

On Superlinear p-Laplace Equations

Duong Minh Duc¹

Received: 16 December 2016 / Accepted: 4 May 2017 / Published online: 15 June 2017 © Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2017

Abstract We study the existence of non-trivial weak solutions in $W_0^{1,p}(\Omega)$ of the superlinear Dirichlet problem:

$$
\begin{cases}\n-\text{div}(|\nabla u|^{p-2}\nabla u) = f(x, u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,\n\end{cases}
$$

where *f* satisfies the condition

$$
|f(x,t)| \leq |\omega(x)t|^{r-1} + b(x) \qquad \forall (x,t) \in \Omega \times \mathbb{R},
$$

where $r \in (p, \frac{Np}{N-p}), b \in L^{\frac{r}{r-1}}(\Omega)$ and $|\omega|^{r-1}$ may be non-integrable on Ω .

Keywords Nemytskii operators · p-Laplacian · Multiplicity of solutions · Mountain-pass theorem

Mathematics Subject Classification (2010) 46E35 · 35J20

1 Introduction

Let *N* be an integer ≥ 3 , Ω be a bounded domain in \mathbb{R}^N with smooth boundary $\partial \Omega$, *p* be in [1*, N*) and $p^* = \frac{Np}{N-p}$. Let $W_0^{1,p}$ (Ω) be the usual Sobolev space with the following norm

$$
||u||_{1,p} = \left\{ \int_{\Omega} |\nabla u|^p dx \right\}^{\frac{1}{p}} \qquad \forall u \in W_0^{1,p}(\Omega).
$$

 \boxtimes Duong Minh Duc dmduc@hcmus.edu.vn

¹ University of Sciences, Vietnam National University - Hochiminh City, Ho Chi Minh City, Vietnam

We consider the following Dirichlet problem:

$$
\begin{cases}\n-\text{div}(|\nabla u|^{p-2}\nabla u) = f(x, u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega.\n\end{cases}
$$
\n(1)

In [\[3](#page-9-0)[–5,](#page-9-1) [8\]](#page-9-2), one has proved [\(1\)](#page-1-0) has non-trivial solutions if *f* is continuous on $\overline{\Omega} \times \mathbb{R}$ and satisfies the following conditions

*(C*₁*)* There exist $r \in (p, p^* - 1)$ and a positive real number α such that

$$
|f(x,t)| \leq \alpha(1+|t|^{r-1}) \qquad \forall (x,t) \in \Omega \times \mathbb{R}.
$$

 $f(x, t) = 0$ for every *x* in Ω and $\lim_{t \to 0} \frac{f(x,t)}{|t|^{p-2}t} = 0$ uniformly in Ω .

- $f(x_3)$ $\lim_{|t| \to \infty} \frac{f(x,t)}{|t|^{p-2}t} = \infty$ uniformly in Ω .
- *(C*₄*)* There exist $C \in [0, \infty)$, $\theta > p$ such that

$$
0 \le f(x, t)t - \theta F(x, t) \qquad \text{a.e. in } \Omega \times \{t \in \mathbb{R} : |t| > C\},
$$

where
$$
F(x, t) = \int_0^t f(x, \xi) d\xi
$$
 for every (x, t) in $\Omega \times \mathbb{R}$.

In the present paper, we prove the following result.

Theorem 1 *Assume* f *is a Carathéodory function on* $\Omega \times \mathbb{R}$ *and satisfies the following conditions*

- *(f*₁*) there exist* $r \in (p, p^*)$ *,* $\omega \in \mathcal{K}_{p,r}$ *(see Definition 1) and* $b \in L^{\frac{r}{r-1}}(\Omega)$ *such that* $|f(x, t)| \leq |\omega(x)t|^{r-1} + b(x) \quad \forall (x, t) \in \Omega \times \mathbb{R},$
- (f_2) *there exists* $d \in L^1(\Omega)$ *such that* $|f(x, t)| \leq d(x)$ *for every x in* Ω *and* $|t| \leq C$ *,*
- (f₃) there is a non-positive function d_1 in $L^{\frac{2N}{p}}(\Omega)$ such that $d_1(x) \leq \frac{f(x,t)}{|t|^{p-2}t}$ for every $(x, t) \in \Omega \times \mathbb{R}$ *,*
- (f_4) $f(x, 0) = 0$ *for every x in* Ω *and* $\lim_{t \to 0} \frac{f(x,t)}{|t|^{p-2}t} = 0$ *a.e. in* Ω ,
- *(f₅*) lim_{|t|→∞} $\frac{f(x,t)}{|t|^{p-2}t} = ∞ a.e. in Ω, and$
- *(f₆) there exist* $\theta > p$ *and* $d_2 \in L^1(\Omega)$ *such that*

$$
d_2(x) \le f(x, t)t - \theta F(x, t) \qquad a.e. \text{ in } \Omega \times \{t \in \mathbb{R} : |t| > C\}.
$$

Then there is a non-trivial weak solution in $W_0^{1,p}(\Omega)$ *of the problem* [\(1\)](#page-1-0).

