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Abstract In this paper, building upon subgradient techniques and viscosity-type approx-
imations, we propose a simple projection algorithm for solving the lexicographic Ky Fan
inequality in a real Hilbert space, where the lower level is a variational inequality problem.
By choosing suitable regularization parameters, a strong convergence of the proposed algo-
rithm is established under mild assumptions imposed on the cost function. Some simple
numerical examples are given to illustrate the performance of the proposed algorithm.

Keywords Ky Fan inequalities · Variational inequalities · Paramonotonicity ·
Subgradient · Viscosity
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1 Introduction

LetH be a real Hilbert space equipped with an inner product 〈·, ·〉 and its induced norm ‖·‖.
LetC be a nonempty closed convex subset ofH. In this paper, we consider the lexicographic
Ky Fan inequality, shortly LKF(g, F, C), as follows:

Find x∗ ∈ Sol(F, C) such that g(x∗, x) ≥ 0 ∀x ∈ Sol(F, C),
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where g : C×C → R, Sol(F, C) denotes the set of all solutions of the variational inequality
problem:

Find y∗ ∈ C such that 〈F(y∗), y − y∗〉 ≥ 0 ∀y ∈ C,

and F : C → H. As usual, the bifunction g and the mapping F are called to be the cost
bifunction and cost mapping.

Although Problem LKF(g, F, C) has a simple bilevel form, it coverts the following as
special cases:

1. Ky Fan inequality problem: Let C be a nonempty closed convex subset of H and the
bifunction g : C × C → R. We consider the Ky Fan inequality problem (see [12]):

Find x∗ ∈ C such that g(x∗, x) ≥ 0 ∀x ∈ C. (1)

Setting F(x) = 0 for all x ∈ C, it is easy to see that Problem (1) coincides with the
form LKF(g, F, C).

2. Bilevel variational inequality problem: LetC be a nonempty closed convex subset ofH,
G : C → H and F : C → H. The following problem is called the bilevel variational
inequality problem (see [7, 16]), shortly BV I (G,F,C):

Find x∗ ∈ Sol(F, C) such that 〈G(x∗), y − x∗〉 ≥ 0 ∀x ∈ Sol(F, C).

By setting g(x, y) := 〈G(x), y − x〉 for all x, y ∈ C, we can easily see that
BV I (G,F,C) is equivalent to LKF(G, F, C).

3. Minimum-norm problem: Let C be a nonempty closed convex subset ofH, x0 ∈ H and
F : C → H. The minimum-norm problem, in [31], shortly MN(F,C), is formulated
in the following:

min{‖x0 − x‖ : x ∈ Sol(F, C)}.
Taking g(x, y) := ‖y−x0‖−‖x−x0‖ for all x, y ∈ C, we can see that BV I (G,F,C)

collapses into the minimum-norm problem MN(F,C).

Some methods for solving Problem LKF(g, F, C) and its special cases can be found,
for instance, in [4, 5, 7, 14–16, 25, 28, 30]. A majority of existing methods is based on the
proximal method which consists of solving a regularized Ky Fan problem, i.e., at current
iteration, given the current iterate xn, we compute the next iterate xn+1 by solving the
following problem:

Find x∗ ∈ C such that g(x∗, y) + 1

r
〈y − x∗, x∗ − xn〉 ≥ 0 ∀y ∈ C,

where g : C×C → R and r > 0. It is well-known that the viscosity method is a fundamen-
tal method to solve variational inequalities where the constraint set is the fixed point set of a
nonexpansive mapping (shortly, the hierarchical variational inequality). That is the problem
of finding x∗ ∈ Fix(T ) (the fixed point set of a nonexpansive mapping T : C → C) such
that

