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Abstract We study the existence of non-trivial weak solutions in W
1,p
0 (�) of the super-

linear Dirichlet problem:{ −div(|∇u|p−2∇u) = f (x, u) in �,

u = 0 on ∂�,

where f satisfies the condition

|f (x, t)| ≤ |ω(x)t |r−1 + b(x) ∀(x, t) ∈ � × R,

where r ∈ (p,
Np

N−p
), b ∈ L

r
r−1 (�) and |ω|r−1 may be non-integrable on �.

Keywords Nemytskii operators · p-Laplacian · Multiplicity of solutions · Mountain-pass
theorem
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1 Introduction

Let N be an integer ≥ 3, � be a bounded domain in RN with smooth boundary ∂�, p be in
[1, N) and p∗ = Np

N−p
. Let W 1,p

0 (�) be the usual Sobolev space with the following norm

‖u‖1,p =
{∫

�

|∇u|pdx

} 1
p ∀u ∈ W

1,p
0 (�).
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We consider the following Dirichlet problem:{ −div(|∇u|p−2∇u) = f (x, u) in �,

u = 0 on ∂�.
(1)

In [3–5, 8], one has proved (1) has non-trivial solutions if f is continuous on � ×R and
satisfies the following conditions

(C1) There exist r ∈ (p, p∗ − 1) and a positive real number α such that

|f (x, t)| ≤ α(1 + |t |r−1) ∀(x, t) ∈ � × R.

(C2) f (x, 0) = 0 for every x in � and limt→0
f (x,t)

|t |p−2t
= 0 uniformly in �.

(C3) lim|t |→∞ f (x,t)

|t |p−2t
= ∞ uniformly in �.

(C4) There exist C ∈ [0, ∞), θ > p such that

0 ≤ f (x, t)t − θF (x, t) a.e. in � × {t ∈ R : |t | > C},
where F(x, t) = ∫ t

0f (x, ξ)dξ for every (x, t) in � × R.

In the present paper, we prove the following result.

Theorem 1 Assume f is a Carathéodory function on � × R and satisfies the following
conditions

(f1) there exist r ∈ (p, p∗), ω ∈ Kp,r (see Definition 1) and b ∈ L
r

r−1 (�) such that

|f (x, t)| ≤ |ω(x)t |r−1 + b(x) ∀(x, t) ∈ � × R,

(f2) there exists d ∈ L1(�) such that |f (x, t)| ≤ d(x) for every x in � and |t | ≤ C,

(f3) there is a non-positive function d1 in L
2N
p (�) such that d1(x) ≤ f (x,t)

|t |p−2t
for every

(x, t) ∈ � × R,
(f4) f (x, 0) = 0 for every x in � and limt→0

f (x,t)

|t |p−2t
= 0 a.e. in �,

(f5) lim|t |→∞ f (x,t)

|t |p−2t
= ∞ a.e. in �, and

(f6) there exist θ > p and d2 ∈ L1(�) such that

d2(x) ≤ f (x, t)t − θF (x, t) a.e. in � × {t ∈ R : |t | > C}.
Then there is a non-trivial weak solution in W

1,p
0 (�) of the problem (1).

Remark 1 In many applications, f (x,t)

|t |p−2t
is non-negative for t �= 0 and |f (x, t)| is well-

controlled when |t | is sufficiently small. This observation is the motivation of (f2) and
(f3). Here, we consider the case, in which the positivity of f (x,t)

|t |p−2t
can be disturbed by a

non-positive function d1 in L
2N
p (�).

Remark 2 If f is continuous on � × R and satisfies the conditions (C1), (C2), (C3), and
(C4), then f satisfies (f1)–(f6). Furthermore, |w|r−1 may be not integrable on � and the
convergences in (f4) and (f5) may be not uniform on � (see Example 4). Therefore our
theorem improves the corresponding results in [3–5, 8].

We study some method to construct weight functions in weighted Sobolev embeddings and
the Nemytskii operator from Sobolev spaces into Lebesgue spaces (see Theorems 4 and 5)
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in Section 2. We apply these results to prove the existence of non-trivial solutions of a class
of super-linear p-Laplace problems in the last section.

2 Nemytskii Operators

Definition 1 Let σ be a measurable function on �. We put

Tσ u = σu ∀u ∈ W
1,p
0 (�).

