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Abstract In 1985, Clarke andVinter proved that, in the classical Bolza problem of the calculus
of variations, if the Lagrangian is coercive and autonomous, all minimizers are Lipschitz
and satisfy the Euler–Lagrange equation. I give a short and direct proof of this result.
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1 The Theorem

We consider the classical Bolza problem in the one-dimensional calculus of variations

inf
∫ T

0
L(t, x, ẋ)dt

x(0) = ξ0, x(T ) = ξ1

ẋ ∈ L1(0, T ;Rd), x(t) =
∫

ẋ(t)dt,

the Lagrangian L : [0, T ] ×R
d ×R

d → R is assumed to be C1 and coercive, meaning that
there exists a continuous and increasing function g such that

g(t)

t
→ ∞ when t → ∞,

L(t, x, y) ≥ g(‖y‖) ∀(t, x, y).
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If in addition f is convex with respect to y, the Bolza problem will have a (possibly non-
unique) solution (see [3]). However, we will not be assuming convexity, and we will not be
studying the existence of solution(s).

In this paper, we are concerned with another question: if the solution exists, does it satisfy
the Euler–Lagrange equation

d

dt

∂

∂y
L(t, x, ẋ) = ∂L

∂x
.

It is by now well-known that the answer is no: this is the so-called Lavrentiev phe-
nomenon. After the initial work of Lavrentiev in 1926, Ball and Mizel [2] gave an example
where the minimizer exists and does not satisfy the E-L equation (1984). Their exam-
ple was simplified by Loewen [7], and further by Willem [8]. To understand the problem,
assume that x0(t) is a solution, and consider another admissible trajectory, namely xε(y) =
x0(t) + εh(t), with h(0) = h(T ) = 0. Comparing the values of the criterion, we are led to
the relation

lim
ε→0

1

ε

∫ T

0

[
L

(
t, x0(t) + εh(t), ẋ0(t) + εḣ(t)

) − L(t, x, ẋ)
]
dt ≥ 0.

If we could interchange the limit and the integral, we would be done, since we then get
∫ T

0

[
∂L

∂x
(t, x0, ẋ0)h + ∂L

∂y
(t, x0, ẋ0)ḣ

]
dt ≥ 0

and we get the E-L equation by integrating by parts. However, we must be able to inter-
change the limit and the integral, so a further condition is needed. Here is one such
condition:

Lemma 1 If the solution x0 is Lipschitz, it satisfies the E-L equation.

Proof Assume x0 is Lipschitz, so that there exists some constant k such that

‖x0(t1) − x0(t2)‖ ≤ k‖t2 − t1‖.
Since x0 is Lipschitz, its derivative is bounded. Take h to be Lipschitz. Then, there is

a constant M1 such that ‖ẋ0(t) + εḣ(t)‖ ≤ M1 for 0 ≤ t ≤ T and 0 ≤ ε ≤ 1. Since
x0 and h are continuous, there is some constant M2 such that ‖x0(t) + εh(t)‖ ≤ M2 for
0 ≤ t ≤ T and 0 ≤ ε ≤ 1. Since the Lagrangian L is C1, its partial derivatives are
continuous, and bounded on every compact subset. It follows that L must be Lipschitz on
the set [0, T ] × B(M1) × B(M2), where B(M) denotes the ball of radius M . Denote by R

the Lipschitz norm for h and K the Lipschitz constant for L. We have

1

ε

[
L

(
t, x0(t) + εh(t), ẋ0(t) + εḣ(t)

) − L(t, x0(t), ẋ0(t))
] ≤ K

(|h(t)| + |ḣ(t)|)
≤ KR.

Setting ε = 1/n and letting n → ∞, we conclude by applying Lebesgue’s dominated
convergence theorem.

