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Abstract
The aim of this paper is to introduce and study a new iterative algorithm for finding a
common element of the set of fixed points of a finite family of multivalued strictly pseudo-
contractive mappings and the set of solutions of equilibrium problems in Hilbert spaces.
Strong convergence of the proposed method is established under suitable control condi-
tions. Application to optimization problems with constraints is provided to support our main
results. Furthermore, numerical example is given to demonstrate the implementability of our
algorithm.The algorithm and its convergence results improve and develop previous results
in the field.
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1 Introduction

Let H be a real Hilbert space and let C be a nonempty, closed and convex subset of H . Let
F be a bifunction of C × C into R, where R is the real numbers. The equilibrium problem
for F is to find x ∈ C such that

F(x, y) ≥ 0 ∀y ∈ C. (1)

The set of solutions is denoted by EP(F). Equilibrium problems which were introduced
by Fan [9] and Blum and Oettli [10] have had a great impact and influence on the devel-
opment of several branches of pure and applied sciences. Equilibrium problems include
variational inequality problems as well as fixed point problems, complementarity problems,
optimization, saddle point problems and Nash equilibrium problems as special cases. Equi-
librium problems provide us with a systematic framework to study a wide class of problems
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arising in finance economics, optimization and operation research etc., which motivate the
extensive concern. In recent years, equilibrium problems have been deeply and thoroughly
researched, see [3, 4, 10, 12, 18, 22, 30] and the references therein. However, there are few
iterative algorithms developed for the approximation of solutions of equilibrium problems.

Let (X, d) be a metric space, K be a nonempty subset of X and T : K → 2K be
a multivalued mapping. An element x ∈ K is called a fixed point of T if x ∈ T x. For
single valued mapping, this reduces to T x = x. The fixed point set of T is denoted by
Fix(T ) := {x ∈ D(T ) : x ∈ T x}.

A point x ∈ X is called an endpoint (or stationary point) of T if x is a fixed point of
T and T (x) = {x}. We shall denote by End(T ) the set of all endpoints of T . We see that
for each mapping T , End(T ) ⊂ Fix(T ). Thus, the concept of endpoints seems to be more
difficult (but more important) than the concept of fixed points. However, both concepts are
equivalent when T is a single-valued mapping since, in this case, End(T ) = Fix(T ). Next
is an example of a multivalued mapping T with Fix(T ) �= ∅, Tp = {p} for all p ∈ Tp.

Example 1 Let X = R (the reals with usual metric). Define T : [−1, 1] → 2[−1,1] by

T x =

⎧
⎪⎪⎨

⎪⎪⎩

[
−1, 2

3x sin 1
x

]
, x ∈ (0, 1],

{0}, x = 0,[
2
3x sin 1

x
, 1

]
, x ∈ [−1, 0).

Then, clearly Fix(T ) = {0}.

Many problems arising in different areas of mathematics, such as game theory, con-
trol theory, dynamic systems theory, signal and image processing, market economy and in
other areas of mathematics, such as in non-smooth differential equations and differential
inclusions, optimization theory equations, can be modeled by the equation

x ∈ T x,

where T is a multivalued nonexpansive mapping. The solution set of this equation coincides
with the fixed point set of T .

For several years, the study of fixed point theory for multi-valued nonlinear mappings
has attracted, and continues to attract, the interest of several well known mathematicians
(see, for example, Brouwer [7], Kakutani [14], Nash [19, 20]).

Nonsmooth differential equations A large number of problems from mechanics and
electrical engineering leads to differential inclusions and differential equations with discon-
tinuous right-hand sides, for example, a dry friction force of some electronic devices. Below
are two models.

du

dt
= f (t, u) a.e. t ∈ I := [−a, a], u(0) = u0, (2)

a, u0 fixed in R. These types of differential equations do not have solutions in the classical
sense. A generalized notion of solution is what is called a solution in the sense of Fillipov.

Consider the following multi-valued initial value problem.
⎧
⎨

⎩

− d2u

dt2 ∈ u − 1
4 − 1

4 sign(u − 1) on � = (0, π);
u(0) = 0;
u(π) = 0.

(3)
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Under some conditions, the solutions set of equations (2) and (3) coincides with the fixed
point set of some multi-valued mappings.

Let K be a nonempty subset of a normed space E. The set K is called proximinal (see,
e.g., [21]) if for each x ∈ E, there exists u ∈ K such that

d(x, u) = inf{‖x − y‖ : y ∈ K} = d(x,K),

where d(x, y) = ‖x − y‖ for all x, y ∈ E. Every nonempty, closed and convex subset
of a real Hilbert space is proximinal. Let CB(K), K(K) and P(K) denote the family of
nonempty closed bounded subsets, nonempty compact subsets, and nonempty proximinal
bounded subsets of K respectively. The Hausdorff metric on CB(K) is defined by:

H(A,B) = max

{

sup
a∈A

d(a, B), sup
b∈B

d(b,A)

}

for all A,B ∈ CB(K). A multi-valued mapping T : D(T ) ⊆ E → CB(E) is called
L-Lipschitzian if there exists L > 0 such that

H(T x, T y) ≤ L‖x − y‖ ∀x, y ∈ D(T ).