Remark 1 In many applications, $\frac{f(x,t)}{|t|^{p-2}t}$ is non-negative for $t \neq 0$ and $|f(x,t)|$ is wellcontrolled when $|t|$ is sufficiently small. This observation is the motivation of (f_2) and *(f₃*). Here, we consider the case, in which the positivity of $\frac{f(x,t)}{|t|^{p-2}t}$ can be disturbed by a non-positive function d_1 in $L^{\frac{2N}{p}}(\Omega)$.

Remark 2 If *f* is continuous on $\overline{\Omega} \times \mathbb{R}$ and satisfies the conditions (C_1) , (C_2) , (C_3) , and (C_4) , then *f* satisfies (f_1) – (f_6) . Furthermore, $|w|^{r-1}$ may be not integrable on Ω and the convergences in (f_4) and (f_5) may be not uniform on Ω (see Example 4). Therefore our theorem improves the corresponding results in $[3-5, 8]$ $[3-5, 8]$ $[3-5, 8]$.

We study some method to construct weight functions in weighted Sobolev embeddings and the Nemytskii operator from Sobolev spaces into Lebesgue spaces (see Theorems 4 and 5) in Section [2.](#page-2-0) We apply these results to prove the existence of non-trivial solutions of a class of super-linear p-Laplace problems in the last section.

2 Nemytskii Operators

Definition 1 Let σ be a measurable function on Ω . We put

$$
T_{\sigma} u = \sigma u \qquad \forall u \in W_0^{1,p}(\Omega).
$$

We say

- (i) σ is of class $C_{p,s}$ if T_{σ} is a continuous mapping from $W_0^{1,p}(\Omega)$ into $L^s(\Omega)$;
- (ii) σ is of class $\mathcal{K}_{p,s}$ if T_{σ} is a compact mapping from $W_0^{1,p}(\Omega)$ into $L^s(\Omega)$.

We have the following results.

Theorem 2 *Let* α_1 *and* α_2 *be in* [1*,* ∞ *) such that* $\alpha_1 < \alpha_2$ *. Let* $\omega_1 \in C_{p,\alpha_1}$ *,* $\omega_2 \in C_{p,\alpha_2}$ *be such that* ω_1 *and* ω_2 *are non-negative. Let* $\beta \in (\alpha_1, \alpha_2)$ *and* $\omega = \omega$ *α*1*(α*2−*β) β(α*2−*α*1*)* ¹ *ω α*2*(β*−*α*1*) β(α*2−*α*1*)* ² *. Then* $w \in C_{p,\beta}$ *.*

Proof There is a positive real number C_1 such that

$$
\left\{ \int_{\Omega} \omega_i^{\alpha_i} |u|^{\alpha_i} dx \right\}^{1/\alpha_i} \le C_1 \|u\|_{1,p} \qquad \forall u \in W_0^{1,p}(\Omega), i = 1, 2. \tag{2}
$$

Since $\beta = \frac{\alpha_2 - \beta}{\alpha_2 - \alpha_1} \alpha_1 + \frac{\beta - \alpha_1}{\alpha_2 - \alpha_1} \alpha_2$, by Hölder's inequality and ([2\)](#page-2-1), we get

$$
\begin{split}\n\left\{\int_{\Omega} \omega^{\beta} |u|^{\beta} dx\right\}^{1/\beta} &= \left\{\int_{\Omega} \omega_1^{\frac{\alpha_2-\beta}{\alpha_2-\alpha_1}\alpha_1} |u|^{\frac{\alpha_2-\beta}{\alpha_2-\alpha_1}\alpha_1} \omega_2^{\frac{\beta-\alpha_1}{\alpha_2-\alpha_1}\alpha_2} |u|^{\frac{\beta-\alpha_1}{\alpha_2-\alpha_1}\alpha_2} dx\right\}^{1/\beta} \\
&\leq \left\{\left\{\int_{\Omega} \omega_1^{\alpha_1} |u|^{\alpha_1} dx\right\}^{\frac{\alpha_2-\beta}{\alpha_2-\alpha_1}} \left\{\int_{\Omega} \omega_2^{\alpha_2} |u|^{\alpha_2} dx\right\}^{\frac{\beta-\alpha_1}{\alpha_2-\alpha_1}}\right\}^{1/\beta} \\
&\leq \left\{\left\{\int_{\Omega} \omega_1^{\alpha_1} |u|^{\alpha_1} dx\right\}^{\frac{1}{\alpha_1} \frac{\alpha_2-\beta}{\alpha_2-\alpha_1}\alpha_1} \left\{\int_{\Omega} \omega_2^{\alpha_2} |u|^{\alpha_2} dx\right\}^{\frac{\beta-\alpha_1}{\alpha_2-\alpha_1}\alpha_2}\right\}^{1/\beta} \\
&\leq C_1 \|u\|_{1,p} \quad \forall u \in W_0^{1,p}(\Omega).\n\end{split}
$$

Theorem 3 Let s be in $[1, \frac{Np}{N-p}), \alpha$ be in $(0, 1), \omega \in C_{p,s}$ and θ be measurable functions \mathcal{L} *on* Ω *such that* $\omega \geq 0$ *and* $|\theta| \leq \omega^{\alpha}$. Then θ *is of class* $\mathcal{K}_{p,s}$ *.*

