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Abstract
The vast majority of the literature on stochastic semidefinite programs (stochastic SDPs)
with recourse is concerned with risk-neutral models. In this paper, we introduce mean-risk
models for stochastic SDPs and study structural properties as convexity and (Lipschitz) con-
tinuity. Special emphasis is placed on stability with respect to changes of the underlying
probability distribution. Perturbations of the true distribution may arise from incomplete
information or working with (finite discrete) approximations for the sake of computational
efficiency. We discuss extended formulations for stochastic SDPs under finite discrete
distributions, which turn out to be deterministic (mixed-integer) SDPs that are (almost)
block-structured for many popular risk measures.

Keywords Stochastic semidefinite programming · Mean-risk models · Stability analysis ·
Extended formulations
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1 Introduction

Stochastic semidefinite programs with recourse were first considered by Ariyawansa and
Zhu in [1], where, for finite discrete distributions, the authors reformulate the risk-neutral
stochastic SDP as a block-structured deterministic SDP and discuss an application to the
stochastic version of the minimum-volume covering ellipsoid problem (cf. [23, 25]). In [29],
the same authors give a multitude of other applications, including problems in geometry,
location aided routing, RC circuit design and structural optimization.

Some approaches to the algorithmic treatment of risk neutral programs with linear
recourse carry over to expectation based stochastic SDPs. Extending the results of Zhao
(cf. [27]), Mehrotra and Özevin derive a polynomial logarithmic barrier algorithm employ-
ing Bender’s decomposition (cf. [15]). Using the volumetric barrier of Vaidya (cf. [24]),
Ariyawansa and Zhu construct algorithms of similar complexity in [2]. Furthermore, in [13],
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Jin, Ariyawansa and Zhu propose homogeneous self-dual algorithms with complexities
comparable to the ones of the methods mentioned before. Motivated by an applica-
tion in multi-antenna wireless networks, Gaujal and Mertikopoulos establish a stochastic
approximation algorithm in [9].

Chance constrained SDP models are introduced by Ariyawansa and Zhu in [28, Chap-
ter 3], where an application to the stochastic minimum-volume covering ellipsoid problem
is considered. A different approach towards risk-aversion is taken by Schultz and Wollen-
berg [20], who consider stochastic mixed-integer semidefinite programs arising from unit
commitment problems in AC transmission systems. Based on Lagrangian relaxation of the
nonanticipativity constraint, a decomposition algorithm for minimizing a weighted sum of
the expectation and the probability of exceeding a certain threshold is proposed.

The present work extends the models of [20] and [2] by considering more general risk
measures. Instead of focussing on a certain application, we discuss structural properties as
convexity and (Lipschitz) continuity of the resulting objective functions. Furthermore, we
establish sufficient conditions for differentiability in the risk neutral setting.

Consequences for quantitative stability of the stochastic SDP models under perturbations
of the underlying distribution are pointed out. Such perturbations may arise from incomplete
information about the distribution or the choice to work with a simpler (possibly finite
discrete) approximation for reasons of computational efficiency.

Finally, for finite discrete distributions, we establish equivalent almost block-structured
SDPs for various risk measures. For instance, these results allow to adopt the well-known L-
shaped method by Slyke and Wets (cf. [22]) to various risk-averse stochastic SDP models.
Wollenberg has demonstrated how block structures can be exploited to solve large stochastic
SDPs in the risk neutral setting (cf. [26]).

2 Two-Stage Stochastic SDPs with Continuous Recourse

Let Sk+ denote the cone of symmetric positive semidefinite matrices in R
k×k . The com-

ponentwise Frobenius product of A = (a1, . . . , as)
� ∈ (Sk+)s and x ∈ Sk+ is defined as

A • x := (tr(a1x), . . . , tr(asx))� ∈ R
s , where tr denotes the trace of a quadratic matrix.

Furthermore, the Frobenius norm on Sk+ is given by

‖x‖ := √
x • x.

We shall consider the parametric SDP

(P(z)) min
x,y

{c • x + q • y | T • x + W • y = z, x ∈ X, y ∈ Sm+},

where z ∈ R
s enters as a parameter. The data is comprised of c ∈ Sn+, q ∈ Sm+ , T ∈ (Sn+)s ,

W ∈ (Sm+ )s and a nonempty, closed, convex set X ⊆ Sn+. The set X is usually given as a
spectrahedron, i.e., the intersection of the solution sets of a finite number of affine matrix
inequalities with the cone of positive semidefinite matrices.

