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Abstract
The minimization of operation costs for natural gas transport networks is studied. Based on
a recently developed model hierarchy ranging from detailed models of instationary partial
differential equations with temperature dependence to highly simplified algebraic equations,
modeling and discretization error estimates are presented to control the overall error in an
optimization method for stationary and isothermal gas flows. The error control is realized
by switching to more detailed models or finer discretizations if necessary to guarantee that
a prescribed model and discretization error tolerance is satisfied in the end. We prove con-
vergence of the adaptively controlled optimization method and illustrate the new approach
with numerical examples.

Keywords Gas transport optimization · Isothermal stationary Euler equations ·
Model hierarchy · Adaptive error control · Marking strategy
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1 Introduction

In this paper, we discuss the minimization of operation costs for natural gas transport net-
works based on a model hierarchy (see [11, 21]), which ranges from detailed models based
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on instationary partial differential equations with temperature dependence to highly simpli-
fied algebraic equations. The detailed models are necessary to achieve a good understanding
of the system state, but in many practical optimization applications, only the stationary alge-
braic equations—or even further simplifications like piecewise linearizations as in [15, 16,
32]—are used in order to reduce the high computational effort of evaluating the state of the
system with the more sophisticated models. However, it is then unclear how good the true
state is approximated by these simplified models and error bounds are typically not avail-
able in this context (see the chapter [22] in [23] for a more detailed discussion of this issue).
Recently, in [37], a detailed error and perturbation analysis has been developed for several
components in the model hierarchy and it has been shown how the more detailed model
components can be used to estimate the error obtained in the simplified models.

Here, we use these error estimates from the model hierarchy together with classical
error estimate grid adaptation techniques for the space discretization within an optimiza-
tion method to control the error adaptively by switching to more detailed models or finer
discretizations if necessary. Moreover, our adaptive method also allows to locally switch
back to coarser models or to coarser discretizations if they are sufficiently accurate with
respect to the local flow situation. Our new approach can, in general, be used for the entire
model hierarchy by also using space-time grid adaptation. However, to keep things simple
and to illustrate the functionality of the new adaptive approach, we will use three stationary
isothermal models from the hierarchy in [11].

Using adaptive techniques to achieve a trade-off between computational efficiency and
accuracy by using adaptive discretization methods in the context of optimization and opti-
mal control problems is an important research topic, in particular in the context of real-time
optimal control of constrained dynamical systems (see, e.g., [3, 8, 9, 29]), or in the context
of optimal control of problems constrained by partial differential equations (see, e.g., [1,
24–26]). We extend these ideas and combine adaptive grid refinement and model selection
in a model hierarchy in the context of nonlinear optimization problems. We also theore-
tically analyze the new algorithm. First promising numerical results for such an approach
were presented in [34, 35].

The paper is structured as follows. The models used in this paper are described in
Section 2 together with a simple first-order Euler method for the space discretization.
In Section 3, we introduce model and discretization error estimators, which are used in
Section 4 to derive an adaptive model and discretization control algorithm for the nonlin-
ear optimization of gas transport networks that, in the end, delivers solutions that satisfy
prescribed error tolerances. Numerical results are presented in Section 5 and the paper
concludes in Section 6.

2 ProblemDescription, Modeling Hierarchy, and Discretizations

In this section, we introduce the problem of operation cost minimization for natural gas
transport networks. We present our overall model of a gas transport network involving
continuous nonlinear models describing a stationary flow for all the considered network
elements. Since the majority of the elements are pipes, our focus lies on the precise and
physically accurate modeling of these pipes. The typical models for the pipe flow are non-
linear instationary partial differential equations (PDEs) on a graph and their appropriate
space-time discretizations. To address the fact that the behavior of the flow and the accuracy
of the model may vary significantly in different regions of the network, we discuss a small
part of the complete model hierarchy of instationary models (see [11]), where the lower level
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models in the hierarchy are simplifications of the higher level models. Which model is most
appropriate to obtain a computationally tractable, adequately accurate, and finite-dimensional
approximation depends on the task that needs to be performed with the model.

Our modeling approach is based on the following physical assumptions. First, we only
consider a stationary gas flow, i.e., we neglect all time effects of gas dynamics, so that we
have ordinary differential equations (ODEs) in space instead of systems of PDEs on a graph.
Second, we assume an isothermal regime, i.e., we neglect all effects arising from changes
in the gas temperature.

These assumptions are taken carefully such that we still obtain physically meaning-
ful solutions and such that we are still able to derive and analyze an adaptive model and
discretization control algorithm—without unnecessarily overloading the models with all
technical details of the application that may distract us from the main mathematical ideas.

2.1 The Network

We model the gas transport network by a directed and connected graph G = (V ,A). The
node set is made up of entry nodes V+, where gas is supplied, of exit nodes V−, where gas
is discharged, and of inner nodes V0, i.e., we have V = V+ ∪V− ∪V0. The set of arcs in our
models comprises pipes Api and compressor machines Acm, i.e., we have A = Api ∪ Acm.

Real-world gas transport networks contain many other element types like (control) valves,
short cuts, or resistors. For detailed information on modeling these devices, see [14] in general
or [34, 35] for a focus on nonlinear programming (NLP) type models. However, we restrict
ourselves to models with pipes and compressors in order to streamline the presentation of
our basic ideas and methods, and to show in a prototypical way that our approach of space
discretization and model adaptivity leads to major accuracy and efficiency improvements.

As basic quantities we introduce gas pressure variables pu at all nodes u ∈ V and mass
flow variables qa at all arcs a ∈ A of the network. Both types of variables are bounded due
to technical constraints on the pipes, i.e.,

pu ∈ [pu, pu] for all u ∈ V, (1a)

qa ∈ [qa, qa] for all a ∈ A. (1b)

All other required quantities are introduced where they are used first.

2.2 Nodes

In stationary gas network models, the nodes u ∈ V are modeled by a mass balance equation,
i.e., we have the constraint

∑

a∈δin(u)

qa −
∑

a∈δout(u)

qa = qu for all u ∈ V, (2)

where for ingoing arcs we use the notation

δin(u) := {a ∈ A : there exists w ∈ V and a = (w, u)}
and for outgoing arcs

δout(u) := {a ∈ A : there exists w ∈ V and a = (u,w)}.
Moreover, qu models the supplied or discharged mass flow at the corresponding node, i.e.,
we have

qu

⎧
⎨

⎩

≥ 0 for all u ∈ V−,

≤ 0 for all u ∈ V+,

= 0 for all u ∈ V0.
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2.3 Pipes

Isothermal gas flow through cylindrical pipes is described by the Euler equations for
compressible fluids,

∂ρ

∂t
+ 1

A

∂q

∂x
= 0, (3a)

1

A

∂q

∂t
+ ∂p

∂x
+ 1

A

∂(qv)

∂x
= −λ(q)

|v|v
2D

ρ − gρh′, (3b)

see, e.g., [13, 27] for a detailed discussion. Here and in what follows, ρ is the gas density,
v is its velocity, λ = λ(q) is the friction term, A denotes the cross-sectional area of the
pipe, h′ is its slope, and D is the diameter of the pipe. Furthermore, g is the acceleration
due to gravity, t is the temporal coordinate, and x ∈ [0, L] is the spatial coordinate with
L being the length of the pipe. Equation (3a) is called the continuity equation and (3b) the
momentum equation. Since we only consider the stationary case, all partial derivatives with
respect to time vanish and we obtain the simplified stationary model

1

A

∂q

∂x
= 0, (4a)

∂p

∂x
+ 1

A

∂(qv)

∂x
= −λ(q)

|v|v
2D

ρ − gρh′. (4b)

Thus, the continuity equation in its stationary variant simply states that the mass flow along
the pipe is constant, i.e., q(x) ≡ q = const for all x ∈ [0, L].