Proof Since T_{ω} is in $\mathcal{C}_{p,s}$, T_{ω} is continuous from $W_0^{1,p}(\Omega)$ into $L^s(\Omega)$ and there is a positive real number C_2 such that

$$
\left\{ \int_{\Omega} |u|^s \omega^s dx \right\}^{1/s} \le C_2 \|u\|_{1,p} \qquad \forall u \in W_0^{1,p}(\Omega). \tag{3}
$$

Since $\omega^{\alpha}(x) \leq 1 + \omega(x)$ for every *x* in Ω and 1 and ω are in $\mathcal{C}_{p,s}$, ω^{α} belongs to $\mathcal{C}_{p,s}$. Thus, T_{θ} is in $\mathcal{C}_{p,s}$. Let *M* be a positive real number and $\{u_n\}$ be a sequence in $W_0^{1,p}(\Omega)$, such that $||u_n||_{1,p} \leq M$ for any *n*. By Rellich–Kondrachov's theorem (Theorem 9.16 in [\[2\]](#page-9-3)), $\{u_n\}$ has a subsequence $\{u_{n_k}\}$ converging to *u* in $L^s(\Omega)$ and $\{u_{n_k}\}$ converging weakly to *u* in $W_0^{1,p}(\Omega)$, therefore $||u||_{1,p} \leq \liminf_{k \to \infty} ||u_{n_k}||_{1,p} \leq M$. We shall prove $\{T_\theta(u_{n_k})\}$ converges to $T_\theta(u)$ in $L^s(\Omega)$.

Let ε be a positive real number. Choose a positive real number δ such that

$$
(2C_2M)^s \delta^{(\alpha-1)s} < \frac{\varepsilon^s}{2}.\tag{4}
$$

Put $\Omega' = \{x \in \Omega : \omega(x) > \delta\}$. By [\(3\)](#page-2-2) and [\(4\)](#page-3-0), we have

$$
\int_{\Omega} |\theta(u_{n_k} - u)|^s dx = \int_{\Omega} |u_{n_k} - u|^s |\theta|^s dx
$$

\n
$$
\leq \int_{\Omega'} |u_{n_k} - u|^s \omega^{\alpha s} dx + \int_{\Omega \setminus \Omega'} |u_{n_k} - u|^s \omega^{\alpha s} dx
$$

\n
$$
\leq \delta^{(\alpha - 1)s} \int_{\Omega'} |u_{n_k} - u|^s \omega^s dx + \delta^{\alpha s} \int_{\Omega \setminus \Omega'} |u_{n_k} - u|^s dx
$$

\n
$$
\leq \delta^{(\alpha - 1)s} \int_{\Omega} |u_{n_k} - u|^s \omega^s dx + \delta^{\alpha s} \int_{\Omega} |u_{n_k} - u|^s dx
$$

\n
$$
\leq \delta^{(\alpha - 1)s} (C_2 ||u_{n_k} - u||_{1,p})^s + \delta^{\alpha s} \int_{\Omega} |u_{n_k} - u|^s dx
$$

\n
$$
\leq \delta^{(\alpha - 1)s} (2C_2M)^s + \delta^{\alpha s} \int_{\Omega} |u_{n_k} - u|^s dx
$$

\n
$$
\leq \frac{\varepsilon^s}{2} + \delta^{\alpha s} \int_{\Omega} |u_{n_k} - u|^s dx.
$$
 (5)

Since $\{u_{n_k}\}$ converges in $L^s(\Omega)$, there is an integer k_0 such that

$$
\int_{\Omega} |u_{n_k} - u|^s dx \leq \delta^{-\alpha s} \frac{\varepsilon^s}{2} \qquad \forall k \geq k_0.
$$
 (6)

Combining (5) and (6) , we get the theorem.

Corollary 1 *Let* $p \in [1, N)$ *,* $s \in \left(1, \frac{Np}{N-p}\right)$ $\left(\eta \in \left(\frac{sNp}{Np-s(N-p)}, \infty \right) \text{ and } \theta \in L^{\eta}(\Omega)$. Then θ *is in* $\mathcal{K}_{p,s}$ *.*

Proof Let $\beta \in (0, 1)$ be such that $\beta \eta = \frac{sNp}{Np - s(N-p)}$ and $\omega = |\theta|^{1/\beta}$. Then ω is in $L^{\frac{SNp}{Np-s(N-p)}}(\Omega)$. Since $\frac{Np-s(N-p)}{Np}$ + $\frac{s(N-p)}{Np}$ = 1, by Hölder's inequality, we have

$$
\int_{\Omega} |\omega u|^{s} dx \leq \int_{\Omega} \left(|\omega|^{\frac{sNp}{Np-s(N-p)}} \right)^{\frac{Np-s(N-p)}{Np}} \left(\int_{\Omega} |u|^{\frac{Np}{N-p}} \right)^{\frac{s(N-p)}{Np}} \quad \forall u \in W_0^{1,p}(\Omega),
$$

which implies that T_{ω} is continuous at 0 in $W_0^{1,p}(\Omega)$. Thus, T_{ω} is a linear continuous map from $W_0^{1,p}(\Omega)$ into $L^s(\Omega)$. By Theorem 3, θ is of class $\mathcal{K}_{p,r}$. П