Let z = Z(ω) be the realization of a random vector Z : � → R
s on some probabil-

ity space (�,F ,P). A two-stage stochastic SDP arises from (P(z)) if the decision x has
to be taken without knowledge of the particular realization Z(ω), while y can be chosen
after observing the previously unknown parameter. In this setting, the optimal decision y is
governed by the recourse problem

min
y

{q • y | W • y = Z(ω) − T • x, y ∈ Sm+}. (1)
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Let ϕ : Rs → R denote the optimal value function of (1) with respect to the right-hand side
of the system of matrix equations in its constraints, i.e.,

ϕ(t) := min
y

{q • y | W • y = t, y ∈ Sm+}.

Introducing the function f : Sn+ × R
s → R, f (x, z) := c • x + ϕ(z − T • x) we may

rewrite (P(Z(·)) as
min

x
{f (x, Z(·)) | x ∈ X}. (2)

Due to the assumed interplay between decision and observation, problem (2) is not well-
defined without further modelling choices. For any x, f (x, Z(·)) belongs to the space
L0(�,F ,P) of extended real-valued random variables on the underlying probability space.
We thus may fix any functionalR : X → R satisfying

{f (x, Z(·)) | x ∈ X} ⊆ X ⊆ L0(�,F ,P)

and consider the optimization problem

min
x

{QR(x) | x ∈ X}, (3)

where the mapping QR : Sn+ → R is given by QR(x) = R[f (x, Z(·))].
We shall work with the following assumptions:

A1 (Relatively complete recourse) W • Sm+ ⊇ suppP ◦ Z−1.
A2 (Strict dual feasibility) There is some u ∈ R

s such that q −W�u is positive definite.

Similar, yet more restrictive assumptions are also made in [15].

Lemma 1 Assume A2, then A1 holds if and only if MD := {u ∈ R
s | q − W�u ∈ Sm+} is

compact.

Proof MD is closed due to the closedness of Sm+ . Suppose that MD is unbounded, i.e., that
there exists a sequence {uk}k∈N ⊆ MD with limk→∞ ‖uk‖ = ∞. Define vk := uk/‖uk‖,
then ‖vk‖ = 1 holds for all k ∈ N. Therefore, the sequence {vk}k∈N can be assumed to
converge to some v �= 0 without loss of generality. By uk ∈ MD we have q − W�uk ∈ Sm+
for all k ∈ N. Thus,

−W�v = lim
k→∞ −W�vk = lim

k→∞
1

‖uk‖
(
q − W�uk

)
∈ Sm+ .

Now select any u0 ∈ MD . Then u0 + αv ∈ MD holds for any α ≥ 0 and we have

lim
α→∞ v�(u0 + αv) = lim

α→∞ v�u0 + α‖v‖2 = ∞,

verifying sup{v�u | q − W�u ∈ Sm+} = ∞. By duality, the set {y ∈ Sm+ | W • y = v} has
to be empty, which contradicts A1.

Let MD be compact, then once again by duality for arbitrary t ∈ R
s , there exists u ∈ MD

with min{q • y | W • y = t, y ∈ Sm+} = t�u, which implies t ∈ W • Sm+ and thus A1.

The lemma above shows that sup{t�u | q − W�u ∈ Sm+} is attained for any t ∈ R
s

whenever A1 and A2 hold true.

Lemma 2 Assume A1 and A2, then ϕ is finite, convex and Lipschitz continuous on R
s .

867



M. Claus et al.

Proof Due to A1 and A2, strong duality holds true for the SDP defining ϕ. We thus have

ϕ(t) = max
u

{t�u | u ∈ MD} ∀t ∈ R
s .

As MD is nonempty and compact by Lemma 1, ϕ is finite on Rs .
Furthermore, for arbitrary λ ∈ [0, 1] and t1, t2 ∈ R

s , strong duality implies

ϕ(λt1 + (1 − λ)t2) = max
u∈MD

(λt1 + (1 − λ)t2)
T u

≤ λ max
u∈MD

tT1 u + (1 − λ) max
u∈MD

tT2 u

= λϕ(t1) + (1 − λ)ϕ(t2),

which proves the asserted convexity of ϕ.
To establish Lipschitz continuity, let t1, t2 ∈ R

s be arbitrary and fixed. Then by strong
duality and the compactness of MD , there exists u1, u2 ∈ MD such that ϕ(t1) = t�1 u1 and
ϕ(t2) = t�2 u2. By t�1 u1 ≥ t�1 u2 and t�2 u2 ≥ t�2 u1 we have

−‖u2‖ · ‖t1 − t2‖ ≤ t�1 u2 − t�2 u2 ≤ ϕ(t1) − ϕ(t2) ≤ t�1 u1 − t�2 u1 ≤ ‖u1‖ · ‖t1 − t2‖
and thus |ϕ(t1) − ϕ(t2)| ≤ max{‖u1‖, ‖u2‖}‖t1 − t2‖. Set Lϕ := maxu∈MD

‖u‖ < ∞, then

|ϕ(t1) − ϕ(t2)| ≤ Lϕ · ‖t1 − t2‖
holds for all t1, t2 ∈ R

s , which completes the proof.

