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Abstract
Optimal control problems with mixed integer control functions and logical implications,
such as a state-dependent restriction on when a control can be chosen (so-called indicator
or vanishing constraints) frequently arise in practice. A prominent example is the optimal
cruise control of a truck. As every driver knows, admissible gear choices critically depend
on the current velocity. A large variety of approaches has been proposed on how to numeri-
cally solve this challenging class of control problems. We present a computational study in
which the most relevant of them are compared for a reference model problem, based on the
same discretization of the differential equations. This comprehends dynamic programming,
implicit formulations of the switching decisions, and a number of explicit reformulations,
including mathematical programs with vanishing constraints in function spaces. We sur-
vey all of these approaches in a general manner, where several formulations have not been
reported in the literature before. We apply them to a benchmark truck cruise control prob-
lem and discuss advantages and disadvantages with respect to optimality, feasibility, and
stability of the algorithmic procedure, as well as computation time.

Keywords Mixed integer optimal control · Indicator constraints · Vanishing constraints ·
Switched systems · MINLP · Heavy-duty truck · Cruise control · Dynamic programming ·
Switching function · Partial outer convexification

Mathematics Subject Classification (2010) 49-04 · 49M37 · 65K05 · 90-08 · 90C30 ·
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1 Introduction

Mixed integer optimal control problems (MIOCPs, also known as switched systems) have
been gaining significantly increased interest. The underlying processes have a high potential
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for optimization, while at the same time, they are hard to assess manually due to their com-
binatorial, nonlinear, and dynamic nature. Typical examples are water or gas networks [14,
45], traffic flow [22, 28], supply chain networks [44], distributed autonomous systems [1],
processes in chemical engineering that involve valves [35, 65], and the choice of gears in
automotive control [13, 25, 42]. See [56] for an open benchmark library for MIOCPs. The
truck benchmark problem we discuss in this article is motivated by work of [30, 33, 36–38,
40, 68].

Definition 1 (MIOCP) In this article, we refer to the switched dynamic optimization
problem given by

min
x(·),u(·),

Y (·)
e(x(tf))

s.t.
⊕

1≤i≤nω

⎡

⎣
Yi(t)

ẋ(t) = f (x(t),u(t), vi )

0 ≤ c(x(t),u(t), vi )

⎤

⎦ t ∈ [0, tf] a.e.,

x(0) = x0,

0 ≤ d(x(t),u(t)) t ∈ [0, tf] a.e.

as a mixed integer optimal control problem (MIOCP). The disjunction ⊕ over 1 ≤ i ≤ nω

signifies that, at every point on the time horizon t ∈ [0, tf] in time, exactly one of the
nω possible modes is chosen. This choice is represented here by time-dependent logical
literals Yi(·), 1 ≤ i ≤ nω. Setting Yi(t) = true selects a mode; the other literals then
assume the value Yj (t) = false for j �= i. The control u : [0, tf] → R

nu is assumed to be
measurable and of bounded variation. The differential states x : [0, tf] → R

nx are assumed
to be uniquely determined by f and x0 once a switching regime Y (·) and a control u(·) are
fixed. The vectors vi ∈ R

nv comprise constant values specific for the given mode, and we
let � := {v1, v2, . . . , vnω }. The objective function e : R

nx → R of Mayer type and the
constraint functions c : Rnx × R

nu × R
nv → R

nc and d : Rnx × R
nu → R

nd are assumed
to be twice continuously differentiable.

A challenging part of solving a MIOCP is to find optimal discrete mode choices Y (·).
We are particularly interested in the indicator constraint 0 ≤ c(x(t),u(t), vi ) in Defini-
tion 1, which only plays a role if mode i is active (indicated) at time t . In this article, we
discuss several approaches to formulating these and to computationally solving the arising
optimization problems.

– In direct methods with explicit switching, the boolean literals Y (·) are included as
optimization variables, giving rise to nonlinear non-convex mixed integer optimiza-
tion problems. Typically, continuous relaxations are solved within methods that provide
integer solutions, such as Branch & Bound or rounding.

– In direct methods with implicit switching, the truth values of the boolean literals Y (·)
are computed from a switching function that uniquely determines the current mode and
makes sure that the indicator constraints 0 ≤ c(x(t),u(t), vi ) are fulfilled.

– Dynamic programming provides a global solution on a given discretization and allows
an enumerative treatment of integrality and indicator constraints.

There are of course connections between the different formulations; e.g., a transcrip-
tion method from implicit switching to explicit switching on a time discretization grid
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is proposed in [11]. And there are further approaches that we are not addressing in this
paper. Indirect methods use necessary optimality conditions for (MIOCP) in function space,
compare [26], and solve the resulting boundary value problem. Moment relaxations use
polynomial optimization for switched systems [16, 58]. Time transformation approaches
transform the problem into one where the stage lengths become continuous optimization
variables, [25]. See [50] for an extension to indicator constraints. See [60] for a survey with
further references and a discussion of advantages of different formulations for MIOCPs
without indicator constraints.

There are several reformulations of logical relationships in the literature. Generalized
disjunctive programming results directly from a logical modeling paradigm. It generalizes
the disjunctive programming approach of [4]. Logical variables are usually either incorpo-
rated by means of big-M constraints or via a convex hull formulation (see [27, 49, 51, 67]).
From a different point of view, disjunctive programming formulations can be interpreted
as the result of reformulation-linearization technique (RLT) steps [64]. For both, the con-
vex hull relaxation uses perspective functions. Based on this, the use of perspective cuts to
strengthen convex MINLP relaxations has been proposed in various articles, for example,
[15, 21, 29]. MINLP techniques are surveyed in [8].