Example 1 Let $N = 5$, $p = 3$, $s = 4$ and $\Omega = \{x \in \mathbb{R}^5 : |x| < 1\}$. Then $\frac{sNp}{Np-s(N-p)} = \frac{4\cdot5\cdot3}{5\cdot3-4(5-3)} = \frac{60}{7} < 10$. Put $\omega_0 = |x|^{-\frac{1}{30}} \cos(16|x|)$. Then ω_0 is in $L^{10}(\Omega)$. Thus by Corollary 1, ω_0 is of class $\mathcal{K}_{p,s}$.

$$
\Box
$$

Corollary 2 *Let* $p \in [1, N)$ *,* $s \in \left(1, \frac{Np}{N-p}\right)$ $\left(\int_{0}^{a} \alpha \rho \rho \right)$ *be in* (0, 1) *and* $\eta \rho \rho$ *c* $C_{p,p}$ *. Then* $\theta \rho$ $\eta^{\alpha \frac{p(p^* - s)}{s(p^* - p)}}$ *is of class* $\mathcal{K}_{p,s}$ *.*

Proof Put $\omega_1 = \eta$, $\omega_2 = 1$, $\alpha_1 = p$, $\alpha_2 = p^*$, $\beta = s$. By the Embedding theorem of Sobolev, $\omega_2 \in C_{p,p^*}$. By Theorem 2, we see that $\eta^{\frac{p(p^* - s)}{s(p^* - p)}} \in C_{p,s}$. Thus by Theorem 4, $\eta^{\alpha \frac{p(p^* - s)}{s(p^* - p)}}$ is of class $\mathcal{K}_{p,s}$. \Box

Example 2 Let $\Omega = \{x \in \mathbb{R}^5 : ||x|| < 1\}$, $p = 3$, $s = 4$, $\alpha = \frac{3}{4}$ and $\eta(x) = (1 - ||x||^2)^{-1}$ for every *x* in Ω . By Theorem 8.4 in [\[7\]](#page-9-4), $\eta \in C_{p,p}$. Note that $p^* = \frac{Np}{N-p} = \frac{15}{2}$ and

$$
\alpha \frac{p(p^*-s)}{s(p^*-p)} = \frac{3}{4} \frac{3}{4} \frac{7}{9} = \frac{7}{16}.
$$

 $Put θ(x) = (1 - ||x||^2)^{-\frac{7}{16}}$ for every *x* in Ω. Then $θ ∈ K_{3,4}$.

Theorem 4 Let s be in $(1, p^*)$, ω be in $\mathcal{K}_{p,s}$, b be in $L^{\frac{s}{s-1}}(\Omega)$ and g be a Carathéodory $\mathit{function}\ \mathit{from}\ \Omega\times\mathbb{R}\ \mathit{into}\ \mathbb{R}\$. Assume

$$
|g(x,z)| \le |\omega(x)|^{s-1}|z|^{s-1} + b(x) \qquad \forall (x,z) \in \Omega \times \mathbb{R}.\tag{7}
$$

Put

$$
N_g(v)(x) = g(x, v(x)) \qquad \forall v \in W_0^{1, p}(\Omega), x \in \Omega.
$$

We have

(i) N_g *is a continuous mapping from* $W_0^{1,p}(\Omega)$ *into* $L^{\frac{s}{s-1}}(\Omega)$ *.*

(ii) If *A* is a bounded subset in $W_0^{1,p}(\Omega)$, then $\overline{N_g(A)}$ is compact in $L^{\frac{s}{s-1}}(\Omega)$.

Proof (i) Put $\mu = s$, $q = \frac{s}{s-1}$ and

$$
g_1(x,\zeta) = g(x,\omega(x)^{-1}\zeta) \qquad \forall (x,\zeta) \in \Omega \times \mathbb{R},
$$

By (7) , we have

$$
|g_1(x,\zeta)| \leq |\zeta|^{s-1} + b(x) \qquad \forall (x,\zeta) \in \Omega \times \mathbb{R}.
$$

On the other hand

$$
N_g(v) = N_{g_1} \circ T_{|\omega|}(v) \qquad \forall v \in W_0^{1,p}(\Omega).
$$

Since $w \in \mathcal{K}_{p,s}$, applying Theorem 2.3 in [\[5\]](#page-9-1), we get the theorem.

Theorem 5 Let $s \in (1, p^*)$, ω be in $\mathcal{K}_{p,s}$, a function $b \in L^{\frac{s}{s-1}}(\Omega)$ and g be a Carathéodory $\mathit{function}\ \mathit{from}\ \Omega\times\mathbb{R}\ \mathit{into}\ \mathbb{R}\$. Assume

$$
|g(x, z)| \leq |\omega(x)|^{s-1} |z|^{s-1} + b(x) \qquad \forall (x, z) \in \Omega \times \mathbb{R}.
$$

Put

$$
G(x, t) = \int_0^t g(x, \xi) d\xi \qquad \forall (x, t) \in \Omega,
$$

$$
\Psi_g(u) = \int_{\Omega} G(x, t) dx \qquad \forall u \in W_0^{1, p}(\Omega).
$$