Remark 1 Under assumptions A1 and A2, ϕ is finite and convex, which implies directional
differentiability by [18, Theorem 25.4]. Furthermore, the subdifferential of ϕ is convex,
compact and admits the representation

∂ϕ(t) = Argmax{u�t | u ∈ MD}.
By [18, Theorem 25.1], ϕ is differentiable at t if and only if ∂ϕ(t) is a singleton. In that
case, we have ∂ϕ(t) = {∇ϕ(t)}.

Remark 2 In two-stage stochastic linear programming, the counterpart of ϕ is the optimal
value function of a linear program:

ϕl : Rs → R, ϕl(t) := min{q�
l yl | Wlyl = t, yl ∈ R

m+}
with ql ∈ R

m and Wl ∈ R
s×m. By linear programming theory, ϕl is finite on R

s iff
Wl(R

m+) = R
s and MDl

= {u ∈ R
s | W�

l u ≤ q} �= ∅. In this situation, ϕl admits the
representation

ϕl(t) = max
j=1,...,N

d�
j t,

where d1, . . . , dN denote the vertices of the polytope MDl
. In particular, ϕl is piecewise

linear, convex and Lipschitz continuous.

The following example shows that the assumptions A1 and MD �= ∅ are not sufficient to
ensure that the optimal value in the problem defining ϕ(t) is attained for all t ∈ R

s .

Example 1 For t ∈ R, consider the SDP

min
{[

1 0 0 0
] • y | [

0 1
2

1
2 0

] • y = t, y ∈ S2+
}
. (4)
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For any t ∈ R we have
[ |t | + 1 t

t |t | + 1

]
∈ int S2+ and

[
0 1

2
1
2 0

] •
[ |t | + 1 t

t |t | + 1

]
= t .

Consequently, A1 is fulfilled. Moreover, we have

MD =
{
u ∈ R | [

1 0 0 0
] − [

0 1
2

1
2 0

] · u ∈ S2+
}

= {0}. (5)

As (4) is strictly feasible for any right-hand side t ∈ R
s , strong duality holds and (5) implies

that the infimum of (4) is zero. Furthermore, for any t ∈ R \ {0} we have
[

y11
t
2

t
2 y22

]
∈ S2+ ⇐⇒ y11 > 0, y22 > 0, y11y22 −

(
t

2

)2

≥ 0,

which yields the lower bound y11 ≥ t2/(4y22) > 0 for any y that is feasible for (4).
Consequently, the optimal value in (4) is not attained if t �= 0.

3 Structure of Risk-Averse Stochastic SDPs

Let us now return to problem (3) and consider various choices of R. To ensure finiteness,
we shall work with moment conditions on the Borel probability measure P ◦ Z−1 induced
by the underlying random vector Z(·). Let P(Rs) denote the space of all Borel probability
measures on Rs and

Mp
s :=

{
μ ∈ P(Rs) |

∫

Rs

‖t‖p μ(dt) < ∞
}

be the subspace of measures having finite moments of order p ≥ 1.

Lemma 3 Assume A1, A2 and P ◦ Z−1 ∈ Mp
s . Then f (x, Z(·)) ∈ Lp(�,F ,P) for all

x ∈ Sn+ and the mapping F : Sn+ → Lp(�,F ,P), F(x) := f (x, Z(·)) is convex and
Lipschitz continuous with constant ‖c‖ + Lϕ · ‖T ‖ w.r.t. the Lp-norm.