We say

(i) σ is of class Cp,s if Tσ is a continuous mapping from W
1,p
0 (�) into Ls(�);

(ii) σ is of class Kp,s if Tσ is a compact mapping from W
1,p
0 (�) into Ls(�).

We have the following results.

Theorem 2 Let α1 and α2 be in [1, ∞) such that α1 < α2. Let ω1 ∈ Cp,α1 , ω2 ∈ Cp,α2 be

such that ω1 and ω2 are non-negative. Let β ∈ (α1, α2) and ω = ω

α1(α2−β)

β(α2−α1)

1 ω

α2(β−α1)

β(α2−α1)

2 . Then
w ∈ Cp,β .

Proof There is a positive real number C1 such that{∫
�

ω
αi

i |u|αi dx

}1/αi

≤ C1‖u‖1,p ∀u ∈ W
1,p
0 (�), i = 1, 2. (2)

Since β = α2−β
α2−α1

α1 + β−α1
α2−α1

α2, by Hölder’s inequality and (2), we get

{∫
�

ωβ |u|βdx

}1/β

=
{∫

�

ω

α2−β

α2−α1
α1

1 |u|
α2−β

α2−α1
α1ω

β−α1
α2−α1

α2

2 |u|
β−α1
α2−α1

α2dx

}1/β

≤
⎧⎨
⎩

{∫
�

ω
α1
1 |u|α1dx

} α2−β

α2−α1
{∫

�

ω
α2
2 |u|α2dx

} β−α1
α2−α1

⎫⎬
⎭

1/β

≤
⎧⎨
⎩

{∫
�

ω
α1
1 |u|α1dx

} 1
α1

α2−β

α2−α1
α1

{∫
�

ω
α2
2 |u|α2dx

} 1
α2

β−α1
α2−α1

α2

⎫⎬
⎭

1/β

≤ C1‖u‖1,p ∀u ∈ W
1,p
0 (�).

Theorem 3 Let s be in [1, Np
N−p

), α be in (0, 1), ω ∈ Cp,s and θ be measurable functions
on � such that ω ≥ 0 and |θ | ≤ ωα . Then θ is of class Kp,s .

Proof Since Tω is in Cp,s , Tω is continuous fromW
1,p
0 (�) intoLs(�) and there is a positive

real number C2 such that{∫
�

|u|sωsdx

}1/s

≤ C2‖u‖1,p ∀u ∈ W
1,p
0 (�). (3)
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Since ωα(x) ≤ 1 + ω(x) for every x in � and 1 and ω are in Cp,s , ωα belongs to Cp,s .

Thus, Tθ is in Cp,s . Let M be a positive real number and {un} be a sequence in W
1,p
0 (�),

such that ‖un‖1,p ≤ M for any n. By Rellich–Kondrachov’s theorem (Theorem 9.16 in
[2]), {un} has a subsequence {unk

} converging to u in Ls(�) and {unk
} converging weakly

to u in W
1,p
0 (�), therefore ‖u‖1,p ≤ lim infk→∞ ‖unk

‖1,p ≤ M . We shall prove {Tθ (unk
)}

converges to Tθ (u) in Ls(�).
Let ε be a positive real number. Choose a positive real number δ such that

(2C2M)sδ(α−1)s <
εs

2
. (4)

Put �′ = {x ∈ � : ω(x) > δ}. By (3) and (4), we have∫
�

|θ(unk
− u)|sdx =

∫
�

|unk
− u|s |θ |sdx

≤
∫

�′
|unk

− u|sωαsdx +
∫

�\�′
|unk

− u|sωαsdx

≤ δ(α−1)s
∫

�′
|unk

− u|sωsdx + δαs

∫
�\�′

|unk
− u|sdx

≤ δ(α−1)s
∫

�

|unk
− u|sωsdx + δαs

∫
�

|unk
− u|sdx

≤ δ(α−1)s (
C2‖unk

− u‖1,p
)s + δαs

∫
�

|unk
− u|sdx

≤ δ(α−1)s(2C2M)s + δαs

∫
�

|unk
− u|sdx

≤ εs

2
+ δαs

∫
�

|unk
− u|sdx. (5)

Since {unk
} converges in Ls(�), there is an integer k0 such that∫

�

|unk
− u|sdx ≤ δ−αs εs

2
∀k ≥ k0. (6)

Combining (5) and (6), we get the theorem.

