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Abstract
The purpose of this paper is to obtain the existence of common fixed points of family of mul-
tivalued mappings satisfying generalized F -contraction conditions in ordered metric spaces.
Some examples are presented to support the results proved herein. Our results generalize
and extend various comparable results in the existing literature.

Keywords Common fixed point · Multivalued mapping · F -contraction ·
Upper semi-continuous map

Mathematics Subject Classification (2010) 47H10 · 54H25 · 54E50

1 Introduction and Preliminaries

To study necessary conditions for existence of fixed points of mappings satisfying certain
comparison conditions on partially ordered domains equipped with an appropriate distance
structure is an active area of research.

The existence of fixed points in partially ordered metric spaces was first considered in
2004 by Ran and Reurings [18], and then by Nieto and Lopez [15]. Later, in 2016, Nieto
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18000 Niš, Serbia
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et al. [16] studied random fixed points theorems in partially ordered metric spaces. Further
results in this direction under different contractive and comparison conditions were proved
in [2, 3, 7, 8].

The theory of multivalued maps has various applications in convex optimization, dynam-
ical systems, commutative algebra, differential equations, and economics. Markin [13]
initiated the study of fixed points for multivalued nonexpansive and contractive maps. Later,
a rich and interesting fixed point theory for such maps was developed; see, for instance
[6, 8, 10]. Recently, Wardowski [21] introduced a new contraction called F -contraction
and proved a fixed point result as a generalization of the Banach contraction principle.
Very recently, in 2018, Wardowski [22] studied the existence of fixed points of nonlinear
F -contraction and sum of this type mapping with a compact operator. Minak et al. [14]
proved some fixed point results for Ćirić-type generalized F -contraction. Abbas et al. [4]
obtained common fixed point results employing the F -contraction condition. Further, in this
direction, Abbas et al. [5] introduced a notion of generalized F -contraction mapping and
employed these results to obtain fixed point of generalized nonexpansive mappings on star-
shaped subsets of normed linear spaces. Further useful results in this direction were proved
in [11, 22].

The aim of this paper is to prove some common fixed point theorems for a family of
multivalued generalized F -contraction mappings without using any commutativity condi-
tion in the setup of partially ordered metric space. These results extend and unify various
comparable results in the existing literature [1, 12, 19, 20].

In the sequel, the letters N, R+, R will denote the set of natural numbers, the set of
positive real numbers, and the set of real numbers, respectively.

Consistent with [21] and [8], the following definitions will be needed in the sequel.
Let � be the collection of all mappings F : R+ → R such that the following conditions

hold:

(F1) F is strictly increasing, that is, for all α, β ∈ R+ such that α < β implies that
F(α) < F(β).

(F2) For every sequence {αn} of positive real numbers, limn→∞ αn = 0 and
limn→∞ F(αn) = −∞ are equivalent.

(F3) There exists h ∈ (0, 1) such that limα→0+ αhF(α) = 0.

Latif and Beg [12] introduced a notion of K-multivalued mapping as an extension of
Kannan mapping to multivalued mappings. Rus [19] coined the term R-multivalued map-
ping as a generalization of a K-multivalued mapping. Abbas and Rhoades [1] gave the
notion of a generalized R-multivalued mappings, which in turn generalized R-multivalued
mappings, and obtained common fixed point results for such mappings.

Let (X, d) be a metric space. Let P(X)(Pcl(X)) be the family of all nonempty (nonempty
and closed) subsets of X.

A point x in X is a fixed point of a multivalued mapping T : X → P(X) if and only if
x ∈ T x. The set of all fixed points of multivalued mapping T is denoted by Fix(T ).

Definition 1 Let (X,�) be a partially ordered set. We define

�1 = {(x, y) ∈ X × X : x � y}
and

�2 = {(x, y) ∈ X × X : x ≺ y or y ≺ x}.
That is, �2 is the set of all comparable elements of X.
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Definition 2 Let (X,�) be a partially ordered set, A and B two nonempty subsets of
(X,�). We say that A �1 B, whenever for every a ∈ A, there exists b ∈ B such that a � b.