Complementarity and indicator/vanishing constraints are another way to look at logical
implications. The general concept of nonlinear optimization over non-convex structures is
discussed in [62, 63]. For the comparatively new problem class of MPVCs, we refer to [2,
31]. Due to the lack of constraint qualification, various approaches for the computational
solution of MPCCs and MPVCs have been devised and include regularizations [31, 54,
66], smoothing [17, 31], and combinations thereof (see [23] for an overview). Nonlinear
programming for MPCCs is addressed in [3, 19, 46, 47]. Active set methods tailored to the
non-convex structure are discussed in [18, 36, 41]. Formulations of MPCCs and MPVCs in
optimal control can be found in [5, 36, 43, 52, 53].

In this article, we propose a new implicit approach to solve mixed integer optimal control
problems with indicator constraints, and tailor it to the case of truck control. In addition, we
provide the first comprehensive numerical assessment of different explicit, implicit, local,
and global solution approaches to this problem class. Some of the results concerning explicit
approaches have already been published in the book contribution [33] and the PhD thesis
[32]. They are extended here by new variants of perspective reformulations, and also by
considerations of dynamic programming [13] and implicit switching approaches. Several
aspects play a role in this comparison:

– Some approaches provide an integer solution, while others solve a relaxed problem.
For integer-feasible solutions, a small objective function value is obviously desirable,
preferably the global minimum of (MIOCP). For fractional solutions of relaxed prob-
lems, the situation is different: in addition to local vs. global minimality, the aspect of
the tightness of the relaxation plays a role. For relaxed solutions, a higher objective
function value may indicate that the relaxation is tighter and of better use in a Branch
& Bound scheme.

– Due to discretization (e.g., the discretization of the state space in dynamic program-
ming) or rounding solutions may be infeasible in a forward simulation.

– The computation of optimal controls for the autonomous vehicle problem has to take
place in real-time in order to enable a near instantaneous reaction to speed limits,
slope changes, and to unforeseen alterations of traffic conditions. At the same time,
all computations need to be performed by an on-board embedded system with limited
computational resources.
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We compare all approaches with respect to objective function value, fractionality,
infeasibility, and CPU time.

In Section 2, we describe a benchmark MIOC problem, the control of a heavy duty truck,
including two scenarios. In Section 3, we describe a family of so-called explicit approaches
to MIOC, including relaxations from partial inner and outer convexification, and we pro-
pose several relaxations based on the perspective. In Section 4, we propose a new family of
formulations belonging to the so-called implicit solution approach to MIOC. In Section 5,
we describe a dynamic programming approach to MIOC. We describe and discuss the set-
ting and the numerical results of the computational study in Section 6 and conclude with a
summary in Section 7.

2 A Heavy-Duty Truck Cruise Control Problem

We present a mathematical model for a truck cruise control problem that is the base of all
following comparisons. For more detailed expositions of various related models, we refer
the reader to [12, 32, 33, 36, 38].

2.1 Controls and Dynamic System

The independent variable of the model is the traveled distance s in the range [0, sf] (in m).
There are two control functions with continuous domain, the indicated engine torque Mind
and the engine brakes torque Mbrk (both in Nm). The gear choice μ : [0, sf] �→ {1, . . . , nμ}
is a discrete control. There are two differential states, velocity v (in m/s), and accumulated
fuel consumptionQ (in l/s). The longitudinal dynamics are given by the ordinary differential
equation

v̇ = 1
m v

(
iA
rstat

(iT(μ)ηT(μ)Mind − Mbrk − iT(μ)Mfric(v)) + Mext(v, γ )
)

(1)

=: fv(v, Mind,Mbrk, iT(μ), ηT(μ), γ ),

and the accumulated fuel consumption is given by

Q̇ = 1
v

(
c0 + (

c1neng(v, iT(μ)) + c2Mind
)2) (2)

=: fQ(v, Mind, iT(μ)),

with engine speed

neng(v, iT(μ)) := viAiT(μ)60/(2πrstat), (3)

engine friction (in Nm)

Mfric(v) :=
(
c4neng(v, iT(μ))2 + c5neng(v, iT(μ)) + c6

)
, (4)

and the influence of air, gravity, and the influence of the road slope γ (in rad) via rolling
friction as part of the external engine torque Mext (in Nm)

Mext(v, γ ) := − 1
2cwAρv2 − mg sin(γ ) + c7 cos(γ ).

The values iA, rstat (in m), iT, ηT, c, m, g, cw , A are constant model parameters and are
independent of s, while all other quantities depend on the position s.
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2.2 Objective Function

The cost to be minimized on the time horizon [0, sf] comprises three contributing terms,
namely a penalty term for the deviation of the velocity from the desired one

�dev(sf) :=
∫ sf

0
(v(s) − vdes(s))

2 ds, (5a)

and the overall fuel consumption

�fuel(sf) := Q(sf). (5b)

The terms are weighted by weights λd, λf ≥ 0 and summed up. A comfort term that
penalizes rapid torque changes

�comf(sf) :=
∫ sf

0
Ṁ2

ind(s) + Ṁ2
brk(s)ds (5c)

could also be included, but would require Ṁind and Ṁbrk to be the controls subject to
optimization in order to obtain a differentiable objective.

2.3 Constraints

We account for mechanical constraints on the engine speed (3) with

nmin
eng ≤ neng(v(s), iT(μ(s))) ≤ nmax

eng (6)

and on the torques with

Mind(s) ≤ Mmax
ind (v(s), iT(μ(s))), (7a)

0 ≤ Mind(s), (7b)

0 ≤ Mbrk(s) ≤ Mmax
brk , (7c)

for s ∈ [0, sf]. The maximum engine torque is given by

Mmax
ind (v, iT(μ)) := c7 − (neng(v, iT(μ)) − c8)

2/c9.