When L ∈ (0, 1), we say that T is a contraction, and T is called nonexpansive if L = 1.
Different iterative processes have been developed to approximate fixed points of multi-

valued nonexpansive mappings (see, e.g., [1, 15] and the references therein) and their
generalizations (see, e.g., [13]).

Recently, viscosity iterative algorithms for finding a common element of the set of fixed
points for single-valued nonexpansive mappings and the set of solutions of variational
inequality problems have been investigated by many authors; (see, e.g., [21, 31] and the ref-
erences therein). For example, Moudafi [16] introduced the explicit viscosity approximation
method for nonexpansive mappings.

Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let f : C → C

be a contraction mapping and T be a single-valued nonexpansive mapping on C. Let {xn}
be a sequence defined by

{
x0 ∈ C,

xn+1 = αnf (xn) + (1 − αn)T xn,
(4)

where {αn} is a sequence in (0, 1). Then, the sequence {xn} generated by (4) converges
strongly to x∗ ∈ Fix(T ), which is a unique solution of the following variational inequality:

〈x∗ − f (x∗), x∗ − p〉 ≤ 0 ∀p ∈ Fix(T ).

In 2007, Takahashi and Takahashi [27] investigate Moudafi’s viscosity method (4) for find-
ing a common element of the solutions set of (1) and the fixed points set of a nonexpansive
mapping in a Hilbert space, and proved the following strong convergence theorem.

Theorem 1 [27] Let C be a nonempty, closed and convex subset a real Hilbert space H .
Let F be a bifunction from C × C → R satisfying the following assumptions:

(A1) F(x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim
t→0

F(tz + (1 − t)x, y) ≤ F(x, y);
(A4) for each x ∈ C, y → F(x, y) is convex and lower semicontinuous.
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Let f : C → C be a contraction and T : C → C be a nonexpansive mapping such that
Fix(T ) ∩ EP(F) �= ∅.

Let {xn} and {un} be sequences defined iteratively from arbitrary x0 ∈ C by:
{

F(un, y) + 1
rn

〈y − un, un − xn〉 ≥ 0 ∀y ∈ C,

xn+1 = αnf (xn) + (1 − αn)T un,
(5)

where {αn} ⊂ (0, 1) and {rn} ⊂]0, ∞[ satisfy:
(i) limn→∞ αn = 0;

(ii)
∑∞

n=0 |αn − αn−1| < ∞;
(iii) limn→∞ inf rn > 0 and

∑∞
n=0 |rn+1 − rn| < ∞.

Then, the sequences {xn} and {un} generated by (5) converge strongly to x∗ ∈ Fix(T ) ∩
EP(F).

The important class of single-valued k-strictly pseudo-contractive maps on Hilbert
spaces was introduced by Browder and Petryshyn [2] as a generalization of the class of
nonexpansive mappings.

Definition 1 Let K be a nonempty subset of a real Hilbert space H . A map T : K → H is
called k-strictly pseudo-contractive if there exists k ∈ (0, 1) such that

‖T x − Ty‖2 ≤ ‖x − y‖2 + k‖x − y − (T x − Ty)‖2 ∀x, y ∈ K .

Motivated by approximating fixed points of multivalued mappings, Chidume et al.
[8] introduced the following important class of multivalued strictly pseudo-contractive
mappings in real Hilbert spaces which is more general than the class of multivalued
nonexpansive mappings.

Definition 2 A multi-valued mapping T : D(T ) ⊆ H → CB(H) is said to be k-strictly
pseudo-contractive, if there exists k ∈ (0, 1) such for all x, y ∈ D(T ), we have

(
H(T x, T y)

)2 ≤ ‖x − y‖2 + k‖(x − u) − (y − v)‖2 ∀ u ∈ T x, v ∈ Ty. (6)

If k = 1 in (6), the map T is said to be pseudo-contractive.

Remark 1 It is easily seen that any multivalued nonexpansive mapping is k-strictly pseudo-
contractive for any k ∈ (0, 1). Moreover, the converse is not true (see, for example, Djitte
and Sene [20]).

With this definition at hand, many mathematicians proved some strong convergence the-
orems for approximating fixed points of multivalued k-strictly pseudo-contractive mappings
under some compactness conditions (see, for example, Sene et al. [24], Chidume et al. [8]).

Motivated by Takahashi and Takahashi [27] and the fact that the class of multivalued
strictly pseudo-contractive mappings properly includes that of multivalued nonexpansive
maps, we construct a new iterative algorithm which is a combination of Krasnoselskii–
Mann algorithm and viscosity method for approximating a common element of the set of
fixed points of a finite family of multivalued strictly pseudo-contractive mappings and the
set of solutions of equilibrium problems which is also the solution of some variational
inequality problems. Furthermore, we applied our main results to constrained convex min-
imization problems. The algorithm and results presented in this paper improve and extend
some recents results. Finally, our method of proof is of independent interest.
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2 Preliminaries

Let us recall the following definitions and results which will be used in the sequel.
Let H be a real Hilbert space. Let {xn} be a sequence in H and let x ∈ H . Weak con-

vergence of xn to x is denoted by xn ⇀ x and strong convergence by xn → x. Let K be a
nonempty, closed convex subset of H . The nearest point projection from H to K , denoted
by PK assigns to each x ∈ H the unique PKx with the property

‖x − PKx‖ ≤ ‖y − x‖
for all y ∈ K . It is well known that PKx satisfies

〈x − PKx, y − PKx〉 ≤ 0

for all y ∈ K .