Proof For any x ∈ Sn+ we have

‖F(x)‖p
Lp =

∫

Rs

|c • x + ϕ(z − T • x)|p (P ◦ Z−1)(dz)

≤ |c • x|p + |ϕ(0)|p +
∫

Rs

|ϕ(z − T • x) − ϕ(0)|p (P ◦ Z−1)(dz)

≤ |c • x|p + |ϕ(0)|p + Lp
ϕ‖T • x‖p + Lp

ϕ

∫

Rs

‖z‖p (P ◦ Z−1)(dz) < ∞

by Lemma 2.
For any x1, x2 ∈ Sn+, λ ∈ [0, 1] and z ∈ R

s , the convexity of ϕ yields

f (λx1 + (1 − λ)x2, z) ≤ λf (x1, z) + (1 − λ)f (x2, z)

and thus in particular F(λx1 + (1 − λ)x2) ≤ λF(x1) + (1 − λ)F (x2) with respect to the
P-almost sure partial order, proving the asserted convexity of F .
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Finally,

‖F(x1) − F(x2)‖Lp = ‖c • (x1 − x2) + ϕ(z − T • x1) − ϕ(z − T • x2)‖Lp

≤ ‖c • (x1 − x2)‖Lp + ‖ϕ(z − T • x1) − ϕ(z − T • x2)‖Lp

≤ (‖c‖ + Lϕ · ‖T ‖) · ‖x1 − x2‖
holds for all x1, x2 ∈ Sn+.

Remark 3 Lemma 3 shows that under a suitable moment condition on Z the classical Lp-
spaces are a natural choice for the domain X of R (1 ≤ p < ∞). Furthermore, Lemma 2
shows that if Z has bounded support one may choose X = L∞(�,F ,P).

Definition 1 A mapping R : X → R defined on some linear subspace X of L0(�,F ,P)

containing the constants is called a convex risk measure if the following conditions are
fulfilled:

1. (Convexity) For any Z1, Z2 ∈ X and λ ∈ [0, 1] we have
R[λZ1 + (1 − λ)Z2] ≤ λR[Z1] + (1 − λ)R[Z2].

2. (Monotonicity) R[Z1] ≤ R[Z2] for all Z1, Z2 ∈ X satisfying Z1 ≤ Z2 with respect
to the P-almost sure partial order.

3. (Translation equivariance)R[Z1 + z2] = R[Z1] + z2 for all Z1 ∈ X and z2 ∈ R.

A convex risk measureR is coherent if the following holds true:

4. (Positive homogeneity)R[z2Z1] = z2 · R[Z1] for all Z1 ∈ X and z2 ∈ [0, ∞).

Definition 2 A mapping R : X → R is called law-invariant if for all Z1, Z2 ∈ X with
P ◦ Z−1

1 = P ◦ Z−1
2 we haveR[Z1] = R[Z2].

We shall give some examples of risk-measures frequently used in stochastic program-
ming as listed in [17, pp. 447–448], and [21]. Later we will give extensive formulations of
discrete mean-risk SDPs based on these risk-measures:

(i) The expectation E : L1(�,F ,P) → R is a law-invariant coherent risk-measure.
(ii) The expected excess over threshold η ∈ R (as used in [19]) is the mapping EEη :

L1(�,F ,P) → R defined by

EEη[Y ] =
∫

�

max{Y (ω) − η, 0}P(dω).

This is a non-decreasing, convex and law-invariant risk measure, but in general not
translation-equivariant.

(iii) The conditional value-at-risk at level α ∈ (0, 1)

CV@Rα : L1(�,F ,P) → R, CV@Rα[Y ] = min
η∈R

{
η + 1

1 − α
EEη(Y )

}
(6)

is law-invariant coherent (cf. [16]).
(iv) The value-at-risk at level α ∈ (0, 1)

V@Rα : L0(�,F ,P) → R, V@Rα[Y ] = inf{t | P(Z(ω) ≤ t) ≥ α}
is nondecreasing, law-invariant, translation-equivariant and positively homogenous,
but in general non-convex.
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(v) The upper semi-deviation of order p is the mapping Mad+
p : Lp(�,F ,P) → R

defined by

Mad+
p [Y ] =

(∫
max{0, Y (ω) − EP[Z]}pP(dω)

) 1
p

.

For ρ ∈ [0, 1] this gives rise to the law-invariant and coherent risk measure E +
ρ Madp (cf. [21, p. 276]).

Proposition 1 Assume A1 and A2, let X be a convex subset of L0(�,F ,P) that contains
F(Sn+) and fix a convex and nondecreasing mapping R : X → R. Then QR is finite and
convex on Sn+. In particular, problem (3) is convex.

Proof Finiteness of QR follows directly from the finiteness of R. Furthermore, for any
x1, x2 ∈ Sn+ and λ ∈ [0, 1] we have

QR(λx1 + (1 − λ)x2) = R[F(λx1 + (1 − λ)x2)]
≤ R[λF(x1) + (1 − λ)F (x2)]
≤ λR[F(x1)] + (1 − λ)R[F(x2)].