To simplify the stationary momentum equation (4b), we consider two more model
equations. First, the equation of state

p = ρc2 with c = √
RsT z,

where c is the speed of sound, Rs is the specific gas constant, and z is the compressibility
factor. The second model is the relation of gas mass flow, density, and velocity given by

q = Aρv.

Substituting both these models into (4b), we obtain

∂p

∂x

(
1 − q2

A2

c2

p2

)
= − λc2

2A2Dp
|q|q − gh′

c2
p, (M1)

i.e., the stationary momentum equation written in dependence of the gas pressure p = p(x),
x ∈ [0, L], and the mass flow q.

A simplified version of the latter equation can be obtained by ignoring the ram pressure
term

1

A

∂(qv)

∂x
,

in (4b), i.e., the total pressure exerted on the gas by the pipe wall, or, equivalently, the term

− q2

A2

c2

p2

∂p

∂x
(5)

in (M1). For a discussion of this simplification step, see [38]. Neglecting the ram pressure
term (5) yields

∂p

∂x
= − λc2

2A2Dp
|q|q − gh′

c2
p. (M2)
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Fig. 1 Pipe model hierarchy based on the Euler equations. The space continuous models are positioned in
the left column and their space-discretized counterparts are positioned in the right column

Finally, one may also neglect gravitational forces, i.e., set the term gh′p/c2 to 0 and obtain

∂p

∂x
= − λc2

2A2Dp
|q|q. (M3)

Analytical solutions for the models (M1)–(M3) are only rarely known (see, e.g., [18,
19, 34]). Thus, in order to obtain finite-dimensional nonlinear optimization models, we
discretize these differential equations in space. Applying, e.g., the implicit Euler method,
we obtain

pk − pk−1

h

(
1 − q2

A2

c2

p2
k

)
= − λc2

2A2Dpk

|q|q − gh′

c2
pk, k = 1, . . . , n, (D1)

pk − pk−1

h
= − λc2

2A2Dpk

|q|q − gh′

c2
pk, k = 1, . . . , n, (D2)

pk − pk−1

h
= − λc2

2A2Dpk

|q|q, k = 1, . . . , n, (D3)

where pk = p(xk) and � = {x0, x1, . . . , xn} is an equidistant spatial discretization of the
pipe with constant stepsize h = xk − xk−1 and x0 = 0, xn = L. Of course, one could also
apply a higher-order Runge–Kutta method, which would allow a larger stepsize and would
thus reduce the computational cost.

These discretizations extend the model hierarchy (M1)–(M3) for the Euler equations by
infinitely many models that are parameterized by the discretization stepsize h applied in
(D1)–(D3). In summary, we obtain the pipe model hierarchy of stationary Euler equations
depicted in Fig. 1.

2.4 Compressors

Compressor machines a = (u,w) ∈ Acm increase the inflow gas pressure to a higher
outflow pressure, i.e., they can be described in a simplified way by

pw = pu + Δa, Δa ∈ [0, Δ̄a] for all a ∈ Acm. (6)
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Moreover, for simplicity, we assume that we are given cost coefficients ωa ≥ 0 for every
compressor a ∈ Acm that converts pressure increase to compression cost. Of course, this is
an extremely coarse approximation of a compressor machine. An alternative would be to use
a simple input-output surrogate model obtained from a realization or system identification
of an input-output transfer function (see, e.g., [5]). However, our focus is on an accurate
modeling of the gas flow in pipes and on deriving an adaptive model and discretization
control algorithm. Model (6) allows for setting up a reasonable objective function for our
NLPs and is thus appropriate in this work. For more details, see [31, 34, 35] or [14].

2.4.1 The Optimization Problem

We will use the adaptive model and discretization control algorithm in the context of the
following nonlinear ODE-constrained optimization problem

min
∑

a∈Acm

ωaΔa (7a)

s.t. variable bounds (1), (7b)

mass balance (2), (7c)

compressor model (6) for all a ∈ Acm, (7d)

pipe model (M1) for all a ∈ Api, (7e)

where our objective function models the cost for the compressor activity that is constrained
by an infinite-dimensional description of the gas flow in pipes. Problem (7) is a classical
nonlinear optimal control problem. A typical approach to solve such problems in practice
is the first-discretize-then-optimize paradigm (see, e.g., [2]). In this setting, one replaces
the ODE constraints by finite sets of nonlinear constraints that arise, e.g., from implicit
Euler discretizations like (D1) for (M1). Moreover, practical experience suggests that for
the evaluation of the constraints, it is often not required to apply the most accurate model
like (D1) with a small stepsize for every pipe in the network. Instead, in many situations,
it is sufficient to use simplified models like (D2) and (D3) with a coarse grid, which then
typically yields fast execution times for the evaluation of the constraint functions.

To this end, we define discretized problem variants of Problem (7) by specifying the
model level 	a ∈ {1, 2, 3} for every arc a ∈ Api (i.e., the discretized model (D1), (D2), or
(D3), respectively) together with a stepsize ha . This yields the family of finite-dimensional
NLPs

min
∑

a∈Acm

ωaΔa (8a)

s.t. variable bounds (1), (8b)

mass balance (2), (8c)

compressor model (6) for all a ∈ Acm, (8d)

pipe model (D	a ) with stepsize ha for all a ∈ Api. (8e)

Note that the constraints (7b)–(7d) in the infinite-dimensional problem are exactly the
same as constraints (8b)–(8d) in the family of discretized problems.
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3 Error Estimators

In this section, we introduce a first-order estimate for the error between the most detailed
infinite-dimensional and an arbitrary space-discretized model. This error estimator is
obtained as the sum of a discretization and a model error estimator. Since we consider the
stationary case, mass flows in pipes are constant in the spatial dimension. This is why we
base our error estimators on the differences of the pressures p(x) for different models and
discretizations.