There may be speed limits, e.g., by law,

v(s) ≤ vlaw(s), s ∈ [0, sf]. (8)

2.4 Problem Formulation

Summarizing, this leads to the following problem formulation for the heavy-duty truck
control problem on the time horizon s ∈ [0, sf]:

min
x(·),u(·),μ(·) λd�dev(sf) + λf�fuel(sf)

s.t.
⊕

1≤i≤nμ

⎡

⎣
μ(s) = i

ODE system (1), (2)
Constraints (6), (7a)

⎤

⎦ s ∈ [0, sf] a.e., (9)

x(0) = x0,

Constraints (7b), (7c), (8) s ∈ [0, sf] a.e.,
with state vector x(s) = (v(s),Q(s))T , continuous control vector u(s) = (Mind(s),
Mbrk(s))

T , the integer control μ(s), and fixed initial state x0.
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3 Explicit Switching Formulations

We investigate explicit approaches to reformulate problem (MIOCP), with a special focus
on problem (10). They all use binary control functions y : [0, sf] �→ {0, 1}nμ that indicate
whether gear i is chosen at position s or not. These reformulations are by construction
equivalent for integer gear choices, but their relaxations to y : [0, sf] �→ [0, 1]nμ may
have completely different characteristics. As the relaxations play an important role in mixed
integer algorithms (such as Branch & Bound or rounding heuristics), a thorough study of
the tightness of the relaxations and of numerical properties is needed.

The character of the exclusive disjunction in (10) is captured via the special ordered set
type 1 constraints

nμ∑

j=1

yj (s) = 1 ∀s ∈ [0, sf].

For a more compact notation, we leave away the argument (s) for the states v, Q and the
controls Mind,Mbrk, y in the following.

3.1 Inner Convexification (IC)

For problem (10), it is possible to reformulate the time-dependent disjunctions by means of
a function g : [1, nμ] → R

2 that can be inserted into the right-hand side function f (·) and
into the constraints c(·) and has the property

g(μ) = (iT(μ), ηT(μ))T

for μ ∈ {1, . . . , nμ}. One possibility is a convex combination of the tabulated values,

g(y) =
nμ∑

j=1

yj (iT(j), ηT(j))T . (10)

Other possibilities are a piecewise linear representation with special ordered set type 2
variables or fitted smooth convex functions g(·) as suggested in [24].

Applying IC to the ODEs (1), (2) and the constraints (6), (7a) in problem (10), we obtain

v̇ = fv(v,Mind,Mbrk, g1(y), g2(y), γ ), (11a)

Q̇ = fQ(v, Mind, g1(y)) (11b)

and

nmin
eng ≤ neng(v, g1(y)) ≤ nmax

eng , (12a)

Mind ≤ Mmax
ind (v, g1(y)). (12b)

3.2 Outer Convexification (OC)

Partial outer convexification [39, 55, 57, 60] uses a convex combination of all function
evaluations on the top (outermost) level. The resulting problem may still be non-convex in
the differential states or continuous controls; thus, it may only be a partial convexification.
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Applying OC to the ODEs (1)–(2) and the constraints (6)–(7a) in problem (10), we obtain
the one-row relaxations

v̇ =
nμ∑

j=1

yjfv(v,Mind,Mbrk, iT(j), ηT(j), γ ), (13a)

Q̇ =
nμ∑

j=1

yjfQ(v, Mind, iT(j)) (13b)

and

nmin
eng ≤

nμ∑

j=1

yjneng(v, iT(j)) ≤ nmax
eng , (14a)

Mind ≤
nμ∑

j=1

yjM
max
ind (v, iT(j)). (14b)

3.3 Big M Constraints (bigM)

A classical way to reformulate indicator constraints of the type y = 1 ⇒ c(x) ≤ 0 are
Big-M formulations c(x) ≤ M(1 − y) with M ≥ maxx c(x). The constraints (6)–(7a) in
problem (10) are reformulated as

− neng(v, iT(j)) ≤ −nmin
eng + M(1 − yj ), (15a)

neng(v, iT(j)) ≤ nmax
eng + M(1 − yj ), (15b)

Mind ≤ Mmax
ind (v, iT(j)) + M(1 − yj ). (15c)

Problem-specific values M can be found in [33, p. 181].

3.4 Relaxed Vanishing Constraints (relVC)

We formulate the constraints (6)–(7a) via a multiplication with the indicating variable yj

and a relaxation by ε, i.e.,

yjn
min
eng − ε ≤ yjneng(v, iT(j)) ≤ yjn

max
eng + ε, (16a)

yjMind − ε ≤ yjM
max
ind (v, iT(j)). (16b)

3.5 Smoothened Vanishing Constraints (smoVC)

We reformulate (6)–(7a) using a smoothing-relaxation formulation suggested by [31],

φVC
ε (a, b) = 1

2

(
ab +

√
a2b2 + ε2 +

√
b2 + ε2 − b

)
− ε. (17)
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This results in

0 ≥ φVC
ε

(
nmin
eng − neng (v, iT(j)) , yj

)
, (18a)

0 ≥ φVC
ε

(
neng (v, iT(j)) − nmax

eng , yj

)
, (18b)

0 ≥ φVC
ε

(
Mind,j − Mmax

ind (v, iT(j)), yj

)
. (18c)

3.6 Perspective and Full Lifting (PFL)

In generalized disjunctive programming (GDP, [27]) two concepts are combined: lifting and
convex hull relaxations via the perspectives of constraint functions.