The first inequality above holds due to the monotonicity of R and the convexity of F (by
Lemma 3), while the second one is justified by the convexity ofR.

Similar to the previous proposition, continuity properties ofR carry over to Lipschitzian
properties of QR:

Proposition 2 Assume A1, A2 and P◦Z−1 ∈ Mp
s . IfR : X → R is convex and continuous,

then QR is locally Lipschitz continuous on Sn+.

Proof It is well-known (cf. [7]) that a real-valued continuous and convex mapping on a nor-
med space is locally Lipschitz continuous. Hence the result directly follows from Lemma 3.

Proposition 3 Assume A1, A2 and P ◦ Z−1 ∈ Mp
s . IfR : X → R is Lipschitz, then QR is

Lipschitz on Sn+.

Proof Straightforward.

Remark 4 The required continuity in Proposition 2 is always satisfied if R is convex and
nondecreasing (w.r.t. to the P-a.s. partial order). Lipschitz continuity holds for all coher-
ent risk measures (cf. [12]). Concrete Lipschitz constants for coherent law-invariant risk
measures may be obtained from representation results, e.g. from [3].

Proposition 4 Assume A1, A2 and that the support of P◦Z−1 is bounded. Furthermore, let
R : L∞(�,F ,P) → R be a coherent risk measure. Then QR is Lipschitz continuous with
constant ‖c‖ + Lϕ · ‖T ‖ on Sn+.
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Proof R is Lipschitz continuous with constant 1 with respect to the L∞-norm on by
L∞(�,F ,P) by [8, Lemma 4.3] and F takes essentially bounded values by Remark 3.
Thus, for any x1, x2 ∈ Sn+ we have

|QR(x1) − QR(x2)| = |R[F(x1)] − R[F(x2)]|
≤ ‖F(x1) − F(x2)‖L∞

≤ ‖F(x1) − F(x2)‖L1

≤ (‖c‖ + Lϕ · ‖T ‖) · ‖x1 − x2‖

by Lemma 3.

We shall now turn our attention to questions of differentiability, but confine the analysis
to the risk neutral model.

Lemma 4 Assume A1, A2 and P◦Z−1 ∈ M1
s , then the functionalQE : Sn+ → R,QE(x) :=

E[F(x)] is directionally differentiable and

Q′
E
(x; v) :=

∫

Rs

ϕ′(z − T • x; v) (P ◦ Z−1)(dz)

holds for all x, v ∈ Sn+.

Proof QE is finite valued by Lemma 3, convex by Proposition 1 and thus directionally
differentiable (cf. [18, Theorem 25.4]). Furthermore, ϕ′(· − T x; v) is a pointwise limit of
measurable functions and thus measurable for any x, v ∈ Sn+. The asserted representation
of the directional derivative is justified by Lemma 2 and [4, Proposition 2.1].

Sufficient conditions for differentiability QE can be obtained using the same arguments
as for linear recourse (cf. [21]).

Lemma 5 Assume A1, A2 and P ◦ Z−1 ∈ M1
s and let x0 ∈ Sn+ be such that

Argmax{u�(z − T • x0) | u ∈ MD}

is a singleton for (P ◦ Z−1)-almost all z ∈ R
s . Then QE is differentiable at x0.

Proof For (P ◦ Z−1)-almost all z ∈ R
s , hz : Sn+ → R, hz(x) = c • x + ϕ(z − T • x) is

differentiable with measurable derivative

h′
z(x) = c + −T � · Argmax{u�(z − T • x0) | u ∈ MD}.

Consider the functions gz : Sn+ → R defined by

gz(x) := hz(x) − hz(x0) − h′
z(x0)

�(x − x0)

‖x − x0‖ ,
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then limx→x0 gz(x) = 0 holds for (P ◦ Z−1)-almost all z ∈ R
s . Furthermore, Lemma 2

implies ‖gz(x)‖ ≤ 2(Lϕ‖T ‖ + ‖c‖) for all x ∈ Sn+ and z ∈ R
s . Hence, by Lebesgue’s

dominated convergence theorem, we have

lim
x→x0

QE(x) − QE(x0) − ∫
Rs h′

z(x0)
�(x − x0) (P ◦ Z−1)(dz)

‖x − x0‖
= lim

x→x0

∫

Rs

gz(x) (P ◦ Z−1)(dz) =
∫

Rs

lim
x→x0

gz(x) (P ◦ Z−1)(dz) = 0.

Consequently, QE is differentiable at x0 and Q′
E
(x0) = ∫

Rs h′
z(x0) (P ◦ Z−1)(dz).