Definition 3 Let H be a real Hilbert space and T : D(T ) ⊂ H → 2H be a multivalued
mapping. I − T is said to be demiclosed at 0 if for any sequence {xn} ⊂ D(T ) such that
{xn} converges weakly to p and d(xn, T xn) converges to zero, then p ∈ Tp.

Lemma 1 (Demiclosedness principle, [6]) Let H be a real Hilbert space, K be a nonempty
closed and convex subset of H . Let T : K → CB(K) be a multivalued nonexpansive
mapping with convex-values. Then I − T is demi-closed at zero.

Lemma 2 [7] Let H be a real Hilbert space. Then for any x, y ∈ H , the following
inequality hold:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

Lemma 3 (Xu, [29]) Assume that {an} is a sequence of nonnegative real numbers such that
an+1 ≤ (1 − αn)an + αnσn for all n ≥ 0, where {αn} is a sequence in (0, 1) and {σn} is a
sequence in R such that

(a)
∑∞

n=0 αn = ∞,
(b) lim supn→∞ σn ≤ 0 or

∑∞
n=0 |σnαn| < ∞.

Then limn→∞ an = 0.

Lemma 4 [17] Let K be a nonempty closed convex subset of a real Hilbert space H and
T : K → K be a mapping.

(i) If T is a k-strictly pseudo-contractive mapping, then T satisfies the Lipschitzian
condition

‖T x − Ty‖ ≤ 1 + k

1 − k
‖x − y‖.

(ii) If T is a k-strictly pseudo-contractive mapping, then the mapping I −T is demiclosed
at 0.

Lemma 5 (Sene et al. [24]) LetK be a nonempty, closed and convex subset of a real Hilbert
space H and λi ∈ ]0, 1[, i = 1, . . . , n such that

∑n
i=1 λi = 1. Then,

∥
∥
∥
∥
∥

n∑

i=1

λiui

∥
∥
∥
∥
∥

2

=
n∑

i=1

λi‖ui‖2 −
∑

i<j

λiλj‖ui − uj‖2 ∀u1, u2, . . . , un ∈ K .
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The following lemma appears implicitly in [10].

Lemma 6 [10] Let C be a nonempty closed convex subset of H and let F be a bifunction of
C × C into R satisfies (A1)–(A4). Let r > 0 and x ∈ H . Then, there exists z ∈ C such that

F(z, y) + 1

r
〈y − z, z − x〉 ≥ 0 ∀y ∈ C.

The following lemma was also given in [28].

Lemma 7 [28] Assume that F : C × C → R satisfies (A1)–(A4). For r > 0 and x ∈ H ,
define a mapping Tr : H → C as follows

Tr(x) =
{

z ∈ C, F(z, y) + 1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}

for all x ∈ H . Then, the following hold:

1. Tr is single-valued;
2. Tr is firmly nonexpansive, i.e., ‖Tr(x)−Tr(y)‖2 ≤ 〈Trx−Try, x−y〉 for any x, y ∈ H ;
3. Fix(Tr ) = EP(F);
4. EP(F) is closed and convex.

3 Main Results

We now prove the following result.

Theorem 2 Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Let F be a bifunction from C × C → R satisfying (A1)–(A4) and f : C → C be a
contraction with coefficient b. Let m ≥ 1 be a fixed number and for 1 ≤ i ≤ m, let
Ti : C → CB(C) be a multivalued ki-strictly pseudo-contractive mapping such that G :=⋂m

i=1 Fix(Ti) ∩ EP(F) �= ∅ and Tip = {p} ∀p ∈ G.
Let {xn} and {vn} be sequences defined iteratively from arbitrary x0 ∈ C by

⎧
⎨

⎩

F(vn, y) + 1
rn

〈y − vn, vn − xn〉 ≥ 0 ∀y ∈ C,

yn = λ0vn + ∑m
i=1 λiu

i
n, ui

n ∈ Tivn,

xn+1 = αnf (xn) + (1 − αn)yn,

(7)

where λ0 ∈]μ, 1[, μ := max{ki, i = 1, . . . , m} and λi ∈ ]0, 1[ such that {αn} ⊂ (0, 1) and
{rn} ⊂]0, ∞[ satisfy:

(i) limn→∞ αn = 0,
(ii)

∑∞
n=0 αn = ∞,

(iii) λ0 + λ1 + · · · + λm = 1,
(iv) limn→∞ inf rn > 0.

Assume that the mappings I − Ti are demiclosed at the origin. Then, the sequences {xn}
and {yn} generated by (7) converge strongly to x∗ ∈ G, which is the unique solution of the
variational inequality:

〈x∗ − f (x∗), x∗ − p〉 ≤ 0 ∀p ∈ G. (8)
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Proof From (I − f ) is strongly monotone and G is closed convex, then the variational
inequality (8) has a unique solution in G. Below, we use x∗ to denote the unique solution of
(8).