 \mathcal{D} Springer

 \Box

We have

- (i) $\{N_G(w_n)\}\$ *converges to* $N_G(w)$ *in* $L^1(\Omega)$ *when* $\{w_n\}\$ *weakly converges to w in* $W_0^{1,p}(\Omega)$.
- (ii) Ψ_g *is a continuously Fréchet differentiable mapping from* $W_0^{1,p}(\Omega)$ *into* \R *and*

$$
D\Psi_g(u)(\phi) = \int_{\Omega} g(x,\xi)\phi dx \qquad \forall u, \phi \in W_0^{1,p}(\Omega).
$$

(iii) *If A is a bounded subset in* $W_0^{1,p}(\Omega)$ *, then there is a positive real number M such that* $|\Psi_g(v)| + ||D\Psi_g(v)|| \leq M$ $\forall v \in A$.

Proof Let $\mu = s$, $q = \frac{s}{s-1}$ and g_1 be as in the proof of Theorem 4. Put

$$
G_1(x,t) = \int_0^t g(x,\xi)d\xi \qquad \forall (x,t) \in \Omega,
$$

$$
\Psi_{g_1}(u) = \int_{\Omega} \int_0^{u(x)} g_1(x,\xi)d\xi dx \qquad \forall u \in L^p(\Omega).
$$

By [\[5,](#page-9-1) Theorem 2.8], N_{G_1} is continuous from $L^{\frac{s}{s-1}}(\Omega)$ into $L^1(\Omega)$ and Ψ_{g_1} is a continuously Fréchet differentiable mapping from $L^{\frac{s}{s-1}}(\Omega)$ into R. We see that $N_G = N_{G_1} \circ T_\omega$ and $\Psi_g = \Psi_{g_1} \circ T_{\omega}$. By Theorem 3, we get the theorem.

Remark 3 If $\omega = 1$, Theorems 4 and 5 have been proved in [\[1,](#page-9-5) [5,](#page-9-1) [6\]](#page-9-6).

Example 3 Let $\Omega = \{x \in \mathbb{R}^5 : ||x|| < 1\}$, $p = 3$, $s = 4$, $\alpha = \frac{3}{4}$ and $\rho(x) =$ $(\frac{1}{2} - ||x||^2)^2 (1 - ||x||^2)^{-\frac{7}{16}}$ for every *x* in Ω . By Example 2, $\rho \in \mathcal{K}_{3,4}$. Put $a(x) = \rho(x)^{s-1}$ $(\frac{1}{2} - ||x||^2)^6 (1 - ||x||^2)^{-\frac{21}{16}}$ for every *x* in Ω . Thus, *a* is not integrable on Ω and Theorem 5 improves corresponding results in [\[1,](#page-9-5) [5,](#page-9-1) [6\]](#page-9-6).

3 Proof of Theorem 1

Put

$$
J(u) = \frac{1}{p} ||u||_{1,p}^p - \int_{\Omega} F(x, u) dx \qquad \forall u \in W_0^{1,p}(\Omega).
$$
 (8)

By $[3,$ Theorem 9], Theorem 5 and (f_1) , *J* is continuously Fréchet differentiable on $W_0^{1,p}(\Omega)$ and

$$
DJ(u)(v) = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v dx - \int_{\Omega} f(x, u) \cdot v dx \qquad \forall u, v \in W_0^{1, p}(\Omega). \tag{9}
$$

In order to prove the theorem, we need the following lemmas.

Lemma 1 *Under condition* (f_3) *and* (f_4) *, there exist positive numbers* ρ *and* η *such that* $J(u) \ge \eta$ *for all u in* $W_0^{1,p}(\Omega)$ *with* $||u|| = \rho$.

Proof Suppose on the contrary that

$$
\inf \left\{ J(u) : u \in W_0^{1,p}(\Omega), \|u\|_{1,p} = \frac{1}{n} \right\} \le 0 \quad \forall n \in \mathbb{N}.
$$

Then, there is a sequence $\{u_n\}$ in $W_0^{1,p}(\Omega)$ such that $||u_n||_{1,p} = \frac{1}{n}$ and $J(u_n) < \frac{1}{n^{p+1}}$. Note that $p < \frac{2Np}{2N-p} < \frac{Np}{N-p}$. By replacing $\{u_n\}$ by its subsequence, by [\[2,](#page-9-3) Theorem 4.9], we can suppose that $\lim_{n\to\infty} u_n(x) = 0$ for every *x* in Ω , $\left\{ \frac{u_n}{\|u_n\|_{1,p}} \right\}$ strongly (resp. pointwise) converges to w in $L^{\frac{2Np}{2N-p}}(\Omega)$ (resp. on Ω) and $\frac{|u_n|}{||u_n||_{1,p}} \le v$ with a function v in $L^{\frac{2Np}{2N-p}}(\Omega)$. We have

$$
\frac{1}{n} > \frac{J(u_n)}{\|u_n\|_{1,p}^p} = \frac{1}{p} - \int_{\Omega} \frac{F(x, u_n(x))}{\|u\|_{1,p}^p} dx = \frac{1}{p} - \int_{\Omega} \int_0^1 f(x, su_n(x)) \frac{u_n(x)}{\|u\|_{1,p}^p} ds dx
$$

$$
= \frac{1}{p} - \int_{\Omega} \int_0^1 \frac{f(x, su_n(x))}{(su_n(x))^{p-2} su_n(x)} s^p \frac{|u_n(x)|^p}{\|u\|_{1,p}^p} ds dx.
$$