〈(I − V )(x∗), x − x∗〉 ≥ 0 ∀x ∈ Fix(T ),

where V : C → C is nonexpansive and I is the identity mapping. There are two schemes
to solve the hierarchical variational inequality in a real Hilbert space that one implicit and
one explicit as follows:

xt = tf (xt ) + (1 − t)T (xt )
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and

xk+1 = λkf (xk) + (1 − λk)T (xk),

where f is a contraction mapping on C, t ∈ (0, 1) and {λk} ⊂ [0, 1].
In [22], Maingé and Moudafi considered the viscosity method for the hierarchical

variational inequality as follows:

x0 ∈ C, xk+1 := λkf (xk) + (1 − λk)[αkV (xk) + (1 − αk)T (xk)],
where f : C → C is a contraction. Under concrete conditions, the authors have shown
that the iterative sequence strongly converges to a solution of the hierarchical variational
inequality. We note that the method can be regarded as a generalized version of Halpern’s
algorithm. In [18], Lu et al. investigated other hybrid viscosity approximation methods for
solving the hierarchical variational inequality. By combining viscosity approximation meth-
ods with projected subgradient techniques, Maingé in [20] established a strong convergence
theorem for optimization with variational inequality constraints in H. Xu in [29] intro-
duced a viscosity method for hierarchical fixed point approach to variational inequalities.
Here, the author showed that the sequence defined by the implicit hierarchical scheme con-
verges strongly in norm to a solution of the hierarchical variational inequality. Recently, the
viscosity method has been studied to develop iteration algorithms for variational inequal-
ities, Ky Fan inequalities, and other problems (see [9, 21]). Methods for solving Problem
LKF(g, F, C) have also been studied extensively in the literature (see [1–3, 17, 23]).

The purpose of this paper is to extend the above viscosity approximation method in
[22] to Problem LKF(g, F, C), with suitable modifications and subgradient techniques.
Through this way, we obtain a strongly convergent algorithm for solving the problem in
a real Hilbert space H. The iterative algorithm is quite simple. At each iteration, we only
require computing the subgradient of a subdifferentiable convex function and the projection
of a point onto the domain.

This paper is organized as follows. In Section 2, we recall some definitions and lemmas
used in the paper. Section 3 deals with proposing and analyzing the convergence of the
algorithm. Finally, we present some numerical experiments to illustrate the behavior of the
proposed algorithms in Section 4.

2 Preliminaries

In this section, we collect some definitions and lemmas that will be used in the sequel. Let
C be a nonempty closed convex subset ofH, for every x ∈ H, there exists a unique element
PrC(x), defined by

PrC(x) = argmin{‖y − x‖ : y ∈ C}.
It is also known that PrC is firmly nonexpansive, or 1-inverse strongly monotone, i.e.,

〈PrC(x) − PrC(y), x − y〉 ≥ ‖PrC(x) − PrC(y)‖2 ∀x, y ∈ C.

Besides, we recall some other properties of the projection as follows (see [21, Proposition
4.1]):

‖x − PrC(x)‖2 + ‖PrC(x) − y‖2 ≤ ‖x − y‖2 ∀x ∈ H, y ∈ C,

‖x − PrC(x − y)‖ ≤ ‖y‖ ∀x ∈ C, y ∈ H,

‖z − PrC(x − y)‖2 ≤ ‖x − z‖2 − 2〈x − z, y〉 + 5‖y‖2 ∀x, z ∈ C, y ∈ H. (2)
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A mapping F : C → H is said to be monotone on C, if

〈F(x) − F(y), x − y〉 ≥ 0 ∀x, y ∈ C;
paramonotone on C, if F is monotone on C and

〈F(x) − F(y), x − y〉 = 0 ⇒ F(x) = F(y);
weakly closed on C, if

{
{xk} ⊂ C, xk ⇀ x (weakly) and F(xk) ⇀ w (weakly)

}
⇒ w = F(x).

A bifunction g : C × C → R is said to be monotone on C, if

g(x, y) + g(y, x) ≤ 0 ∀x, y ∈ C;
ρ-strongly monotone on C, if

g(x, y) + g(y, x) ≤ −ρ‖x − y‖2 ∀x, y ∈ C.

Throughout this paper, we consider the bifunction g, the mapping F and regularization
parameters with the following assumptions:

(A1) g is ρ-strongly monotone and for each x ∈ C, g(x, ·) is weakly continuous and
convex on the domain C, ∂2g(x, ·)(x) := {wx ∈ H : g(x, y) ≥ 〈wx, y − x〉∀y ∈ C}
is upper semicontinuous and g(x, x) = 0 for all x ∈ C.

(A2) F : C → H is paramonotone and weakly closed on C, and Lipschitz continuous on
the domain C.