Definition 2 (Perspective function) The perspective of a function f : Rn1 ×· · ·×R
nn → R

with respect to the first p arguments x1, . . . , xp is the function f̂ : R×R
n1×· · ·×R

nn → R

defined by

f̂ (y; x1, . . . , xn)

:=
⎧
⎨

⎩

yf (
x1
y

, . . . ,
xp

y
, xp+1, . . . , xn) if y > 0,
0 if y = 0, xj = 0 for some j ≤ p,

∞ otherwise.

It is well known that, for fixed index p, this function is convex if f is convex. In this
case, it yields the convex hull of the feasible disjunctive set if the binary variable y ∈ {0, 1}
is relaxed and the variables are linked via

xj ≤ yxmax
j , 1 ≤ j ≤ p

compare, e.g., [29]. The tightness of perspective-based relaxations is often very good, com-
pare the study of [48] for switched affine control systems. Perspectives are, however, well
known to cause numerical issues for small values of y. For computational purposes, we use
the smooth perspective, defined as follows.

Definition 3 (Smooth perspective [61]) The function

f̃ (y; x) := f̂ ((1 − ε)y + ε; x) + ε(y − 1)f (0, . . . , 0︸ ︷︷ ︸
p times

, xp+1, . . . , xn)

is called smooth perspective function.

In GDP, auxiliary (lifted) variables are introduced, one copy for each disjunction. It is an
open question, though, if really all variables should be lifted. In our full lifting formulation,
we introduce trajectories vj ,Qj ,Mind,j ,Mbrk,j : [0, sf] �→ R for all states and continuous
controls, and for all j ∈ {1, . . . , nμ}. We couple them via constraints

v =
nμ∑

j=1

vj , Mind =
nμ∑

j=1

Mind,j , (19a)

Q =
nμ∑

j=1

Qj, Mbrk =
nμ∑

j=1

Mbrk,j (19b)
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that allow to evaluate the objective function. All constraints have to hold for all nμ vectors
of lifted variables, i.e., (7b), (7c), (8) are replaced by

0 ≤ Mind,j , (20a)

0 ≤ Mbrk,j ≤ yjM
max
brk , (20b)

vj ≤ yj vlaw. (20c)

Applying perspectives to (1), (2) we obtain for yj > 0

v̇j = f̂v

(
yj ; vj ,Mind,j ,Mbrk,j , iT(j), ηT(j), γ

)
(21a)

= yjfv

(
vj

yj
,

Mind,j
yj

,
Mbrk,j

yj
, iT(j), ηT(j), γ

)
(21b)

Q̇j = f̂Q

(
yj ; vj , Mind,j , iT(j)

)
(21c)

= yjfQ

(
vj

yj
,

Mind,j
yj

, iT(j)
)

, (21d)

or the respective smoothed counterparts.

Definition 4 (Smoothed dynamics) After eliminating yj in the denominators of f̂v or f̂Q

where possible, any gear indicator variables yj remaining in the denominators are replaced
by the smoothing

S

(
vj

yj

, ε

)
:= (1 − ε)vj

(1 − ε)yj + ε
+ ε. (22)

Applying perspectives to the constraints (6), (7a) yields

yjn
min
eng ≤ yjneng

(
vj

yj
, iT(j)

)
≤ yjn

max
eng , (23a)

Mind,j ≤ yjM
max
ind

(
vj

yj
, iT(j)

)
. (23b)

Because neng is linear in its first argument, elimination of all denominator occurrences of
yj is possible. Only constraint (23b) needs a smoothing that formally reads

Mind,j ≤ yjM
max
ind

(
S

(
vj

yj
, ε

)
, iT(j)

)
,

and wherein the yj occurrence associated with the linear term of Mmax
ind is eliminated before

smoothing.

3.7 Perspective and Partial Lifting (PPL)

We further study whether a partial lifting is beneficial. Looking closer at (1), (2) and (21),
it appears tempting to only introduce lifted trajectories vj ,Mind,j : [0, sf] �→ R for all
j ∈ {1, . . . , nμ}, asMbrk andQ enter the dynamics and the objective function independently
of the disjunction. This leaves only the constraints (19b), (20a), and (20c) to be considered.
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Additionally, we split the right-hand side fv into disjunction-dependent and independent
parts. This allows to choose the vj as algebraic variables instead of differential states,

v̇ = 1
mv

(
Mext(v, γ ) − iA

rstat
Mbrk (24a)

+ iA
rstat

nμ∑

j=1

yj

(
iT(j)ηT(j)S

(
Mind,j

yj
, ε

)
− Mfric

(
S

(
vj

yj
, ε

)
, iT(j)

))
⎞

⎠

Q̇ =
nμ∑

j=1

yjfQ

(
S

(
vj

yj
, ε

)
, S

(
Mind,j

yj
, ε

)
, iT(j)

)
(24b)

and indicator constraints (23). After elimination of denominator yj occurrences where
possible, remaining velocities in the denominators of fv and fQ are smoothed using (22).

Additionally, not lifting the term 1
mv

even though v is an aggregate of the lifted velocities
vj is justified by observing that

nμ∑

j=1

(vj v̇j ) =
⎛

⎝
nμ∑

j=1

vj

⎞

⎠

⎛

⎝
nμ∑

j=1

v̇j

⎞

⎠ if vi v̇k = 0, i �= k.

In binary feasible points yj , the condition vi · v̇k = 0 for i �= k is implied by feasibility of
the constraint (21a).

3.8 Perspective andMinimal Lifting (PML)

Compared to Section 3.7, we reduce the number of lifted trajectories further using the pro-
jections vj = yj v and Mind,j = yjMind as first suggested in [32, 33]. The single ODEs can
be written as

yj v̇ = v̇j = yjfv

(
yj ; v, Mind,j ,Mbrk, iT(j), ηT(j), γ

)
.