Corollary 1 Assume A1, A2 and that P ◦ Z−1 ∈ M1
s is absolutely continuous with respect

to the Lebesgue measure. Then QE is continuously differentiable on Sn+.

Proof Let Nϕ ⊂ R
s denote the set of points of nondifferentiability of ϕ. By [18, Theo-

rem 25.5],

Nx := {z ∈ R
s | z − T • x ∈ Nϕ}

is a null set with respect to the Lebesgue measure for any x ∈ Sn+, which implies (P ◦
Z−1)[Nx] = 0. Consequently, QE is differentiable on Sn+. Continuity of the derivative
follows from [18, Theorem 25.5] and the convexity of QE.

Remark 5 Assuming A1, A2 and P ◦ Z−1 ∈ M1
s , the subdifferential of QE admits the

representation

∂QE(x) = c +
∫ s

R

∂xϕ(z − T • x) (P ◦ Z−1)(dz)

=
{
c +

∫

Rs

ρ(z)(P ◦ Z−1)(dz) | ρ : Rs →Sn+ measurable, ρ(z) ∈ ∂xϕ(z−T •x) a.s.

}
.

Further details are given in [4].

Corollary 2 Assume A2 and that the underlying random variable Z follows a finite discrete
distribution with realizations z1, . . . , zS ∈ R

s and respective probabilities π1, . . . , πS > 0.
Furthermore, assume that {y ∈ Sm+ | W •y = zi −T •x} is nonempty for any i ∈ {1, . . . , S}
and x ∈ Sn+. Then

∂QE(x) = c +
s∑

i=1

πi · ∂xϕ(zi − T • x)

= c +
s∑

i=1

−πi · T � · Argmax{u�(zi − T • x) | u ∈ MD}

holds for any x ∈ Sn+.

Proof The result follows directly from [18, Theorem 23.8].
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4 Stability

We shall now study the dependence of QR on the underlying probability measure P ◦ Z1.
This is motivated by the fact that in applications the true probability distribution of the ran-
dom parameter may be unknown. In such situations, one may work with an approximation
if the optimal value function and the optimal solution set mapping of (3) are at least semi-
continuous with respect to changes of the underlying distribution. Throughout this section
we will assume

A1′ (Complete recourse) W • Sm+ = R
s .

instead of condition A1.
Let (�0,F0,P0) be an atomless probability space, i.e., assume that for any A ∈ F0 with

P0(A) > 0 there exists some B � A with B ∈ F0 and P0(B) > 0, and fix any p ≥ 1. Then
for any ν ∈ M1

p there exists some Zν ∈ Lp(�0,F0,P0) such that P0 ◦ Z−1
ν . Thus, given

any law-invariant mappingR0 : Lp(�0,F0,P0) → R, the function

�R0 : M1
p → R, �R0 [ν] := R0[Zν]

is well-defined. Furthermore, we can construct a mappingRR0 : Lp(�,F ,P) → R by set-
tingRR0 [Z1] := �R0 [P◦Z−1

1 ]. To ease the notation, we shall assume that (�,F ,P) itself
is atomless. Given any law-invariant mapping R : Lp(�,F ,P) → R, we shall consider
the function

QR : Sn+ × Mp
s → R, QR(x, μ) := �R

[
μ ◦ f (x, ·)−1

]
.

For the following analysis, we equip the space P(Rs) with the topology of weak conver-
gence, where a sequence {μk}k∈N ⊆ P(Rs) converges to someμ ∈ P(Rs), writtenμk

w→ μ

if and only if ∫

Rs

h(t) μk(dt) →
∫

Rs

h(t) μ(dt)

holds for any bounded and continuous function h : Rs → R. It is well known that even for
linear recourse one cannot expect weak continuity of QR on the entire space Sn+ × Mp

s .
Along the lines of [6], we shall thus restrict the analysis to appropriate subspaces.

Definition 3 A set M ⊆ Mp
s is called locally uniformly ‖ · ‖p-integrating if for any

μ ∈ M and any ε > 0 there exists some open neighborhood N of μ with respect to the
topology of weak convergence such that

lim
a→∞ sup

ν∈N∩M

∫

Rs

1(a,∞)(‖t‖p) · ‖t‖p ν(dt) ≤ ε.

Example 2 (a) For any K, ε > 0 and p ≥ 1, the set

U(ε, K) :=
{
ν ∈ Mp

s :
∫

Rs

‖t‖1+ε ν(dt) ≤ K

}

of measures having uniformly bounded moments of order 1 + ε is locally uniformly
‖ · ‖p-integrating (cf. [5, Lemma 2.69]).