Suppose that for a given pipe a ∈ Api, the model level 	a ∈ {1, 2, 3} with discretization
stepsize ha is currently used for the computations. The overall solution of the optimization
problem for the entire network, also including pressure increases in compressors etc., is
denoted by y and contains the discretized pressure distributions of the separate pipes a ∈
Api, which we denote by p	a (xk; ha) with discretization grid �1 = {xk}La/ha

k=0 obtained by
using the stepsize ha . We now compute an estimate for the error between the solution of the
currently used model (D	a ) and the solution of the reference model (M1). Let the solution
of model (M1) for pipe a ∈ Api be denoted by p̂(x) with x ∈ [0, La].

Furthermore, let the solutions of Model (D1) with discretization grids �2 = {xs}La/(2ha)

s=0

and �3 = {xr }La/(4ha)

r=0 using stepsizes 2ha and 4ha , be denoted by p1(xs; 2ha) and
p1(xr ; 4ha), respectively. Due to the larger stepsize, the computation of these two solutions
is in general less expensive than computing a solution of Model (D	a ) on the grid �1. Since
the discretization grid �3 is the coarsest grid and all computed pressure profiles can be eval-
uated on this grid, �3 is called the evaluation grid. This grid is used in the definitions of the
following error estimators. The considered discretization grids and the evaluation grid are
depicted in Fig. 2.

For a pipe a ∈ Api, let the discretization error estimator be defined by

ηd,a(y) := ‖p1(xr ; 2ha) − p1(xr ; 4ha)‖∞ (9)

and let the model error estimator be defined by

ηm,a(y) := ‖p1(xr ; 2ha) − p	a (xr ;ha)‖∞. (10)

Here,

p	a (xr ; ha) = [p	a (x0; ha), . . . , p
	a (xn;ha)]
, n = La/(4ha),

denotes the solution of Model (D	a ) computed with stepsize ha that is evaluated at the grid-
points xr , i.e., on the grid �3. If 	a = 1, i.e., if the considered solution already corresponds

Fig. 2 Overview of the three considered discretization grids �1, �2, and �3 with gridpoints xk , xs , and xr

and stepsizes ha , 2ha , and 4ha , respectively. The vertical lines represent the evaluation grid �3 for the error
estimators in (9) and (10)
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to the most accurate model, then we set the model error to zero, i.e., ηm,a(y) = 0. Further-
more, let the overall error estimator ηa(y) for a pipe a ∈ Api be defined to be a first-order
upper bound for the maximum error between the solutions of models (M1) and (D	a ) at
gridpoints xr with stepsize 4ha . Thus, we have

‖p̂(xr ) − p	a (xr ; ha)‖∞
≤ ‖p̂(xr ) − p1(xr ; 2ha)‖∞ + ‖p1(xr ; 2ha) − p	a (xr ; ha)‖∞ (11)
.= ηd,a(y) + ηm,a(y) =: ηa(y),

where
.= denotes a first-order approximation in ha (see [36, p. 420]), and we use that the

implicit Euler method has convergence order 1. The error estimator ηa(y) is the absolute
counterpart of the componentwise relative error estimator given in [37]. An overview of the
considered models in this section together with the considered stepsizes is depicted in Fig. 3.

We close this section with a remark on the computation of the discretization error esti-
mator in (9). A straightforward way is to solve Model (D1) once with stepsize 2ha and once
again with stepsize 4ha for every a ∈ Api. Another possibility would be to use an embed-
ded Runge–Kutta method (see, e.g., [20]), which in general saves computational cost due to
the reduced number of function evaluations.

4 The Grid andModel Adaptation Algorithm

In this section, we present and analyze an algorithm that adaptively switches between the
model levels in the hierarchy of Fig. 1 and adapts discretization stepsizes in order to find
a convenient trade-off between physical accuracy and computational costs. To this end, the
algorithm iteratively solves NLPs and initial value problems (IVPs). Solutions of the latter
are used to evaluate the error estimators discussed in the last section and to decide on the
model levels and the discretization stepsizes for the next NLP.

Consider a single NLP of the sequence of NLPs that are solved during the algorithm and
assume that pipe a ∈ Api is modeled using model (D	a ) and stepsize ha . Let the solution of
this NLP be denoted by y. According to the last section, the overall model and discretiza-
tion error estimator for this pipe is given by ηa(y) as defined in (11). Thus, it is given by
the error estimator between the solutions of the most accurate model (M1) and the current
model (D	a ).

Fig. 3 Overview of the models and stepsizes used for the computation of the overall error estimator ηa(y)

between models (M1) and (D	a ) in (11). Here, for a pipe a, ηd,a(y) is the discretization error estimator and
ηm,a(y) is the model error estimator
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The overall goal of our method is to compute a solution of a member of the family
of discretized problems (8) for which it is guaranteed that this solution has an estimated
average error per pipe with respect to the reference model (M1), that is less than an a-priorily
given tolerance ε > 0. This leads us to the following definition:

Definition 1 (ε-feasibility) Let ε > 0 be given. We say that a solution y of problem (8) with
discretized models (D	a ), 	a ∈ {1, 2, 3}, and stepsizes ha for the pipes a ∈ Api is ε-feasible
with respect to the reference problem (7) if

1

|Api|
∑

a∈Api

ηa(y) ≤ ε.

The remainder of this section is organized as follows. Section 4.1 introduces rules about
how the model levels and discretization stepsizes are modified. The strategies for marking
pipes for model or grid adaptation are explained in Section 4.2. The adaptive model and
discretization control algorithm are introduced in Section 4.3, together with a theorem for
the finite termination of the algorithm. Finally, some remarks regarding the adaptive control
algorithm are given in Section 4.4.

4.1 Model and Discretization Adaptation Rules

Before we present and discuss the overall adaptive model control algorithm, we have to

1. describe the mechanisms of switching up or down pipe model levels as well as that of
refining and coarsening the discretization grids, and

2. discuss our marking strategy that determines the arcs on which the model or grid should
be adapted.

We start with the first issue and follow the standard PDE grid adaptation technique (see,
e.g., [6, 7, 12] or [4]). The general strategy is as follows. We switch up one level in the
model hierarchy if this yields an error reduction that is larger than ε; otherwise, we switch
up to the most accurate discretized model (D1). Hence, for pipe a ∈ Api, we have the rule

	newa =
{

	a − 1 if ηm,a(y; 	a) − ηm,a(y; 	a − 1) > ε,

1 otherwise,
(12)

for switching up levels in the model hierarchy. We apply this rule because it is possible
that the effects of neglecting the ram pressure term (which is the difference between model
levels 	 = 1 and 	 = 2) and neglecting gravitational forces for non-horizontal pipes (which
is the difference between model levels 	 = 2 and 	 = 3) balance each other out in the
computation of the pressure profile of model (D3). In this case, switching from model (D3)
to (D2) would increase the model error, which is why we switch from (D3) to (D1) directly.