Summing up over j we obtain

v̇ =
nμ∑

j=1

yjfv

(
yj ; v, Mind,j ,Mbrk, iT(j), ηT(j), γ

)
, (25a)

Q̇ =
nμ∑

j=1

yjfQ

(
yj ; v, Mind,j , iT(j)

)
. (25b)

As we do not use lifted velocities vj anymore, we formulate the indicator constraints using
the smoothing-relaxation (17) and obtain the constraints (18). Again, the perspectives and
the velocities in the denominators of fv and fQ are smoothed according Definition 3 and
to (22).

4 Implicit Switching Formulations

In this section, we propose a new family of implicit approaches to MIOCP. The general idea
is to reformulate problem (10) by eliminating the integer control through introduction of
implicit, i.e., state-dependent switches, before solving it numerically. This way, we obtain a
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nonlinear optimal control problem with continuous domain of feasibility, but with implicitly
discontinuous system dynamics. We consider the following class of problems:

Definition 5 (Switched system) In this article, we refer to the optimal control problem

min
x(·),u(·) e(x(tf)) (26)

s.t. ẋ(t) = f (x(t),u(t), sign σ (x(t))), t ∈ [0, tf] a.e.,
x(0) = x0,

0 ≤ d(x(t),u(t)), t ∈ [0, tf] a.e.

with right-hand side function f depending on the sign structure of a vector-valued switching
function σ : Rnx → R

nσ that satisfies the transversality condition

lim
t↗t∗

dσj

dt
(x(t)) lim

t↘t∗

dσj

dt
(x(t)) > 0 (27)

for all t∗ ∈ [0, tf] with σj (t∗) = 0 for some index 1 ≤ j ≤ nσ , as a switched system control
problem.

For the particular case of the truck MIOCP, we obtain a switched system by modeling
the discrete gear choice using a fixed dependency on a differential state, e.g., the current
velocity. Whenever certain switching velocities v̄ are reached, a gear shift takes place.

Definition 6 (Switching velocity and set) The set V̄ = {v̄1, . . . , v̄nμ+1} is called switching
set, if

vmin = v̄1 < v̄2 < · · · < v̄nμ+1 = vmax

and the gear μ(s) is chosen according to

μ(s) = j ⇐⇒ v(s) ∈ [v̄j , v̄j+1) ∀s ∈ [0, sf]

for a given trajectory v : [0, sf] �→ R and given vmin and vmax. The elements v̄μ are called
switching velocities.

4.1 Switching Velocities for Torque

We may define switching velocities for problem (10) based on any selected gear depen-
dency. The gear choice enters the dynamics (1) and (2) as well as the constraints on the
engine speed neng (6) and on the indicated engine torque (7a). In fact, the gear choice selects
from a number of possible modes, each of which is characterized by a different pair of val-
ues (iT, ηT) and affects the algebraic variables neng, Mmax

ind , fQ and Mfric. Via the constraint
on the engine speed neng (6), gear choice and velocity are linked. This results in restrictions
on the switching velocities as shown in Fig. 1a.

On the other hand, gear choice and velocity restrict the indicated engine torque Mind
via the constraint (7a). The largest feasible domain for Mind is obviously obtained for the
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Fig. 1 Details of implicit modeling

switching velocities that result in the maximum upper bound, as illustrated in Fig. 1b. This
results in the following switching set V̄Mmax

ind
:

μ 1 2 3 4 5 6 7 8
v̄μ vmin 2.1767 2.6363 3.2093 3.9358 4.8226 5.8154 7.0174

μ 9 10 11 12 13 14 15 16
v̄μ 8.2176 9.5819 11.6467 14.1881 17.3212 21.2210 25.6023 30.8988

4.2 Switching Velocities for Fuel Consumption

Another approach to determine a switching set V̄ is to pick switching velocities according
to fQ. Such switching velocities help to minimize the fuel consumption Q that depends on
fQ = fQ(v,Mind, iT(μ)), c.f. (2). The behavior of the quotient is depicted in Fig. 1 for two
different choices of Mind. In Fig. 1a, Mind is fixed to 2, 800 Nm, a value that is often close
to optimal in solutions using explicit formulations. In Fig. 1b, the control Mind is fixed to
its maximum value Mmax

ind .
Figures 1 shows that the fuel consumption increases at a slower rate if higher gears are

chosen. Hence, the fuel consumption can effectively be minimized by shifting to a higher
gear at the earliest convenience, i.e., the lowest admissible velocity. This early switching
may however also have an adverse affect. Choosing a high gear may prevent acceleration,
or make it more costly. This line of thought is confirmed by the numerical results presented
in Section 6. Hence, this approach for determining a switching set is discarded and we
determine the switching set V̄Q according to fQ by computing the intersection points of the
curves in Fig. 1b.

μ 1 2 3 4 5 6 7 8
v̄μ vmin 2.3095 2.7965 3.4047 4.173 5.1166 6.1695 7.4453

μ 9 10 11 12 13 14 15 16
v̄μ 8.7239 10.1661 12.3530 15.0533 18.3689 22.5149 27.1612 32.7830
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4.3 Further Switching Sets

Investigating Mfric for switching points does not yield new insights because the engine fric-
tion is minimized, too, if the highest admissible gear is chosen. In order to obtain further
switching sets for computational comparison, we define

V̄ave =
{
1
2

(
v̄Q,i + v̄Mindmax,i

)
, 1 ≤ i ≤ 17

}

and via

v̂i := v̄Q,i − v̄ave,i = 1
2 (v̄Q,i − v̄ave,i )

the sets

V̄plus = {v̄Q,i + 1 · v̂i , 1 ≤ i ≤ 17},
V̄pp = {v̄Q,i + 2 · v̄i , 1 ≤ i ≤ 17},

V̄ppp = {v̄Q,i + 4 · v̄i , 1 ≤ i ≤ 17}.
For an overview, all calculated switching velocities are shown in Fig. 2a. Switching veloci-
ties are depicted as lower bounds for all gear choices to improve clarity of exposition. The
switching velocity of gear j then is the upper bound on the velocity of gear j − 1 according
to condition (iii) of Definition 6.

