 with different tolerances. From the
preliminary numerical results reported in the table, we observe that the running time of
Algorithm 1 depends very much on the tolerance.

Table 1 Algorithm 1 for the above example with different tolerances

Tolerance Iter(n) Elapsed Time(s) xn

ε = 10−5 2575 0.7088 (0.5864, 0.4599,−0.6404,−0.8801)T

ε = 10−6 8142 3.3164 (0.5871, 0.4690,−0.6423,−0.8809)T

ε = 10−7 25746 12.7714 (0.5879, 0.4701,−0.6449,−0.8817)T

ε = 10−8 81415 47.4449 (0.5881, 0.4704,−0.6466,−0.8822)T
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We perform the iterative schemes in MATLAB R2018a running on a laptop with Intel(R)
Core(TM) i5-3230M CPU @ 2.60GHz, 4 GB RAM.

5 Conclusion

In this paper, we have proposed an iterative algorithm for solving the split variational
inequality problem involving Lipschitz continuous pseudomonotone mappings. The proof
of convergence of the algorithm is performed without the prior knowledge of the Lipschitz
constants of cost operators. The strong convergence of the iterative sequence generated by
the proposed iterative algorithm to the solution of the SVIP is obtained. When applied to the
well-known SFP, our method is reduced to a strongly convergent algorithm, which requires
only two projections at each iteration step.
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