Now, we give the following definition:

Definition 3 Let {Ti}mi=1 be a family of mappings such that Ti : X → Pcl(X) for each
i ∈ {1, 2, . . . , m} and Tm+1 = T1. The set {Ti}mi=1 is said to be

1. F1-contraction family, whenever for any x, y ∈ X with (x, y) ∈ �1 and ux ∈ Ti(x),
there exists uy ∈ Ti+1(y) for i ∈ {1, 2, . . . , m} with (ux, uy) ∈ �2 such that the
following condition holds

τ(U(x, y; ux, uy)) + F
(
d(ux, uy)

) ≤ F(U(x, y; ux, uy)),

where τ : R+ → R+ is a mapping with lim infs→t+ τ(s) ≥ 0 for all t ≥ 0 and

U(x, y; ux, uy) = max

{
d(x, y), d(x, ux), d(y, uy),

d(x, uy) + d(y, ux)

2

}
.

2. F2-contraction family, whenever for any x, y ∈ X with (x, y) ∈ �1 and ux ∈ Ti(x),
there exists uy ∈ Ti+1(y) for i ∈ {1, 2, . . . , m} with (ux, uy) ∈ �2 such that

τ(U(x, y; ux, uy)) + F
(
d(ux, uy)

) ≤ F(U(x, y; ux, uy))

holds where τ : R+ → R+ is a function such that lim infs→t+ τ(s) ≥ 0 for all t ≥ 0
and

U2(x, y; ux, uy) = αd(x, y) + βd(x, ux) + γ d(y, uy) + δ1d(x, uy) + δ2d(y, ux)

for α, β, γ, δ1, δ2 ≥ 0, δ1 ≤ δ2 with α + β + γ + δ1 + δ2 ≤ 1.

Note that for different choices of mappings F , one can obtains different contractive
conditions.

Recall that, a map T : X → Pcl(X) is said to be upper semi-continuous, if for xn ∈ X

and yn ∈ T xn with xn → x0 and yn → y0, then we have y0 ∈ T x0.

2 Common Fixed Point Theorems

In this section, we obtain several common fixed point results for family of multivalued
mappings in the framework of partially ordered metric space. We begin with the following
result.

Theorem 1 Let (X, d, �) be a partially ordered complete metric space and {Ti}mi=1 an
F1-contraction family of multivalued maps. Then, the following hold

(i) Fix(Ti) 
= ∅ for any i ∈ {1, 2, . . . , m} if and only if Fix(T1) = Fix(T2) = · · · =
Fix(Tm) 
= ∅.

(ii) Fix(T1) = Fix(T2) = · · · = Fix(Tm) 
= ∅ provided that there exists some x0 ∈ X

such that {x0} �1 Tk(x0) for any k ∈ {1, 2, . . . , m} and any one of Ti is upper
semi-continuous for i ∈ {1, 2, . . . , m}.

(iii) ∩m
i=1Fix(Ti) is well ordered if and only if ∩m

i=1Fix(Ti) is a singleton set.
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Proof To prove (i): Let x∗ ∈ Tk(x
∗) for any k ∈ {1, 2, . . . , m}. If x∗ /∈ Tk+1(x

∗), then there
exists an x ∈ Tk+1(x

∗) with (x∗, x) ∈ �2 such that

τ(U(x∗, x∗; x∗, x)) + F(d(x∗, x)) ≤ F(U(x∗, x∗; x∗, x)),

holds, where

U(x∗, x∗; x∗, x) = max

{
d(x∗, x∗), d(x∗, x∗), d(x, x∗), d(x∗, x) + d(x∗, x∗)

2

}

= d(x, x∗).