Corollary 1 Let p ∈ [1, N), s ∈
(
1, Np

N−p

)
, η ∈

(
sNp

Np−s(N−p)
, ∞

)
and θ ∈ Lη(�). Then

θ is in Kp,s .

Proof Let β ∈ (0, 1) be such that βη = sNp
Np−s(N−p)

and ω = |θ |1/β . Then ω is in

L
sNp

Np−s(N−p) (�). Since Np−s(N−p)
Np

+ s(N−p)
Np

= 1, by Hölder’s inequality, we have

∫
�

|ωu|sdx ≤
∫

�

(
|ω| sNp

Np−s(N−p)

)Np−s(N−p)
Np

(∫
�

|u| Np
N−p

) s(N−p)
Np ∀u ∈ W

1,p
0 (�),

which implies that Tω is continuous at 0 in W
1,p
0 (�). Thus, Tω is a linear continuous map

from W
1,p
0 (�) into Ls(�). By Theorem 3, θ is of class Kp,r .

Example 1 Let N = 5, p = 3, s = 4 and � = {x ∈ R
5 : |x| < 1}. Then

sNp
Np−s(N−p)

= 4·5·3
5·3−4(5−3) = 60

7 < 10. Put ω0 = |x|− 1
30 cos(16|x|). Then ω0 is in L10(�).

Thus by Corollary 1, ω0 is of class Kp,s .
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Corollary 2 Let p ∈ [1, N), s ∈
(
1, Np

N−p

)
, α be in (0, 1) and η ∈ Cp,p. Then θ =

η
α

p(p∗−s)

s(p∗−p) is of class Kp,s .

Proof Put ω1 = η, ω2 = 1, α1 = p, α2 = p∗, β = s. By the Embedding theorem of

Sobolev, ω2 ∈ Cp,p∗ . By Theorem 2, we see that η
p(p∗−s)

s(p∗−p) ∈ Cp,s . Thus by Theorem 4,

η
α

p(p∗−s)

s(p∗−p) is of class Kp,s .

Example 2 Let � = {x ∈ R
5 : ‖x‖ < 1}, p = 3, s = 4, α = 3

4 and η(x) = (1 − ‖x‖2)−1

for every x in �. By Theorem 8.4 in [7], η ∈ Cp,p. Note that p∗ = Np
N−p

= 15
2 and

α
p(p∗ − s)

s(p∗ − p)
= 3

4

3

4

7

9
= 7

16
.

Put θ(x) = (1 − ‖x‖2)− 7
16 for every x in �. Then θ ∈ K3,4.

Theorem 4 Let s be in (1, p∗), ω be in Kp,s , b be in L
s

s−1 (�) and g be a Carathéodory
function from � × R into R. Assume

|g(x, z)| ≤ |ω(x)|s−1|z|s−1 + b(x) ∀(x, z) ∈ � × R. (7)

Put
Ng(v)(x) = g(x, v(x)) ∀v ∈ W

1,p
0 (�), x ∈ �.

We have

(i) Ng is a continuous mapping from W
1,p
0 (�) into L

s
s−1 (�).

(ii) If A is a bounded subset in W
1,p
0 (�), then Ng(A) is compact in L

s
s−1 (�).

Proof (i) Put μ = s, q = s
s−1 and

g1(x, ζ ) = g(x, ω(x)−1ζ ) ∀(x, ζ ) ∈ � × R,

By (7), we have

|g1(x, ζ )| ≤ |ζ |s−1 + b(x) ∀(x, ζ ) ∈ � × R.

On the other hand
Ng(v) = Ng1 ◦ T|ω|(v) ∀v ∈ W

1,p
0 (�).

Since w ∈ Kp,s , applying Theorem 2.3 in [5], we get the theorem.

Theorem 5 Let s ∈ (1, p∗), ω be inKp,s , a function b ∈ L
s

s−1 (�) and g be a Carathéodory
function from � × R into R. Assume

|g(x, z)| ≤ |ω(x)|s−1|z|s−1 + b(x) ∀(x, z) ∈ � × R.

Put

G(x, t) =
∫ t

0
g(x, ξ)dξ ∀(x, t) ∈ �,

�g(u) =
∫

�

G(x, t)dx ∀u ∈ W
1,p
0 (�).
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We have

(i) {NG(wn)} converges to NG(w) in L1(�) when {wn} weakly converges to w in
W

1,p
0 (�).