Let p ∈ G. Then from vn = Trnxn, we have

‖vn − p‖ = ‖Trnxn − Trnp‖ ≤ ‖xn − p‖ ∀n ≥ 0.

We prove that the sequences {xn} and {yn} are bounded. Using (7) and Lemma 5, we have

‖yn − x∗‖2 =
∥
∥
∥
∥
∥
λ0(vn − x∗) +

m∑

i=1

λi(u
i
n − x∗)

∥
∥
∥
∥
∥

2

= λ0‖vn − x∗‖2 +
m∑

i=1

λi‖ui
n − x∗‖2 −

m∑

i=1

λ0λi‖ui
n − vn‖2

−
m∑

1≤i<j

λiλj‖ui
n − u

j
n‖2.

Using that, for i = 1, . . . , m, Tix
∗ = {x∗}, we get

‖yn − x∗‖2 ≤ λ0‖vn − x∗‖2 +
m∑

i=1

λi

(
H(Tivn, Tix

∗)
)2 −

m∑

i=1

λ0λi‖ui
n − vn‖2

−
m∑

1≤i<j

λiλj‖ui
n − u

j
n‖2.

Since, for i = 1, . . . , m, Ti is ki-strictly pseudo-contractive, we have

‖yn − x∗‖2 ≤ λ0‖vn − x∗‖2 +
m∑

i=1

λi

(
‖vn − x∗‖2 + ki‖ui

n − vn‖2
)

−
m∑

i=1

λ0λi‖ui
n − vn‖2 −

m∑

1≤i<j

λiλj‖ui
n − u

j
n‖2.

Hence,

‖yn − x∗‖2 ≤ ‖vn − x∗‖2 −
m∑

i=1

λi(λ0 − ki)‖ui
n − vn‖2. (9)

Since λ0 ∈]μ, 1[, we obtain

‖yn − x∗‖ ≤ ‖vn − x∗‖ ≤ ‖xn − x∗‖. (10)

From (7) and (10), we have

‖xn+1 − x∗‖ = ‖αnf (xn) + (1 − αn)yn − x∗‖
≤ αn‖f (xn) − f (x∗)‖ + (1 − αn)‖yn − x∗‖ + αn‖f (x∗) − x∗‖
≤ (1 − αn(1 − b))‖xn − x∗‖ + αn‖f (x∗) − x∗‖
≤ max

{

‖xn − x∗‖, ‖f (x∗) − x∗‖
1 − b

}

.

By induction, it is easy to see that

‖xn − x∗‖ ≤ max

{

‖x0 − x∗‖, ‖f (x∗) − x∗‖
1 − b

}

, n ≥ 1.
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Hence, {xn} is bounded and also are {f (xn)}, and {yn}.
Consequently, by inequality (9) and property of μ we obtain

‖xn+1 − x∗‖2 = ‖αnf (xn) + (1 − αn)yn − x∗‖2

≤ ‖αn(f (xn) − x∗) + (1 − αn)(yn − x∗)‖2

≤ α2
n‖f (xn) − x∗‖2 + (1 − αn)

2‖yn − x∗‖2

+2αn(1 − αn)‖f (xn) − x∗‖‖yn − x∗‖
≤ α2

n‖f (xn) − x∗‖2 + (1 − αn)
2‖vn − x∗‖2

−(1 − αn)
2

m∑

i=1

λi(λ0 − ki)‖ui
n − vn‖2

+2αn(1 − αn)‖f (xn) − x∗‖‖xn − x∗‖.

Thus, for every i, 1 ≤ i ≤ m, we get

(1 − αn)
2

m∑

i=1

λi(λ0 − ki)‖ui
n − vn‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + α2

n‖f (xn) − x∗‖2

+2αn(1 − αn)‖f (xn) − x∗‖‖xn − x∗‖.

Since {xn} and {f (xn)} are bounded, there exists a constant B > 0 such that for every
i, 1 ≤ i ≤ m,

(1 − αn)
2

m∑

i=1

λi(λ0 − ki)‖ui
n − vn‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + αnB. (11)

Now we prove that {xn} converges strongly to x∗. We divide the rest of the proof into two
cases.

Case 1 Assume that there is n0 ∈ N such that {‖xn − p‖} is decreasing for all n ≥ n0.
Since {‖xn − x∗‖} is monotonic and bounded, {‖xn − x∗‖} is convergent. Clearly, we have

‖xn − x∗‖2 − ‖xn+1 − x∗‖2 → 0.

This implies from (11) that

lim
n→∞

m∑

i=1

λi(λ0 − ki)‖ui
n − vn‖2 = 0 ∀ i = 1, . . . , m.

Since λ0 ∈]μ, 1[, we have
lim

n→∞ ‖vn − ui
n‖2 = 0.

