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Abstract
In this paper, we propose the application of third-order semi-discrete central-upwind con-
servative schemes to option pricing partial differential equations (PDEs). Our method is a
high-order extension of the recent efficient second-order “Black-Box” schemes that suc-
cessfully priced several option pricing problems. We consider the Kurganov–Levy scheme
and its extensions, namely the Kurganov–Noelle–Petrova and the Kolb schemes. These
“Black-Box” solvers ensure non-oscillatory property and achieve desired accuracy using
a third-order central weighted essentially non-oscillatory (CWENO) reconstruction. We
compare the schemes using a European test case and observe that the Kolb scheme per-
forms better. We apply the Kolb scheme to one-dimensional butterfly, barrier, American and
non-linear options under the Black–Scholes model. Further, we extend the Kurganov–Levy
scheme to solve two-dimensional convection-dominated Asian PDE. We also price Amer-
ican options under the constant elasticity of variance (CEV) model, which treats volatility
as a stochastic instead of a constant as in Black–Scholes model. Numerical experiments
achieve third-order, non-oscillatory and high-resolution solutions.

Keywords Conservative central-upwind schemes · CWENO reconstruction ·
Black–Scholes PDEs · Non-linear PDE · Two-dimensional PDE · CEV model
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1 Introduction

The Kurganov–Tadmor scheme [14] was originally developed to solve hyperbolic conserva-
tion laws. This second-order semi-discrete central-upwind conservative scheme was applied
to option pricing problems by [23]. Recently, [4] proposed an improvement of [23] approach
and efficiently priced several types of options under the “Black-Box” framework; appropri-
ate time methods and a fully vectorised approach for slope limiter are used. Among several
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researches contributing to option pricing literature, weighted essentially non-oscillatory
(WENO) approach was proposed in [7, 22] and [8]. These methods offer efficient approx-
imations but are tailor developed according to options’ specificity and require further
operations like grid stretching or variable transformation. In this paper, we propose the
application of the third-order semi-discrete central-upwind conservative and WENO based
scheme by [12], denoted as KL, to option pricing partial differential equations (PDEs). In
line with [4], we avail of the “Black-Box” feature of KL and its extensions, namely the
KL-KNP by [13] and KL-CTO by [11], to price several types of options.

The central-upwind methods retain the simple and “Black-Box” property of central
schemes; no Riemann solver and characteristic decomposition is required. The class of cen-
tral schemes is applied to a wide variety of hyperbolic conservation laws and related PDEs.
A partial list of more than 200 references can be found in CentPack [2]. The third-order KL
is derived independently of a sufficiently accurate and non-oscillatory quadratic piecewise
polynomial reconstruction, which is built from previously computed cell averages. In [12],
the central weighted essentially non-oscillatory (CWENO) reconstruction by [16] is used.
It provides a quadratic interpolant, which ensures the essentially non-oscillatory property.
The interpolant is composed of a convex combination of two one-sided linear functions and
one centered parabola. It guarantees third-order accuracy in smooth regions and automat-
ically switches to a second-order, one-sided, linear reconstruction in the presence of large
gradients. Further, [12] extended KL to solve two-dimensional convection-diffusion PDEs
by implementing the CWENO reconstruction using the dimension by dimension approach.
The main idea of KL-KNP is the use of more precise information about local speeds of
propagation. For KL-CTO, the CWENO reconstruction was adapted to KL, with the param-
eter ε in the non-linear weights of the scheme set proportional to the square of the mesh size
to achieve optimal order of accuracy.

In this paper, we describe the conservative KL scheme’s algorithm for option pric-
ing PDEs, which is combined with an appropriate time solver to ensure computational
efficiency. KL-KNP and KL-CTO are likewise discussed. Extensions to one- and two-
dimensional convection-diffusion-reaction PDEs are proposed. Further, the use of appro-
priate time methods is discussed. We consider several one-dimensional problems under the
Black–Scholes model, namely European, butterfly, barrier and American options as well as
non-linear option pricing PDE, to test the robustness and flexibility of the methods. We also
consider Asian option pricing under a two-dimensional PDE. American options are priced
under the constant elasticity of variance (CEV) model [6], which assumes volatility to be a
stochastic instead of a constant, as considered by the Black–Scholes model.

This paper is organised as follows. In Section 2, we overview the backward-in-time
Black–Scholes PDE. Section 3 presents the KL, KL-KNP and KL-CTO schemes. In con-
formity to the conservative schemes, forward-in-time Black–Scholes PDEs are described.
We also present the algorithm of KL, which is easily modified to KL-KNP and KL-CTO. In
Section 4, appropriate time methods are discussed and numerical experiments are performed
to price several options under the Black–Scholes and CEV models.

2 Basics of Options and Option Pricing

We consider the backward-in-time parabolic Black–Scholes PDE by [5] and [21],

∂v

∂t
+ 1

2
σ 2s2 ∂2v

∂s2
+ (r − δ)s

∂v

∂s
− rv = 0, (t, s) ∈ [0, T ] × [0, ∞), (1)

814



Conservative Third-Order Central-Upwind Schemes for Option Pricing...

with risk-free interest rate r , constant volatility σ and option price v := v(s, t). The price
process {s(t)}t≥0, where s := s(t), follows the stochastic differential equation ds(t) =
(r −δ)s(t) dt +σs(t) dW(t) under the risk-neutral measure, with continuous dividend yield
δ and Wiener process W(t). PDE (1) serves as a benchmark for testing numerical methods
subject to strike price K , terminal payoff function v(s, T ) and boundary conditions v(s, t)

for s → 0 and s → ∞. For European options,

v(s, T ) = max(φ(s − K), 0) with φ =
{

1 for call,
−1 for put,

(2)

and

v(s, t) = 0, as s → 0
v(s, t) = s exp (−δ(T − t)) − K exp (−r(T − t)), as s → ∞

}
for call, (3)

v(s, t) = K exp (−r(T − t)) − s exp (−δ(T − t)), as s → 0
v(s, t) = 0, as s → ∞

}
for put. (4)

For American options, which offer rights to early exercise the contract, (1) becomes an
inequality of the form,

∂v

∂t
+ 1

2
σ 2s2 ∂2v

∂s2
+ (r − δ)s

∂v

∂s
− rv ≤ 0.