Thus, we have

τ(d(x∗, x)) + F(d(x∗, x)) ≤ F(d(x∗, x)),

a contradiction as τ(d(x∗, x)) > 0. Thus x∗ = x. Hence, x∗ ∈ Tk+1(x
∗) and Fix(Tk) ⊆

Fix(Tk+1). Similarly, we obtain that Fix(Tk+1) ⊆ Fix(Tk+2). Continuing this way, we get
Fix(T1) = Fix(T2) = · · · = Fix(Tk). The converse is straightforward.

To prove (ii): Suppose that x0 is an arbitrary point of X. If x0 ∈ Tk0(x0) for any k0 ∈
{1, 2, . . . , m}, then by using (i), the proof is finished.

So, we assume that x0 /∈ Tk0(x0) for any k0 ∈ {1, 2, . . . , m}. For i ∈ {1, 2, . . . , m},
x1 ∈ Ti(x0), there exists x2 ∈ Ti+1(x1) with (x1, x2) ∈ �2 such that

τ(U(x0, x1; x1, x2)) + F (d(x1, x2)) ≤ F(U(x0, x1; x1, x2)),

holds where

U(x0, x1; x1, x2) = max

{
d(x0, x1), d(x0, x1), d(x1, x2),

d(x0, x2) + d(x1, x1)

2

}

= max

{
d(x0, x1), d(x1, x2),

d(x0, x2)

2

}

= max{d(x0, x1), d(x1, x2)}.
If U(x0, x1; x1, x2) = d(x1, x2), then

τ(d(x1, x2)) + F(d(x1, x2)) ≤ F(d(x1, x2))

gives a contradiction as τ(d(x1, x2)) > 0. Therefore, U(x0, x1; x1, x2) = d(x0, x1) and we
have

τ (d(x0, x1)) + F (d(x1, x2)) ≤ F (d(x0, x1)) .

Similarly, for the point x2 in Ti+1(x1), there exists x3 ∈ Ti+2(x2) with (x2, x3) ∈ �2 such
that

τ(U(x1, x2; x2, x3)) + F (d(x2, x3)) ≤ F(U(x1, x2; x2, x3)),

holds where

U(x1, x2; x2, x3) = max

{
d(x1, x2), d(x1, x2), d(x2, x3),

d(x1, x3) + d(x2, x2)

2

}

= max{d(x1, x2), d(x2, x3)}.
In case U(x1, x2; x2, x3) = d(x2, x3), we have

τ(d(x2, x3)) + F (d(x2, x3)) ≤ F(d(x2, x3)),

a contradiction as τ(d(x2, x3)) > 0. Therefore, U(x1, x2; x2, x3) = d(x1, x2) and we have

τ (d(x1, x2)) + F (d(x2, x3)) ≤ F (d(x1, x2)) .
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Continuing this way, for x2n ∈ Ti(x2n−1), there exists x2n+1 ∈ Ti+1(x2n) with
(x2n, x2n+1) ∈ �2 such that

τ (U(x2n−1, x2n; x2n, x2n+1)) + F (d(x2n, x2n+1)) ≤ F (U(x2n−1, x2n; x2n, x2n+1)) ,

holds that is,

τ (d(x2n−1, x2n)) + F (d(x2n, x2n+1)) ≤ F (d(x2n−1, x2n)) .

Similarly, for x2n+1 ∈ Ti+1(x2n), there exist x2n+2 ∈ Ti+2(x2n+1) with (x2n+1, x2n+2) ∈
�2 such that

τ (d(x2n, x2n+1)) + F (d(x2n+1, x2n+2)) ≤ F (d(x2n, x2n+1))

holds. Hence, we obtain a sequence {xn} in X such that xn ∈ Ti(xn−1) and xn+1 ∈ Ti+1(xn)

with (xn, xn+1) ∈ �2 and it satisfies

F(d(xn, xn+1)) ≤ F(d(xn−1, xn)) − τ(d(xn−1, xn))

< F(d(xn−1, xn)).

