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Abstract We study the existence of non-trivial weak solutions in W& "P(Q) of the super-
linear Dirichlet problem:

—div(|Vu|P~2Vu) = f(x,u) in L,
u=20 on 9€2,

where f satisfies the condition
If@ D] < lo@t ™ +bkx)  VY(x.H) e QxR,

where r € (p, %), be erTl(Q) and |a)|”1 may be non-integrable on 2.

Keywords Nemytskii operators - p-Laplacian - Multiplicity of solutions - Mountain-pass
theorem
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1 Introduction

Let N be an integer > 3, Q2 be a bounded domain in RY with smooth boundary 92, p be in

[1, N) and p* = NN—fp. Let W(}’p (£2) be the usual Sobolev space with the following norm

1
P’ Lp
lully,p = {/ |Vul dx} Yu € WP (Q).
Q
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We consider the following Dirichlet problem:

(1

—div(|Vu|P~2Vu) = f(x,u) in 2,
u=20 on 0%2.

In [3-5, 8], one has proved (1) has non-trivial solutions if f is continuous on Q x Rand
satisfies the following conditions

(C1) Thereexistr € (p, p* — 1) and a positive real number « such that
|, 0] <a(l+ ]t Y(x,t) € 2 x R.
(C2)  f(x,0) = 0 for every x in Q and lim,_, o L0

[e|P=21
(C3) limy-oo I{‘(,%)t = 00 uniformly in Q.

(C4) There exist C € [0, 00), 8 > p such that

= 0 uniformly in .

0< f(x,0)t —0F(x,t) ae.inQx{reR: |t > C},
where F(x,t) = fotf(x, &)dé& for every (x, ) in Q x R.

In the present paper, we prove the following result.

Theorem 1 Assume f is a Carathéodory function on Q2 x R and satisfies the following
conditions

(f1) thereexistr € (p, p*), w € K, (see Definition 1) and b € erTl(Q) such that
|f G 0] < o)t + b(x) V(x,t) € Q xR,

(f2) there exists d € LY(Q) such that | f(x,t)] <d(x) foreveryxin Qand |t| < C,
2N
(f3) there is a non-positive function dy in L » (2) such that di(x) < AER)) for every

[t|P—2t
(x,1) € 2 xR,
(f2)  f(x,0) =0 forevery x in  and lim,_,¢ l{ f;;g =0ae. in,
fx,1)

(fs) limy—oo ey =00 ae. in Q, and
(fe) there exist® > p andd, € LY() such that

dry(x) < f(x, )t —OF (x,1) aeinQx{teR:|t| > C}.

Then there is a non-trivial weak solution in Wol’p(Q) of the problem (1).

fx.0)

[t|P—2t
controlled when |¢| is sufficiently small. This observation is the motivation of (f2) and

(f3). Here, we consider the case, in which the positivity of "; l(]f_’?z can be disturbed by a

Remark 1 In many applications,

is non-negative for + # 0 and |f(x, t)| is well-

2N
non-positive function dy in L » (2).

Remark 2 If f is continuous on © x R and satisfies the conditions (C1), (C2), (C3), and
(Cy4), then f satisfies (f1)—(fs). Furthermore, |w| ™! may be not integrable on 2 and the
convergences in (f4) and (fs) may be not uniform on €2 (see Example 4). Therefore our
theorem improves the corresponding results in [3-5, 8].

We study some method to construct weight functions in weighted Sobolev embeddings and
the Nemytskii operator from Sobolev spaces into Lebesgue spaces (see Theorems 4 and 5)
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in Section 2. We apply these results to prove the existence of non-trivial solutions of a class
of super-linear p-Laplace problems in the last section.

2 Nemytskii Operators

Definition 1 Let o be a measurable function on 2. We put
Teu =o0u Yu e Wol’p(Q).
We say

(i) o isofclassC, s if T, is a continuous mapping from Wg’p(Q) into L5 (2);
(i) o isof class ICp s if T,; is a compact mapping from Wol’p(Q) into L*(2).

We have the following results.