Since $d_1 \in L^{\frac{2N}{p}}(\Omega)$, $d_1 v^p$ is integrable on Ω and, by (f_3)

$$
\frac{f(x, su_n(x))}{(su_n(x))^{p-2}su_n(x)}s^p\frac{|u_n(x)|^p}{\|u\|_{1,p}^p}\geq s^p d_1(x)\frac{|u_n(x)|^p}{\|u\|_{1,p}^p}\geq s^p d_1(x)v^p(x)
$$

for all $x \in \Omega$, $s \in (0, 1)$, $n \in \mathbb{N}$.

Hence, by the generalized Fatou lemma ([\[9,](#page-9-7) p.85]), and *(f*4*)*

$$
0 = \liminf_{n \to \infty} \frac{1}{n} = \frac{1}{p} - \limsup_{n \to \infty} \int_{\Omega} \int_0^1 \frac{f(x, su_n(x))}{(su_n(x))^{p-2} su_n(x)} s^p \frac{|u_n(x)|^p}{\|u\|_{1,p}^p} ds dx
$$

$$
\geq \frac{1}{p} - \int_{\Omega} \int_0^1 \limsup_{n \to \infty} \left[\frac{f(x, su_n(x))}{(su_n(x))^{p-2} su_n(x)} s^p \frac{|u_n(x)|^p}{\|u\|_{1,p}^p} \right] ds dx = \frac{1}{p}.
$$

This contradiction implies the lemma.

Lemma 2 *Let* ρ *be as in Lemma 1. Under conditions* (f_3) *and* (f_5) *, there is e in* $W_0^{1,p}(\Omega) \setminus$ *B*(0*,* ρ *) such that* $J(e) < 0$ *.*

Proof Let $u \in W_0^{1,p}(\Omega)$ be such that $||u||_{1,p} = 1$ and $u > 0$ on Ω . By [\(8\)](#page-5-0), we have

$$
J(nu) = \frac{n^p}{p} - \int_{\Omega} \int_0^{nu(x)} f(x, s) ds dx = \frac{n^p}{p} - \int_{\Omega} \int_0^1 f(x, \xi nu(x))nu(x) d\xi dx
$$

=
$$
\frac{n^p}{p} \left[1 - p \int_{\Omega} \int_0^1 \frac{f(x, \xi nu(x))}{(\xi nu(x))^{p-1}} \xi^{p-1} u(x)^p d\xi dx \right].
$$

By Sobolev's embedding theorem, *u* belongs to $L^{\frac{2Np}{2N-p}}(\Omega)$. By (f_3) , $d_1|u|^p$ is integrable and $f(x,\xi n u(x)) = p-1|_{U(x)}|_{P} \leq p-1|_{U(x)}|_{U(x)}|_{P}$ for every integer $n, x \in \Omega$ and $\xi \in (0, 1)$. $\frac{f(x,\xi nu(x))}{|\xi nu(x)|^{p-2}\xi nu(x)|^p}\xi^{p-1}|u(x)|^p \geq \xi^{p-1}d_1(x)|u(x)|^p$ for every integer $n, x \in \Omega$ and $\xi \in (0,1)$. Hence, by the generalized Fatou lemma and *(f*5*)*, one has

$$
\limsup_{n \to \infty} \left[1 - p \int_{\Omega} \int_0^1 \frac{f(x, \xi nu(x))}{|\xi nu(x)|^{p-2} \xi nu(x)} \xi^{p-1} |u(x)|^p d\xi dx \right]
$$

= $1 - \liminf_{n \to \infty} \left[p \int_{\Omega} \int_0^1 \frac{f(x, \xi nu(x))}{|\xi nu(x)|^{p-2} \xi nu(x)} \xi^{p-1} |u(x)|^p d\xi dx \right]$
 $\leq 1 - p \int_{\Omega} \int_0^1 \liminf_{n \to \infty} \left[\frac{f(x, \xi nu(x))}{|\xi nu(x)|^{p-2} \xi nu(x)} \xi^{p-1} |u(x)|^p \right] d\xi dx = -\infty,$

 \Box

 \mathcal{D} Springer

which implies $\lim_{n\to\infty} J(nu) = -\infty$. Hence, we get the lemma.