Thus, {d(xn, xn+1)} is decreasing and hence convergent. We now show that
limn→∞ d(xn, xn+1) = 0. By property of mapping τ , there exists c > 0 with n0 ∈ N such
that τ(d(xn, xn+1)) > c for all n ≥ n0. Note that

F(d(xn, xn+1)) ≤ F(d(xn−1, xn)) − τ(d(xn−1, xn))

≤ F(d(xn−2, xn−1)) − τ(d(xn−2, xn−1)) − τ(d(xn−1, xn))

≤ · · ·
≤ F(d(x0, x1)) − τ(d(xn−1, xn)) + τ(d(xn−2, xn−1))

+ · · · + τ(d(x0, x1))

≤ F(d(x0, x1)) − n0, (1)

gives limn→∞ F(d(xn, xn+1)) = −∞ which together with (F2) implies that
limn→∞ d(xn, xn+1) = 0. By (F3), there exists h ∈ (0, 1) such that

lim
n→∞[d(xn, xn+1)]hF (d(xn, xn+1)) = 0.

From (1), we have

[d(xn, xn+1)]hF (d(xn, xn+1)) − [d(xn, xn+1)]hF (d(x0, x1))

≤ [d(xn, xn+1)]h(F (d(x0, x1) − n0)) − [d(xn, xn+1)]hF (d(x0, x1))

≤ −n0[d(xn, xn+1)]h ≤ 0.

Taking the limit as n → ∞, we obtain that limn→∞ n[d(xn, xn+1)]h = 0 and

limn→∞ n
1
h d(xn, xn+1) = 0. There exists n1 ∈ N such that n

1
h d(xn, xn+1) ≤ 1 for all

n ≥ n1 and hence d(xn, xn+1) ≤ 1
n1/h for all n ≥ n1. So, for all m, n ∈ N with m > n ≥ n1,

we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xm−1, xm)

≤
∞∑

i=n

1

i1/h
.

By the convergence of the series
∑∞

i=1
1

i1/h , we obtain that d(xn, xm) → 0 as n, m → ∞.
Therefore, {xn} is a Cauchy sequence in X. Since X is complete, there exists an element
x∗ ∈ X such that xn → x∗ as n → ∞.
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Now, if Ti is upper semi-continuous for any of i ∈ {1, 2, . . . , m}, then x2n ∈ X, x2n+1 ∈
Ti(x2n) with x2n → x∗ and x2n+1 → x∗ as n → ∞ imply that x∗ ∈ Ti(x

∗). Using (i), we
get x∗ ∈ T1(x

∗) = T2(x
∗) = · · · = Tm(x∗).

Finally, to prove (iii): Suppose the set ∩m
i=1Fix(Ti) is well ordered. Assume that there

exist u and v such that u, v ∈ ∩m
i=1Fix(Ti) but u 
= v. As (u, v) ∈ �2, we have

τ(U(u, v; u, v)) + F(d(u, v)) ≤ F(U(u, v; u, v))

= F

(
max

{
d(u, v), d(u, u), d(v, v),

d(u, v) + d(v, u)

2

})

= F(d(u, v)),

that is, τ(d(u, v)) + F(d(u, v)) ≤ F(d(u, v)), a contradiction as τ(d(u, v)) > 0. Hence,
u = v. The converse is obvious.

Corollary 1 Let (X, d,�) be a partially ordered complete metric space and T1, T2 : X →
Pcl(X). Suppose that for every (x, y) ∈ �1 and ux ∈ Ti(x), there exists uy ∈ Tj (y) with
i 
= j with (ux,uy) ∈ �2 such that

τ(U(x, y; ux, uy)) + F(d(ux,uy)) ≤ F(U(x, y; ux, uy)

holds, where i, j ∈ {1, 2}, τ : R+ → R+ is a function such that lim infs→t+ τ(s) ≥ 0 for
all t ≥ 0 and

U(x, y; ux, uy) = max

{
d(x, y), d(x, ux), d(y, uy),

d(x, uy) + d(y, ux)

2

}
.