Theorem 2 Let ay and o be in [1, 00) such that o1 < . Let w1 € Cp o), w2 € Cp o, be
aj(ap—p)  ap(B—aj)
f(az—a])wzﬂ(oq—a]). Then

such that w1 and wy are non-negative. Let B € (a1, «z) and v =
w e prﬁ.

Proof There is a positive real number Cj such that

1/0{,‘
{f w;’f|u|“fdx} <Cillull, VueWyP(Q),i=12. 2)
Q

Since B = 2=L. o + B=% ) by Holder’s inequality and (2), we get

= a2 —o]

/B 9Py ©p-p L3 B—a; 1/8
{/ ”ﬁ'”'ﬁd"] - / op T a2y |
Q Q
ay-p gy ) 1/B
< [/ w‘l"|u|“1dx} ? ‘{/ wg‘2|u|“2dx} >
Q Q
1 az—ﬁa 1 ﬂ—a| o 1/.3
o1y ap wp—ay 41 @) @y e
< ' |ul*dx w,” [u*2dx
Q Q
1,
< Cillull,, Yue Wy ().
O
Theorem 3 Let s be in [1, NN—_’;), abein (0,1), w € Cp,s and 6 be measurable functions

on Q such that o > 0 and |0| < w®. Then 0 is of class Kp 5.

Proof Since T, isinC, s, T,, is continuous from Wol‘p(Q) into L*(€2) and there is a positive
real number C» such that

1/s
{/ |u|5wsdx} < Callully,p Yu € WJ’F(Q). 3)
Q
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Since w* (x) < 1 + w(x) for every x in  and 1 and w are in C,, 5, ®* belongs to Cp 5.
Thus, Tp is in Cp,s. Let M be a positive real number and {u,} be a sequence in Wol’p(Q),
such that [lu,lli,, < M for any n. By Rellich-Kondrachov’s theorem (Theorem 9.16 in

[2]), {u,} has a subsequence {u,, } converging to u in L*(2) and {u,, } converging weakly
to u in Wé’p(Q), therefore |Ju|l1,, < liminfg_ oo [lunll1,p < M. We shall prove {Tp (un, )}
converges to Tg(u) in L*(£2).

Let ¢ be a positive real number. Choose a positive real number é such that

5
(QC M) 8@ D5 < % (4)

Put Q' = {x € Q: w(x) > §}. By (3) and (4), we have
/ 18, — Wl dx = / ltn, — ul*191°dx
Q Q

/ |y, —ul’0* dx +/ |y, — ul*0* dx
9% Q\Q

5(“_1)5/ |y, —ul’w*dx —I—B‘”/ |y, —ul*dx
o o\

IA

IA

IA

5(“71)“‘/ [t —ulswsdx—l—ﬁ‘”/ [ten, —ul’dx
Q Q

IA

sle=Ds (C2||Mnk . M”l,p)s +8as/ i, — ul*dx
Q

E 8(a—1)s (ZCZM)Y + 8“5/ |unk _ ulsdx
Q
85’
< — —I—S"”/ ltn, —ul’dx. 5)
2 Q
Since {u,, } converges in L°(£2), there is an integer ko such that
S
/ i, —ul’dx <85 Vi > k. ©6)
Q 2
Combining (5) and (6), we get the theorem. O

Corollary 1 Let p € [I,N), s € (1, NN—fp> n e (% oo) and 6 € L"(Q). Then
OisinkCp .

Proof Let B € (0,1) be such that 8y = and @ = |08, Then w is in

sNp
Np—s(N—p)

sNp _ _ _ . .
L¥==71 (Q). Since X2 fv(g P 4 s(%pp) = 1, by Holder’s inequality, we have

Np—s(N—p) s(N—p)

—P
. sNp Np _Np Np
f Iwul‘de/ <|w|NP*S‘N*P)> (/ IulN*P> Ve Wyl (%),
Q Q Q

which implies that T, is continuous at 0 in WO]”J (2). Thus, T, is a linear continuous map
from W(;’p(Q) into L*(2). By Theorem 3, 6 is of class IC}, ;. O

Example 1 Let N = 5, p = 3,5 = 4and Q = {x € R’ : |x| < 1}. Then

1 ..
Tty = sy = % < 10. Put @y = |x|7™ cos(16]x]). Then wy is in L'*(R).
Thus by Corollary 1, wy is of class K s.
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Corollary 2 Let p € [I,N), s € ( ,NN—_PP), a bein (0,1) and n € Cp . Then 6 =

ap(p:—S) )
n S0P is of class ICp s.