Lemma 3 Assume (f₁), (f₂), (f₃), (f₅) and (f₆) hold. Let $\{u_n\}$ be a sequence in $W_0^{1,p}(\Omega)$ *such that* $\{J(u_n)\}$ *is bounded and* $\lim_{n\to\infty}(1+||u_n||_{1,p})||DJ(u_n)||=0$. Then $\{u_n\}$ has a *subsequence converging in* $W_0^{1,p}(\Omega)$ *.*

Proof Put
$$
\Omega_n = \{x \in \Omega : |u_n(x)| \le C\}
$$
 for every $n \in \mathbb{N}$. By (f_2) and (f_6) , we get
\n
$$
\int_{\Omega} [f(x, u_n)u_n - \theta F(x, u_n)]dx = \left(\int_{\Omega \setminus \Omega_n} + \int_{\Omega_n} \right) [f(x, u_n)u_n - \theta F(x, u_n)]dx
$$
\n
$$
\ge \int_{\Omega \setminus \Omega_n} d_2 dx + \int_{\Omega_n} \left[f(x, u_n)u_n - \theta \int_0^{u_n(x)} f(x, t)dt \right] dx
$$
\n
$$
\ge - \int_{\Omega} |d_2| dx - C(1 + \theta) \int_{\Omega_n} |d(x)| dx
$$
\n
$$
\ge - ||d_2||_{L^1(\Omega)} - C(1 + \theta) ||d||_{L^1(\Omega)},
$$

which implies

Proof Put *-*

$$
\int_{\Omega} \left[\left(\frac{\theta}{p} - 1 \right) |\nabla u_n|^p - \theta F(x, u_n) + f(x, u_n) u_n \right] dx
$$
\n
$$
\geq \int_{\Omega} \left(\frac{\theta}{p} - 1 \right) |\nabla u_n|^p dx - \|d_2\|_{L^1(\Omega)} - C(1 + \theta) \|d\|_{L^1(\Omega)} \quad \forall n \in \mathbb{N}. \quad (10)
$$

By [\(8\)](#page-5-0) and [\(9\)](#page-5-1), there are a positive real number *M* and a sequence $\{u_n\}$ in $W_0^{1,p}(\Omega)$ such that

$$
-M \leq \int_{\Omega} \left(\frac{1}{p} |\nabla u_n|^p - F(x, u_n) \right) dx \leq M \quad \forall n \in \mathbb{N},
$$

$$
-M \leq \int_{\Omega} (|\nabla u_n|^p - f(x, u_n)u_n) dx \leq M \quad \forall n \in \mathbb{N}.
$$

It follows that

$$
\int_{\Omega} \left[\left(\frac{\theta}{p} - 1 \right) |\nabla u_n|^p - \theta F(x, u_n) + f(x, u_n) u_n \right] dx \le (1 + \theta) M \quad \forall n \in \mathbb{N}. \tag{11}
$$

Combining (10) and (11) , we get

$$
\int_{\Omega} \left(\frac{\theta}{p} - 1 \right) |\nabla u_n|^p dx \le (1 + \theta)M + ||d_2||_{L^1(\Omega)} + C(1 + \theta) ||d||_{L^1(\Omega)} \qquad \forall n \in \mathbb{N},
$$

which implies $\{u_m\}$ is bounded in $W_0^{1,p}(\Omega)$. By Theorem 4, there is a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ such that $\{u_{n_k}\}$ weakly (resp. strongly) converges to *u* in $W_0^{1,p}(\Omega)$ (resp. in $L^{\frac{p}{p-1}}(\Omega)$) and $\{N_f(u_{n_k})\}$ is bounded in $L^p(\Omega)$. Since $\lim_{n\to\infty} ||DJ(u_{n_k})|| = 0$ and $\{u_{n_k} - u\}_k$ is bounded in $W^{1,p}(\Omega)$, we have

$$
\lim_{k \to \infty} \int_{\Omega} f(x, u_{n_k}) (u_{n_k} - u) dx = \lim_{k \to \infty} \int_{\Omega} N_f(u_{n_k}) (u_{n_k} - u) dx = 0
$$

and

$$
\lim_{k \to \infty} \left| \int_{\Omega} |\nabla u_n|^{p-2} \nabla u_{n_k} \nabla (u_{n_k} - u) dx - \int_{\Omega} f(x, u_{n_k}) (u_{n_k} - u) dx \right|
$$

\n
$$
\leq \lim_{k \to \infty} ||Du_{n_k}|| ||u_{n_k} - u||_{1, p} = 0.
$$

 \mathcal{D} Springer

 \Box

Hence

$$
\lim_{k \to \infty} \int_{\Omega} |\nabla u_n|^{p-2} \nabla u_{n_k} \nabla (u_{n_k} - u) dx = 0.
$$

Thus, by [\[3,](#page-9-0) Theorem 10], $\{u_{n_k}\}$ strongly converges to *u* in $W^{1,p}(\Omega)$.

Proof of Theorem 1 Using the Mountain-pass theorem with the Palais–Smale condition, by Lemmas 1, 2, and 3, we obtain a non-trivial weak solution for the problem [\(1\)](#page-1-0). \Box

Example 4 Let $N = 5$, $p = 3$, $r = 4$, $\alpha > 0$, $\Omega = \{x \in \mathbb{R}^5 : ||x|| < 1\}$,

$$
\omega_0(x) = |x|^{-\frac{1}{30}} \cos(16|x|) \quad \forall x \in \Omega,
$$

\n
$$
\omega_1(x) = \left(\frac{1}{2} - \|x\|^2\right)^2 (1 - \|x\|^2)^{-\frac{7}{6}} \quad \forall x \in \Omega,
$$

\n
$$
\varphi_0(t) = \begin{cases} |t|^{r-2}t(1 - |t|) & \text{if } |t| \le 1, \\ 0 & \text{if } |t| \in \mathbb{R} \setminus [-1, 1], \end{cases}
$$

