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Abstract This paper is considered with the delay-dependent passivity analysis issue for
uncertain neural networks with discrete interval and distributed time-varying delays. By
constructing an augmented Lyapunov functional and combining integral inequality with
approach to estimate the derivative of the Lyapunov–Krasovskii functional, which estimated
some integral terms byWirtinger’s inequality, sufficient conditions are established to ensure
the passivity of the considered neural networks. Some useful information on the neuron
activation function ignored in the existing literature is taken into account. Finally, numerical
examples are given to illustrate the effectiveness of the proposed theoretical results.
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1 Introduction

The dynamics of neural networks have been extensively considered in the past two decades
because of their great significance for both practical and theoretical purposes, for examples
bidirectional associative memories, optimization and signal processing, image process-
ing, pattern recognition problems, and so on [3–5]. However, considerable effort has been
devoted to analyzing the stability of neural networks without a time delay. In recent years,
the stability of delayed neural networks has also received attention [6, 17, 18] since time
delay is frequently encountered in neural networks. Moreover, it is often a source of insta-
bility and oscillation in a system. In [19], the authors considered the problem of global
asymptotic stability for a class of generalized neural networks with interval time-varying
delays. Delay-dependent stability criteria of uncertain Markovian jump neural networks
with discrete interval and distributed time-varying delays have been presented in [13].
Delay neural networks can be classified into two categories: delay-independent and delay-
dependent. Delay-independent criteria do not employ any information on the size of the
delay, while delay-dependent criteria make use of such information at different levels. The
problem of delay-dependent in neural networks has been extensively studied for the sake of
theoretical interest as well as applicable considerations [12, 20]. In [20], the authors con-
sidered the problem of global asymptotic stability analysis for delayed neural networks. By
using a matrix-based quadratic convex approach to derive a sufficient condition, the posi-
tive definiteness of chosen LKF can be ensured. As a result, the constraint P > 0 in both
Kim (2011) and Zhang et al. (2013) is removed.

On the other hand, the passivity theory has also received a great deal of attention, see
[7–9, 14, 21, 23, 24]. Passivity theory is closely related to the circuit analysis method.
The main scope of passivity theory is that the passive properties of system can keep the
system internally stable. The passication problem is also called as the passive control prob-
lem. The objective of passive control problem designs for a controller so that the resulting
closed-loop system is passive. Because of this feature, the passivity and passication prob-
lems have been an active area of research in the past decades. Considering neural networks
with time-varying delays, passivity conditions has been presented in [15]. The authors con-
sidered the problem of delay-dependent passivity conditions for uncertain neural networks
with discrete and distributed time-varying delays, which improved the passivity conditions
in [1, 2, 24]. Improved conditions for passivity of neural networks with a time-varying delay
are proposed in [16, 25], which construct a delay-interval-dependent Lyapunov–Krasovskii
functional (LKF). In [10], the authors considered passivity criteria for continuous-time neu-
ral networks with mixed time-varying delays. However, it is worth pointing out that there
still exist some points waiting for the improvement. In most of the works above [12, 20, 25],
the augmented Lyapunov matrix P must be positive definite. In our work, we will remove
this restriction by assuming that P are only real matrices. By utilizing a new type, LKF and
some estimating are assumed in [20]. Moreover, we consider passivity analysis for neural
networks that provides a powerful tool for analyzing the stability of system, which obtained
distributed delay such that the system is more applicable for solving the general problem of
recognized patterns in a time-dependent signal.

Motivated by above discussing, this paper investigates the delay-dependent approach to
passivity analysis for uncertain neural networks with discrete interval and distributed time-
varying delays. Based on delay partitioning, a LKF is constructed to obtain several improved
delay-dependent passivity conditions which guarantee the passivity of uncertain neural net-
works. We consider the additional useful terms with the distributed delays and estimate
some integral terms by Wirtinger’s inequality provided a tighter lower bound than Jensen’s
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inequality, so integral inequalities derived by Jensen’s inequality lead to less conserva-
tive results and some techniques in [20]. These conditions are expressed in terms of linear
matrix inequalities (LMIs), which can be solved numerically and efficiently by resorting to
numerical algorithms. The effectiveness is verified by two illustrating examples.