A discretization grid refinement or coarsening with a factor γ > 1 is defined by taking
the new stepsize as

hnewa :=
{

ha/γ for a grid refinement,
γ ha for a grid coarsening.

(13)

For a discretization scheme of order β, it is well-known that a first-order approximation
for the discretization error in x ∈ [0, La] is given by ed,a(x)

.= c(x)h
β
a , where c(x) is
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independent of ha (see, e.g., [36]). From this, it follows that the new discretization error
after a grid refinement or coarsening can be written as

enewd,a (x)
.= (hnewa /ha)

βed,a(x).

Since the implicit Euler method has convergence order β = 1, with hnewa in (13) and γ = 2,
for the new discretization error estimator after a grid refinement or coarsening, it holds that

ηnewd,a (y)
.=

{
ηd,a(y)/2 for a grid refinement,
2ηd,a(y) for a grid coarsening.

(14)

4.2 Marking Strategies

We now describe our marking strategies, i.e., how we choose which pipes should be
switched up or down in their model level and which pipes should get a refined or coarsened
grid. Given marking strategy parameters �d,�m ∈ [0, 1], we compute subsetsR,U ⊆ Api
such that they are the minimal subsets of arcs that satisfy

�d

∑

a∈Api

ηd,a(y) ≤
∑

a∈R
ηd,a(y) (15)

and

�m

∑

a∈A>ε
pi

(
ηm,a(y; 	a) − ηm,a(y; 	newa )

) ≤
∑

a∈U

(
ηm,a(y; 	a) − ηm,a(y; 	newa )

)
(16)

with
A>ε
pi := {a ∈ Api : ηm,a(y; 	a) − ηm,a(y; 	newa ) > ε},

where 	newa is given in (12). Analogously, given marking strategy parameters�d, �m ∈ [0, 1]
and τ ≥ 1, we compute C,D ⊆ Api such that they are the maximal subsets of arcs that
satisfy

�d

∑

a∈Api

ηd,a(y) ≥
∑

a∈C
ηd,a(y) (17)

and

�m

∑

a∈A<ε
pi (τ )

(
ηm,a(y; 	newa ) − ηm,a(y; 	a)

) ≥
∑

a∈D

(
ηm,a(y; 	newa ) − ηm,a(y; 	a)

)
(18)

with
A<ε
pi (τ ) := {a ∈ Api : ηm,a(	

new
a ) − ηm,a(	a) ≤ τε}.

In (18), 	newa is always set to min{	a + 1, 3}. For every arc a ∈ R (a ∈ C), we refine
(coarsen) the discretization grid by halving (doubling) the stepsize, i.e., we set γ = 2
in (13). We note that these marking strategies are very similar to the greedy strategies on a
network described in [10], where those pipes are marked for a spatial, temporal, or model
refinement which yield the largest error reduction.

4.3 The Algorithm

With these preliminaries, we can now state the overall adaptive model and discretization
control algorithm for finding an ε-feasible solution of the reference problem (7). The formal
listing is given in Algorithm 1.
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The algorithm makes use of the safeguard parameter μ ∈ N. This parameter ensures
that the algorithm performs grid coarsenings and switches down the model level only after
applying μ rounds of grid refinements and switching up model levels. It prevents an alter-
nating switching up and down model levels or an alternating refining and coarsening of the
discretization grid. We note that this technique is similar to the use of hysteresis parameters
(see, e.g., [28]). By employing this safeguard, we can prove that Algorithm 1 terminates
after a finite number of iterations with an ε-feasible point of the reference model (M1).

To improve readability, we split the proof of our main theorem into two parts. The first
lemma states finite termination at an ε-feasible point if only discretization grid refinements
and coarsenings are applied, whereas the second lemma considers the case of switching
levels in the model hierarchy only, i.e., with a fixed stepsize for every pipe.

Lemma 1 Suppose that the model level 	a ∈ {1, 2, 3} is fixed for every pipe a ∈ Api. Let
the resulting set of model levels be denoted by M. Suppose further that ηa(y) = ηd,a(y)

holds in (11) and that every NLP is solved to local optimality. Consider Algorithm 1 without
applying the model switching steps in Lines 10 and 17. Then, the algorithm terminates after
a finite number of refinements in Line 11 and coarsenings in Line 18 with an ε-feasible
solution with respect to model level setM if there exists a constant C > 0 such that

1

2
�k

dμ
k > �k

d + C (19)

holds for all k.
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Proof We consider the total discretization error

ηd(y) =
∑

a∈Api

ηd,a(y)

and show that for every iteration k the difference between the decrease obtained in the inner
for-loop and the increase obtained due to the coarsenings applied in Line 18 is positive and
uniformly bounded away from zero. In what follows, we only consider a single iteration and
drop its index k for better readability.

First, we consider one refinement step in Line 11. Let η
j−1
d,a denote the discretization

error before the j th inner iteration and let η
j

d,a denote the discretization error after the j th
inner iteration. With this, we have

∑

a∈Api

η
j−1
d,a −

∑

a∈Api

η
j

d,a

=
∑

a∈Rj

η
j−1
d,a +

∑

a∈Api\Rj

η
j−1
d,a −

∑

a∈Rj

η
j

d,a −
∑

a∈Api\Rj

η
j

d,a

=
∑

a∈Rj

η
j−1
d,a −

∑

a∈Rj

η
j

d,a

=
∑

a∈Rj

1

2
η

j−1
d,a

for every j = 1, . . . , μ. For the last equality, we have used that the implicit Euler method
has convergence order 1, which (for small stepsizes ha) implies η

j

d,a = 1
2η

j−1
d,a when we

take the new stepsize as half the current stepsize (see (14)). Summing up over all μ inner
iterations, we obtain a telescopic sum and finally get an error decrease of

μ∑

j=1

⎛

⎝
∑

a∈Api

η
j−1
d,a −

∑

a∈Api

η
j

d,a

⎞

⎠ =
∑

a∈Api

η0d,a −
∑

a∈Api

η
μ
d,a = 1

2

μ∑

j=1

∑

a∈Rj

η
j−1
d,a .

We now consider the coarsening step. For this, let η
μ
d,a denote the discretization error

before and η
μ+1
d,a the discretization error after the coarsening step in Line 18. Using similar

ideas like above, we obtain
∑

a∈Api

η
μ+1
d,a −

∑

a∈Api

η
μ

d,a

=
∑

a∈Api\C
η

μ+1
d,a +

∑

a∈C
η

μ+1
d,a −

∑

a∈Api\C
η

μ

d,a −
∑

a∈C
η

μ

d,a

=
∑

a∈C
η

μ+1
d,a −

∑

a∈C
η

μ

d,a

= 2
∑

a∈C
η

μ

d,a −
∑

a∈C
η

μ

d,a

=
∑

a∈C
η

μ

d,a .