4.4 Switching Function

Given a set V̄ , we can determine the switching function σ that relates the current velocity
v(s) uniquely to the current gear choice μ(s).

Definition 7 (Switching function) A switching function for problem (5) is a function

σ : [vmin, vmax] → R
nμ

that satisfies transversality (27) and

sign σj (v) =
{

+ 1 if v ∈ (v̄j , v̄j+1)
Definition 6⇐⇒ μ = j,

−1 otherwise.

In addition, we define the indicator functions

σ̃j (v) := 1

2
(sign σj (v) + 1) ∈ {0, 1}.

Fig. 2 Visualization of switching velocity sets and switching functions
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This definition implies that σ̃j is a binary algebraic variable that equals 1 if and only if
gear j is chosen. Hence, we have

μ(s) =
nμ∑

j=0

j · σ̃j (v(s)) ∀s ∈ [0, sf].

As a consequence, the gear choice μ and all algebraic variables that depend on the gear
choice are non-smooth step functions. For use with derivative-based solvers like the inte-
rior point code IPOPT [69], the resulting OCP violates the requirement of second order
continuous differentiability, and this will in general cause convergence difficulties.

To address this issue, the smooth function

σj (v) :=
(
1
π
arctan(csw · (v − v̄j )) + 1

2

)
·
(
1
π
arctan(csw · (v̄j+1 − v)) + 1

2

)
, (28)

with switching parameter csw > 0 may be used in place of the switching indicator func-
tion σ̃ . As can be seen in Fig. 2b, this function meets Definition 7 for csw → ∞. However,
choosing csw too big results in a large derivative when the current velocity is close to a
switching velocity, which may also cause difficulties for derivative based solvers. As a com-
promise with regard to the equivalence of the implicit approach and the original problem
formulation as well as the convergence properties of a derivative solver, we chose csw = 500
for the numerical results of Section 6.

4.5 Reformulation

As in the explicit approaches, the switching function can be used in an Inner Convexification
or an Outer Convexification setting. By using

g(v) =
nμ∑

j=1

σj (v(s))(iT(j), ηT(j))T

analogously to (10), the IC formulations (11) and (12) can be used. Substituting yj by
σj (v(s)) in (13), (14) provides OC formulations.

5 Dynamic Programming

All approaches described so far relied on the ability to compute a local minimum of a nonlin-
ear program (NLP). In the course of our later assessment of the merits of these approaches,
we are also interested in the quality of the local solutions obtained, i.e., in their distance from
global optimality. A well-known path to (approximately) solving optimal control problems
to global optimality is dynamic programming, see [6, 7, 9, 10], and [13].

5.1 Dynamic Programming

Dynamic programming computes optimal control trajectories by enumerating all possible
control values. Hence, it relies on a discretized approximation of the control space, but
cannot get stuck in local optima. Like all enumerative schemes, it suffers from the curse of
dimensionality and may require excessive computational effort for larger instances. With
some exceptions, e.g. [30], dynamic programming is seldom used for real-time optimization
purposes, but has significant merit as a means of obtaining a reference value for comparison.
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5.2 Bellman’s Principle of Optimality for MIOCP

DP is based on Bellman’s principle of optimality, c.f. [7], stating that “An optimal policy has
the property that whatever the initial state and initial decision are, the remaining decisions
must constitute an optimal policy with regard to the state resulting from the first decision.”
To describe this principle with formulas, we define the cost-to-go function for a MIOCP:

Definition 8 (Cost-to-go) The optimal cost-to-go function J : [0, tf] × R
nx → R for the

MIOCP of Definition 1, a starting time t̄ ∈ [0, tf], and an initial value x̄ ∈ R
nx reads

J (t̄, x̄) := min
x(·),u(·) e(x(tf))

s.t.
⊕

1≤i≤nω

⎡

⎣
Yi(t)

ẋ(t) = f (x(t),u(t), vi )

0 ≤ c(x(t),u(t), vi )

⎤

⎦ , t ∈ [t̄ , tf] a.e.,

0 ≤ d(x(t),u(t)), t ∈ [t̄ , tf] a.e.,
x(t̄) = x̄,

Bellman’s principle of optimality implies that, for the time discretization grid 0 = t0 <

t1 < · · · < tN = tf, we have the following recurrence relation for the cost-to-go function:

J (tk, xk) = J (tk+1, xk+1) + min
x(·),u(·) �(tk+1; tk, xk,u(·)),

where the evaluation of the contribution �(tk+1) on [tk, tk+1] for a given initial value xk

and control trajectories u(·), v(·) requires solving the boundary-value problem

ẋ(t) = f (x(t),u(t), v(t)), t ∈ [tk, tk+1] a.e.,
0 ≤ c(x(t), u(t), v(t)),

0 ≤ d(x(t),u(t)), t ∈ [tk, tk+1] a.e.,
x(tk) = xk,

x(tk+1) = xk+1.

Furthermore, J (tN , xN ) = e(xN) provides a starting point and minimizing the function
J (t0, x0) over all admissible values for x0 yields the optimal objective function value and
the solution of problem (1).