Notation Rn is the n-dimensional Euclidean space; Rm×n denotes the set of m × n

real matrices; In represents the n-dimensional identity matrix; λ(A) denotes the set of all
eigenvalues ofA; λmax(A) = max{Re λ; λ ∈ λ(A)};C([0, t],Rn) denotes the set of allRn-
valued continuous functions on [0, t]; L2([0, t],Rm) denotes the set of all the Rm-valued
square integrable functions on [0, t]. The notation X ≥ 0 (respectively, X > 0) means that
X is positive semidefinite (respectively, positive definite); diag(· · · ) denotes a block diag-

onal matrix;

[
X Y

∗ Z

]
stands for

[
X Y

YT Z

]
. Matrix dimensions, not explicitly stated, are

assumed to be compatible for algebraic operations.

2 Preliminaries

Consider the following neural networks with discrete interval and distributed time-varying
delays:

⎧⎨
⎩

ẋ(t) = −Ax(t) + Wg(x(t)) + W1g(x(t − τ(t))) + W2
∫ t

t−k(t)
g(x(s)) ds + u(t),

y(t) = g(x(t)),

x(t) = φ(t), t ∈ [−τmax, 0], τmax = max{τ2, k},
(1)

where x(t) = [x1(t), x2(t), . . . , xn(t)] ∈ Rn is the state of the neural, A = diag(a1, a2,
. . . , an) > 0 represents the self-feedback term, W,W1 and W2 represent the connection
weight matrices, g(·) = (g1(·), g2(·), . . . , gn(·))T represents the activation functions, u(t)

and y(t) represent the input and output vectors, respectively; φ(t) is an initial condition.
The variables τ(t) and k(t) are the discrete and distributed delays and satisfy the following
conditions:

0 ≤ τ1 ≤ τ(t) ≤ τ2, 0 ≤ τ̇ (t) ≤ μ < ∞, 0 ≤ k(t) ≤ k ∀t ≥ 0, (2)

where τ1, τ2, μ and k are constants. The neural activation functions gk(·), k = 1, 2, . . . , n
satisfy gk(0) = 0 and for s1, s2 ∈ R, s1 �= s2,

l−k ≤ gk(s1) − gk(s2)

s1 − s2
≤ l+k , (3)

where l−k , l+k are known real scalars. Moreover, we denote L+ = diag(l+1 , l+2 , . . . , l+n ),
L− = diag

(
l−1 , l−2 , . . . , l−n

)
.

Definition 1 [8] The neural network (1) is said to be passive if there exists a scalar γ such
that for all tf ≥ 0

2
∫ tf

0
y(s)T u(s)ds ≥ −γ

∫ tf

0
u(s)T u(s)ds,

and for all solutions of (1) with x(0) = 0.
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Lemma 1 Let f1, f2, . . . , fN ∈ Rm → R have positive values in an open subset D of
Rm. Then, the reciprocally convex combination of fi over D satisfies

min
{αi |αi>0,

∑
i αi=1}

∑
i

1

αi

fi(t) =
∑

i

fi(t) + max
gi,j (t)

∑
i �=j

gi,j (t)

subject to

{
gi,j (t) : Rm → R, gi,j

�= gi,j (t),

[
fi(t) gi,j (t)

gi,j (t) fj (t)

]
≥ 0

}
.

Lemma 2 [6] For any symmetric positive definite matrix M > 0, a scalar γ > 0 and a
vector function x : [0, γ ] → Rn such that the integrations concerned are well defined, the
following inequality holds:

(∫ γ

0
x(s)ds

)T

M

(∫ γ

0
x(s)ds

)
≤ γ

(∫ γ

0
xT (s)Mx(s)ds

)
.

Lemma 3 [12] For a given matrix R > 0, the following inequality holds for any
continuously differentiable function x : [a, b] → Rn,

∫ b

a

ẋT (s)Rẋ(s)ds ≥ 1

b − a

(
�T
1 R�1 + 3�T

2 R�2

)
,

where

�1 = x(b) − x(a),

�2 = x(b) + x(a) − 2

b − a

∫ b

a

x(s)ds.