The early exercise condition is incorporated by imposing the constraint,

v(s, t) ≥ max(φ(s − K), 0) with φ =
{

1 for call,
−1 for put,

(5)

and boundary conditions [27],

v(s, t) = 0, as s → 0
v(s, t) = s − K, as s → ∞

}
for call,

v(s, t) = K − s, as s → 0
v(s, t) = 0, as s → ∞

}
for put. (6)

For exotic path-dependent Asian options, which rely on the continuous arithmetic average
a := a(t) of the asset price s over [0, t], where a := 1

t

∫ t

0 s(τ ) dτ , no efficient analytical
solution exists. Letting Asian options’ price v := v(s, a, t), [3] modified (1) to formulate a
PDE defined in two spatial variables s and a,

∂v

∂t
+ 1

2
σ 2s2 ∂2v

∂s2
+ rs

∂v

∂s
− rv + 1

t
(s − a)

∂v

∂a
= 0, (7)

subject to terminal payoffs for fixed strike options,

v(s, a, T ) =
{

max(a − K, 0) for call,
max(K − a, 0) for put,

(8)

and boundary conditions

∂v

∂t
− a

t

∂v

∂a
− rv = 0, as s → 0,

∂v

∂t
+ 1

t
(s − a)

∂v

∂a
= 0, as s → ∞. (9)

As discussed in [30], PDE (7) is convectively dominated due to the absence of diffusion
term in a-direction.
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3 Third-Order Reconstructions

In this paper, we aim to price options using non-oscillatory third-order semi-discrete spa-
tial discretisations, to be integrated with efficient time methods. Therefore, we briefly
summarise the central-upwind KL scheme developed in [12], which originally solves the
hyperbolic conservation laws

∂v

∂t
+ ∂

∂s
F (v) = 0, (10)

with spatial variable s and convection flux F . KL is extended to solve the convection-
diffusion-reaction PDE,

∂v

∂t
+ ∂

∂s
F (v) = ∂

∂s
Q(v, vs) + S(v), (11)

with diffusion flux Q and source term S. We briefly describe the setup of central schemes
for (10) over the truncated interval [smin, smax]. For N ∈ N, we consider {sj }Nj=0 with

spatial width �s := sj+1 − sj and time step �tn := tn+1 − tn. We define v(sj , t
n) and

vn
j respectively as the exact and approximate solution at (sj , t

n). The cell averages over

I (sj ) := {ξ : |ξ − sj | ≤ �s
2 } are defined as v̄j ≈ v̄(sj , t) := 1

�s

∫
I (sj )

v(s, t) ds. Integrating

(10) over I (sj ) × [tn, tn+1], gives

v̄n+1
j+ 1

2
= v̄n

j+ 1
2

− 1

�s

∫ tn+1

tn

[
F

(
v
(
sj+1, t

)) − F
(
v
(
sj , t

))]
dt . (12)

Assuming previously computed cell averages {v̄n
j } and using (12), cell averages at tn+1

are obtained. Based on the polynomial Pj (s, t
n), which is built from {v̄n

j }, a piecewise
polynomial is reconstructed,

v(s, tn) ≈
∑
j

Pj (s, t
n)χj (s), (13)

with characteristic function χj (s) of the cell Ij := I (sj ). Using (13), the term v̄n

j+ 1
2

of (12)

is computed,

v̄n

j+ 1
2

=
∫ s

j+ 1
2

sj

Pj (s, t
n) ds +

∫ sj+1

s
j+ 1

2

Pj+1(s, t
n) ds.

In [12], overall third-order accuracy of KL was ensured using the quadratic CWENO
polynomial from [17] for (13) and Simpson’s quadrature [18] for integrals of (12).

3.1 CWENO Reconstruction

A quadratic polynomial is constructed in each cell Ij , as a convex combination of two linear
one-sided left PL(s), and right PR(s), polynomials and a centered parabola PC(s), around
sj , such that

Pj (s, t
n) = wLP n

L(s) + wRP n
R(s) + wCP n

C(s), (14)

with weights wi ≥ 0, ∀ i ∈ {C, R, L}, where
∑

i wi = 1. In (14), PL(s) and PR(s) are
defined as,

PL(s) = v̄j + v̄j − v̄j−1

�s
(s − sj ) and PR(s) = v̄j + v̄j+1 − v̄j

�s
(s − sj ). (15)
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For constant ci’s where
∑

i ci = 1, PC(s) is chosen to satisfy the parabola Popt(s), which
is given by,

P n
opt(s) = cLP n

L(s) + cRP n
R(s) + (1 − cL − cR)P n

C(s). (16)

For Popt(s) to conserve cell averages {v̄j−1, v̄j , v̄j+1}, that is, 1
�s

∫
Ij

Popt(s) ds = v̄j , it is
defined as,

Popt(s) = vj + v′
j (s − sj ) + 1

2
v′′
j (s − sj )

2, (17)

where

vj = v̄j − 1

24

(
v̄j−1 − 2v̄j + v̄j+1

)
,

v′
j = v̄j+1 − v̄j−1

2�s
and v′′

j = v̄j−1 − 2v̄j + v̄j+1

�s2
,

with approximate point values vj := v(sj , t) and derivatives v′
j ≈ vs(sj , t) and v′′

j ≈
vss(sj , t). Third-order accuracy is ensured using cL = cR = 1

4 and cC = 1
2 , and (15)–(17)

are simplified to give,

PC(s) = v̄j − 1

12

(
v̄j−1 − 2v̄j + v̄j+1

)+ v̄j+1 − v̄j−1

2�s
(s−sj )+ v̄j−1 − 2v̄j + v̄j+1

�s2
(s−sj )

2.