(ii) �g is a continuously Fréchet differentiable mapping from W
1,p
0 (�) into R and

D�g(u)(φ) =
∫

�

g(x, ξ)φdx ∀u, φ ∈ W
1,p
0 (�).

(iii) If A is a bounded subset in W
1,p
0 (�), then there is a positive real number M such that

|�g(v)| + ‖D�g(v)‖ ≤ M ∀v ∈ A.

Proof Let μ = s, q = s
s−1 and g1 be as in the proof of Theorem 4. Put

G1(x, t) =
∫ t

0
g(x, ξ)dξ ∀(x, t) ∈ �,

�g1(u) =
∫

�

∫ u(x)

0
g1(x, ξ)dξdx ∀u ∈ Lp(�).

By [5, Theorem 2.8],NG1 is continuous fromL
s

s−1 (�) intoL1(�) and�g1 is a continuously

Fréchet differentiable mapping from L
s

s−1 (�) into R. We see that NG = NG1 ◦ Tω and
�g = �g1 ◦ Tω. By Theorem 3, we get the theorem.

Remark 3 If ω = 1, Theorems 4 and 5 have been proved in [1, 5, 6].

Example 3 Let � = {x ∈ R
5 : ‖x‖ < 1}, p = 3, s = 4, α = 3

4 and ρ(x) =
( 12−‖x‖2)2(1−‖x‖2)− 7

16 for every x in�. By Example 2, ρ ∈ K3,4. Put a(x) = ρ(x)s−1 =
( 12 − ‖x‖2)6(1 − ‖x‖2)− 21

16 for every x in �. Thus, a is not integrable on � and Theorem 5
improves corresponding results in [1, 5, 6].

3 Proof of Theorem 1

Put

J (u) = 1

p
‖u‖p

1,p −
∫

�

F(x, u)dx ∀u ∈ W
1,p
0 (�). (8)

By [3, Theorem 9], Theorem 5 and (f1), J is continuously Fréchet differentiable on
W

1,p
0 (�) and

DJ(u)(v) =
∫

�

|∇u|p−2∇u · ∇vdx −
∫

�

f (x, u) · vdx ∀u, v ∈ W
1,p
0 (�). (9)

In order to prove the theorem, we need the following lemmas.

Lemma 1 Under condition (f3) and (f4), there exist positive numbers ρ and η such that
J (u) ≥ η for all u in W

1,p
0 (�) with ‖u‖ = ρ.

Proof Suppose on the contrary that

inf

{
J (u) : u ∈ W

1,p
0 (�), ‖u‖1,p = 1

n

}
≤ 0 ∀n ∈ N.
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Then, there is a sequence {un} in W
1,p
0 (�) such that ‖un‖1,p = 1

n
and J (un) < 1

np+1 . Note

that p <
2Np
2N−p

<
Np

N−p
. By replacing {un} by its subsequence, by [2, Theorem 4.9], we

can suppose that limn→∞ un(x) = 0 for every x in �,
{

un‖un‖1,p
}
strongly (resp. pointwise)

converges to w in L
2Np
2N−p (�) (resp. on �) and |un|

‖un‖1,p ≤ v with a function v in L
2Np
2N−p (�).

We have

1

n
>

J(un)

‖un‖p

1,p

= 1

p
−

∫
�

F(x, un(x))

‖u‖p

1,p

dx = 1

p
−

∫
�

∫ 1

0
f (x, sun(x))

un(x)

‖u‖p

1,p

dsdx

= 1

p
−

∫
�

∫ 1

0

f (x, sun(x))

(sun(x))p−2sun(x)
sp |un(x)|p

‖u‖p

1,p

dsdx.

Since d1 ∈ L
2N
p (�), d1vp is integrable on � and, by (f3)

f (x, sun(x))

(sun(x))p−2sun(x)
sp |un(x)|p

‖u‖p

1,p

≥ spd1(x)
|un(x)|p
‖u‖p

1,p

≥ spd1(x)vp(x)

for all x ∈ �, s ∈ (0, 1), n ∈ N.
Hence, by the generalized Fatou lemma ([9, p.85]), and (f4)

0 = lim inf
n→∞

1

n
= 1

p
− lim sup

n→∞

∫
�

∫ 1

0

f (x, sun(x))

(sun(x))p−2sun(x)
sp |un(x)|p

‖u‖p

1,p

dsdx

≥ 1

p
−

∫
�

∫ 1

0
lim sup
n→∞

[
f (x, sun(x))

(sun(x))p−2sun(x)
sp |un(x)|p

‖u‖p

1,p

]
dsdx = 1

p
.