(A3) The solution set Sol(F, C) := {x̄ ∈ C : 〈F(x̄), y − x̄〉 ≥ 0 ∀y ∈ C} is nonempty.
(A4) μ ∈ (0, ∞), there are two nonnegative real sequences {αk} and {λk} such that

∞∑
k=0

λk = ∞,

∞∑
k=0

λ2k < ∞, lim
k→∞ αk = 0,

∞∑
k=0

αk = ∞,

∞∑
k=0

αkλk = ∞.

It is easy to check again that condition (A4) is satisfied by

λk := 1

(k + 1)λ
, αk := 1

(k + 1)α
, with λ ∈

(
1

2
, 1

)
and α ∈ (0, 1 − λ).

We recall a series of preliminary results needed for our convergence analysis.

Lemma 1 [8] Let {an}, {bn}, and {cn} be three sequences of nonnegative real numbers
satisfying the inequality

an+1 ≤ (1 + bn)an + cn ∀n ≥ n0,

for some integer n0 ≥ 1, where
∑∞

n=n0
bn < +∞ and

∑∞
n=n0

cn < +∞. Then limn→∞ an

exists. If in addition {an} has a subsequence which converges to zero, then limn→∞ an = 0.

Lemma 2 [20] Let {bn} be a sequence of real numbers that is not decreased at infinity, in
the sense that there exists a subsequence {bnj

} of {bn} which satisfies bnj
< bnj +1 for all

j ≥ 0. We also consider a sequence of integers {τn} defined by
τn = max{k ≤ n : bk < bk+1}.

Then, {τn}(n ≥ n0) is a nondecreasing sequence verifying limn→∞ τn = ∞, and for all
n ≥ 0, it holds that

bτn < bτn+1 and bn < bτn+1.
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Lemma 3 [20] Let {λn} and {βn} be nonnegative sequences such that
∞∑

n=0

λn = ∞,

∞∑
n=0

λ2n < ∞, and
∞∑

n=0

λnβn < ∞.

Then, the following two results hold:

(i) There exists a subsequence {βnk
} of {βn} such that limk→∞ βnk

= 0.
(ii) If {λn} and {βn} are also such that βn+1 − βn < θλn (for some positive θ ), then {βn}

satisfies limn→∞ βn = 0.

Lemma 4 [21] Let φ be the functional defined on C as φ(·) := 〈F(·), · − q〉, where q ∈ H
and F : C → H is monotone and weakly closed onC, and Lipschitz continuous on bounded
subsets of C. Then, φ is weakly lower semicontinuous on C.

3 Convergence Results

In order to solve Problem LKF(g, F, C), we investigate the convergence analysis of the
sequence {xk} given by the following iterative scheme.

Algorithm 1

Initialization. Taking two sequences of nonnegative real numbers and

Step 1. Choose
Step 2. Set max , and

1 and go to Step 1.

We begin with the following lemma.

Lemma 5 Let the sequences {xk} and {wk} be generated by Algorithm 1. Then

(i) ‖xk+1 − xk‖ ≤ λk for all k ≥ 0.
(ii) The following holds for all x∗ ∈ Sol(F, C)

‖xk+1−x∗‖2 ≤ ‖xk −x∗‖2− 2λk

ηk

〈F(xk), xk −x∗〉− 2αkλk

ηk

〈xk −x∗, wk〉+5λ2k. (3)

Proof (i) Since PrC is firmly nonexpansive, xk ∈ C and Step 2 of the algorithm provided
for ‖dk‖ ≤ ηk , we have

‖xk+1 − xk‖ =
∥∥∥∥PrC

(
xk − λk

ηk

dk

)
− xk

∥∥∥∥

=
∥∥∥∥PrC

(
xk − λk

ηk

dk

)
− PrC(xk)

∥∥∥∥

≤
∥∥∥∥
(

xk − λk

ηk

dk

)
− xk

∥∥∥∥

= λk

ηk

‖dk‖ ≤ λk.
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This implies (i).
(ii) Applying property (2) for x := xk ∈ C, z := x∗ ∈ C, and y := λk

ηk
dk ∈ H, and using

xk+1 = PrC
(
xk − λk

ηk
dk

)
, we obtain

‖xk+1 − x∗‖2 =
∥∥∥∥x∗ − PrC

(
xk − λk

ηk

dk

)∥∥∥∥
2

≤ ‖xk − x∗‖2 − 2
λk

ηk

〈dk, xk − x∗〉 + 5

(
λk

ηk

‖dk‖
)2

.