Since ui
n ∈ Tivn for each n, it follows that

lim
n→∞ d(vn, Tivn) = 0 ∀ i = 1, . . . , m. (12)

Let p ∈ G, then for each n, we have

‖vn − p‖2 = ‖Trnxn − Trnp‖2

≤ 〈Trnxn − Trnp, xn − p〉
≤ 〈vn − p, xn − p〉
= 1

2
(‖vn − p‖2 + ‖xn − p‖2 − ‖xn − vn‖2)
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and hence,
‖vn − p‖2 ≤ ‖xn − p‖2 − ‖xn − vn‖2. (13)

Therefore, from (7) and inequality (13), we get

‖xn+1 − x∗‖2 = ‖αnf (xn) + (1 − αn)yn − x∗‖2

≤ (1 − αn)
2‖yn − x∗‖2 + 2αn〈f (xn) − x∗, xn+1 − x∗〉

≤ (1 − αn)
2‖vn − x∗‖2 + 2αn〈f (xn) − x∗, xn+1 − x∗〉

≤ (1 − αn)
2‖vn − x∗‖2 + 2αn〈f (xn) − f (x∗), xn+1 − x∗〉

+2αn〈f (x∗) − x∗, xn+1 − x∗〉
≤ (1−αn)

2(‖xn−x∗‖2−‖xn−vn‖2)+2αnb‖xn−x∗‖‖xn+1−x∗‖
+2αn‖f (x∗) − x∗‖‖xn+1 − x∗‖

= (1 − 2αn + α2
n)‖xn − x∗‖2 − (1 − αn)

2‖xn − vn‖2

+2αnb‖xn − x∗‖‖xn+1 − x∗‖ + 2αn‖f (x∗)−x∗‖‖xn+1−x∗‖
≤ ‖xn − x∗‖2 + αn‖xn − x∗‖2 − (1 − αn)

2‖xn − vn‖2

+2αnb‖xn − x∗‖‖xn+1−x∗‖ + 2αn‖f (x∗)−x∗‖‖xn+1−x∗‖,
and hence

(1−αn)
2‖xn−vn‖2 ≤ ‖xn−x∗‖2−‖xn+1−x∗‖2+αn‖xn−x∗‖2

+2αnb‖xn−x∗‖‖xn+1−x∗‖+2αn‖f (x∗)−x∗‖‖xn+1−x∗‖.

So, we have
lim

n→∞ ‖xn − vn‖ = 0.

Next, we prove that lim supn→+∞〈x∗ − f (x∗), x∗ − xn〉 ≤ 0. Since H is reflexive and {xn}
is bounded, there exists a subsequence {xnj

} of {xn} such that xnj
converges weakly to a in

C and
lim sup
n→+∞

〈x∗ − f (x∗), x∗ − xn〉 = lim
j→+∞〈x∗ − f (x∗), x∗ − xnj

〉.
From (12) and the fact that the operators I −Ti are demiclosed, we obtain a ∈ ⋂m

i=1 Fix(Ti).
Without loss of generality, we can assume that vnk

⇀ a. Let us show a ∈ EP(F). It follows
by Lemma 7 and (A2) that

1

rn
〈y − vn, vn − xn〉 ≥ F(y, vn)

and hence 〈

y − vnk
,
vnk

− xnk

rnk

〉

≥ F(y, vnk
).

Since
vnk

−xnk

rnk
→ 0 and vnk

⇀ a, it follows from (A4) that F(y, a) ≤ 0 for all y ∈ C. For t

with 0 < t < 1 and y ∈ C, let yt = ty + (1 − t)a. Since y ∈ C and a ∈ C, we have yt ∈ C

and hence F(yt , a) ≤ 0. So, from (A1) and (A4) we have

0 = F(yt , yt ) ≤ tF (yt , y) + (1 − t)F (yt , a) ≤ tF (yt , y)

and hence 0 ≤ F(yt , y). From (A3), we have F(a, y) ≥ 0 for all y ∈ C and hence
a ∈ EP(F). Therofore, a ∈ G.

Hence,

lim sup
n→+∞

〈x∗ − f (x∗), x∗ − xn〉 = lim
k→+∞〈x∗ − f (x∗), x∗ − xnk

〉
= 〈x∗ − f (x∗), x∗ − a)〉 ≤ 0.
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Finally, we show that xn → x∗. From (7) and Lemma 2, we get that

‖xn+1−x∗‖2 = ‖αnf (xn) + (1 − αn)yn − x∗‖2

≤ ‖αn(f (xn) − f (x∗)) + (1 − αn)(yn − x∗)‖2

+2αn〈x∗ − f (x∗), x∗ − xn+1〉
≤ (

αn‖f (xn) − f (x∗)‖ + ‖(1 − αn)(yn − x∗)‖)2

+2αn〈x∗ − f (x∗), x∗ − xn+1〉
≤(

αnb‖xn−x∗‖+(1−αn)‖yn−x∗‖)2+2αn〈x∗−f (x∗), x∗−xn+1〉
≤ (

(1 − αn(1 − b))‖xn − x∗‖)2 + 2αn〈x∗ − f (x∗), x∗ − xn+1〉
≤ (1 − αn(1 − b))‖xn − x∗‖2 + 2αn〈x∗ − f (x∗), x∗ − xn+1〉.

From Lemma 3, its follows that xn → x∗.

Case 2 Assume that the sequence {‖xn − x∗‖} is not monotonically decreasing. Set Bn =
‖xn − x∗‖2 and τ : N → N be a mapping defined for all n ≥ n0 (for some n0 large enough)
by τ(n) = max{k ∈ N : k ≤ n, Bk ≤ Bk+1}.