Thus, we are finished if we prove that

1

2

μ∑

j=1

∑

a∈Rj

η
j−1
d,a −

∑

a∈C
η

μ

d,a
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is positive and uniformly bounded away from zero. Using

η
j−1
d,a ≥ η

μ

d,a for all j = 1, . . . , μ,

(15), (17), and (19), we obtain

1

2

μ∑

j=1

∑

a∈Rj

η
j−1
d,a ≥ 1

2
�d

μ∑

j=1

∑

a∈Api

η
j−1
d,a ≥ 1

2
�d

μ∑

j=1

∑

a∈Api

η
μ
d,a

= 1

2
�dμ

∑

a∈Api

η
μ
d,a > (�d + C)

∑

a∈Api

η
μ
d,a >

∑

a∈C
η

μ
d,a + C

∣∣Api
∣∣ ε,

which completes the proof.

Next, we prove an analogous lemma for the case that we fix the stepsize of every arc a ∈
Api and only allow for model switching.

Lemma 2 Suppose that the discretization stepsize ha is fixed for every pipe a ∈ Api. Sup-
pose further that ηa(y) = ηm,a(y) holds in (11) and that every NLP is solved to local
optimality. Consider Algorithm 1 without applying the discretization refinements in Line 11
and the coarsenings in Line 18. Then, Algorithm 1 terminates after a finite number of model
switches in Lines 10 and 17 with an ε-feasible solution with respect to the stepsizes ha ,
a ∈ Api, if there exists a constant C > 0 such that

�k
mμk > τk�k

m|Api| + C (20)

holds for all k.

Proof We consider the total model error

ηm(y) =
∑

a∈Api

ηm,a(y)

and show that the difference between the decrease obtained in the inner loop and the increase
obtained due to switching model levels down in Line 17 is positive and uniformly bounded
away from zero for every iteration k. We again consider only a single iteration and drop the
corresponding index.

First, we consider a single step of switching up the model level in Line 10. Let η
j−1
m,a

denote the model error before the j th inner iteration and η
j
m,a the model error after the j th

inner iteration. We then have∑

a∈Api

η
j−1
m,a −

∑

a∈Api

η
j
m,a

=
∑

a∈Uj

η
j−1
m,a +

∑

a∈Api\Uj

η
j−1
m,a −

∑

a∈Uj

η
j
m,a −

∑

a∈Api\Uj

η
j
m,a

=
∑

a∈Uj

η
j−1
m,a −

∑

a∈Uj

η
j
m,a

for every j = 1, . . . , μ. Summing up over all j yields the overall model error decrease after
μ for-loop iterations of

μ∑

j=1

⎛

⎝
∑

a∈Api

η
j−1
m,a −

∑

a∈Api

η
j
m,a

⎞

⎠ =
∑

a∈Api

η0m,a −
∑

a∈Api

ημ
m,a =

μ∑

j=1

∑

a∈Uj

(η
j−1
m,a − η

j
m,a).
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We now consider the step of switching down the model level in Line 17. Let ημ
m,a denote

the model error before and η
μ+1
m,a the model error after this step. It holds that

∑

a∈Api

ημ+1
m,a −

∑

a∈Api

ημ
m,a

=
∑

a∈D
ημ+1
m,a +

∑

a∈Api\D
ημ+1
m,a −

∑

a∈D
ημ
m,a −

∑

a∈Api\D
ημ
m,a

=
∑

a∈D

(
ημ+1
m,a − ημ

m,a

)
.

Thus, the proof is finished if we show that

μ∑

j=1

∑

a∈Uj

(
η

j−1
m,a − η

j
m,a

)
−

∑

a∈D

(
ημ+1
m,a − ημ

m,a

)

is positive and uniformly bounded away from zero. With similar ideas as in the proof of
Lemma 1 and using (16), (18), and (20), we obtain

μ∑

j=1

∑

a∈Uj

(
η

j−1
m,a − η

j
m,a

)
≥ �m

μ∑

j=1

∑

a∈A>ε
pi

(
η

j−1
m,a − η

j
m,a

)
> �m

μ∑

j=1

∑

a∈A>ε
pi

ε

= �mμ

∣∣∣A>ε
pi

∣∣∣ ε ≥ �mμε > τ�m
∣∣Api

∣∣ ε + Cε ≥ �m

∑

a∈A<ε
pi (τ )

ετ + Cε

≥ �m

∑

a∈A<ε
pi (τ )

(
ημ+1
m,a − ημ

m,a

)
+ Cε ≥

∑

a∈D

(
ημ+1
m,a − ημ

m,a

)
+ Cε,

where we used that |A>ε
pi | ≥ 1. This completes the proof.

Let ηnewm,a(y) denote the new model error estimator after a grid refinement or coarsen-
ing. In order to prove our main theorem we need to assume that, for every pipe a ∈ Api,
the change in the model error estimator after a grid refinement or coarsening can be
neglected as compared to ηm,a(y), i.e., |ηm,a(y) − ηnewm,a(y)| � ηm,a(y), such that we
may write ηnewm,a(y) = ηm,a(y). A sufficient condition for this assumption to hold is given
by ηd,a(y) � ηm,a(y) for every a ∈ Api. This condition also implies that ηm,a(y) is a
first-order approximation of the exact model error em,a(y) and is thus reliable for small
stepsizes ha .

Lemma 3 Let the discretization and model error estimator ηd,a(y) and ηm,a(y) as defined
in (9) and (10) be given for every a ∈ Api. Let further em,a(y) be the exact error between
models (M1) and (M	a ) and let ηnewm,a (y) be the new model error estimator after a grid
refinement or coarsening. Then, the implications

1. ηd,a(y) � ηm,a(y) =⇒ ηm,a(y)
.= em,a(y),

2. ηd,a(y) � ηm,a(y) =⇒ ηnewm,a (y) = ηm,a(y)

hold for every a ∈ Api.
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Proof Let pipe a ∈ Api be arbitrary. To improve readability, in the following we drop
the dependencies of the exact errors and the error estimators on a and y. Without loss of
generality, we consider only one arbitrary spatial gridpoint xk .

Let us first introduce some notation. The exact model error is given by em(xk) = p̂(xk)−
pM	a (xk) for the current model level 	a , the exact discretization error for model (D1) is
given by e1d(xk) = p̂(xk)−p1(xk; 2ha) and the exact discretization error for model (D	a ) is

denoted by e
	a

d (xk) = pM	a (xk) − p	a (xk; 2ha). Furthermore, the model error estimator is
given by ηm(xk) = p1(xk; 2ha) − p	a (xk; 2ha) (see (10)), and we define the discretization
error estimators η1d(xk) := p1(xk; 2ha) − p1(xk; 4ha) and η

	a

d (xk) := p	a (xk; 2ha) −
p	a (xk; 4ha) as in (9). Then, we have η1d(xk)

.= e1d(xk) and η
	a

d (xk)
.= e

	a

d (xk) (see [36,
p. 420]). Further, it holds that

|η1d(xk)| � |ηm(xk)| ⇐⇒ |η	a

d (xk)| � |ηm(xk)|, (21)

because η1d(xk) and η
	a

d (xk) use the same stepsizes 2ha and 4ha to compute the discrete
pressure distributions.