Proof Put w1 = n, wa = 1, a1 = p,ap = p*, B = s. By the Embedding theorem of

p(p*—s)
Sobolev, wy € Cp p+. By Theorem 2, we see that s¢*=» € C, ;. Thus by Theorem 4,
p(p*—s)
0”5 is of class K . O

Example2 Let Q = {x e R3 i x| < 1}, p=3,s =4, & = 3 and n(x) = (1 — ||x|»)!
for every x in Q. By Theorem 8.4 in [7], n € C, ;. Note that p* = NN—_'; =1 and

p(p*—s) 337 7

s(p*—p) 449 16

Puté(x) = (1 — ||x||2)_% for every x in Q. Then 6 € K3 4.

Theorem 4 Let s be in (1, p*), w be in /Cp,s, b be in Lﬁ(Q) and g be a Carathéodory
Sunction from Q x R into R. Assume

1g(r. D < lo@ Mz T +b(x)  V(xr,2) e QxR (N
Put
No@)(x) = glx, v(x)) Vv e WP (Q),x € Q.
We have
(1) Ny is a continuous mapping from Wol’p(Q) into L1 ().
(i) If A is a bounded subset in WOI"D(Q), then Ng(A) is compact in L5t ().

Proof (i)Putpu =s,q = 27 and

g1(x, ) =glx,0()71)  VY(x,0)eQ xR,
By (7), we have

g1, O < 1P +b()  Y(x,0) e QxR

On the other hand
1
Ng(v) = Ng, o Tig(v) Vv € Wy'P(Q).
Since w € K, s, applying Theorem 2.3 in [5], we get the theorem. O

Theorem 5 Lets € (1, p*), w be in ICp s, a function b € L+t (2) and g be a Carathéodory
Sunction from Q x R into R. Assume

lg(x, D < lw@ Iz +b(x)  Y(x,2) e 2 xR
Put

t
Gx. 1) =fg<x,s>ds Vi1 € @,
0

W (u) = fQG(x,t)dx Vu e WyP(9).
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We have

(i) {Ng(wy)} converges to Ng(w) in LY(Q) when {w,} weakly converges to w in
Lp
Wy ().
(it) W, is a continuously Fréchet differentiable mapping from WO1 P (Q) into R and

Dwg(u><¢>=Lg<x,s>¢dx Vi, § € WP (9).

(ii1) If A is a bounded subset in wlp (R2), then there is a positive real number M such that
0
W ()| + [ DYV < M Yv € A.

Proof Let u =s,q = 7 and g| be as in the proof of Theorem 4. Put

t
Gi(x.1) =/g<x,f,-)ds V1) €
0

u(x)
W, (u) = /Q/o gi(x, &)dedx Yu € L?(Q).

By [5, Theorem 2.8], Ng, is continuous from L =1 () into L1(Q) and W, is a continuously

Fréchet differentiable mapping from LT (2) into R. We see that N¢ = Ng, o T, and
W, = W, oT,. By Theorem 3, we get the theorem. O

Remark 3 If w = 1, Theorems 4 and 5 have been proved in [1, 5, 6].
Example 3 Let @ = {x € R’ : |Ix|| < 1}, p =35 =4 o = %and px) =

(%—||x||2)2(1 —||x||2)_% for every x in Q2. By Example 2, p € K3 4. Puta(x) = p(x) 1 =
(3 — lIx )61 - Ix[1%)~T6 for every x in $2. Thus, a is not integrable on €2 and Theorem 5

improves corresponding results in [1, 5, 6].

3 Proof of Theorem 1

Put
1
Jw) = —ulf, —/ F(x,u)dx  Yue W, (Q). ®)
p ’ Q

By [3, Theorem 9], Theorem 5 and (f1), J is continuously Fréchet differentiable on
W, () and

DJ(u)(v):/ |Vu|”72Vu~Vvdx—/ fx,u)-vdx Yu,v € Wol’p(Q). ®
Q Q
In order to prove the theorem, we need the following lemmas.