We have τ is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and Bτ(n) ≤
Bτ(n)+1 for n ≥ n0. Let i ∈ N

∗, from (11), we have

(
1 − ατ(n)

)2 ∑

i=1

λi(λ0 − ki)

∥
∥
∥vτ(n) − ui

τ(n)

∥
∥
∥

2 ≤ ατ(n)B.

Furthermore, we have

lim
n→+∞

m∑

i=1

λi(λ0 − ki)

∥
∥
∥vτ(n) − ui

τ(n)

∥
∥
∥

2 = 0.

Since λ0 ∈]μ, 1[, we can deduce

lim
n→∞

∥
∥
∥vτ(n) − ui

τ(n)

∥
∥
∥

2 = 0.

Since ui
τ(n) ∈ Tivτ(n), it follows that

lim
n→∞ d

(
vτ(n), Tivτ(n)

) = 0 ∀ i = 1, . . . , m.

By a similar argument as in Case 1, we can show that xτ(n) and yτ(n) are bounded in C and
lim supτ(n)→+∞〈x∗ − f (x∗), x∗ − xτ(n))〉 ≤ 0. We have for all n ≥ n0,

0 ≤ ‖xτ(n)+1 − x∗‖2 − ‖xτ(n) − x∗‖2

≤ ατ(n)

[
−(1 − b)‖xτ(n) − x∗‖2 + 2〈x∗ − f (x∗), x∗ − xτ(n)+1〉

]
,

which implies that

‖xτ(n) − x∗‖2 ≤ 2

1 − b
〈x∗ − f (x∗), x∗ − xτ(n)+1〉.

Then, we have
lim

n→∞ ‖xτ(n) − x∗‖2 = 0.

Therefore,
lim

n→∞ Bτ(n) = lim
n→∞ Bτ(n)+1 = 0.
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Furthermore, for all n ≥ n0, we have Bτ(n) ≤ Bτ(n)+1 if n �= τ(n) (that is, n > τ(n));
because Bj > Bj+1 for τ(n) + 1 ≤ j ≤ n. As consequence, we have for all n ≥ n0,

0 ≤ Bn ≤ max{Bτ(n), Bτ(n)+1} = Bτ(n)+1.

Hence, limn→∞ Bn = 0, that is {xn} converges strongly to x∗. This completes the proof.

We now apply Theorem 2 when multivalued mappings are nonexpansive mappings with
convex-values. In this case demiclosedness assumption is not necessary.

Theorem 3 Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let
F be a bifunction from C × C → R satisfying (A1)–(A4) and f : C → C be a contraction
with coefficient b. Let m ≥ 1 be a fixed number and 1 ≤ i ≤ m, let Ti : C → CB(C)

be a multivalued nonexpansive mapping and convex-values such that G := ⋂m
i=1 Fix(Ti) ∩

EP(F) �= ∅ and Tip = {p} ∀p ∈ G.
Let {xn} and {vn} be sequences defined iteratively from arbitrary x0 ∈ C by:

⎧
⎨

⎩

F(vn, y) + 1
rn

〈y − vn, vn − xn〉 ≥ 0 ∀y ∈ C,

yn = λ0vn + ∑m
i=1 λiu

i
n, ui

n ∈ Tivn,

xn+1 = αnf (xn) + (1 − αn)yn,

(14)

where λi ∈ ]0, 1[, i = 0, . . . , m such that {αn} ⊂ (0, 1) and {rn} ⊂]0, ∞[ satisfy:
(i) limn→∞ αn = 0,

(ii)
∑∞

n=0 αn = ∞,
(iii) λ0 + λ1 + · · · + λm = 1.
(iv) limn→∞ inf rn > 0.

Then, the sequences {xn} and {vn} generated by (14) converge strongly to x∗ ∈ G, which is
a unique solution of the following variational inequality (8).

Proof Since every multivalued nonexpansive mapping is multivalued strictly pseudo-
contractive mapping, then, the proof follows from Lemma 1 and Theorem 2.

Since every single-valued mapping can be viewed as a multivalued mapping, we obtain
from Lemma 4 the following corollary.

Corollary 1 Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let
f : C → C be a contraction with coefficient b. Letm ≥ 1 be a fixed number and 1 ≤ i ≤ m,
let Ti : C → C be a ki-strictly pseudo-contractive mapping such that

⋂m
i=1 Fix(Ti) �= ∅.

Let {xn} and {vn} be sequences defined iteratively from arbitrary x0 ∈ C by:

{
yn = λ0vn + ∑m

i=1 λiTixn,

xn+1 = αnf (xn) + (1 − αn)yn,
(15)

where λ0 ∈]μ, 1[, μ := max{ki, i = 1, . . . , m}, λi ∈ ]0, 1[, i = 1, . . . , m and {αn} is a real
sequence in (0, 1) satisfying:

(i) limn→∞ αn = 0,
(ii)

∑∞
n=0 αn = ∞,

(iii) λ0 + λ1 + · · · + λm = 1.
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Then, the sequences {xn} and {vn} generated by (15) converge strongly to x∗ ∈ ⋂m
i=1 Fix(Ti),

which is the unique solution of the variational inequality

〈x∗ − f (x∗), x∗ − p〉 ≤ 0 ∀p ∈
m⋂

i=1

Fix(Ti).