We now prove the first implication. Using the previously defined notation, it holds that

em(xk) = p̂(xk) − pM	a (xk)

= e1d(xk) + p1(xk; 2ha) − e
	a

d (xk) − p	a (xk; 2ha)

.= η1d(xk) + p1(xk; 2ha) − η
	a

d (xk) − p	a (xk; 2ha)

= η1d(xk) − η
	a

d (xk) + ηm(xk).

Thus, if |η1d(xk)| and |η	a

d (xk)| may be neglected as compared to |ηm(xk)|, then we have
em(xk)

.= ηm(xk), i.e.,

∣∣∣η1d(xk)

∣∣∣ � |ηm(xk)| ∧
∣∣∣η	a

d (xk)

∣∣∣ � |ηm(xk)| =⇒ em(xk)
.= ηm(xk).

Considering also the equivalence relation (21), it follows that

∣∣∣η1d(xk)

∣∣∣ � |ηm(xk)| =⇒ em(xk)
.= ηm(xk),

from which the first implication follows directly.
Finally, we prove the second implication. We show that this implication holds for the

case that ηnewm (xk) is the new model error estimator after a grid coarsening. The case for a
grid refinement can be shown analogously. It holds that

ηnewm (xk) = p1(xk; 4ha) − p	a (xk; 4ha)

= −η1d(xk) + p1(xk; 2ha) + η
	a

d (xk) − p	a (xk; 2ha)

= −η1d(xk) + η
	a

d (xk) + ηm(xk).

This yields

∣∣∣η1d(xk)

∣∣∣ � |ηm(xk)| ∧ |η	a

d (xk)| � |ηm(xk)| =⇒ ηnewm (xk) = ηm(xk). (22)
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Again, considering (21) and (22) results in
∣∣∣η1d(xk)

∣∣∣ � |ηm(xk)| =⇒ ηnewm (xk) = ηm(xk),

from which the second implication follows immediately.

With the three preceding lemmas at hand, we are now ready to state and prove our main
theorem about finite termination of Algorithm 1.

Theorem 1 (Finite termination) Suppose that ηd,a � ηm,a for every a ∈ Api and that every
NLP is solved to local optimality. Then, Algorithm 1 terminates after a finite number of
refinements, coarsenings and model switches in Lines 10, 11, 17, and 18 with an ε-feasible
solution with respect to the reference problem (7) if there exist constants C1, C2 > 0 such
that

1

2
�k

dμ
k > �k

d + C1, �k
mμk > τk�k

m|Api| + C2

hold for all k.

Proof We consider the total error
∑

a∈Api
ηa and show that the difference between the

decrease obtained in the inner loop and the increase obtained due to switching down the
model level and coarsening the grid is positive and uniformly bounded away from zero for
every iteration k. Again, we consider only a single iteration and drop the corresponding
index. We first consider Lines 10 and 11 for fixed j . It holds that

∑

a∈Api

η
j−1
a −

∑

a∈Api

η
j
a

=
∑

a∈Api

η
j−1
m,a +

∑

a∈Api

η
j−1
d,a −

∑

a∈Api

η
j
m,a −

∑

a∈Api

η
j

d,a

=
∑

a∈Api\(Uj ∪Rj )

η
j−1
m,a −

∑

a∈Api\(Uj ∪Rj )

η
j
m,a +

∑

a∈Uj \Rj

η
j−1
m,a −

∑

a∈Uj \Rj

η
j
m,a

+
∑

a∈Rj \Uj

η
j−1
m,a −

∑

a∈Rj \Uj

η
j
m,a +

∑

a∈Rj ∩Uj

η
j−1
m,a −

∑

a∈Rj ∩Uj

η
j
m,a

+
∑

a∈Api\(Uj ∪Rj )

η
j−1
d,a −

∑

a∈Api\(Uj ∪Rj )

η
j

d,a +
∑

a∈Uj \Rj

η
j−1
d,a −

∑

a∈Uj \Rj

η
j

d,a

+
∑

a∈Rj \Uj

η
j−1
d,a −

∑

a∈Rj \Uj

η
j

d,a +
∑

a∈Rj ∩Uj

η
j−1
d,a −

∑

a∈Rj ∩Uj

η
j

d,a

=
∑

a∈Uj

η
j−1
m,a −

∑

a∈Uj

η
j
m,a +

∑

a∈Rj

η
j−1
d,a −

∑

a∈Rj

η
j

d,a

=
∑

a∈Uj

(
η

j−1
m,a − η

j
m,a

)
+ 1

2

∑

a∈Rj

η
j−1
d,a ,

where we use that ηj
m,a = η

j−1
m,a for every a ∈ Rj \Uj since η

j−1
d,a � η

j−1
m,a for every a ∈ Api

(see Lemma 3). Moreover, the discretization error estimator ηd,a does not change after a
switching up the model level.
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Again, summing up over all j = 1, . . . , μ yields the overall error decrease after μ for-
loop iterations of

μ∑

j=1

⎛

⎝
∑

a∈Api

η
j−1
a −

∑

a∈Api

η
j
a

⎞

⎠ =
∑

a∈Api

η0a −
∑

a∈Api

ημ
a

=
μ∑

j=1

⎛

⎝
∑

a∈Uj

(
η

j−1
m,a − η

j
m,a

)
+ 1

2

∑

a∈Rj

η
j−1
d,a

⎞

⎠ .

With similar arguments as before for Lines 10 and 11, we consider Lines 17 and 18 and
obtain ∑

a∈Api

ημ+1
a −

∑

a∈Api

ημ
a

=
∑

a∈Api

η
μ+1
d,a +

∑

a∈Api

ημ+1
m,a −

∑

a∈Api

η
μ

d,a −
∑

a∈Api

ημ
m,a

=
∑

a∈C
η

μ+1
d,a −

∑

a∈C
η

μ
d,a +

∑

a∈D
ημ+1
m,a −

∑

a∈D
ημ
m,a

=
∑

a∈C
η

μ

d,a +
∑

a∈D

(
ημ+1
m,a − ημ

m,a

)
.