(b) For any p ≥ 1 and compact set � ⊂ R
s , the set{

ν ∈ Mp
s :

∫

�

1 ν(dt) = 1

}

of measures with support in� is locally uniformly ‖·‖p-integrating by [14, Lemma 5.1].
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(c) Any singleton {μ} ⊆ Mp
s is locally uniformly ‖ · ‖p-integrating for any p ≥ 1 by

[14, Lemma 5.2].

Theorem 1 Let R : Lp(�,F ,P) → R with p ≥ 1 be law-invariant, convex and nonde-
creasing. Assume A1′ and A2 and let M ⊆ Mp

s be locally uniformly ‖ · ‖p-integrating.
Then the following statements hold true:

1. The restriction ofQR to the set Sn+×M is continuous with respect to the product topol-
ogy of the the standard topology on Sn+ and the relative topology of weak convergence
onM.

2. The optimal value function

φ : M → R, φ(μ) := min
x

{QR(x, μ) | x ∈ X}
is weakly upper semicontinuous.

Additionally assume that X is compact. Then

3. φ is weakly continuous.
4. The optimal solution set mapping

� : M ⇒ Sn+, �(μ) := Argminx{QR(x, μ) | x ∈ X}
is weakly upper semicontinuous in the sense of Berge, i.e., for any μ0 ∈ M and any
open set O ⊆ Sn+ with �(μ0) ⊆ O there exists a weakly open neighborhood N of μ0
such that �(μ) ⊆ O for all μ ∈ N ∩M. Furthermore, �(μ) is nonempty and compact
for any μ ∈ M.

Proof Invoking Lemma 2, the result follows from [6, Corollary 2].

5 Extensive Formulations for Finite Discrete Distributions

Throughout this section, we shall assume A1, A2 and that the underlying random variable
Z follows a finite discrete distribution with realizations z1, . . . , zS ∈ R

s and respective
probabilities π1, . . . , πS > 0. Furthermore, we denote the index set {1, . . . , S} by IS .

It is well known that in the risk neutral setting, the stochastic SDP admits a reformulation
as a block-structured SDP (cf. [1, 15]):

Proposition 5 The risk neutral stochastic SDP

min {QE(x) | x ∈ X} (7)

is equivalent to the SDP

min
x,y1,...,yS

{
c•x+

S∑
i=1

πiq • yi | T • x + W • yi = zi ∀i ∈ IS, x ∈ X, yi ∈ Sm+ ∀i ∈ IS

}
,

(8)

in the sense that the infimal values of the problems coincide. Furthermore, x is an optimal
solution for (7) if and only if there exist y1, . . . , yS such that (x, y1, . . . , yS) is an optimal
solution for (8).
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Proof By definition of ϕ,

QE(x) = c • x +
S∑

i=1

πiϕ(zi − T • x) ≤ c • x +
S∑

i=1

πiq • yi (9)

holds for any x ∈ X, y1, . . . , yS ∈ Sm+ satisfying T • x + W • yi = zi for all i ∈ IS .
Thus, the infimal value of (7) is less or equal to the infimal value of (8). Furthermore, (9) is
satisfied as equality if and only if

yi ∈ Argmin{q • y | T • x + W • y = zi, y ∈ Sm+}
holds for all i ∈ IS . The optimal solution set above is nonempty by strong duality, which
holds due to A1 and A2.

We continue with extensive formulations of the SDP (3) for mean-risk models based on
the risk measures immediately following Definition 2. In this context, ρ shall always be a
nonnegative, predefined parameter indicating risk-aversion in the optimization.

Proposition 6
min

{
QE+ρ EEη

(x) | x ∈ X
}
, (10)

with η ∈ R as a given parameter, can be equivalently restated as

min
x,v1,...,vS ,
y1,...,yS

{
c • x +

S∑
i=1

πiq • yi + ρ

S∑
i=1

πivi | T • x + W • yi = zi ∀i ∈ IS,

v ≥ 0, vi ≥ c • x + q • yi − η ∀i ∈ IS,

x ∈ X, yi ∈ Sm+ ∀i ∈ IS

}
. (11)

Proof As the objective function of (11) is increasing with respect to v, any optimal solution
(x, v1, . . . , vS, y1, . . . , yS) satisfies vi = max{c • x + q • yi − η, 0} for all i ∈ IS . The
asserted equivalence of (10) and (11) then follows as in the proof of Proposition 5.