Combining the latter inequality with the bound ‖dk‖ ≤ ηk , and dk = T (xk)+αkw
k , we get

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2
λk

ηk

〈dk, xk − x∗〉 + 5

(
λk

ηk

‖dk‖
)2

≤ ‖xk − x∗‖2 − 2
λk

ηk

〈dk, xk − x∗〉 + 5λ2k

= ‖xk − x∗‖2 − 2
λk

ηk

〈F(xk), xk − x∗〉 − 2
λkαk

ηk

〈wk, xk − x∗〉 + 5λ2k.

This implies (3).

Theorem 1 Let the above assumptions (A1)–(A4) hold. Then, the sequence {xk} generated
by Algorithm 1 converges strongly to the unique solution of Problem LKF(g, F, C).

Proof We divide the proof into several claims.

Claim 1 The sequence {xk} is bounded.

Indeed, for each x∗ ∈ Sol(F, C), we have 〈F(x∗), x − x∗〉 ≥ 0 for all x ∈ C. By the
monotonicity of F and xk ∈ C, we get 〈F(xk), xk −x∗〉 ≥ 0. Combining this and inequality
(3), we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2αkλk

ηk

〈xk − x∗, wk〉 + 5λ2k.

Consequently,

‖xk+1 − x∗‖2 − 5
k∑

j=0

λ2j ≤ ‖xk − x∗‖2 − 5
k−1∑
j=0

λ2j − 2αkλk

ηk

〈xk − x∗, wk〉.

For each k ≥ 1, set ak := ‖xk − x∗‖2 − 5
∑k−1

j=0 λ2j . Then,

ak+1 − ak + 2αkλk

ηk

〈xk − x∗, wk〉 ≤ 0 ∀k ≥ 1. (4)

Case 1 There exists an index k0 > 0 such that the sequence {ak} is nonincreasing with
k ≥ k0. It implies that {ak} is bounded above by ak0 for all k ≥ k0, i.e., ak := ‖xk − x∗‖2 −
5

∑k−1
j=0 λ2j ≤ ak0∀k ≥ k0. Using assumption (A4) that

∑∞
k=0 λ2k < ∞, we have

‖xk − x∗‖2 ≤ 5
k−1∑
j=0

λ2j + ak0 < ∞.



Strong Convergence Theorem for the Lexicographic Ky Fan Inequality 523

It follows that the sequence {xk} is bounded.

Case 2 There exists a subsequence {akj
} of {ak} such that akj

< akj +1 for all j ≥ 0. By
Lemma 2, we have a subsequence {τk} such that

aτk
< aτk+1 and ak < aτk+1 ∀k ≥ 1. (5)

Replacing k := τk in (4) and using (5), we obtain

〈xτk − x∗, wτk 〉 ≤ 0.

Combining this with the convexity of g(x, ·), the ρ-strong monotonicity of g and g(x, x) =
0 for all x ∈ C, we get

0 ≤ 〈wτk , x∗ − xτk 〉
≤ g(xτk , x∗) − g(xτk , xτk )

= g(xτk , x∗)
≤ −g(x∗, xτk ) − ρ‖xτk − x∗‖2.

Then, for all w∗ ∈ ∂2g(x∗, x∗), we have

ρ‖xτk − x∗‖2 ≤ −g(x∗, xτk )

≤ −g(x∗, x∗) − 〈w∗, xτk − x∗〉
= −〈w∗, xτk − x∗〉
≤ ‖w∗‖‖xτk − x∗‖.

This shows that the sequence {xτk } is bounded and hence {aτk
} defined as aτk

= ‖xτk −
x∗‖2 − 5

∑τk−1
k=0 λ2τk

is also bounded. It follows from this and (5) that the sequence {ak}
is bounded. By a similar argument as in Case 1, we conclude that the sequence {xk} is
bounded.

Claim 2 For each x∗ ∈ Sol(F, C) and a bounded sequence {zk} in C such that

lim
k→∞〈F(zk), zk − x∗〉 = 0, (6)

we claim that any weak cluster point of {zk} belongs to Sol(F, C).