In (14), wi’s are chosen to guarantee maximum accuracy. In smooth regions, (14) ensures
third-order accuracy and in cases of discontinuity, it automatically switches to best fitted
one-sided polynomials,

wi = αi∑
k αk

, where αi = ci

(ε + ISi)
p , i, k ∈ {C, R, L}. (18)

The constant ε ensures that the denominator does not vanish and was taken as 10−6 and
following [10], p = 2 was chosen. The smoothness indicators ISi in (18) are given by,

ISi =
2∑

l=1

∫ s
j+ 1

2

s
j− 1

2

(�s)2l−1
(
P

(l)
i (s)

)2
ds,

such that,

ISL = (
v̄j − v̄j−1

)2
, ISR = (

v̄j+1 − v̄j

)2
,

ISC = 13

3

(
v̄j−1 − 2v̄j + v̄j+1

)2 + 1

4

(
v̄j+1 − v̄j−1

)2 . (19)

3.2 Fully Discrete KL Scheme

For the reconstruction step, in cell Ij , a piecewise polynomial interpolant at tn is considered,

Pj (s, t
n) = Aj + Bj (s − sj ) + 1

2
Cj (s − sj )

2. (20)

The local speed of propagation cn

j+ 1
2

is given by

cn

j+ 1
2

:= max

(∣∣∣∣∂F

∂v

(
v−
j+ 1

2

)∣∣∣∣ ,
∣∣∣∣∂F

∂v

(
v+
j+ 1

2

)∣∣∣∣
)

, (21)
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where v+
j+ 1

2
:= Pj+1(sj+ 1

2
, tn) and v−

j+ 1
2

:= Pj (sj+ 1
2
, tn) respectively denote the left and

right intermediate values of v(s, tn). The local speed of propagation separates between non-

smooth regions

[
sn

j+ 1
2 ,l

, sn

j+ 1
2 ,r

]
and smooth regions

[
sn

j− 1
2 ,r

, sn

j+ 1
2 ,l

]
, where sn

j+ 1
2 ,r

:=

s
j+ 1

2
+ cn

j+ 1
2
�tn and sn

j+ 1
2 ,l

:= s
j+ 1

2
− cn

j+ 1
2
�tn. Integrating over

[
sn

j− 1
2 ,r

, sn

j+ 1
2 ,l

]
×

[tn, tn+1] and

[
sn

j+ 1
2 ,l

, sn

j+ 1
2 ,r

]
× [tn, tn+1] gives intermediate cell averages w̄n+1

j and

w̄n+1
j+ 1

2
, respectively,

w̄n+1
j = Aj + �tn

2

(
cn

j− 1
2

− cn

j+ 1
2

)
Bj

+
{

(�s)2

24
− �s�tn

12

(
cn

j− 1
2

+ cn

j+ 1
2

)

+ (�tn)2

6

[(
cn

j− 1
2

)2

− cn

j− 1
2
cn

j+ 1
2

+
(

cn

j+ 1
2

)2
]}

Cj (22)

− 1

�s−�tn
(

cn

j− 1
2
+cn

j+ 1
2

)
∫ tn+1

tn

[
F

(
v

(
sn

j+ 1
2 ,l

, t

))
−F

(
v

(
sn

j− 1
2 ,r

, t

))]
dt,

w̄n+1
j+ 1

2
= Aj + Aj+1

2
+

�s − cn

j+ 1
2
�tn

4

(
Bj − Bj+1

)

+

⎡
⎢⎢⎢⎣

�s2

16
−

cn

j+ 1
2
�s�tn

8
+

(
cn

j+ 1
2
�tn

)2

12

⎤
⎥⎥⎥⎦
(
Cj + Cj+1

)
(23)

− 1

2cn

j+ 1
2
�tn

∫ tn+1

tn

[
F

(
v

(
sn

j+ 1
2 ,r

, t

))
− F

(
v

(
sn

j+ 1
2 ,l

, t

))]
dt,

where integrals on the right-hand side of (22) and (23) are approximated using Simpson’s

quadrature rule [18]. Next, intermediate cell averages

{
w̄n+1

j , w̄n+1
j+ 1

2

}
are projected back on

the original grid [9]. From w̄n+1
j and w̄n+1

j+ 1
2
, a third-order CWENO piecewise polynomial

interpolant [17] is constructed, which are respectively denoted as w̃n+1
j (s) and w̃n+1

j+ 1
2
(s),

w̃n+1
j (s) = w̄n+1

j ,

w̃n+1
j+ 1

2
(s) = Ã

j+ 1
2

+ B̃
j+ 1

2

(
s − s

j+ 1
2

)
+ 1

2
C̃

j+ 1
2

(
s − s

j+ 1
2

)2
. (24)
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Using (22), (23), and (24) to compute new cell averages at tn+1 gives the fully discrete KL
scheme,

v̄n+1
j = 1

�s

⎡
⎣∫ sn

j− 1
2 ,r

s
j− 1

2

w̃n+1
j− 1

2
(s) ds +

∫ sn

j+ 1
2 ,l

sn

j− 1
2 ,r

w̃n+1
j (s) ds +

∫ s
j+ 1

2

sn

j+ 1
2 , l

w̃n+1
j+ 1

2
(s) ds

⎤
⎦

= λncn

j− 1
2
Ã

j− 1
2

+
[

1 − λn

(
cn

j− 1
2

+ cn

j+ 1
2

)]
w̄n+1

j + λncn

j+ 1
2
Ã

j+ 1
2

(25)

+λn�tn

2

[(
cn

j− 1
2

)2

B̃
j− 1

2
−

(
cn

j+ 1
2

)2

B̃
j+ 1

2

]

+λn (�tn)2

6

[(
cn

j− 1
2

)3

C̃
j− 1

2
+

(
cn

j+ 1
2

)3

C̃
j+ 1

2

]
,

where λn = �tn

�s
denotes the mesh ratio.

3.3 Semi-Discrete KL Scheme

Using (25), [12] obtained the third-order semi-discrete KL scheme as follows

d

dt
v̄j (t) = lim

�tn→0

v̄n+1
j − v̄n

j

�tn

= lim
�tn→0

[
1

�s
cn

j− 1
2
Ã

j− 1
2

− 1

�s

(
cn

j− 1
2

+ cn

j+ 1
2

)
w̄n+1

j

+ 1

�s
cn

j+ 1
2
Ã

j+ 1
2

+ 1

�tn

(
w̄n+1

j − vn
j

)]
, (26)

where Ã
j+ 1

2
= w̄n+1

j+ 1
2

and Ã
j− 1

2
= w̄n+1

j− 1
2

as �tn → 0. Using (20), the intermediate values

are obtained,

v

(
sn

j+ 1
2 ,r

, t

)
→ Pj+1

(
s
j+ 1

2
, t

)
= Aj+1 − �s

2
Bj+1 + (�s)2

8
Cj+1 =: v+

j+ 1
2
,

v

(
sn

j+ 1
2 ,l

, t

)
→ Pj

(
s
j+ 1

2
, t

)
= Aj + �s

2
Bj + (�s)2

8
Cj =: v−

j+ 1
2
. (27)