Proposition 7
min

{
QE+ρ CV@Rα

(x) | x ∈ X
}

can be equivalently restated as

min
x,v1,...,vS ,
y1,...,yS ,η

{
c • x +

S∑
i=1

πiq • yi + ρ η + ρ

1 − α

S∑
i=1

πivi | T • x + W • yi = zi ∀i ∈ IS,

v ≥ 0, vi ≥ c • x + q • yi − η ∀i ∈ IS,

η ∈ R, x ∈ X, yi ∈ Sm+ ∀i ∈ IS

}
. (12)

Proof This follows directly from the variational representation of CV@R in (6). The
expected-excess can be pushed into the restrictions by the same trick as in Proposition 6.
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As in in the risk-neutral case, problems (11) and (12) exhibit a block structure, i.e., there
is no coupling constraint involving variables associated with different scenarios. This allows
for a direct adaptation of the decomposition algorithms established for the expectation based
model.

Proposition 8

min
{
QE+ρ Mad+

p
(x) | x ∈ X

}

can be equivalently restated as

min
x,v1,...,vS ,
y1,...,yS

⎧⎪⎨
⎪⎩

c • x +
S∑

i=1

πiq • yi + ρ

(
S∑

i=1

πiv
p
i

) 1
p

| T • x + W • yi = zi ∀i ∈ IS,

v ≥ 0, vi ≥ c • x + q • yi −
S∑

j=1

πj q • yj ∀i ∈ IS,

x ∈ X, yi ∈ Sm+ ∀i ∈ IS

}
.

Proof Analogous to Proposition 6.

Unlike the previous models, the equivalent SDP in Proposition 8 contains an individ-
ual coupling constraint for each scenario. While Lagrangian relaxation still is possible, it
remains to be examined whether this approach is sensible from a computational point of
view.

Proposition 9 Consider the problem

min
{
QE+ρ V@Rα

(x) | x ∈ X
}

with compact set X. This problem can be equivalently restated as the following SDP with
binary variables

min
x,v1,...,vS ,
y1,...,yS ,

δ1,...,δS ,η

{
(1 + ρ) c • x +

S∑
i=1

πiq • yi + ρ η |

T • x + W • yi = zi ∀i ∈ IS,

S∑
i=1

δi πi ≥ α,

η − q • yi ≥ (1 − δi) M ∀i ∈ IS,

η ∈ R, x ∈ X, δi ∈ {0, 1}, yi ∈ Sm+ ∀i ∈ IS

}
(13)

if M ∈ R is chosen sufficiently big.
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Proof As in the preceding propositions introduce a dummy variable η to push V@R[ϕ(z −
T • x)] into the restrictions as η ≥ V@R[ϕ(z − T • x)] and minimize over η. Note that
η ≥ V@R[ϕ(z − T • x)] is equivalent to

μ(ϕ(z − T • x) ≤ η) ≥ α. (14)

As for given x ∈ X feasible points to the second stage problem corresponding to realization
zi are denoted as yi , (14) can be rewritten as∑

i∈IS : q•yi≤η

πi ≥ α.

This conditional summation can in turn be cast into inequalities with
binary variables δi , i ∈ IS ,

η − q • yi ≥ (1 − δi)M, i ∈ IS,∑
i∈IS

δiπi ≥ α

if M is chosen such that η − q • yi < M for all feasible yi and all η close to V@R[ϕ(zi −
T • x)]. Since −q • yi ≤ −ϕ(zi − T • x) the existence of M follows from compactness of
X, as maxx∈X ϕ(zi − T • x) < ∞ for all i ∈ IS .

Equation (13) does not decompose scenariowise due to the coupling constraint∑S
i=1 δi πi ≥ α, which involves variables from all scenarios. Furthermore, it has an

additional binary variable for each scenario. Problems of a similar structure have been con-
sidered in the context of minimizing a weighted sum of the expectation and the probability
of exceeding a fixed threshold in [20], where Lagrangian relaxation of the coupling con-
straint enables an approach based on Bender’s decomposition. This direction seems also
very promising for the algorithmic treatment of (13).

6 Future Research

Some interesting directions to be considered in a future research project are models involv-
ing stochastic costs and stochastic dominance SDP-models. In the presence of stochastic
costs the recourse function ϕ is piecewise quadratic and nonconvex which makes the anal-
ysis in Lemma 3 more delicate. For first- and second-order dominance constraints, some of
the structural results in [10] and [11] immediately carry over to case of stochastic SDPs.
Their numerical treatment shall also be considered in future work.
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