Then, the following statements hold:

(I) Fix(Ti) 
= ∅ for any i ∈ {1, 2} if and only if Fix(T1) = Fix(T2) 
= ∅.
(II) Fix(T1) = Fix(T2) 
= ∅ provided that either T1 or T2 is upper semi-continuous.
(III) Fix(T1) ∩ Fix(T2) is well ordered if and only if Fix(T1) ∩ Fix(T2) is singleton set.

Example 1 Let X = [0, 10] be endowed with usual order ≤. Define the mappings T1, T2 :
X → Pcl(X) by

T1(x) =
[
0,

x

10

]
and T2(x) =

[
0,

x

12

]
for all x ∈ X.

Take F(γ ) = ln γ + γ for all γ > 0. The mapping τ : R+ → R+ is defined as follows:

τ(t) =
{

t
20 if t ∈ (0, 10],
1
2 if t > 10.

We consider the following cases:
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1. When x, y ∈ (0, 10]with (x, y) ∈ �1, then for ux ∈ T1(x), there exists uy = 0 ∈ T2(y)

with (ux, uy) ∈ �2 such that

d(ux, uy)e
d(ux,uy)−U(x,y;ux,uy)+τ(U(x,y;ux,uy)) = uxe

ux−U(x,y;ux,uy)+ U(x,y;ux ,uy )

20

≤ x

10
e

x
10− 19

20U(x,y;ux,uy)

≤ x

10
e

x
10− 19

20

(
d(x,uy )+d(y,ux )

2

)

≤ 9

10
xe

−131x−190y
400

= d(x, ux)e
0 ≤ U(x, y; ux, uy).

2. If x = 0 and y ∈ (0, 10] with (x, y) ∈ �1, then for ux = 0 ∈ T1(x), there exists
0 
= uy ∈ T2(y) with (ux, uy) ∈ �2 such that

d(ux, uy)e
d(ux,uy)−U(x,y;ux,uy)+τ(U(x,y;ux,uy))

= uye
uy−U(x,y;ux,uy)+ U(x,y;ux ,uy )

20

≤ y

12
e

y
12−U(x,y;ux,uy)+ U(x,y;ux ,uy )

20

= y

12
e

y
12− 19

20U(x,y;ux,uy) ≤ y

12
e

y
12− 19

20 d(y,uy)

≤ ye
y
12− 19

20 (
11y
12 ) ≤ d(x, y)e0 ≤ U(x, y; ux, uy).

3. In case x ∈ (0, 10] and y = 0 with (x, y) ∈ �1, we have for ux ∈ T1(x), there exists
uy = 0 ∈ T2(y), such that

d(ux, uy)e
d(ux,uy)−U(x,y;ux,uy)+τ(U(x,y;ux,uy))

≤ x

10
e

x
10− 19

20U(x,y;ux,uy)

≤ x

10
e

x
10− 19

20 d(x,ux)

≤ x

10
e

x
10− 19

20 (x− x
10 ) = x

10
e

x
10− 19

20 ( 9x10 )

≤ xe0 ≤ d(x, y) ≤ U(x, y; ux, uy).

4. When x = 0 and y ∈ (0, 10] with (x, y) ∈ �1, we have for ux = 0 ∈ T2(x), there
exists 0 
= uy ∈ T1(y) with (ux, uy) ∈ �2 such that

d(ux, uy)e
d(ux,uy)−U(x,y;ux,uy)+τ(U(x,y;ux,uy))

= uye
uy−U(x,y;ux,uy)+ U(x,y;ux ,uy )

20

≤ y

12
e

y
10−U(x,y;ux,uy)+ U(x,y;ux ,uy )

20

= y

12
e

y
10− 19

20U(x,y;ux,uy)

≤ y

12
e

y
10− 19

20 d(y,uy)

≤ ye
y
10− 19

20 (
11y
12 ) ≤ d(x, y)e0 ≤ U(x, y; ux, uy).
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5. Finally, if x ∈ (0, 10] and y = 0 with (y, x) ∈ �1, then for 0 
= ux ∈ T2(x), there
exists uy = 0 ∈ T1(y) with (uy, ux) ∈ �2 such that

d(ux, uy)e
d(ux,uy)−U(x,y;ux,uy)+τ(U(x,y;ux,uy))

≤ x

12
e

x
12−U(x,y;ux,uy)− U(x,y;ux ,uy )

20

= x

12
e

x
12− 19

20 d(x,ux)

≤ x

12
e

x
12− 19

20 ( 11x12 )

≤ 11x

12
e0 ≤ d(x, ux) ≤ U(x, y; ux, uy).