Using the CWENO reconstruction in Section 3.1, the following are obtained by direct
computations,

Aj = v̄j − wC

(v̄j−1 − 2v̄j + v̄j+1)

12
,

Bj = 1

�s

[
wR(v̄j+1 − v̄j ) + wC

(v̄j+1 − v̄j−1)

2
+ wL(v̄j − v̄j−1)

]
,

Cj = 2wC

(v̄j−1 − 2v̄j + v̄j+1)

�s2
. (28)

Substituting (22), (23) and expressions of Ã
j± 1

2
in (26) and computing the time limit explic-

itly gives the semi-discrete conservative KL scheme in terms of the convection flux H , such
that,

d

dt
v̄j (t) = −

H
j+ 1

2
(t) − H

j− 1
2
(t)

�s
, (29)
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where

H
j+ 1

2
:=

F

(
v+
j+ 1

2

)
+ F

(
v−
j+ 1

2

)

2
−

c
j+ 1

2

2

(
v+
j+ 1

2
− v−

j+ 1
2

)
. (30)

3.4 Convection-Diffusion-Reaction Extension

The semi-discrete conservative KL can be adapted to the convection-diffusion-reaction (11),
such that

d

dt
v̄j (t) = −

H
j+ 1

2
(t) − H

j+ 1
2
(t)

�s
+ Qj(t) + Sj (t), (31)

where Qj is given in terms of point values vj (t) := Pj (sj , t), which are obtained using the
reconstructed polynomials (20), such that,

Qj = 1

12�s

[−Q
(
vj+2, (vs)j+2,j

) + 8Q
(
vj+1, (vs)j+1,j

)
−8Q

(
vj−1, (vs)j−1,j

) + Q
(
vj−2, (vs)j−2,j

)]
, (32)

where

(vs)j+2, j := 1

12�s

[
25vj+2 − 48vj+1 + 36vj − 16vj−1 + 3vj−2

]
,

(vs)j+1, j := 1

12�s

[
3vj+2 + 10vj+1 − 18vj + 6vj−1 − vj−2

]
,

(vs)j−1, j := 1

12�s

[
vj+2 − 6vj+1 + 18vj − 10vj−1 − 3vj−2

]
,

(vs)j−2, j := 1

12�s

[−3vj+2 + 16vj+1 − 36vj + 48vj−1 − 25vj−2
]

. (33)

3.5 Two-Dimensional Extension

Following [14], (31) is extended to solve the two-dimensional PDE in terms of s and a

spatial variables,

∂v

∂t
+ ∂

∂s
F s(v) + ∂

∂a
Fa(v) = ∂

∂s
Qs(v, vs, va) + ∂

∂a
Qa(v, vs, va) + S(v). (34)

Instead of a third-order two-dimensional ENO interpolant, [12] applied the one-dimensional
CWENO reconstruction direction by direction over the uniform spatial grid, (sj , ak) :=
(j�s, k�a). The two-dimensional extension of (31), denoted KL-2D, is formulated as

d

dt
vj,k = −

Hs

j+ 1
2 ,k

(t) − Hs

j− 1
2 ,k

(t)

�s
−

Ha

j,k+ 1
2
(t) − Ha

j,k− 1
2 (t)

�a

+Qs
j,k(t) + Qa

j,k(t) + S(v(t)), (35)

where the s and a numerical fluxes Hs

j+ 1
2 ,k

and Ha

j,k+ 1
2

are given by

Hs

j+ 1
2 ,k

:= 1

2

[
F s

(
v+
j+ 1

2 ,k

)
+ F s

(
v−
j+ 1

2 ,k

)]
−

cs

j+ 1
2 ,k

2

(
v+
j+ 1

2 ,k
− v−

j+ 1
2 , k

)
,

Ha

j,k+ 1
2

:= 1

2

[
Fa

(
v+
j,k+ 1

2

)
+ Fa

(
v−
j,k+ 1

2

)]
−

ca

j,k+ 1
2

2

(
v+
j,k+ 1

2
− v−

j,k+ 1
2

)
. (36)
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In (36), intermediate value v−
j+ 1

2 ,k
(t) is obtained from the piecewise polynomial reconstruc-

tion described in Section 3.1,

v−
j+ 1

2 , k
= wLP k

L

(
s
j+ 1

2

)
+ wRP k

R

(
s
j+ 1

2

)
+ wCP k

C

(
s
j+ 1

2

)
,

where

P k
R(s) = v̄j,k + v̄j+1,k − v̄j,k

�s
(s − sj ), P k

L(s) = v̄j,k + v̄j,k − v̄j−1,k

�s
(s − sj ),

P k
C(s) = v̄j,k − 1

12

[(
v̄j+1,k − 2v̄j,k + v̄j−1,k

) + (
v̄j,k+1 − 2v̄j,k + v̄j,k−1

)]

+ v̄j+1,k − 2v̄j,k + v̄j−1,k

�s2
(s − sj )

2.

Similarly, other intermediate values are obtained as above using the dimension by dimension
approach. Also, local speeds cs

j+ 1
2 ,k

(t) and ca

j, k+ 1
2
(t) are computed as follows

cs

j+ 1
2 , k

:= max±

(∣∣∣∣∂F s

∂v

(
v±
j+ 1

2 , k

)∣∣∣∣
)

and ca

j, k+ 1
2

:= max±

(∣∣∣∣∂F a

∂v

(
v±
j, k+ 1

2

)∣∣∣∣
)

. (37)

The s and a diffusion fluxes Qs
j, k and Qa

j, k in (35) represent high-order approximations
of Qs(v, vs, va)s and Qa(v, vs, va)a respectively and are computed direction by direction
using (32) and (33).

3.6 Third-Order Extensions

We consider the extensions of [12] by [13] and [11].