Indeed, suppose that {zkj } is a subsequence of {zk} such that zkj converges weakly to ẑ

inH. Obviously, ẑ ∈ C, because C is assumed to be closed and convex. Applying Lemma 4
for q := x∗, φ(x) := 〈F(x), x − x∗〉 and using Assumption (A2), we have that φ is weakly
lower semicontinuous on C and hence

〈F(ẑ), ẑ − x∗〉 = φ(z) ≤ lim inf
j→∞ φ(zkj ) = lim inf

j→∞ 〈F(zkj ), zkj − x∗〉. (7)

From the monotonicity of F and x∗ ∈ Sol(F, C), it follows that

0 ≤ 〈F(x∗), ẑ − x∗〉 ≤ 〈F(ẑ), ẑ − x∗〉. (8)

Assumption (6) yields
lim inf
j→∞ 〈F(zkj ), zkj − x∗〉 = 0.

Combining this, (7) and (8), we obtain 〈F(ẑ), ẑ − x∗〉 = 0. Since F is paramonotone and
x∗ ∈ Sol(F, C), we also have ẑ ∈ Sol(F, C).
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Claim 3 We show that, for all x∗ ∈ Sol(F, C), there exists γ > 0 such that

〈F(xk+1), xk+1 − x∗〉 − 〈F(xk), xk − x∗〉 ≤ γ λk.

Indeed, by Lemma 5 and the Lipschitz continuity of F , we have

〈F(xk+1), xk+1 − x∗〉 − 〈F(xk), xk − x∗〉
= 〈F(xk+1), xk+1−x∗〉−〈F(xk+1), xk −x∗〉+〈F(xk+1), xk −x∗〉−〈F(xk), xk −x∗〉
= 〈F(xk+1), xk+1 − xk〉 + 〈F(xk+1) − F(xk), xk − x∗〉
≤ ‖F(xk+1)‖‖xk+1 − xk‖ + L‖xk+1 − xk‖‖xk − x∗‖
= (‖F(xk+1)‖ + L‖xk − x∗‖)‖xk+1 − xk‖
= (‖F(xk+1)‖ + L‖xk − x∗‖)λk

≤ γ λk,

where γ := sup{‖F(xk+1)‖ + L‖xk − x∗‖ : k ≥ 1}. By Claim 1, we have γ < +∞.

Claim 4 The sequence {xk} converges strongly to the unique solution x∗ of LKF(g, F, C).

Indeed, Claim 1 ensures the boundedness of the sequence {xk}, hence {F(xk)} is bounded
(by the Lipschitz continuity of F on bounded subsets of C), and so is {wk} (from Assump-
tion (A1)). By the definition of ηk , we easily observe that {ηk} is bounded, so that there
exists a positive constant δ such that

μ ≤ ηk ≤ δ ∀k ≥ 0. (9)

Set

bj = ‖xj − x∗‖2 +
j−1∑
i=0

λiβi

ηi

− 5
j−1∑
i=0

λ2i .

By Lemma 5, form (3) can be equivalently rewritten as

‖xk+1 − x∗‖2 +
k∑

i=0

λi〈F(xi), xi − x∗〉
ηi

− 5
k∑

i=0

λ2i

≤ ‖xk − x∗‖2 +
k−1∑
i=0

λi〈F(xi), xi − x∗〉
ηi

− 5
k−1∑
i=0

λ2i − λk

ηk

〈F(xk), xk − x∗〉

−2αkλk

ηk

〈xk − x∗, wk〉.

This means that

bk+1 ≤ bk − λk

ηk

〈F(xk), xk − x∗〉 − 2αkλk

ηk

〈xk − x∗, wk〉. (10)

Now, we consider two cases as follows:

Case 1 There exists k0 such that {bk}(k ≥ k0) is nonincreasing, i.e., bk+1 ≤ bk for all
k ≥ k0, namely

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − λk〈F(xk), xk − x∗〉
ηk

+ 5λ2k.
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From the above proof 〈F(xk), xk − x∗〉 ≥ 〈F(x∗), xk − x∗〉 ≥ 0, we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 5λ2k.