Thus, all the conditions of Corollary 1 are satisfied.Moreover, Fix(T1) = Fix(T2) = {0}.

The following results generalizes [19, Theorem 3.4].

Theorem 2 Let (X, d,�) be a partially ordered complete metric space and {Ti}mi=1 be
F2-contraction family of multivalued maps. Then, the following hold

(i) Fix(Ti) 
= ∅ for any i ∈ {1, 2, . . . , m} if and only if Fix(T1) = Fix(T2) = · · · =
Fix(Tm) 
= ∅.

(ii) Fix(T1) = Fix(T2) = · · · = Fix(Tm) 
= ∅ provided that there exists some x0 ∈ X

such that {x0} �1 Tk(x0) for any k ∈ {1, 2, . . . , m} and any one of Ti is upper
semi-continuous for i ∈ {1, 2, . . . , m}.

(iii) ∩m
i=1Fix(Ti) is well ordered if and only if ∩m

i=1Fix(Ti) is singleton set.

Proof To prove (i): Let x∗ ∈ Tk(x
∗) for any k ∈ {1, 2, . . . , m}. If x∗ /∈ Tk+1(x

∗), then there
exists an x ∈ Tk+1(x

∗) with (x∗, x) ∈ �2 such that

τ(U2(x
∗, x∗; x∗, x)) + F

(
d(x∗, x)

) ≤ F(U2(x
∗, x∗; x∗, x)),

where

U2(x
∗, x∗; x∗, x) = αd(x∗, x∗) + βd(x∗, x∗) + γ d(x, x∗) + δ1d(x∗, x) + δ2d(x∗, x∗)

= (γ + δ1)d(x, x∗).
Thus, we have

τ((γ + δ1)d(x∗, x)) + F
(
d(x∗, x)

) ≤ F((γ + δ1)d(x∗, x)) < F(d(x∗, x)),

a contradiction as τ((γ + δ1)d(x∗, x)) > 0. Thus, x∗ = x and hence x∗ ∈ Tk+1(x
∗) and

Fix(Tk) ⊆ Fix(Tk+1). Similarly, we obtain that Fix(Tk+1) ⊆ Fix(Tk+2). Continuing this
way, we get Fix(T1) = Fix(T2) = · · · = Fix(Tk). The converse is straightforward.

To prove (ii): Suppose that x0 is an arbitrary point of X. If x0 ∈ Tk0(x0) for any k0 ∈
{1, 2, . . . , m} then by using (i) the proof is finished. So, we assume that x0 /∈ Tk0(x0) for
any k0 ∈ {1, 2, . . . , m}. For i ∈ {1, 2, . . . , m}, x1 ∈ Ti(x0), there exists x2 ∈ Ti+1(x1) with
(x1, x2) ∈ �2 such that

τ(U2(x0,x1;x1,x2)) + F (d(x1, x2)) ≤ F(U2(x0, x1; x1, x2)),

where

U2(x0, x1; x1, x2) = αd(x0, x1) + βd(x0, x1) + γ d(x1, x2) + δ1d(x0, x2) + δ2d(x1, x1)

≤ (α + β + δ1)d(x0, x1) + (γ + δ1)d(x1, x2).
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If d(x0, x1) ≤ d(x1, x2), then

τ((α + β + γ + 2δ1)d(x1,x2)) + F (d(x1, x2))

≤ F((α + β + γ + 2δ1)d(x1, x2))

≤ F(d(x1, x2)),

gives a contradiction as τ((α + β + γ + 2δ1)d(x1,x2)) > 0. Thus, we have

τ(d(x0,x1)) + F (d(x1, x2)) ≤ F (d(x0, x1)) .