\n
$$
\varphi_1(t) = \begin{cases} 0 & \text{if } |t| \le 1, \\ |t| - 1 & \text{if } |t| \in [1, 2], \\ 1 & \text{if } |t| \ge 2. \end{cases}
$$

\n
$$
f(x, t) = \omega_0(x)^{r-1}\varphi_0(t) + \omega_1(x)^{r-1}|t|^{p-2}t\varphi_1(t) \quad \forall (x, t) \in \Omega \times \mathbb{R}.
$$

Let $\omega = |\omega_0| + \omega_1$, $C = 1$, $d(x) = |x|^{-\frac{1}{30}}$, $d_1(x) = -d(x)$ and $d_2(x) = |x|^{-\frac{1}{30}}$ for every *x* in Ω . We see that $d_1 \in L^{\frac{2N}{p}}(\Omega)$, $d_2 \in L^1(\Omega)$ and $d \in L^1(\Omega)$. By Examples 1 and 2, ω is in $\mathcal{K}_{p,r}$. Thus, *f* satisfies conditions (f_1) – (f_5) . Since $\lim_{|x|\to 0} \omega_0(x) = \infty$ and $\lim_{|x| \to \frac{1}{2}} \omega_1(x) = 0$, the convergences in *(f₄)* and *(f₅)* are not uniform on Ω .

Let $\theta = 4$. For every *x* in Ω , we have

$$
\theta F(x,t) \leq \theta \left(\int_0^1 + \int_1^t \int f_1(x,\xi) d\xi \leq 4 |\omega_0(x)|^{r-1} + 4\omega_1^{r-1}(x) \int_0^t (|\xi|^3 \xi - \xi^3) d\xi
$$

\n= 4 |\omega_0(x)|³ + 4\omega_1(x)³ $\int_1^{\lfloor t \rfloor} (\xi^4 - \xi^3) d\xi$
\n= 4 |\omega_0(x)|³ + \omega_1(x)³ $\left[\frac{4}{5} |t|^5 - \frac{4}{5} - t^4 + 1 \right]$
\n= 4 |\omega_0(x)|³ + \omega_1(x)³ $\left[\frac{4}{5} |t^5| + \frac{1}{5} - t^4 \right]$
\n $\leq 4 |\omega_0(x)|^3 + \omega_1(x)^3 [|t|^5 - t^4]$
\n= 4 |\omega_0(x)|³ + \omega_1(x)³ t⁴ [|t| - 1]
\n $\leq 4 |\omega_0(x)|^{r-1} + \omega_1(x)^3 t^4$
\n= 4 |\omega_0(x)|³ + f_1(x,t)t \quad \forall |t| \in [1, 2],
\n
$$
\theta F(x,t) \leq 4 |\omega_0(x)|^{r-1} + \theta \int_0^t \varphi_1(t) \omega_1(x)^{r-1} |\xi|^2 \xi d\xi
$$

\n $\leq 4 |\omega_0(x)|^3 + \theta \int_0^t \omega_1(x)^3 |\xi|^2 \xi d\xi$
\n= 4 |\omega_0(x)|³ + \omega_1(x)³ t⁴
\n= 4 |\omega_0(x)|³ + f_1(x,t)t \quad \forall |t| \geq 2.

 \Box

Thus, we get (f_6) .

Therefore, we can apply Theorem 1 to *f* with $C = 1$. Since $\omega^{r-1}(x) \ge$ $(1 - ||x||^2)^{-\frac{21}{16}}$ for every *x* in Ω , ω^{r-1} is not integrable on Ω . Therefore, the results in [\[3–](#page-9-0)[5,](#page-9-1) [8\]](#page-9-2) can not be applied to solve [\(1\)](#page-1-0) in this case.

Acknowledgements This work was supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2014.04.

The author would like to thank the referees for pointing out some errors in the manuscript of this paper.

References

- 1. Appell, J., Zabrejko, P.: Nonlinear Superposition Operators. Cambridge University Press, Cambridge (2008)
- 2. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)
- 3. Dinca, G., Jebelean, P., Mawhin, J.: Variational and topological methods for Dirichlet problems with p-Laplacian. Port. Math. **58**, 339–378 (2001)
- 4. Duc, D.M., Vu, N.T.: Nonuniformly elliptic equations of p-Laplacian type. Nonlinear Anal. **61**, 1483– 1495 (2005)
- 5. De Figueiredo, D.G.: Lectures on the Ekeland Variational Principle with Applications and Detours. Tata Institute of Foundational Research, Bombay. Springer, Berlin (1989)
- 6. Kranosel'skii, M.A.: Topological Methods in the Theory of Nonlinear Integral Equations. Macmillan, New York (1964)
- 7. Kufner, A.: Weighted Sobolev Spaces. Wiley, New York (1985)
- 8. De Nápoli, P., Mariani, M.C.: Mountain pass solutions to equations of p-Laplacian type. Nonlinear Anal. **54**, 1205–1219 (2003)
- 9. Schilling, R.L.: Measures, Integrals and Martingales. Cambridge University Press, Cambridge (2005)