This contradiction implies the lemma.

Lemma 2 Let ρ be as in Lemma 1. Under conditions (f3) and (f5), there is e in W
1,p
0 (�)\

B(0, ρ) such that J (e) < 0.

Proof Let u ∈ W
1,p
0 (�) be such that ‖u‖1,p = 1 and u > 0 on �. By (8), we have

J (nu) = np

p
−

∫
�

∫ nu(x)

0
f (x, s)dsdx = np

p
−

∫
�

∫ 1

0
f (x, ξnu(x))nu(x)dξdx

= np

p

[
1 − p

∫
�

∫ 1

0

f (x, ξnu(x))

(ξnu(x))p−1
ξp−1u(x)pdξdx

]
.

By Sobolev’s embedding theorem, u belongs toL
2Np
2N−p (�). By (f3), d1|u|p is integrable and

f (x,ξnu(x))

|ξnu(x)|p−2ξnu(x)
ξp−1|u(x)|p ≥ ξp−1d1(x)|u(x)|p for every integer n, x ∈ � and ξ ∈ (0, 1).

Hence, by the generalized Fatou lemma and (f5), one has

lim sup
n→∞

[
1 − p

∫
�

∫ 1

0

f (x, ξnu(x))

|ξnu(x)|p−2ξnu(x)
ξp−1|u(x)|pdξdx

]

= 1 − lim inf
n→∞

[
p

∫
�

∫ 1

0

f (x, ξnu(x))

|ξnu(x)|p−2ξnu(x)
ξp−1|u(x)|pdξdx

]

≤ 1 − p

∫
�

∫ 1

0
lim inf
n→∞

[
f (x, ξnu(x))

|ξnu(x)|p−2ξnu(x)
ξp−1|u(x)|p

]
dξdx = −∞,
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which implies limn→∞ J (nu) = −∞. Hence, we get the lemma.

Lemma 3 Assume (f1), (f2), (f3), (f5) and (f6) hold. Let {un} be a sequence in W
1,p
0 (�)

such that {J (un)} is bounded and limn→∞(1 + ||un||1,p)‖DJ(un)‖ = 0. Then {un} has a
subsequence converging in W

1,p
0 (�).

Proof Put �n = {x ∈ � : |un(x)| ≤ C} for every n ∈ N. By (f2) and (f6), we get∫
�

[f (x, un)un−θF (x, un)]dx =
(∫

�\�n

+
∫

�n

)
[f (x, un)un−θF (x, un)]dx

≥
∫

�\�n

d2dx+
∫

�n

[
f (x, un)un−θ

∫ un(x)

0
f (x, t)dt

]
dx

≥ −
∫

�

|d2|dx−C(1+θ)

∫
�n

|d(x)|dx

≥ −‖d2‖L1(�)−C(1 + θ)‖d‖L1(�),

which implies∫
�

[(
θ

p
− 1

)
|∇un|p − θF (x, un) + f (x, un)un)

]
dx

≥
∫

�

(
θ

p
− 1

)
|∇un|pdx − ‖d2‖L1(�) − C(1 + θ)‖d‖L1(�) ∀n ∈ N. (10)

By (8) and (9), there are a positive real number M and a sequence {un} in W
1,p
0 (�) such that

−M ≤
∫

�

(
1

p
|∇un|p − F(x, un)

)
dx ≤ M ∀n ∈ N,

−M ≤
∫

�

(|∇un|p − f (x, un)un)dx ≤ M ∀n ∈ N.