Finally, it remains to prove that

μ∑

j=1

⎛

⎝
∑

a∈Uj

(
η

j−1
m,a − η

j
m,a

)
+ 1

2

∑

a∈Rj

η
j−1
d,a

⎞

⎠ −
∑

a∈C
η

μ

d,a −
∑

a∈D

(
ημ+1
m,a − ημ

m,a

)

is positive and uniformly bounded away from zero. Using the proofs of Lemmas 1 and 2,
we have

μ∑

j=1

∑

a∈Uj

(
η

j−1
m,a − η

j
m,a

)
+ 1

2

μ∑

j=1

∑

a∈Rj

η
j−1
d,a

> �mμε + 1

2
μ�d

∑

a∈Api

η
μ

d,a

> τ�m
∣∣Api

∣∣ ε + C2ε + (�d + C1)
∑

a∈Api

η
μ

d,a

>
∑

a∈D

(
ημ+1
m,a − ημ

m,a

)
+ C2ε +

∑

a∈C
η

μ

d,a + C1
∣∣Api

∣∣ ε,

which completes the proof.

4.4 Remarks

Before we close this section, we discuss some details and extensions regarding Algorithm 1.
First, we give an overview of the main computations that are performed in the algorithm.
In Lines 2 and 12, the NLP (8) is solved using the current model level 	a and the current
stepsize ha for every pipe a ∈ Api. Most types of NLP algorithms are iterative methods. That
is, the computational costs of the algorithms depend on the number of iterations required to
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converge to a (local) optimal solution and the costs per iteration. The latter mainly consist
of the solution of a linear system (e.g., suitable forms of the KKT system for interior-point
or active-set methods) for computing the search direction. The size of this linear system
typically isO(n+m), where n is the number of variables and m is the number of constraints
of the NLP. Both n and m are directly controlled by the stepsizes ha that we use in our NLP
models. The model level 	a mainly determines the sparsity/density of the system matrices
of the linear systems and the overall nonlinearity of the NLP, which typically influences the
number of required iterations.

In Lines 3 and 13, the overall error estimator ηa(y) is computed for every pipe a ∈ Api.
Thus, for all pipes, the solution of model (D1) is computed with stepsize both 2ha and 4ha

and the solution of model (D	a ) is computed with stepsize ha . These solutions are obtained
by solving the initial value problems consisting of the ordinary differential equations (M1)
and (M	a ) together with the initial value p(x0), which is contained in the optimal solution y

of Problem (8). Continuing with the example of the implicit Euler method that we use as
numerical integration scheme throughout this paper, the initial value problems can be solved
(i) by considering the implicit equations in (D1) and (D	a ) and using, e.g., the Newton
method to solve for pk in every space integration step, or (ii) by using an existing software
code and setting the order of the numerical integration scheme to one.

The subset R in Line 9 can be determined efficiently, since ηd,a(y) has already been
computed in Line 3 or 13 for every a ∈ Api. For subset U in Line 9 and in (16), the
error estimator ηm,a(y) has also already been computed in Line 3 or 13 for every a ∈ Api.
Moreover, 	newa in (12) has to be computed in order to determine U . For this, we compute
ηm,a(y; 	a − 1) if and only if 	a = 3. In the case 	a = 2 we have ηm,a(y; 	a − 1) = 0
and for 	a = 1 we have ηm,a(y; 	newa ) = ηm,a(y; 	a) = 0. Subset C in Line 16 can also
be computed efficiently, since ηd,a(y) has already been computed in Line 3 or 13 for every
a ∈ Api. For subsetD in Line 16 and in (18), the error estimator ηm,a(y) has been computed
already in Line 3 or 13 for every a ∈ Api. If 	a ∈ {1, 2}, then ηm,a(y; 	a + 1) has to be
computed for every a ∈ Api in order to determine D.

We note that the optimal solution y of Problem (8) contains, among others, the model
level 	a , stepsize ha , and pressure p	a (x0) at the beginning of the pipe, for every a ∈ Api.
Using 	a , ha , and p	a (x0), the discretization and model error estimator for pipe a ∈ Api
can be computed without information from other pipes. Hence, the error estimators, e.g., in
Line 13, can be computed in parallel.

Up to now, we have discussed two types of errors: modeling and discretization errors.
Both are handled by Algorithm 1 and we have shown that the algorithm terminates with a
combined model and discretization error that satisfies a user-specified error tolerance ε > 0.
What we have ignored so far is that the NLPs are also solved by a numerical method that
introduces numerical errors as well. However, it is easy to integrate the control of this addi-
tional error source into Algorithm 1. Let εopt > 0 be the optimality tolerance that we hand
over to the optimization solver and suppose that the solver always satisfies this tolerance.
Furthermore, let the tolerance ε considered so far now be denoted by εdm. Using the triangle
inequality, we easily see that the upper bound of the total error (that is aggregated modeling,
discretization, and optimization error) is εopt + εdm. Hence, in order to satisfy an overall
error tolerance ε > 0, we have to ensure that εopt + εdm ≤ ε holds, which can be formally
introduced in Algorithm 1 by replacing ε with εopt + εdm.

Finally, note that this additional error source directly suggests itself for adaptive treat-
ment as well. In the early iterations of Algorithm 1, it is not important that εopt is small. That
is, the optimization is allowed to produce coarser approximate local solutions. However,
in the course of the algorithm, one can observe the achieved modeling and discretization
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Table 1 Statistics for the instances

Network No. of nodes No. of pipes No. of compressor stations Total pipe length (km)

GasLib-40 40 39 6 1112

GasLib-135 135 141 29 6935

error and can adaptively tighten the optimization tolerance. Since this strategy allows the
optimization method to produce coarse approximate solutions in the beginning, it can be
expected that this leads to a speed-up in the overall running times of Algorithm 1.

The choice of the error tolerance ε that has to be provided in Algorithm 1 will depend
on the user requirements; however, one should be aware that due to the round-off errors
committed during every single step of the procedure, and due to possible ill-conditioning of
the linear systems solved by the NLP solver, none of the three errors, the discretization error,
the modeling error, and the NLP error can be chosen extremely small. Since the backward
error and the associated condition number of the linear systems can be estimated during
the procedure (see [17]) and since the error estimates for the discretization method are at
hand, it is just the modeling error which is not known a priori. To estimate this latter error
(of the finest model) usually requires a comparison with experimental data. If these are
available during a real-world process, then it is possible to adjust the required tolerances ε

in a feedback loop using a standard PI controller (see, e.g., [30]), i.e., if measured data are
available that show that the finest model has a given accuracy, then ε should not be chosen
smaller than this.

Finally, we want to stress that the described adaptive error control algorithm can be
used with any number of model levels in the hierarchy, with any higher order discretization
scheme, and with any number of grid refinement levels.

5 Computational Results

In this section, we present numerical results obtained by the adaptive error control algo-
rithm. To this end, we compare the efficiency of the method with an approach that directly
solves an NLP that satisfies the same error tolerance and that is obtained without using adap-
tivity. Before we discuss the results in detail, we briefly mention the computational setup
and the gas transport network instances that we solve.