Proof Put F(x, y) = 0 for all x, y ∈ C and rn = 1, we get un = xn in Theorem 2. The
proof follows from Theorem 2 and Lemma 4.

Let K be a nonempty, closed and convex subset of a real Hilbert space, let T : K →
P(K) be a multivalued map and PT : K → CB(K) be defined by

PT (x) := {y ∈ T x : ‖y − x‖ = d(x, T x)}.
We will need the following result.

Lemma 8 (Song and Cho [25]) Let K be a nonempty subset of a real Banach space and
T : K → P(K) be a multi-valued map. Then the following are equivalent:

(i) x∗ ∈ Fix(T );
(ii) PT (x∗) = {x∗};

(iii) x∗ ∈ Fix(PT ). Moreover, Fix(T ) = Fix(PT ).

Now, using the similar arguments as in the proof of Theorem 2 and Lemma 8, we obtain
the following result by replacing T by PT and removing the rigid restriction on Fix(T )

(Tp = {p} ∀p ∈ F(T )).

Theorem 4 Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Let F be a bifunction from C × C → R satisfying (A1)–(A4) and f : C → C be a
contraction with coefficient b. Let T : C → CB(C) be a multivalued mapping such that
G := Fix(T ) ∩ EP(F) �= ∅. Assume that PT is k-strictly pseudo-contractive.

Let {xn} and {vn} be sequences defined iteratively from arbitrary x0 ∈ C by:
⎧
⎨

⎩

F(vn, y) + 1
rn

〈y − vn, vn − xn〉 ≥ 0 ∀y ∈ C,

yn = λ0vn + (1 − λ0)un, un ∈ PT vn,

xn+1 = αnf (xn) + (1 − αn)yn,

(16)

where λ0 ∈]k, 1[ and {αn} ⊂ (0, 1) and {rn} ⊂]0, ∞[ satisfy:
(i) limn→∞ αn = 0,

(ii)
∑∞

n=0 αn = ∞,
(iii) limn→∞ inf rn > 0.

Assume that the mappings I −PT is demiclosed at the origin. Then, the sequences {xn} and
{yn} generated by (16) converge strongly to x∗ ∈ G, which is the unique solution of the
variational inequality:

〈x∗ − f (x∗), x∗ − p〉 ≤ 0 ∀p ∈ G.

4 Application to Constrained Optimization Problems

Convex optimization theory is a powerful tool for solving many practical problems in
operational research. In particular, it has been widely used to solve practical minimization
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problems over complicated constraints [5, 11], e.g., convex optimization problems with a
fixed point constraint and with a variational inequality constraint. Consider the following
constrained optimization problem: Let C be a nonempty, closed and convex subset a real
Hilbert space H . Given a convex objective function g : C → R, the problem can be
expressed as

Minimize g(x) subject to x ∈ C.

The set of solutions of (17) is denoted by Sol(g).

Proposition 1 [26] Let H be a real Hilbert space. Let A : H → H be a monotone mapping
such that K := D(A) is closed and convex. Assume that A is bounded on bounded subsets
and hemi-continuous on K . Then, the bifunction F(x, y) := 〈Ax, y−x〉 satisfies conditions
(A1)–(A4).

The following basic results are well known.

Lemma 9 Let H be a real Hilbert space and K be a nonempty closed and convex subset
of H . Let g : H → R be a real valued differentiable convex function. Let ∇g : K → H

denotes the differential map associated to g. Then the following hold. If g is bounded, then
g is locally Lipschitzian, i.e., for every x0 ∈ K and r > 0, there exists γ > 0 such that g is
γ -Lipschitzian on B(x0, r), i.e.,

|g(x) − g(y)| ≤ γ ‖x − y‖ ∀ x, y ∈ B(x0, r).

Lemma 10 Let K be a nonempty, closed convex subset of H and let g : K → R a real
valued differentiable convex function. Then x∗ is a minimizer of g over K if and only if x∗
solves the following variational inequality 〈∇g(x∗), x − x∗〉 ≥ 0 for all x ∈ K .

Remark 2 Let K be a nonempty, closed convex subset of H . Let g : K → R a real valued
differentiable convex function. It is well known that the differential map associated to g is
monotone.

Lemma 11 Let K be a nonempty, closed and convex subset of a real Hilbert space H and
g : K → R be a real valued differentiable convex function. Assume that g is bounded. Then
the differentiable map, ∇g : K → H is bounded.

Proof For x0 ∈ K and r > 0, let B := B(x0, r). We show that ∇g(B) is bounded. From
Lemma 9, there exists γ > 0 such that

|g(x) − g(y)| ≤ γ ‖x − y‖ ∀ x, y ∈ B. (17)

Let z∗ ∈ ∇g(B) and x∗ ∈ B such that z∗ = ∇g(x∗). For u ∈ H , since B is open, there
exists t > 0 such that x∗ + tu ∈ B. Using the fact that z∗ = ∇g(x∗), the convexity of g and
the inequality (17), it follows

〈z∗, tu〉 ≤ g(x∗ + tu) − g(x∗) ≤ tγ ‖u‖.