5.3 Dynamic Programming Algorithm for MIOCP

The main idea of dynamic programming is to compute all values J (tk, xk) in a backward
loop k = N,N − 1, . . . , 0 that determines the resulting states xk and optimal controls u(·)
on t ∈ [tk, tk+1]. To this end, we introduce appropriately chosen discrete subsets XD ⊂ X,
UD ⊂ U of the bounded admissible state space X ⊂ R

nx and control space U ⊂ R
nu ,

XD := {x1, . . . , xNx}, UD := {u1, . . . , uNu},

let u(t) := uk on t ∈ [tk, tk+1], and examine the sets XD, UD and � by exhaustive search
as follows:
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A fixed initial value and/or small admissible state or control domains accelerate the algo-
rithm. It is easy to see that Algorithm 1 has a runtime complexity of O(N ·Nx ·Nu ·nω) and
a storage requirement of O(N · Nx) memory locations. For a uniform discretization granu-
larity  of X ⊂ R

nx , we observe Nx ∈ O(nx), and the same is true for the control spaces.
Hence, both computational effort and memory requirements grow exponentially with the
number of states nx and the numbers of continuous controls nu. This observation is often
referred to as curse of dimensionality. The discrete choices, however, are easily included in
the enumeration scheme. For more details on dynamic programming, we refer the reader to
Bellman [6, 7] and, e.g., Bertsekas [9, 10].

To accelerate the algorithm, it is possible to terminate the for-loop(s) early if the solu-
tion clearly becomes infeasible. For example, the ODE system need not be solved if the
particular new gear choice is found to violate the engine speed constraint (6) for the given
current velocity. Furthermore, monotonicity properties may be used, i.e., if a given value of
the engine torque is found to result in a new velocity in violation of the upper bound, even
larger values of the engine torque need not be examined. On top of this, results of the ODE
solver are stored in look-up tables to avoid repeating multiple identical computations. For
more details on the efficient implementation we used, see Buchner [12].

6 Numerical Results and Comparison

6.1 Scenarios, Initial Values, and Parameter Values

All problem parameters and initial values, such as the number of gears nμ = 16 or
v0 = vdes = 22.2m

s , can be found on the web page mintoc.de, a benchmark library for
MIOCPs [56]. We consider two scenarios, for which the numerical data can also be found
on mintoc.de.

Scenario 1 is characterized by a linear slope on the first half of the horizon, and a general
speed limit of 27.8m

s ≈ 100km
h , cf. the left-hand part of Fig. 3. The weights for the objective

are set to λd = 1.0, λf = 25.0, and λc = 1.0, i.e., we primarily minimize fuel consumption.
In Scenario 2 the truck has to transit a valley. The speed on the way down is limited to
22.2m

s ≈ 80km
h as can be seen on the right-hand side of Fig. 3. For this scenario, we set

λd = 100.0, λf = 10.0, i.e., the main aspect is to minimize the deviation of velocity from
the desired one. The considered horizons have a length of 1000m in both scenarios, which
was shown to be a good prediction horizon in a moving horizon context, [12].
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Fig. 3 Track elevations and velocity limits of the considered scenarios

6.2 Implementation Details

To make the numerical results as comparable as possible, we use an identical discretiza-
tion throughout. All optimal control problems are discretized on the same grids, using 40
equidistant intervals for the piecewise constant controls (i.e., 25m) and 400 equidistant inter-
vals for the states. The dynamics are discretized using an implicit Euler method. Due to
the different algorithmic approaches a comparison of solutions has to consider numerical
errors, compare Fig. 4.

All results in this article were computed on a single core of a x64-based Intel(R)
Xeon(TM) E5-2640 v3 CPU with 2.60GHz and 32GB memory. For the solution of the
direct collocation problems of all explicit and implicit formulations, we used IPOPT 3.12.4
[69] with standard solver options, invoked from 64-bit AMPL [20] version 20171002. The
Dynamic Programming solution was obtained from a C++ implementation of Algorithm 1.

6.3 Comparison of Solutions

For the assessment of solutions, we use the indicators fractionality and feasibility that mea-
sure the violation of the integrality constraints yj ∈ {0, 1} and of the gear-dependent model
constraints (6) and (7a).

Definition 9 (Fractionality of solutions) The fractionality of piecewise constant control
functions yj : [0, sf] �→ [0, 1] on a grid 0 = s0 < · · · < sN = sf is given by the value

1

N

N−1∑

i=0

nμ∑

j=1

(0.5 − |yj (si) − 0.5|).

Fig. 4 Impact of rounding to state discretization grid in Dynamic Programming. Shown are the deviations
of a forward simulation from the rounded values using v = 0.05m

s for Scenario 1 and
Scenario 2 . This error makes an accurate comparison difficult
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Definition 10 (Infeasibility of solutions) The infeasibility of states v and piecewise constant
controls Mind, y on a grid 0 = s0 < · · · < sN = sf is given by the value

1

3(N + 1)nμ

N∑

i=0

nμ∑

j=1

3∑

k=1

max{0, yj (si)δ
k
j (si)}

with the residuals of the indicator constraints

δ1j (si) = Mind(si) − Mmax
ind (v(si), iT(j)),

δ2j (si) = nmin
eng − neng(v(si), iT(j)),

δ3j (si) = neng(v(si), iT(j)) − nmax
eng .

Definition 11 (Relaxed solutions) For explicit approaches of Section 3, we call the solution
of a control problem relaxed, if the constraints yj (s) ∈ {0, 1} have been relaxed to yj (s) ∈
[0, 1] for all j ∈ {1, . . . , nμ} and all s ∈ [0, sf]. For implicit approaches of Section 4
relaxation refers to the use of the smoothed switching functions σj (v) ∈ [0, 1]. Typically,
relaxed solutions have fractionality and infeasibility larger zero.

Definition 12 (Integer solutions) We call a solution integer solution, if a relaxed solution
is rounded by setting the largest of all nμ entries of either y(s) or σ (s) to 1, all others to
0. The continuous controls and states are optimized in a second optimization run to obtain
feasibility with respect to all constraints in (10). For the implicit approach, the additional
constraints

nμ∑

j=1

σj (s)v̄j ≤ v(s) ≤
nμ∑

j=1

σj (s)v̄j+1

are included. If integer solutions are feasible, they have a fractionality and infeasibility of
zero.