The purpose of this paper is to give a short and direct proof of the following result:

Theorem 1 Suppose the Lagrangian L(x, y) is coercive and does not depend on t . Then,
all solutions of the Bolza problem are Lipschitzian.
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It follows that all minimizers of the Bolza problem satisfy the E-L equation. Clarke
and Vinter [4, 5] were the first to prove this theorem, and since their seminal work, many
researchers have extended it to other situations, including time-dependent Lagrangians (see
[1, 6, 8, 9]). No such result is known for the multidimensional case, where t = (t1, . . . , tD)

and the interval is replaced by a bounded domain of RD .

2 The Proof

Let x0 be a solution of the Bolza problem, i.e., a minimizer of the integral under the
boundary constraints. Assume that it is not Lipschitzian. Then, for any M > 0, the set

�M = {t | ‖ẋ0(t)‖ > M}
has a positive measure. We will derive a contradiction.

Comparing x0 with the trajectory t → ξ0 + 1
T

(ξ1 − ξ0)t , which also satisfies the
constraints, we get

∫ T

0
L(x0, ẋ0)dt ≤

∫ T

0
L

(
ξ0 + (ξ1 − ξ0)

t

T
,
ξ1 − ξ0

T

)
dt.

Since L is coercive and x0 is a minimizer, we have∫ T

0
g(|ẋ0|)dt ≤

∫ T

0
L(x0, ẋ0)dt ≤

∫ T

0
L

(
ξ0 + (ξ1 − ξ0)

t

T
,
ξ1 − ξ0

T

)
dt. (1)

With every m > 0, we associate the subset �m defined by

�m = {t | ‖ẋ0(t)‖ ≤ m}.
Denoting by C, the right-hand side of equation (1), we find that for every m, we have

(T − meas(�m))g(m) + meas(�m) inf g ≤ C.

Hence,

meas(�m) ≥ T g(m) − C

g(m) − inf g
.

When m → ∞, meas(�m) → T . Choose m so large that meas(�m) ≥ T/2. With every
M > m, we associate a change of variables s = σ(t) defined as follows. Set

�M
m = {t | m < ‖ẋ0(t)‖ ≤ M},

�M = {t | ‖ẋ0(t)‖ > M}.
We set σ(0) = 0 and

dσ

dt
=

⎧⎨
⎩

rM for t ∈ �m,

1 for t∈ �M
m ,

‖ẋ0(t)‖ for t ∈ �M.

We have to adjust rM so that σ(T ) = T and σ sends [0, T ] into itself. By assumption,
�M has positive measure, so rM < 1. This yields

∫ T

0

dσ

dt
dt = T = rMmeas(�m) + [T − meas(�m) − meas(�M)] +

∫
�M

‖ẋ0‖dt,

(1 − rM)meas(�m) =
∫

�M

(‖ẋ0‖ − 1)dt. (2)
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Since ẋ0 is integrable, there is some M0 > 1 such that the right-hand side is less than
T/4 for all M > M0. So, for all M > M0, we get

rM >
1

2
.

We now compare the solution x0 to the trajectory x1 = x0 ◦σ−1. It satisfies the boundary
conditions and we have

dx1

ds
(s) = dx1

dt
(t)

dt

ds
with s = σ(t),

dx1

ds
(s) = dx1

dt

(
σ−1(s)

) [
dσ

dt

(
σ−1(s)

)]−1

.

Since x0 is a minimizer, we must have
∫ T

0
L(x1(s), ẋ1(s))ds ≥

∫ T

0
L(x0(s), ẋ0(s))ds.

Decomposing each integral into three, one on �m, one on �M
m , and one on �M , we find

that the integrals on �M
m cancel each other, and we are left with

∫
�m

[
rML

(
x0,

1

rM
ẋ0

)
− L(x0, ẋ0)

]
dt +

∫
�M

[
L

(
x0,

ẋ0

‖ẋ0‖
)

‖ẋ0‖ − L(x0, ẋ0)

]
dt ≥ 0.