Lemma 1 Under condition ( f3) and ( f1), there exist positive numbers p and n such that
J(u) =y for all w in Wy (Q) with ||u]| = p.

Proof Suppose on the contrary that

1
inf{](u) cue WP (), llull,, = ;} <0 VneN.
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Then, there is a sequence {u,} in Wé’p(Q) such that [u,|l1,, = % and J (u,) < ﬁ Note

that p < 2§va 5 < ﬂ. By replacing {u,} by its subsequence, by [2, Theorem 4.9], we

can suppose that lim,,_, » #,, (x) = 0 for every x in 2, {W} strongly (resp. pointwise)

2Np . . 2Np
converges to w in L2V-7 (2) (resp. on 2) and lnl <y with a function v in L2¥-¢ ().
P

llunlly
We have

L T 1 f Fun () // ()
- > D = — — =
n Tl , e Jao ], lullf ,
_! _/ /1 f(x,sun(x)) sp|u,,<x>|f’dsdx.
0 (sunCNP2sun ()" Jullf,

Since d; € L27N (2), dyv? is integrable on 2 and, by (f3)
fQasty () N O
(st (X))P 2511 (x) IIMII{’J, leell
forallx € 2,5 € (0,1),n € N.
Hence, by the generalized Fatou lemma ([9, p.85]), and (f1)

1 P
0 = liminf — = — — lim sup/ / A SM"Q(X)) sP Iu,,(xp)l dsdx
n—00 n n—00 0 (sun ()P Zsun(x) lully

1
= l _/ / lim sup f e, sun ) sP Jun (017 dsdx = l
p o Jodo oo | ua())P Esun(0) Jullf p

This contradiction implies the lemma. O

> sPdi (x)v? (x)

Lp

Lemma 2 Let p be as in Lemma 1. Under conditions ( f3) and (fs), there is e in Wé’p(Q) \
B(0, p) such that J(e) < O.

Proof Letu € Wol’p(Q) be such that [lully,, = 1 and u > 0 on . By (8), we have

nu(x) nP 1
—/ / f(x,s)dsdx = — —/ / f(x, Enu(x))nu(x)dédx
QJO p QJO

n? VG gnu)
p[l_pfg b EnuGoyr-1c MOAsx]

J (nu)

2N,
By Sobolev’s embedding theorem, u belongs to L5 (2). By (f3), d1|u|? is integrable and
%gﬂ lu(x)|? > P~1d; (x)|u(x)|? for every integer n, x € Qand & € (0, 1).
Hence, by the generalized Fatou lemma and ( f5), one has

1
lim sup |:l—p// | S (x, snu)) épllu(x)|pd$dx:|
2 Jo

n—o0 énu(x)|1’_2“;‘nu(x)

1
e S gnu(x) »
=1 1}1n_1)101C1)f |:p//0 |§nu(x)|f”*2§nu(x)g |1 ()] d?dx:|

1— //hm [ fx, Enu(x) §p_1|u(x)|p]d§dx=—w,

n—o0 | |Enu(x)|P~2Enu(x)

IA
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which implies lim,,_, o, J(nu#) = —oo. Hence, we get the lemma. O

Lemma 3 Assume (f1), (f2), (f3), (f5) and (fs) hold. Let {u,} be a sequence in Wol”’(Q)
such that {J (u,)} is bounded and lim,_ oo (1 + [|u,|1,p) IDJ (un) || = O. Then {u,} has a

subsequence converging in Wol’p (£2).
Proof Put 2, = {x € Q: |u,(x)| < C} forevery n € N. By (f2) and (fg), we get

/ [f G, up)uy—0F (x, uy)ldx = </ +/ > [f G, upn)uy—0F (x, uy)ldx
Q Q\Q, JQ,

up(x)
> / dzdx+/ |:f(x,un)un—9/ f(x,t)dt:| dx
Q\Q, Q 0

> —/ Idzldx—C(l—l-Q)/ |d(x)|dx
Q Qn

> —lld2llp1 @) —CUA + )l L1 ()

which implies

/ [(9 - 1) [Vun|? — 0F (x,uy) + f(x, un)un)] dx
QL\P

0
> / (; - 1) |Vuu|Pdx —|ld2ll 1) — CA+0)lldlp1o  YneN.  (10)
Q

By (8) and (9), there are a positive real number M and a sequence {u,} in WO1 P (€2) such that
1
-M < / (—|Vun|p—F(x,un)) dx <M Vn € N,
Q\P