It follows that∫
�

[(
θ

p
− 1

)
|∇un|p − θF (x, un) + f (x, un)un)

]
dx ≤ (1 + θ)M ∀n ∈ N. (11)

Combining (10) and (11), we get∫
�

(
θ

p
− 1

)
|∇un|pdx ≤ (1 + θ)M + ‖d2‖L1(�) + C(1 + θ)‖d‖L1(�) ∀n ∈ N,

which implies {um} is bounded in W
1,p
0 (�). By Theorem 4, there is a subsequence {unk

} of
{un} such that {unk

} weakly (resp. strongly) converges to u in W
1,p
0 (�) (resp. in L

p
p−1 (�))

and {Nf (unk
)} is bounded in Lp(�). Since limn→∞ ‖DJ(unk

)‖ = 0 and {unk
− u}k is

bounded in W 1,p(�), we have

lim
k→∞

∫
�

f (x, unk
)(unk

− u)dx = lim
k→∞

∫
�

Nf (unk
)(unk

− u)dx = 0

and

lim
k→∞

∣∣∣∣
∫

�

|∇un|p−2∇unk
∇(unk

− u)dx −
∫

�

f (x, unk
)(unk

− u)dx

∣∣∣∣
≤ lim

k→∞ ‖Dunk
‖‖unk

− u‖1,p = 0.
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Hence

lim
k→∞

∫
�

|∇un|p−2∇unk
∇(unk

− u)dx = 0.

Thus, by [3, Theorem 10], {unk
} strongly converges to u in W 1,p(�).

Proof of Theorem 1 Using the Mountain-pass theorem with the Palais–Smale condition, by
Lemmas 1, 2, and 3, we obtain a non-trivial weak solution for the problem (1).

Example 4 Let N = 5, p = 3, r = 4, α > 0, � = {x ∈ R
5 : ‖x‖ < 1},

ω0(x) = |x|− 1
30 cos(16|x|) ∀x ∈ �,

ω1(x) =
(
1

2
− ‖x‖2

)2

(1 − ‖x‖2)− 7
6 ∀x ∈ �,

ϕ0(t) =
{ |t |r−2t (1 − |t |) if |t | ≤ 1,
0 if |t | ∈ R \ [−1, 1],

ϕ1(t) =
⎧⎨
⎩

0 if |t | ≤ 1,
|t | − 1 if |t | ∈ [1, 2],
1 if |t | ≥ 2.

f (x, t) = ω0(x)r−1ϕ0(t) + ω1(x)r−1|t |p−2tϕ1(t) ∀(x, t) ∈ � × R.

Let ω = |ω0| + ω1, C = 1, d(x) = |x|− 1
30 , d1(x) = −d(x) and d2(x) = |x|− 1

30 for

every x in �. We see that d1 ∈ L
2N
p (�), d2 ∈ L1(�) and d ∈ L1(�). By Examples 1

and 2, ω is in Kp,r . Thus, f satisfies conditions (f1)–(f5). Since lim|x|→0 ω0(x) = ∞ and
lim|x|→ 1

2
ω1(x) = 0, the convergences in (f4) and (f5) are not uniform on �.

Let θ = 4. For every x in �, we have

θF (x, t) ≤ θ

(∫ 1

0
+

∫ t

1

)
f1(x, ξ)dξ ≤ 4|ω0(x)|r−1 + 4ωr−1

1 (x)

∫ t

0
(|ξ |3ξ − ξ3)dξ

= 4|ω0(x)|3 + 4ω1(x)3
∫ |t |

1
(ξ4 − ξ3)dξ

= 4|ω0(x)|3 + ω1(x)3
[
4

5
|t |5 − 4

5
− t4 + 1

]

= 4|ω0(x)|3 + ω1(x)3
[
4

5
|t5| + 1

5
− t4

]

≤ 4|ω0(x)|3 + ω1(x)3[|t |5 − t4]
= 4|ω0(x)|3 + ω1(x)3t4[|t | − 1]
≤ 4|ω0(x)|r−1 + ω1(x)3t4

= 4|ω0(x)|3 + f1(x, t)t ∀|t | ∈ [1, 2],
θF (x, t) ≤ 4|ω0(x)|r−1 + θ

∫ t

0
ϕ1(t)ω1(x)r−1|ξ |2ξdξ

≤ 4|ω0(x)|3 + θ

∫ t

0
ω1(x)3|ξ |2ξdξ

= 4|ω0(x)|3 + ω1(x)3t4

= 4|ω0(x)|3 + f1(x, t)t ∀|t | ≥ 2.
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Thus, we get (f6).
Therefore, we can apply Theorem 1 to f with C = 1. Since ωr−1(x) ≥

(1− ‖x‖2)− 21
16 for every x in �, ωr−1 is not integrable on �. Therefore, the results in [3–5,

8] can not be applied to solve (1) in this case.
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