Continuing this way, for x2n ∈ Ti(x2n−1), there exist x2n+1 ∈ Ti+1(x2n)with (x2n, x2n+1) ∈
�2 such that

τ(U2(x2n−1,x2n;x2n,x2n+1)) + F (d(x2n, x2n+1)) ≤ F (U2(x2n−1, x2n; x2n, x2n+1))

holds, where

U2(x2n−1, x2n; x2n, x2n+1) = αd(x2n−1, x2n) + βd(x2n−1, x2n) + γ d(x2n, x2n+1)

+δ1d(x2n−1, x2n+1) + δ2d(x2n, x2n)

≤ (α + β + δ1)d(x2n−1, x2n) + (γ + δ1)d(x2n, x2n+1).

If d(x2n−1, x2n) ≤ d(x2n, x2n+1), then

τ((α + β + γ + 2δ1)d(x2n,x2n+1) + F (d(x2n, x2n+1))

≤ F ((α + β + γ + 2δ1)d(x2n, x2n+1))

≤ F (d(x2n, x2n+1)) ,

gives a contradiction as τ((α + β + γ + 2δ1)d(x2n,x2n+1)) > 0. Therefore,

τ(d(x2n−1,x2n)) + F (d(x2n, x2n+1)) ≤ F (d(x2n−1, x2n)) .

Similarly, for x2n+1 ∈ Ti+1(x2n), there exist x2n+2 ∈ Ti+2(x2n+1) with (x2n+1, x2n+2) ∈
�2 such that

τ(d(x2n,x2n+1)) + F (d(x2n+1, x2n+2)) ≤ F (d(x2n, x2n+1))

holds. Hence, we obtain a sequence {xn} in X such that xn ∈ Ti(xn−1) and xn+1 ∈ Ti+1(xn)

with (xn, xn+1) ∈ �2 and it satisfies

F(d(xn, xn+1)) ≤ F (d(xn−1, xn)) − τ (d(xn−1, xn))

< F (d(xn−1, xn)) .

Thus, the sequence {d(xn, xn+1)} is decreasing and hence convergent. We show that
limn→∞ d(xn, xn+1) = 0. By the property of mapping τ , there exists c > 0 with n0 ∈ N

such that τ(d(xn, xn+1)) > c for all n ≥ n0. Note that

F (d(xn, xn+1)) ≤ F(d(xn−1, xn)) − τ(d(xn−1, xn))

≤ F(d(xn−2, xn−1)) − τ(d(xn−2, xn−1)) − τ (d(xn−1, xn))

≤ · · ·
≤ F(d(x0, x1)) − (τ (d(xn−1, xn)) + τ(d(xn−2, xn−1))

+ · · · + τ(d((x0, x1))

≤ F(d(x0, x1)) − n0.

Thus, limn→∞ F(d(xn, xn+1)) = −∞ which together with (F2) gives
limn→∞ d(xn, xn+1) = 0. Following the arguments similar to those in the proof of The-
orem 1, {xn} is a Cauchy sequence in X. Since X is complete, there exists an element

19



Mujahid Abbas et al.

x∗ ∈ X such that xn → x∗ as n → ∞. Now, if Ti is upper semi-continuous for any
i ∈ {1, 2, . . . , m}, then as x2n ∈ X, x2n+1 ∈ Ti(x2n) with x2n → x∗ and x2n+1 → x∗ as
n → ∞, so we have x∗ ∈ Ti(x

∗). Using (i), we get x∗ ∈ T1(x
∗) = T2(x

∗) = · · · = Tm(x∗).
To prove (iii): Suppose the set ∩m

i=1Fix(Ti) is well ordered. Assume that there exist u

and v such that u, v ∈ ∩m
i=1Fix(Ti) but u 
= v. As (u, v) ∈ �2, we have

τ(U2(u, v; u, v)) + F(d(u, v)) ≤ F(U2(u, v; u, v)),

where

U2(u, v; u, v) = αd(u, v) + βd(u, u) + γ d(v, v) + δ1d(u, v) + δ2d(v, u)

= (α + δ1 + δ2)d(u, v),

that is,

τ(d(u, v)) + F(d(u, v)) = F((α + δ1 + δ2)d(u, v)) ≤ F(d(u, v)),

a contradiction as τ(d(u, v)) > 0. Hence, u = v. The converse is obvious.