– Kurganov–Noelle–Petrova Extension: The main idea of [13] is the use of more pre-
cise information about local speeds of propagation. As such, as compared with (21) for
KL, KL-KNP uses the respective right- and left-sided local speeds,

c+
j+ 1

2
= max

(
∂F

∂v

(
v−
j+ 1

2

)
,

∂F

∂v

(
v+
j+ 1

2

)
, 0

)
,

c−
j+ 1

2
= min

(
∂F

∂v

(
v−
j+ 1

2

)
,

∂F

∂v

(
v+
j+ 1

2

)
, 0

)
. (38)

We consider KL-KNP based on the CWENO reconstruction described in Section 3.1
and local speeds (38). The semi-discrete conservative KL-KNP for (11) in the form (29)
has convection flux

H
j+ 1

2
:=

c+
j+ 1

2
F

(
v−
j+ 1

2

)
− c−

j+ 1
2
F

(
v+
j+ 1

2

)

c+
j+ 1

2
− c−

j+ 1
2

+
c+
j+ 1

2
c−
j+ 1

2

c+
j+ 1

2
− c−

j+ 1
2

(
v+
j+ 1

2
− v−

j+ 1
2

)
.

(39)
– Kolb Extension: As an extension, [11] adapted the compact third-order WENO (CTO-

WENO) reconstruction by [17] to [12], such that parameter ε in non-linear weights
(18) is taken proportional to the mesh size, that is, ε := ε(�s) ∝ �sq where q ≤ 3,
p ≥ 1 and pq ≥ 2. As discussed in [11], from observation, for p = 2 the optimal q lies
between 1 and 2. In order to achieve the desired accuracy quickly and ensure vanishing
oscillations for �s → 0, the choice ε = min{10−3, �s2} was proposed. We consider
the CTO-WENO reconstruction applied to [12], denoted as KL-CTO, along the lines of
[11].
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3.7 Conservative Form of Black–Scholes PDEs

We solve Black–Scholes PDE (1) numerically in the forward-in-time form, which is
obtained using the time reversal step t∗ = T − t and we denote the reversed time t∗ again
with t , giving

∂v

∂t
− 1

2
σ 2s2 ∂2v

∂s2
− (r − δ)s

∂v

∂s
+ rv = 0. (40)

This transforms terminal payoffs v(s, T ) into initial conditions v(s, 0). Using derivatives
expressions,

∂

∂s
(sv) = s

∂v

∂s
+ v and

∂

∂s

(
s2 ∂v

∂s

)
= s2 ∂2v

∂s2
+ 2s

∂v

∂s
,

as used by [23], (40) is rewritten in the conservative form (11), giving

∂v

∂t
+ ∂

∂s

(
(σ 2 − r + δ)sv

)
= ∂

∂s

(
1

2
σ 2s2 ∂v

∂s

)
+ (σ 2 − 2r + δ)v, (41)

with convection flux F(s, v) := (σ 2 − r + δ)sv, diffusion flux Q(s, v, vs) := 1

2
σ 2s2 ∂v

∂s

and source term S(v) := (σ 2 −2r +δ)v. PDE (41) prices options subject to initial condition
v(s, 0) and boundary conditions v(smin, t) and v(smax, t). European options are priced for
initial condition given by

v(s, 0) = max(φ(s − K), 0) with φ =
{

1 for call,
−1 for put,

(42)

which are obtained from terminal functions (2) and for boundary conditions as described in
(3) and (4),

v(smin, t) = 0,

v(smax, t) = smax exp (−δt) − K exp (−rt),

}
for call, (43)

v(smin, t) = K exp (−rt) − smin exp (−δt),

v(smax, t) = 0,

}
for put. (44)

Similarly, [23] rewrote (7) as a forward-in-time Asian PDE in the form (34),

∂v

∂t
+ ∂

∂s
(σ 2 −r)sv− ∂

∂a

(
1

T − t
(s − a)v

)
= ∂

∂s

(
1

2
σ 2s2 ∂v

∂s

)
+
(

σ 2 − 2r + 1

T − t

)
v,

(45)
with convective fluxes F s(s, v) := (σ 2 − r)sv and Fa(s, a, v) := − 1

T −t
(s − a)v respec-

tively in s and a direction, diffusive flux Qs(s, v, vs) := 1
2σ 2s2 ∂v

∂s
which exists only in s

direction and source term S(v) :=
(
σ 2 − 2r + 1

T −t

)
v. PDE (45) solves fixed strike Asian

options with payoff functions (8) converted into initial conditions, such that, for

v(s, a, 0) =
{

max(a − K, 0) for call,
max(K − a, 0) for put.

(46)

For Asian put options, [23] bypassed the intricate discretisation of (9), giving boundary
conditions

v(smin, a, t) = max

(
0, K − 1

T
(T − t)a

)
exp(−rt),

v(smax, a, t) = max

(
0, K − 1

T
[smaxt + a(T − t)]

)
. (47)
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3.8 Summary of Schemes

The algorithm for the conservative KL scheme (31) applied to PDE (41) is summarised as
follows.

(1) Define problem parameters σ , r , δ, K , T , smin and smax; flux handles F , Q, S; and
boundary conditions BC1(t) := v(smin, t) and BC2(t) := v(smax, t) for t ∈ [0, T ].

(2) Define uniform spatial discretisation with �s = (smax − smin)/N and initial condition
v(s, 0).

(3) Until tn+1 := tn + �tn > T, compute:

(a) weights wi of (18) based on smooth indicators ISi of (19) for i ∈ {C, R, L} and
ε = 10−6;

(b) values of Aj , Bj and Cj given in (28) for piecewise polynomial reconstruction
(20);

(c) intermediate values v+
j+ 1

2
and v−

j+ 1
2

of (27);

(d) local speeds c
j+ 1

2
of (21) and spatial derivatives vs of (33);

(e) convection flux H
j+ 1

2
of (30) and diffusive flux Qj of (32);

(f) semi-discrete solution d
dt

v̄j given in (31);
(g) solution vn+1 using appropriate ODE solver;
(h) boundary values BC1(t

n+1) and BC2(t
n+1).

For each extension described in Section 3.6, the above algorithm is modified. For KL-KNP,
local speed cn

j± 1
2

of step (d) is replaced by (38) and accordingly convection flux of step

(e) is modified to (39). Similarly, for KL-CTO, in step (a), instead of 10−6, ε is taken as
min(10−3, �s2). In the case of KL-2D, using a (N + 1) × (N + 1) matrix, steps (a) to (h)
are executed each for s and a directions using formulations (35) to (37).

4 Numerical Experiments

Experiments are performed on several option pricing problems. In order to retain the over-
all third-order accuracy, the semi-discrete schemes are paired with a high-order and stable
ODE solver. Importantly, the time methods used must be efficient and match the third-order
reconstructions’ flexibility to satisfy different option pricing PDEs’ specificity.