-M < /(|Vun|” — f(x, up)uy)dx <M Vn € N.
Q

It follows that

/ |:<9 _ 1) Vi, |P —O0F (x,un) + f(x, un)un)j| dx <(1+6)M VneN. (11)
Q pP

Combining (10) and (11), we get
0
/ (; — 1) [Vuy|Pdx < (1+0)M + 2l @) + CA+Ddl L) Vn e N,
Q

which implies {u,,} is bounded in W(}’p(Q). By Theorem 4, there is a subsequence {u,, } of

{u,} such that {u,, } weakly (resp. strongly) converges to u in Wé’p(Q) (resp. in LP%I ()
and {Ny(up,,)} is bounded in L7 (). Since lim, o [|DJ (uy )|l = 0 and {u,, — uly is
bounded in W1-» (2), we have

lim / S, up) Uy, —u)dx = lim / Ny (up) Uy, —u)dx =0
k—o00 Jq k—o00 Jq
and

lim ’/ |Vun|p_2v“nkv(unk —u)dx _/ S, upy) (U, —u)dx
Q Q

k— 00

< lim |[[Duy |llun, — ulli,p = 0.
k— 00
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Hence

lim | Vi |P ">V, V(uy, —u)dx = 0.
k=00 Jo

Thus, by [3, Theorem 10], {u,,} strongly converges to u in wbhr(Q). O

Proof of Theorem 1 Using the Mountain-pass theorem with the Palais—Smale condition, by
Lemmas 1, 2, and 3, we obtain a non-trivial weak solution for the problem (1). O

Example 4 Let N =5, p=3,r=4,0>0,Q={x e R : ||x|| < 1},
wo(x) = |x|" T cos(16[x])  Vx € Q,

1 2 2 2.1
wi(x) = E—llxll 1 —=1lxl1""% Vx € Q,

TR =) if e <1,
po(t) = {0 if |t e R\ [=1, 1],
0 if ] < 1,
p1(t) = § lt| =1 if 7] € [1,2],
1 if |t] > 2.

F, ) = wo) o) + o1 () TPt (1) Y(x, 1) € @ xR,

Letw = |wo| + w1, C = 1, d(x) = |x|" %, dy(x) = —d(x) and da(x) = x|~ for
2N
every x in Q. We see that dy € L7 (), dy € LY(Q) and d € LY(Q). By Examples 1
and 2, w is in ICp, . Thus, f satisfies conditions (f1)—(f5). Since lim|y|—0 wo(x) = oo and
lim‘ x> ) w1(x) = 0, the convergences in (f1) and (f5) are not uniform on €.
Let & = 4. For every x in 2, we have

1 t t
OF(x,1) < 6 (/0 +/1 ) fi(x, &)dE < dap(x)|"! +4w;”(x>/0 (1&Pg — &%)de
[¢]
— 4oom)]? + don (x)° /1 & — £)de
= 4o + 01 (x)? FMS i ey 1}
5 5
3 3 4 5 1 4

= o) + o1 (x) [gv |+5 -1 ]

< 4o + o1 ()’ [t — 1]

= 4wo(x)® + @1 ()] — 1]

< 4o + w1 (x)*?

= Hwo(X) + fitx,0r V| €[1,2],

t

OF (x,1) < 4o ™' +6 /0 o1 (w1 ()" |EPEdE

=<

t
Haoo@)|? +6 /0 o1 (1) (& &

= 4o + o1 (x)*r*
= 4o + fitx, )t V|t| > 2.
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Thus, we get (fs).
Therefore, we can apply Theorem 1 to f with C = 1. Since o' '(x) >

1—x ||2)’% for every x in €2, "1 is not integrable on 2. Therefore, the results in [3-5,

8] can not be applied to solve (1) in this case.
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