Using the coercivity of L, this becomes∫
�m

[
rML

(
x0,

1

rM
ẋ0

)
− L(x0, ẋ0)

]
dt +

∫
�M

[
L

(
x0,

ẋ0

‖ẋ0‖
)

‖ẋ0‖ − g(‖ẋ0‖)
]

dt ≥ 0.

(3)
Set:

A = max{|L(x0(t), y)| | 0 ≤ t ≤ T , ‖y‖ ≤ 1}.
This number does not depend on m or M , and we have

L

(
x0,

ẋ0

‖ẋ0‖
)

‖ẋ0‖ ≤ A‖ẋ0‖.

Similarly, set

B = max{|L(x0(t), y)| | 0 ≤ t ≤ T , ‖y‖ ≤ 2m},
K = max

{∣∣∣∣∂L

∂y
(x0(t), y)

∣∣∣∣ | 0 ≤ t ≤ T , ‖y‖ ≤ 2m

}
.

We have, by the mean value theorem

rML

(
x0,

1

rM
ẋ0

)
− L(x0, ẋ0) = L

(
x0,

1

rM
ẋ0

)
− L(x0, ẋ0)+(rM −1)L

(
x0,

1

rM
ẋ0

)
,

∣∣∣∣rML

(
x0,

1

rM
ẋ0

)
− L(x0, ẋ0)

∣∣∣∣ ≤ K

(
1

rM
− 1

)
m + (1− rM)B ≤ (1− rM)(2Km + B).

We have used the fact that, for each t in �m, one has ‖ẋ0‖r−1
M ≤ 2‖ẋ0‖ ≤ 2m. Writing

all this into inequality (3), we get

(1 − rM)(2Km + B)meas(�m) +
∫

�M

[A‖ẋ0‖ − g(‖ẋ0‖)]dt ≥ 0.
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We now remember (2). Writing it into the preceding one, we get∫
�M

[(2Km + B)(‖ẋ0‖ − 1) + A‖ẋ0‖ − g(‖ẋ0‖)]dt ≥ 0. (4)

This inequality holds for all M > M0. But ‖ẋ0‖ ≥ M on �M . Since g(t)/t → ∞ when
t → ∞, there is some M1 > M0 such that

‖y‖ > M1 =⇒ [(2Km + B)(‖y‖ − 1) + A‖y‖ − g(y)] < 0.

In other words, for M > M1, the integrand of (4) is negative. This is the desired
contradiction.

Acknowledgements I thank an anonymous referee who has carefully read the paper and substantially
improved the exposition.

References

1. Ambrosio, L., Ascenzi, O., Buttazzo, G.: Lipschitz regularity for minimizers of integral functionals with
highly discontinuous integrands. J. Math. Anal. Appl. 142, 301–316 (1989)

2. Ball, J., Mizel, V.: Singular minimizers for regular one-dimensional problems in the calculus of variations.
Bull. Am. Math. Soc. 11, 143–146 (1984)

3. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)
4. Clarke, F., Vinter, R.: Regularity properties of solutions to the basic problem in the calculus of variations.

Trans. Am. Math. Soc. 289, 73–98 (1985)
5. Clarke, F., Vinter, R.: Existence and regularity in the small in the calculus of variations. J. Differ. Equ. 59,

336–354 (1985)
6. Gratwick, R., Preiss, D.: A one-dimensional variational problem with continuous Lagrangian and singular

minimizer. Arch. Ration. Mech. Anal. 202, 177–211 (2011)
7. Loewen, P.: On the Lavrentiev phenomenon. Can. Math. Bull. 30, 102–108 (1987)
8. Willem, M.: Analyse Convexe et Optimisation Editions CIACO. ISBN: 2-87085-202-9 (1985)
9. Zaslavski, A.: Nonoccurence of the Lavrentiev phenomenon for non-convex variational problems. Ann.

Inst. Henri Poincare (C) Non Linear Anal. 22, 579–596 (2005)


	On the Euler–Lagrange Equation in Calculus of Variations
	Abstract
	The Theorem
	The Proof
	Acknowledgements
	References