In [12], the third-order total variation diminishing Runge–Kutta time method in [25] is
used; however, the time step can be very small due to their strict stability restrictions for
parabolic problems. As such, the third-order time method of [20], which has larger stability
domains and thus allow larger time steps, was used for convection-diffusion problems.

We note that, in convection-diffusion PDEs, the diffusion part tends to generate stiffness.
Since the diffusion part (33) of the spatial reconstruction (31) can be treated implicitly, [1],
an implicit-explicit (IMEX) time methods could be considered. However, (33) depends on the
point values and will thus require an iterative method for solution of IMEX at each time step.

Therefore, in this work, for all types of option pricing convection-diffusion-reaction
PDEs, the semi-discrete schemes discussed are combined with an appropriate stable MAT-
LAB inbuilt ODE solver. Following [24], as a ‘first-try’, we use ode45, which is based on
the Dormand–Prince Runge–Kutta method. In case ode45 is inefficient, that is, slows down
computation mostly due to the presence of stiff systems, we switch to ode15s, which is
based on numerical differentiation formulae.
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For experiments in this paper, the error norms and root mean square (RMS) error are given by

L1 error = 1

N

∑
j

∣∣∣v(sj , tn) − vn
j

∣∣∣ ,

L∞ error = max
j

∣∣∣v(sj , tn) − vn
j

∣∣∣ ,

RMS error =
√√√√ 1

N1

∑
j

(
v(sj , tn) − vn

j

)2
,

where N1 ≤ N is the number of asset prices considered.

Problem 1 (European Option) We compare the third-order schemes discussed by solving
the European call option from [26] with σ = 0.01, r = 0.10, δ = 0.00, T = 0.25, K = 100
and s ∈ [0, 200].

We solve PDE (41) subject to conditions (42) and (43), using the algorithm in Section 3.8
and ode45. Table 1 records the L1 and L∞ errors and orders of convergence. KL and
KL-KNP offers similar results and in comparison, KL-CTO performs better. It achieves
and nears third-order accuracy in the L1 and L∞ norm respectively. Also, as shown in
Fig. 1, for N = 1600, KL-CTO offers non-oscillatory and high-resolution approximations
even at regions of discontinuities in the initial and Greek profiles. Therefore, for further
experiments, KL-CTO is used.

Problem 2 (Butterfly Spread) A butterfly spread involves buying two calls with strike
prices K1 and K3 and selling two calls with strike price K2 = 1

2 (K1 + K3) where
K1 < K2 < K3. We solve a butterfly spread for σ = 0.05, r = 0.20, δ = 0.00, K1 = 45,
K3 = 80, T = 0.25 and s ∈ [0, 200].

We test the behavior of KL-CTO at sharp corners appearing at strike prices in initial
profile and multiple jumps in derivatives. We apply the algorithm in Section 3.8 to solve
PDE (41) subject to initial condition

v(s, 0) = max (s − K1, 0) + max (s − K3, 0) − 2 max

(
s − 1

2
(K1 + K3), 0

)
,

Table 1 Errors and orders of convergence for Problem 1

Scheme N L1 error L1 order L∞ error L∞ order

KL and KL-KNP 100 5.8969(−3) − 3.6355(−1) −
200 2.1036(−3) 1.4871 1.8356(−1) 0.9859
400 6.2115(−4) 1.7598 6.7498(−2) 1.4434
800 1.3000(−4) 2.2565 1.7499(−2) 1.9475
1600 2.2062(−5) 2.5588 3.0374(−3) 2.5264

KL-CTO 100 5.9135(−3) − 3.6354(−1) −
200 2.1221(−3) 1.4785 1.8381(−1) 0.9839
400 6.3063(−4) 1.7506 6.7768(−2) 1.4396
800 1.1881(−4) 2.4081 1.6132(−2) 2.0707
1600 1.4556(−5) 3.0290 2.2801(−3) 2.8228
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Fig. 1 Solution and Greeks for Problem 1 at T = 0.25

and boundary conditions v(smin, t) = 0 and v(smax, t) = 0, using ode45. Table 2 shows
that KL-CTO converges to and achieves third-order accuracy under the L1 and L∞ norm
respectively. As shown in Fig. 2, for N = 640, KL-CTO gives oscillation-free and high-
resolution approximation of multiple kinks in the initial profile as well as jumps appearing
in the Greeks.

Table 2 Errors and orders of convergence for Problem 2

N L1 error L1 order L∞ error L∞ order

10 4.9854(−1) − 3.3921 −
20 2.0200(−1) 1.3033 2.3990 0.4997

40 1.1003(−1) 0.8764 1.6917 0.5040

80 3.5750(−2) 1.6219 6.0880(−1) 1.4744

160 9.5555(−3) 1.9036 2.0830(−1) 1.5473

320 1.9688(−3) 2.2790 7.1445(−2) 1.5438

640 2.9544(−4) 2.7364 1.3873(−2) 2.3646

1280 3.9966(−5) 2.8860 1.3489(−3) 3.3623
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Fig. 2 Solution and Greeks for Problem 2 at T = 0.25

Problem 3 (Barrier Option) Next, we solve a call up-and-out barrier option taken from [26]

with parameters σ = 0.01, r = 0.10, δ = 0.00, K = 100, T = 0.25, s ∈
[

K
3 , 5K

3

]
and

upper barrier, B = 1.25K .

We test the performance of KL-CTO at the sharp discontinuity arising at the upper barrier
level. We extend the algorithm in Section 3.8 to solve PDE (41) subject to initial condition

v(s, 0) =
{

max(s − K, 0) for 0 ≤ s < B,

0 for s ≥ B,
(48)

and boundary conditions v(smin, t) = 0 and v(smax, t) = 0. Following [4], (48) is applied
to the spatial reconstruction (31) by enforcing at each time step, the condition

d

dt
vj (t) = 0 for sj ≥ B.

For this test problem, ode45 acts inefficient by slowing down computation; therefore, we
switch to ode15s. Table 3 records the absolute errors, which are computed from the dif-
ference between numerical prices of KL-CTO and exact values at s = 95, 100, . . . , 115.

826



Conservative Third-Order Central-Upwind Schemes for Option Pricing...