Note that different strategies to obtain integer solutions from relaxed solutions for
MIOCPs have been proposed in the literature, such as combinatorial integral approximation
[34, 59]. We do not apply and compare these strategies here to focus on the main aspect, the
tightness of relaxations. We shortly summarize all formulations for the truck problem (10)
that are compared in Table 1.

IC Inner Convexification as described in Section 3.1 has differential states v, Q and con-
trols Mind, Mind, y. The dynamics are specified by (11), the indicator constraints are
given by (12).

OC Outer Convexification (Section 3.2) is identical to IC, but with dynamics (13) and
indicator constraints (14).

bigM The Big-M approach (Section 3.3) is identical to OC, but with indicator constraints
(14).

relVC The relaxed Vanishing Constraint approach (Section 3.4) is identical to OC, but
with indicator constraints (16) that are relaxed by ε. The value of ε is reduced by a
homotopy from 105 to 10−4 in multiplicative steps of 0.6, using solutions as initialization
for the next problem. For details on the homotopy, see [33].

smoVC The smoothed Vanishing Constraint approach (Section 3.5) is identical to relVC
(also with a similar homotopy), but with indicator constraints (16) that are ε-smoothened
using an NCP function.
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PFL, PPL, PML The Perspective approaches (Sections 3.6, 3.7, and 3.8) are obtained by
lifting the Outer Convexification formulation and, for PPL and PML, by subsequent
aggregation.

Implicit Approaches All implicit approaches (Section 4) use an OC formulation of the
dynamics and of the constraints, substituting yj by σj (v(s)) in (13) and (14). They differ
in the choice of the switching velocity sets V̄Mindmax, V̄ave, V̄Q, V̄plus, V̄pp, and V̄ppp.

Dynamic Programming Five different discretizations v of the state v and M of the
engine torque M were applied for an enumeration of the admissible state space X ⊂ R

nx

and control space U ⊂ R
nu (Section 5).

Further combinations like using OC dynamics (13) and IC constraints (12), or using
implicit approaches based on IC dynamics and constraints are possible. They are not
promising, though, as Fig. 5 shows for the case of implicit switching.

6.4 Discussion

The numerical results for the different approaches and the two scenarios are shown in
Table 1 and Figs. 6, 7, 8, and 9. The figures show relaxed gear choices using grey intensities,
overlayed with the resulting velocity profiles.

Concerning computational times, IC, OC, and bigM are close to being real-time feasible
with a CPU times on the order of a few seconds. The other explicit approaches and implicit
approaches show CPU times around one minute. The perspective formulation PFL could
not be brought to convergence for both Scenarios evaluated. A possible explanation for this
adverse behavior of the nonlinear optimization method may be found in the ill-posedness of
the perspective of a nonlinear nonconvex function near the points y = 0, which appears to
persist even after smoothing. Aggregation of variables helps to ameliorate the situation, as
is seen in Scenario 2 where both aggregated variants PPL and PML converge after several
minutes. Expectedly, the runtimes of Dynamic Programming increase exponentially due to
the curse of dimensionality.

Looking at the relaxed solutions, bigM and IC result in small objective function val-
ues at the price of high values for fractionality and infeasibility. Looking at the relaxed
gear choices in Figs. 6 and 8, one observes the unphysical combination of low and high
gears which result in very poor performance when rounding. This is due to large devia-
tions between relaxed and rounded velocity (compare Figs. 6 and 8). This situation is much
improved for OC, where both velocities are similar. This result is also expected from the
supporting approximation theorem, c.f. [57].

Slightly higher objective function values for the relaxed problems in smoVC and relVC
are justified by very small fractionality and numerically zero infeasibility. The obtained

Fig. 5 Mmax
ind as a function of velocity with exact switching , IC-like switching and OC-like

switching , using V̄Mindmax. IC leads to undesirable spikes
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Fig. 6 Velocities and gear choices for scenario 1 and explicit approaches
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Fig. 7 Velocities and gear choices for scenario 1 and implicit and two DP approaches

solutions come at the expense of slightly increased runtime due to the homotopy approach
for smoothing-relaxation. Most importantly, they can be rounded to integer feasible solu-
tions with an almost identical function value. These solution approaches are ranked best
among the explicit ones for both Scenarios.
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Fig. 8 Velocities and gear choices for scenario 2 and explicit approaches

For the implicit approaches, rounded solutions are similar to the relaxed ones. Concern-
ing performance, however, a more diffuse picture emerges. For scenario 1, two approaches
lead to convergence to infeasible points, and none of the objective function values is
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Fig. 9 Velocities and gear choices for scenario 2 and implicit and two DP approaches



1048 M.N. Jung et al.

competetive. For scenario 2, however, the four lowest objective function values result from
implicit approaches. The relaxed solutions are slightly infeasible (infeas. ≈ 2.5), though.

The solution quality of Dynamic Programming results strongly depends on the under-
lying discretization grid. The enumerative nature of the subproblems and the curse of
dimensionality impair using discretizations that are fine enough to compete with the local
optimization approaches. In addition, as shown in Fig. 4, the solutions come with an
additional mismatch when exact forward simulation is used.

7 Conclusion

An explicit approach using outer convexification for the dynamics and a good way to treat
the vanishing constraints outperformed implicit formulations and dynamic programming
concerning computational time, performance, and robustness of solution quality. Better
algorithms to numerically solve optimization problems with vanishing constraints need to
be developed to reliably harness these advantages also in larger scale applications.
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