We implemented the adaptive error control Algorithm 1 in Python 2.7.13 and used
the scipy 0.14.0 module for solving the initial value problems. All nonlinear optimiza-
tion models have been implemented using the C++ framework LaMaTTO++1 for modeling
and solving mixed-integer nonlinear optimization problems on networks. The computations
have been done on a six-core AMD OpteronTM Processor 2435 with 2.2 GHz and 64 GB of
main memory. The NLPs have been solved using Ipopt 3.12 (see [39, 40]).

For our computational study, we choose publicly available GasLib instances (see [33]).
This has the advantage that, if desired, all numerical results can be reproduced on the same
data. In what follows, we consider the networks GasLib-40 and GasLib-135, since these are
the largest networks in the GasLib that only contain pipes and compressor stations as arc
types. Detailed statistics are given in Table 1.

1http://www.mso.math.fau.de/edom/projects/lamatto.html

http://www.mso.math.fau.de/edom/projects/lamatto.html
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Next, we describe the parameterization of Algorithm 1. We initialize every pipe a ∈ Api
with the coarsest model level 	a = 3 and with the coarsest possible discretization grid. In
order to yield a well-defined algorithm, the number of discretization grid intervals has to
be a multiple of 4 (see Fig. 2). Thus, we initially set ha = La/4 and ensure in Step 18
of Algorithm 1 that we never obtain a coarser grid size than the initial one. The overall
tolerance is set to ε = 10−4 bar. Moreover, we set �d = �m = 0.7, �d = �m = 0.3, τ =
1.1, and μ = 4. Here, we refrain from updating these parameters from iteration to iteration,
which is possible in general. Note that our parameter choice violates the second inequality of
Theorem 1. This could be fixed by simply increasing the hysteresis parameter μ. However,
we refrain from using a larger μ in order to give the adaptive algorithm more chances to
also switch down in the model hierarchy or to coarsen discretization grids. Our numerical
experiments show that the violation of the second inequality of Theorem 1 does not harm
convergence in practice but leads to slightly faster computations.

The same rationale holds for the relation between model and discretization error as
assumed in Theorem 1 (see also Lemma 3). To be fully compliant with the theory, the initial
discretization grids need to be much finer. Again, coarser initial discretization grids do not
harm convergence in our numerical experiments but yield much faster computations.

We now turn to the discussion of the numerical results. Both instances are solved using
8 iterations. Thus, together with the initially solved NLP, we have to solve 9 NLPs for
solving both instances.

Using the adaptive control algorithm, it takes 3.82 s to solve the GasLib-40 instance and
7.50 s to solve the GasLib-135 instance. For the GasLib-40 network, the final NLP contains
2026 variables and 1988 constraints, whereas for the GasLib-135 the final NLP contains
3405 variables and 3271 constraints.

Most interesting is the speed-up that we obtain by using the adaptive control algorithm.
Thus, we compare the above given solution times with the solution times for an NLP
that satisfies the same error tolerances but that is obtained without using model level and
discretization grid adaptivity. This NLP contains 40 034 variables and 39 996 constraints
for the GasLib-40 instance and 144 757 variables as well as 144 623 constraints for the
GasLib-135 instance. Compared to the final NLPs that have to be solved within the adaptive
algorithm, the NLPs obtained without using adaptivity are quite large scale. This directly
translates to solution times. The GasLib-40 instance requires 53.11 s and the GasLib-135
instance requires 122.42 s. Thus, we get a speed-up factor of 13.89 and 16.33, respectively.
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Fig. 4 Number of pipes with refined grid (y-axis; |R|) and number of pipes where the model is switched
up in the model hierarchy (y-axis; |U |) over the course of the iterations (x-axis). Left: GasLib-40, right:
GasLib-135
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Fig. 5 Aggregated run times (y-axis; in s) required for solving the nonlinear optimization problems (NLPs)
and the initial value problems (IVPs) for the computation of the error estimates. Left: GasLib-40, right:
GasLib-135

Figure 4 illustrates the adaptivity of the algorithm by plotting how many pipe grids are
refined (|R|) and how many pipe models are switched up in the hierarchy (|U |). It can be
clearly seen that increasing the accuracy is only needed for a small fraction of the pipes. For
theGasLib-40 network, we never refine grids for more than 9 pipes, whereas we never refine
grids for more than 21 pipes for the GasLib-135 network. Thus, for the larger network, we
never refine grids for more than 15% of all pipes.

For both networks, the Lines 17 and 18 are only reached once. For the smaller network,
only 1 pipe grid is coarsened, whereas 3 pipe grids are coarsened for the larger network.
Moreover, the algorithm never switches down in the model hierarchy. Consequently, the
NLPs get larger from iteration to iteration. This then yields increased running times for the
NLP solver as depicted in Fig. 5. It can be seen that the subsequent NLPs can be solved quite
fast. There are two main reasons for this phenomenon. First, the NLP’s size only increases
moderately due to the adaptive control strategy. Second, the overall algorithm allows for
warm-starting: When solving a single NLP, we always use the last NLP’s solution to set up
the initial iterate.

Lastly, we consider the decrease in the respective errors. In Fig. 6, the discretization,
model, and total errors are plotted over the course of the iterations. Both profiles show the
expected decrease in the errors.

0 2 4 6 8
10 5

10 4

10 3

10 2

Iteration

E
rr
o
r
es
ti
m
at
e

ηd

ηm

η

0 2 4 6 8
10 5

10 4

10 3

10 2

Iteration

ηd

ηm

η

Fig. 6 Discretization, model and total error estimates (y-axis) over the course of the iterations (x-axis). Left:
GasLib-40, right: GasLib-135
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6 Conclusion

We have considered the problem of operation cost minimization for gas transport networks.
In this context, we have focused on stationary and isothermal models and developed an
adaptive model and discretization error control algorithm for nonlinear optimization that
uses a hierarchy of continuous and finite-dimensional models. Out of this hierarchy, the new
method adaptively chooses different models in order to finally achieve an optimal solution
that satisfies a prescribed combined model and discretization error tolerance. The algorithm
is shown to be convergent and its performance is illustrated by several numerical results.

The results pave the way for future work in the context of model switching and discretiza-
tion grid adaptation for nonlinear optimal control. On the one hand, it should be extended to
non-isothermal and instationary models of gas transport, in particular, in a port-Hamiltonian
formulation. On the other hand, it would be interesting to extend the new technique to
mixed-integer nonlinear optimal control.
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Technische Universität Darmstadt. http://www3.mathematik.tu-darmstadt.de/fb/mathe/preprints.html
(2017)

12. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–
1124 (1996)

13. Feistauer, M.: Mathematical Methods in Fluid Dynamics. Pitman Monographs and Surveys in Pure and
Applied Mathematics Series, vol. 67. Longman Scientific & Technical, Harlow (1993)
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