Since
∑∞

k=0 λ2k < ∞ and Lemma 1, we obtain

lim
k→∞ ‖xk − x∗‖ exists and

∞∑
k=0

λk〈F(xk), xk − x∗〉
ηk

< ∞. (11)

From (9), together with the second estimate in (11), we immediately have
∞∑

k=0

λk〈F(xk), xk − x∗〉 < ∞.

Then, by Claim 3, together with our assumptions
∑∞

k=0 λ2k < ∞,
∑∞

k=0 λk = ∞, and using
Lemma 3, we obtain limk→∞〈F(xk), xk − x∗〉 = 0. As a consequence, Claim 2 shows that
any weak cluster point of {xk} belongs to Sol(F,C). By Lemma 5, we obviously have

λkαk

ηk

〈xk − x∗, wk〉 ≤ 1

2

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 5λ2k

)
.

From the boundedness of the sequence {xk} and ∑∞
k=0 λ2k < ∞, we have

∞∑
k=0

λkαk

ηk

〈xk − x∗, wk〉 < ∞. (12)

Moreover, from (9) and the assumption
∑∞

k=0 λkαk = ∞, it is easily seen that
∑∞

k=0
λkαk

ηk
=

∞. This together with (12), leads immediately to

lim inf
k→∞ 〈xk − x∗, wk〉 ≤ 0. (13)

By the ρ-strong monotonicity of g and wk ∈ ∂2g(xk, xk), we also have

ρ‖xk − x∗‖2 ≤ −g(xk, x∗) − g(x∗, xk)

≤ 〈wk, xk − x∗〉 − g(x∗, xk). (14)

Consequently, we get

ρ lim inf
k→∞ ‖xk − x∗‖2 ≤ lim inf

k→∞ 〈wk, xk − x∗〉 − lim inf
k→∞ g(x∗, xk).

Taking into account this and (13), we therefore obtain

lim inf
k→∞ ‖xk − x∗‖2 ≤ − 1

ρ
lim inf
k→∞ g(x∗, xk). (15)

Since {xk} is bounded and using the weak continuity of g(x∗, ·), there exists a subsequence
{xkj } of {xk} converging weakly to an element x̄ inH such that

lim inf
k→∞ g(x∗, xk) = lim inf

j→∞ g(x∗, xkj ) = g(x∗, x̄). (16)

By Claim 2 and x∗ is the unique solution of Problem LKF(g, F, C), x̄ ∈ Sol(F, C) and
hence g(x∗, x̄) ≥ 0. Then, combining (15) and (16), we obtain

lim inf
k→∞ ‖xk − x∗‖2 = 0.
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As a consequence, by the first estimate in (11), we deduce that

lim
k→∞ ‖xk − x∗‖2 = 0.

Case 2 There does not exist k0 such that {bk}(k ≥ k0) is nonincreasing. This implies that
there exists a subsequence {bkj

} of {bk} such that bkj
< bkj +1 for all j ≥ 0. In this case,

we have a sequence of indexes {τk} as defined in Lemma 2 such that bτk
< bτk+1 and

bk < bτk+1. Denote byW(xτk ) the set of weak cluster-points of {xτk }. By Claim 2, we have
W(xτk ) ⊂ Sol(F, C). From (10), the ρ-trong monotonicity of g and wτk ∈ ∂2g(xτk , xτk ),
we have

〈F(xτk ), xτk − x∗〉 ≤ −2ατk
〈xτk − x∗, wτk 〉

≤ 2ατk
[g(xτk , x∗) − g(xτk , xτk )]

= 2ατk
g(xτk , x∗)

≤ −2ατk
ρ‖xτk − x∗‖2 − 2ατk

g(x∗, xτk )

≤ −2ατk
ρ‖xτk − x∗‖2 − 2ατk

〈w∗, xτk − x∗〉, (17)

where w∗ ∈ ∂2g(x∗, x∗). Consequently,

〈F(xτk ), xτk − x∗〉 ≤ −2ατk
[ρ‖xτk − x∗‖2 + 〈w∗, xτk − x∗〉].

Combining this, 〈F(xτk ), xτk − x∗〉 ≥ 0 and the boundedness of {xk}, we can derive
lim

k→∞〈F(xτk ), xτk − x∗〉 = 0.