Corollary 2 Let (X, d, �) be a partially ordered complete metric space and {Ti}mi=1 : X →
Pcl(X) with Tm+1 = T1. Suppose that for any x, y ∈ X with (x, y) ∈ �1 and ux ∈ Ti(x),
there exists uy ∈ Ti+1(y) for i ∈ {1, 2, . . . , m} with (ux, uy) ∈ �2 such that

τ(αd(x, y) + βd(x, ux) + γ d(y, uy)) + F(d(ux, uy))

≤ F(αd(x, y) + βd(x, ux) + γ d(y, uy))

holds, where τ : R+ → R+ is a function such that lim infs→t+ τ(s) ≥ 0 for all t ≥ 0 and
α, β, γ ≥ 0 and α + β + γ ≤ 1. Then, the conclusions obtained in Theorem 2 remain true.

Corollary 3 Let (X, d, �) be a partially ordered complete metric space and {Ti}mi=1 : X →
Pcl(X) with Tm+1 = T1. Suppose that for any x, y ∈ X with (x, y) ∈ �1 and ux ∈ Ti(x),
there exists uy ∈ Ti+1(y) for i ∈ {1, 2, . . . , m} with (ux, uy) ∈ �2 such that

τ(h[d(x, ux) + d(y, uy)]) + F(d(ux, uy)) ≤ F(h[d(x, ux) + d(y, uy)])
holds, where τ : R+ → R+ is a function such that lim infs→t+ τ(s) ≥ 0 for all t ≥ 0 and
h ∈ [0, 1

2 ]. Then the conclusions obtained in Theorem 2 remain true.

Corollary 4 Let (X, d, �) be a partially ordered complete metric space and {Ti}mi=1 : X →
Pcl(X) with Tm+1 = T1. Suppose that for any x, y ∈ X with (x, y) ∈ �1 and ux ∈ Ti(x),
there exists uy ∈ Ti+1(y) for i ∈ {1, 2, . . . , m} with (ux, uy) ∈ �2 such that

τ(d(x, y)) + F(d(ux, uy)) ≤ F(d(x, y)),

holds, where τ : R+ → R+ is a function such that lim infs→t+ τ(s) ≥ 0 for all t ≥ 0. Then,
the conclusions obtained in Theorem 2 remain true.

Remark 1

1. Theorem 1 extends, improves and generalizes (i) Theorem 1.9 in [1], (ii) Theorem 4.1
in [12], (iii) Theorem 3.4 of [19], (iv) Theorem 2.1 of [17], and (v) Theorem 3.1 of
[20].

2. Corollary 1 improves and generalizes (i) Theorem 1.9 in [1], (ii) Theorem 4.1 in [12],
(iii) Theorem 3.4 of [19], and (iv) Theorem 3.1 of [20].

3. Theorem 2 improves and extends (i) Theorem 3.4 and Theorem 4.1 in [9], (ii) Theo-
rem 3.4 in [19], and (iii) Theorem 3.4 in [20].
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4. Corollary 2 extends and generalizes (i) Theorem 3.4 in [19] and (ii) Theorem 4.1 of [12].
5. Corollary 3 improves and generalizes Theorem 4.1 in [12].
6. If we take T1 = T2 = · · · = Tm in F1 and F2-contraction family of multivalued

maps, then we obtain the fixed point results for F1-contraction and F2-contraction of a
multivalued map, respectively.
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