Table 3 Absolute and RMS errors at asset prices, s, for Problem 3

Error at s

N 95 100 105 110 115

100 1.7631(−2) 1.2328(−1) 2.9552(−4) 2.9038(−4) 1.4848(−1)

200 4.0358(−4) 6.1625(−3) 3.2755(−8) 2.9119(−8) 3.0817(−4)

400 1.3198(−4) 3.1514(−5) 4.6662(−11) 4.6658(−11) 2.7687(−7)

800 1.5542(−6) 7.1765(−8) 6.4686(−12) 6.4464(−12) 6.2776(−12)

1600 7.6929(−9) 2.6179(−8) 7.0433(−13) 6.9100(−13) 6.3594(−13)

N RMS error Order

100 − −
200 8.6665(−2) −
400 2.7653(−3) 4.9699

800 6.0684(−5) 5.5100

1600 6.9581(−7) 6.4465

Computational order of convergence is obtained from RMS error reduction with increasing
N . KL-CTO outputs very small RMS error and achieves super convergence.

Problem 4 (American Options) We price different American put options from [27] for
T = 0.50, K = 100 and s ∈ [0, 200] using N = 400. This problem assesses the behavior
of KL-CTO subject to errors arising due to kink at strike price, which are not easily damped
and result in non-smooth numerical solution.

We solve (41) with early constraint (5) subject to initial condition (42) and boundary
conditions v(smin, t) = K − s and v(smax, t) = 0, obtained from (6). In line with [4], we
adapt the semi-discrete KL-CTO algorithm to price American options by extending (31) to
incorporate (5). In general, for fully discrete schemes, the traditional algorithm

vj (t) = max
(
vj (t), v0

j

)
, (49)

applies (5) on intermediate values vj (t) before time evolution. However, in semi-discrete
schemes, spatial reconstruction and time evolution are treated separately, that is, no change
in time occurs within the spatial reconstruction. Thus, conforming to (31), (49) is modified
to give,

d

dt
vj (t) = max

(
d

dt
vj (t), 0

)
. (50)

The algorithm in Section 3.8 is updated with (50) applied to the semi-discrete solution at
step (f).

We compute American put values and Greeks at asset prices s = 80, 90, . . . , 120 for
different set of parameters using KL-CTO and ode45. Table 4 compares numerical option
and Greek values of KL-CTO with reference values of [15] obtained with 15001 steps. KL-
CTO offers very good numerical approximations. Based on values from Table 4, we record
in Table 5, RMS errors of KL-CTO, which are compared with corresponding RMS errors
of numerical methods discussed in [27]. All values taken correct to 4 decimal places. In
line with high-performing methods like operator splitting and optimal compact algorithm
(OCA), KL-CTO provides low RMS values.
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Table 4 Option value and Greeks at asset prices, s, for Problem 4

r = 0.05 r = 0.07 r = 0.10

σ = 0.20 σ = 0.40 σ = 0.30

δ = 0.00 δ = 0.03 δ = 0.05

Option value

s KL-CTO Reference KL-CTO Reference KL-CTO Reference

80 20.0000 20.0000 21.8710 21.8709 20.2582 20.2578

90 10.6661 10.6661 15.2296 15.2297 12.5986 12.5980

100 4.6555 4.6557 10.2385 10.2387 7.2776 7.2770

110 1.6677 1.6680 6.6777 6.6680 3.9234 3.9230

120 0.4973 0.4976 4.2472 4.2476 1.9910 1.9907

r = 0.07 r = 0.07

σ = 0.40 σ = 0.40

δ = 0.03 δ = 0.03

Delta value Gamma value

s KL-CTO Reference KL-CTO Reference

80 −0.7501 −0.7501 0.0172 0.0172

90 −0.5791 −0.5791 0.0166 0.0166

100 −0.4230 −0.4229 0.0144 0.0144

110 −0.2944 −0.2943 0.0113 0.0113

120 −0.1969 −0.1968 0.0083 0.0083

Problem 5 (Non-Linear Black–Scholes PDE) We price a short straddle under the non-
linear Black–Scholes PDE from [28] with r = 0.05, ρ = 0.90, σ = 0.20, μ = 0.07,
σ ′ = 0.3, α = 0.20, μ′ = r+(μ − r)σ ′ρ/σ , r ′ = μ − (μ′ − r)σρ/σ ′, K = 100, T = 1.00
and s ∈ [0, 200].

This problem originates from the hedge of a contingent claim with an instrument
which has no perfect correlation with the underlier, that is, an asset that cannot be traded.

Table 5 RMS errors for Problem 4

Scheme r = 0.05 r = 0.70 r = 0.10

σ = 0.20 σ = 0.40 σ = 0.30

δ = 0.00 δ = 0.03 δ = 0.05

Brennan Schwartz 1 3.5491(−3) 8.5740(−3) 5.9444(−3)

Brennan Schwartz 2 6.9714(−4) 5.8822(−4) 6.1156(−4)

CN PSOR 8.3307(−4) 8.8204(−4) 7.9750(−4)

Borici Luthi 6.0498(−4) 4.7749(−4) 5.1769(−4)

Penalty 1 9.3915(−4) 1.1145(−3) 9.8489(−4)

Penalty 2 7.4993(−3) 2.7882(−3) 2.7067(−3)

Operator splitting 5.4037(−4) 3.3764(−4) 3.4641(−4)

Front Kwok 8.3661(−3) 4.9372(−3) 1.1764(−3)

Han Wu 6.0498(−4) 4.7749(−4) 5.1769(−4)

OCA 1.1832(−4) 1.6125(−4) 1.1832(−4)

KL-CTO 2.0976(−4) 2.4900(−4) 4.7539(−4)
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Table 6 Prices and order of convergence for Problem 5

N Price Error Order

10 16.0999 − −
20 17.5624 1.4625 −
40 17.8965 3.3403(−1) 2.1304

80 17.9851 8.8642(−2) 1.9139

160 18.0036 1.8492(−2) 2.2611

320 18.0074 3.7792(−3) 2.2907

640 18.0082 7.8733(−4) 2.2630

1280 18.0083 8.6500(−5) 3.1862

Therefore, a correlated asset is used. Following [23], for risk loading parameter α � 0, the
non-linear PDE for a short position is given by

∂v

∂t
= max

q∈[−1, 1]