So that, 〈z∗, u〉 ≤ γ ‖u‖ ∀ u ∈ H . Therefore, ‖z∗‖ ≤ γ . Hence, ∇g(B) is bounded.

Theorem 5 Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Let g : C → R a real valued continuously differentiable convex and bounded function
and f : C → C be a contraction with coefficient b. Let m ≥ 1 be a fixed number and
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1 ≤ i ≤ m, let Ti : C → CB(C) be a multivalued ki-strictly pseudo-contractive mapping
such that G := ⋂m

i=1 Fix(Ti)∩ Sol(g) �= ∅ and Tip = {p} ∀p ∈ G. Assume that I −Ti are
demiclosed at the origin.

Let {xn} and {vn} be sequences generated iteratively from arbitrary x0 ∈ C by:
⎧
⎨

⎩

〈∇g(vn), y − vn〉 + 1
rn

〈y − vn, vn − xn〉 ≥ 0 ∀y ∈ C,

yn = λ0vn + ∑m
i=1 λiu

i
n, ui

n ∈ Tivn,

xn+1 = αnf (xn) + (1 − αn)yn,

where λ0 ∈]μ, 1[, μ := max{ki, i = 1, . . . , m} and λi ∈]0, 1[ such that {αn} ⊂ (0, 1) and
{rn} ⊂]0, ∞[ satisfy:

(i) limn→∞ αn = 0,
(ii)

∑∞
n=0 αn = ∞,

(iii) λ0 + λ1 + · · · + λm = 1,
(iv) limn→∞ inf rn > 0.

Then, the sequence {xn} converges strongly to x∗ solution of (17).

Proof Let F(x, y) := 〈∇g(x), y − x〉 for all x, y ∈ C. From the properties of g, Proposi-
tion 1, Remark 2 and Lemma 11, it follows that ∇g is monotone, continuous and bounded
on bounded subset on C. So, F satisfies (A1)–(A4). Using the assumption that (17) has a
solution and Lemma 10, we have x∗ is solution of (17) if and only if x∗ ∈ EP(F). Then,
the proof follows from Theorem 2.

5 Numerical Example

In this section, we present a numerical example to illustrate the convergence behavior of our
iteration scheme (16).

Let 〈·, ·〉 : R3 × R
3 → R be the inner product defined by

〈x, y〉 = x1 · y1 + x2 · y2 + x3 · y3

and let ‖ · ‖ : R3 → R be the usual norm defined by ‖x‖ =
√

x1
2 + x2

2 + x2
2 for any

x = (x1, x2, x3) ∈ R
3. For all x ∈ R

3, let T : R3 → CB(R3) defined by

T x =
{ [

0, x
2

]
, x ∈ (0,∞)3,

[
x
2 , 0

]
, x ∈ (−∞, 0]3.

Then PT is strictly pseudo-contractive. In fact, PT (x) = { x
2 } for all x ∈ R

3. It is easy to
see that Fix(T ) = {0}. Let F(x, y) := y2 + yx − 2x2, f (x) = 1

3x and Tr(x) = {z ∈
R

3, f (z, y) + 1
r
〈y − z, z − x〉 ≥ 0 ∀y ∈ R

3}. We can observe that Tr(x) = 1
1+3r

x and

0 ∈ Fix(T ) ∩ EP(F). Choose r = 1, αn = 1
n+1 and λ0 = 1

2 . Then, the scheme (16) can be
simplified as

⎧
⎨

⎩

vn = 1
4xn,

yn = 3
16xn,

xn+1 = 1
3n+3xn + 3n

16n+16xn, n ≥ 1.

Taking the initial point x1 = (1, 2, 3), the result of the numerical example obtained by using
MATLAB is given in Fig. 1 where it is shown that the sequence of iterates {xn} strongly
converges to 0.
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24. Sene, M., Faye, P., Djitté, N.: A Krasnoselskii-type algorithm for approximating a common fixed point
of a finite family of multivalued strictly pseudo contractive mappings in Hilbert spaces. J. Math. Sci.
Adv. Appl. 27, 59–80 (2014)

25. Song, Y., Cho, Y.-J.: Some notes on Ishikawa iteration for multi-valued mappings. Bull. Korean Math.
Soc. 48, 575–584 (2011)

26. Sabach, S.: Iterative Methods for Solving Optimization Problems. Research Thesis, Technion-Israel
Institute of Technology, Haifa (2012)

27. Takahashi, S., Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point
problems in Hilbert spaces. J. Math. Anal. Appl. 331, 506–515 (2007)

28. Xu, H.-K.: A variable Krasnosel’skii–Mann algorithm and the multiple-set split feasibility problem.
Inverse Probl. 26, 2021–2034 (2006)

29. Xu, H.-K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)
30. Xu, H.-K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces.

Inverse Probl. 26, 105018 (2010)
31. Yao, Y., Zhou, H., Liou, Y.-C.: Strong convergence of modified Krasnoselskii–Mann iterative algorithm

for non-expansive mappings. J. Appl. math. Comput. 29, 383–389 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

186


	An Algorithm to Solve Equilibrium Problems and Fixed Points Problems...
	Abstract
	Introduction
	Nonsmooth differential equations

	Preliminaries
	Main Results
	Application to Constrained Optimization Problems
	Numerical Example
	References