Furthermore, since 〈F(xτk ), xτk − x∗〉 ≥ 0 and (17), we obviously have

〈wτk , xτk − x∗〉 ≤ 0,

which, in light of (14), leads to

g(x∗, xτk ) ≤ −ρ‖xτk − x∗‖2.
Passing to the upper limit, we obtain

lim sup
k→∞

‖xτk − x∗‖2 ≤ − 1

ρ
lim sup
k→∞

g(x∗, xτk ) = − 1

ρ
g(x∗, z̄) ≤ 0,

so that

lim
k→∞ ‖xτk − x∗‖2 = 0 ⇒ xτk → x∗ as k → ∞.

Using the inequality bk < bτk+1 for all k ≥ k0, i.e.,

‖xk − x∗‖2 +
k−1∑
j=0

λj 〈F(xj ), xj − x∗〉
ηj

− 5
k−1∑
j=0

λ2j

≤ ‖xτk+1 − x∗‖2 +
τk∑

j=0

λj 〈F(xj ), xj − x∗〉
ηj

− 5
τk∑

j=0

λ2j .
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By the definition of τk and 〈F(xj ), xj − x∗〉 ≥ 0, we get τk ≤ k and hence

‖xk − x∗‖2 ≤ ‖xτk+1 − x∗‖2 +
k∑

j=τk

λj 〈F(xj ), xj − x∗〉
ηj

+ 5
k∑

j=τk

λ2j . (18)

Combining this and Assumption (A4), we have

– limk→∞
∑k

j=τk
λ2j = 0 (because τk → +∞) and

∑∞
j=1 λ2j < ∞;

– limk→∞
∑k

j=τk

λj 〈F(xj ),xj −x∗〉
ηj

= 0, because
∑k

j=τk
〈F(xj ), xj − x∗〉 → 0, λk → 0

and ηk is bounded away from zero;
– limk→∞ ‖xτk+1 − x∗‖ = 0.

From this and (18), we deduce that limk→∞ ‖xk −x∗‖ = 0 and the sequence {xk} converges
strongly to x∗.

4 Examples and Numerical Results

In this section, we illustrate the proposed algorithms by applying it to solve a class of the
lexicographic Ky Fan inequality defined by LKF(g, F, C). Here, C is a polyhedral convex
set given by

C := {x ∈ Rn : Ax ≤ b},
and the bifunction g : C × C → R is of the form

g(x, y) := 〈G(x) + Qy + q, y − x〉,
where G : C → Rn, Q ∈ Rn×n is a symmetric positive semidefinite matrix and q ∈ Rn.
Since Q is symmetric positive semidefinite, g(x, ·) is convex for each fixed x ∈ C. The
cost mapping F will be specified in detail in the following examples. It is well-known that
if G is ξ -strongly monotone on C and ξ > ‖Q‖, then g is strongly monotone on C × C

with constant ξ − ‖Q‖ (see [27], later [26]). As usual, we can say that xk is an ε-solution
of Problem LKF(g, F, C) if ‖xk+1 − xk‖ ≤ ε.

Example 1 Consider the mapping F : R3 → R3 given in [28] which is paramonotone (not
strictly monotone) of the form

F(x) :=
⎛
⎝

2 2 0
1 2 0
0 0 0

⎞
⎠ x, G(x) := Px, and P :=

⎛
⎝

6.1 2 0
2 5.6 0
0 0 4.5

⎞
⎠ .

In this example, let C, Q and q be defined by

C := {x ∈ R3 : xi ≥ 0 ∀i = 1, 2, 3, x1 + x2 + x3 ≤ 10}
and

Q :=
⎛
⎝

1.6 1 0
1 1.6 0
0 0 1.5

⎞
⎠ , q :=

⎛
⎝

1
−3
4

⎞
⎠ .

It is easy to see that G is strongly monotone with constant ξ = 3.8344, F is Lipschitz
continuous with the constant L = 3.5616 and ‖Q‖ = 2.6. Then, g is strongly monotone
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with the constant ξ − ‖Q‖ = 1.2344 and ∂2g(x, x) = {(P + Q)x + q}. To test Algorithm
1, we choose parameters:

μ = 5, λ := 0.75, α := 0.2, λk := 1

(k + 1)0.75
, αk := 1

(k + 1)0.2
∀k ≥ 0.