[(
r ′ + qασ

√
1 − ρ2

)
s
∂v

∂s
+ 1

2
σ 2s2 ∂2v

∂s2
− rv

]
, (51)

where q = sign
(

∂v
∂s

)
. In (51), ρ denotes the correlation between the underlying and the

reference asset with drift rate μ′, volatility σ ′ and function r ′. Also, [23] rewrote (51) in the
form (11), giving

∂v

∂t
+ ∂

∂s

((
r ′ + qασ

√
1 − ρ2 − σ 2

)
sv

)
︸ ︷︷ ︸

Flux, F

= ∂

∂s

(
1

2
σ 2 ∂2v

∂s2

)
︸ ︷︷ ︸

Flux, Q

+
(
σ 2 − r ′ − qασ

√
1 − ρ2

)
v︸ ︷︷ ︸

Source term, S

. (52)

We price the short straddle problem by solving (52) subject to initial condition,

v(s, 0) = max(K − s, 0) + max(s − K, 0),

and boundary conditions,

v(smin, t) = K exp (−rt) as smin → 0,

v(smax, t) = smax exp
[(

r ′ − r + qασ
√

1 − ρ2
)

t
]

− K exp (rt),

using KL-CTO and ode15s. For different N ’s, Table 6 records the prices for Problem 5 at
s = 100, based on which, the computational order of convergence is obtained. As expected,
KL-CTO achieves third-order convergence even in the non-linear case.

Problem 6 (Asian Option) Next, we price the fixed strike Asian put option from [23] by
solving (45) using KL-2D scheme (34) and ode45. We extend the algorithm in Section 3.8
to two spatial variables, which involves matrix computations of size (N + 1) × (N + 1).

The fixed strike Asian put option is solved for σ = 0.25, r = 0.05, T = 0.20, K =
100, s, a ∈ [0, 200] and N = 50 subject to conditions (46) and (47). Figure 3 shows the
initial condition, solution and derivatives. KL-2D offers non-oscillatory and high-resolution
approximation of option value as well as Greeks.
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Fig. 3 Solutions for Problem 6 at T = 0.20

Problem 7 (CEV Model) The CEV model is based on risk-neutral measure with the
stock price dynamic s(t), following a one-dimensional diffusion, ds(t) = (r − δ)s(t)dt +
σs(t)

β
2 dW(t). It assumes that the instantaneous local volatility is a power function of

the underlying spot price, such that, σ̃ (t) = σs(t)
β
2 −1. The model is governed by the

backward-in-time PDE

∂v

∂t
+ σ 2

2
sβ ∂2v

∂s2
+ (r − δ)s

∂v

∂s
− rv = 0, (53)

where β is the elasticity of variance parameter and β = 2 gives the Black–Scholes model.
We rewrite the forward-in-time equivalent of (53) in the form (11), giving,

∂v

∂t
+ ∂

∂s

((
σ 2

2

(
3β

2
− 1

)
s

3β
2 −3 − r + δ

)
sv

)
︸ ︷︷ ︸

Flux, F

= ∂

∂s

(
σ 2

2
s

3β
2 −1 ∂v

∂s

)
︸ ︷︷ ︸

Flux, Q

+
(

σ 2

2

(
3β

2
− 1

)(
3β

2
− 2

)
s

3β
2 −3 − 2r + δ

)
v

︸ ︷︷ ︸
Source term, S

, (54)

830



Conservative Third-Order Central-Upwind Schemes for Option Pricing...

Table 7 RMS errors and orders of convergence for Problem 7

β = 2
5 β = 1

2 β = 2
3

N RMS error Order RMS error Order RMS error Order

16 8.3757(−1) − 8.3740(−1) − 8.3666(−1) −
32 3.4063(−1) 1.2980 3.4045(−1) 1.2984 3.3967(−1) 1.3005

64 1.0429(−1) 1.7076 1.0417(−1) 1.7085 1.0367(−1) 1.7122

128 9.4439(−3) 3.4651 9.4289(−3) 3.4658 9.3933(−3) 3.4642

256 9.4142(−4) 3.3265 9.6007(−4) 3.2959 1.0062(−4) 3.2228

512 7.7076(−5) 3.6105 7.0165(−5) 3.7743 2.7363(−5) 5.2005

subject to boundary conditions [29],

v(smin, t) = 0 and v(smax, t) = K exp−(r−δ)t . (55)

We consider the at-the-money American call option under the CEV model for β = 2
3 , 1

2 and
2
5 with parameters σ = 0.20, r = 0.05, δ = 0.01, K = 100, T = 1.00 and s ∈

[
K
3 , 5K

3

]
.

We solve (54) subject to conditions (42), (55) and early constraint (50) using KL-CTO
and ode15s. Table 7 records the RMS errors and computational order of convergence for
different β, over increasing N . We compute RMS of absolute errors from the difference
between numerical values of KL-CTO and benchmark prices at s = 99, 100, . . . , 119,
which are obtained using the binomial model by [19] with 10,000 nodes. As shown in
Table 7, KL-CTO outputs small RMS errors and achieves third-order convergence for β = 2

5
and 1

2 and super convergence for β = 2
3 .

5 Conclusion

In this work, we extend the approach of [23] to KL, KL-KNP and KL-CTO in line with
[4]. We apply the third-order semi-discrete central-upwind conservative methods to option
pricing PDEs by effortlessly updating the KL’s algorithm. Numerical experiments are per-
formed on several types of options by sufficiently updating fluxes, initial and boundary
conditions while retaining the simplicity of “Black-Box” approach. We ensure computa-
tional efficiency through appropriate choice of time solvers. We obtain non-oscillatory and
high-resolution approximation for the European test case; KL-CTO achieves third-order
convergence and outperforms KL and KL-KNP. As expected, KL-CTO offers excellent
numerical approximation of the butterfly option despite multiple kinks and jumps in the
initial and Greek profiles. Also, KL-CTO performs very well even in the non-linear case.
In line with [4], we price barrier and American options by respectively applying the bar-
rier and early exercise condition to the semi-discrete spatial reconstruction of KL-CTO. We
successfully price the up-and-out barrier option which features a sharp discontinuity at the
upper barrier and obtain excellent numerical solutions and Greeks for American options.
High-resolution and non-oscillatory approximation of Asian option value and Greeks are
obtained using KL-2D. Also, we solve American options under the CEV model. For differ-
ent elasticity parameter values, KL-CTO offers small RMS errors and achieves third-order
convergence.
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