Then, the iterative scheme for solving LKF(g, F, C) is formulated as follows:

dk = F(xk) + αk[(P + Q)xk + q], ηk = max{μ, ‖dk‖} and xk+1 := PrC

(
xk − λk

ηk

dk

)
.

(19)
The experiments are implemented in Matlab R2013a running on a Laptop Intel(R)
Core(TM) i3-3110M CPU @ 2.40 GHz 2.40 GHz 4 Gb RAM.

Example 2 Consider the mapping F : R4 → R4 described in [13] which is paramonotone
of the form

F(x) = (x1 − 2x2, −2x1 + 4x2, x3 − 2x4, −2x3 + 4x4)
T and

G(x) := Px, P :=

⎛
⎜⎜⎝

7 2.5 0 0
2.5 5.5 0 0
0 0 4 1
0 0 1 2.7

⎞
⎟⎟⎠ .

Take C, Q, and q as follows:

C := {x ∈ R4 : xi ≥ 0 ∀i = 1, . . . , 4, x1 + x2 + x3 + x4 ≤ 9},
and

Q :=

⎛
⎜⎜⎝

1.2 1 0 0
1 1.5 0 0
0 0 1.2 0
0 0 0 3.5

⎞
⎟⎟⎠ , q :=

⎛
⎜⎜⎝

−1
2
3
5

⎞
⎟⎟⎠ .

Table 1 Scheme (19) with different starting points, Example 1, the tolerance ε = 10−3

x0 = (1, 2, 3)T x0 = (2.5, 3, 4)T

No. Iter. xk
1 xk

2 xk
3 No. Iter. xk

1 xk
2 xk

3

k = 1 2.3333 3.3695 4.2971 k = 1 2.5672 3.1614 4.2714

k = 2 2.2874 3.3542 4.3584 k = 2 2.5106 3.1552 4.3341

k = 3 2.2548 3.3432 4.4020 k = 3 2.4707 3.1507 4.3787

k = 4 2.2293 3.3346 4.4362 k = 4 2.4395 3.1469 4.4136

k = 5 2.2081 3.3274 4.4646 k = 5 2.4137 3.1438 4.4426

k = 6 2.1899 3.3212 4.4889 k = 6 2.3916 3.1410 4.4674

k = 7 2.1739 3.3157 4.5104 k = 7 2.3723 3.1384 4.4893

k = 8 2.1596 3.3108 4.5295 k = 8 2.3550 3.1362 4.5088

k = 9 2.1467 3.3064 4.5469 k = 9 2.3394 3.1341 4.5265

k = 10 2.1349 3.3023 4.5628 k = 10 2.3252 3.1321 4.5427

· · · · · · · · · · · · · · · · · · · · · · · ·
k = 316 1.6235 3.1127 5.2638 k = 330 1.6235 3.1127 5.2638
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Table 2 Scheme (19) with
different parameters, Example 2,
x0 = (0, 1, 2, 3), ε = 10−3, and
μ = 5

αk λk No. Iter. CPU-times/s

1
(1+k)0.8

1
(1+k)0.15

244 21.3125
1

(1+k)0.7
1

(1+k)0.15
155 13.5781

1
(1+k)0.7

1
(1+k)0.2

151 13.5000
1

(1+k)0.6
1

(1+k)0.2
116 10.6250

1
(1+k)0.6

1
(1+k)0.15

120 10.5625
1

(1+k)0.6
1

(1+k)0.1
123 11.6563

1
(1+2k)0.8

1
(1+2k)0.15

244 21.3125
1

(1+2k)0.7
1

(1+2k)0.15
271 23.7656

1
(1+2k)0.7

1
(1+2k)0.2

253 21.6563
1

(1+2k)0.6
1

(1+2k)0.2
158 13.4219

1
(1+3k)0.6

1
(1+3k)0.15

201 17.2031
1

(1+3k)0.6
1

(1+3k)0.1
210 17.9531

Then, F is Lipschitz continuous and g is strongly monotone on R4 which satisfy
Assumptions (A1)–(A3).

From the preliminary numerical results reported in Tables 1 and 2, we observe that

(a) As with other methods for Ky Fan inequalities such as the proximal point algorithm,
or the auxiliary principle for equilibrium problems, the convergence speed of the
algorithm depends very much on the starting point.

(b) The algorithm is quite sensitive to the choice of the parameters λk and αk .
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