Lemma 4 [20] Let τ(t) be a continuous function satisfying 0 ≤ τ1 ≤ τ(t) ≤ τ2. For
any n × n real matrix R1 > 0 and a vector ẋ : [−τ2, 0] → Rn such that the integration
concerned below is well defined, the following inequality holds for any 2n×2n real matrices

D satisfying

[
R̄1 D

∗ R̄1

]
≥ 0, and

−(τ2 − τ1)

∫ t−τ1

t−τ2

ẋT (s)R1ẋ(s)ds ≤ 2ϕT
11Dϕ21 − ϕT

11R̄1ϕ11 − ϕT
21R̄1ϕ21,

where R̄1 = diag{R1, 3R1} and

ϕ11 =
[

x(t − τ(t)) − x(t − τ2)

x(t − τ(t)) + x(t − τ2) − 2
τ2−τ(t)

∫ t−τ(t)

t−τ2
x(s)ds

]
,

ϕ21 =
[

x(t − τ1) − x(t − τ(t))

x(t − τ1) + x(t − τ(t)) − 2
τ(t)−τ1

∫ t−τ1
t−τ(t)

x(s)ds

]
.
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Lemma 5 [20] Let τ(t) be a continuous function satisfying 0 ≤ τ1 ≤ τ(t) ≤ τ2. For
any n × n real matrix R2 > 0 and a vector ẋ : [−τ2, 0] → Rn such that the integration
concerned below is well defined, the following inequality holds for any φi1 ∈ Rq and real

matrices Zi ∈ Rq×q , Bi ∈ Rq×n satisfying

[
Zi Bi

∗ R2

]
≥ 0 (i = 1, 2) and

−
∫ t−τ1

t−τ2

(τ2 − t + s)ẋT (s)R2ẋ(s)ds ≤ 1

2
(τ2 − τ(t))2φT

11Z1φ11 + 2(τ2 − τ(t))φT
11B1φ12

+1

2
[(τ2 − τ1)

2 − (τ2 − τ(t))2]φT
21Z2φ21

+2φT
21B2[(τ2 − τ(t)φ22 + (τ (t) − τ1)φ23],

where

φ12 = x(t − τ(t)) − 1

τ2 − τ(t)

∫ t−τ(t)

t−τ2

x(s)ds,

φ22 = x(t − τ1) − x(t − τ(t)),

φ23 = x(t − τ1) − 1

τ(t) − τ1

∫ t−τ1

t−τ(t)

x(s)ds.

Lemma 6 [20] Let P0, P1, and P2 be m × m real symmetric matrices and a scalar contin-
uous function τ satisfy τ1 ≤ τ ≤ τ2 where τ1 and τ2 are constants satisfying 0 ≤ τ1 ≤ τ2.
If P0 ≥ 0, then

τ 2P0 + τP1 + P2 < 0(≤ 0)∀τ ∈ [τ1, τ2] ⇐⇒ τ 2i P0 + τiP1 + P2 < 0(≤ 0), i = 1, 2,

τ 2P0 + τP1 + P2 > 0(≥ 0)∀τ ∈ [τ1, τ2] ⇐⇒ τ 2i P0 + τiP1 + P2 > 0(≥ 0), i = 1, 2.

Lemma 7 [6] Let H, E and F(t) be real matrices of appropriate dimensions with F(t)

satisfying FT (t)F (t) < I . Then, for any scalar ε > 0,

HF(t)E + (HF(t)E)T ≤ ε−1HHT + εET E.

Lemma 8 [6] (Schur complement) Given constant symmetric matrices X, Y,Z with appro-
priate dimensions satisfying X = XT , Y = YT > 0. Then X + ZT Y−1Z < 0 if and
only if

(
X ZT

Z −Y

)
< 0 or

(−Y Z

ZT X

)
< 0.

3 Main Results

In this section, we consider robust passivity of the neural networks (1) with interval time-
varying delays. For the sake of simplicity, we consider the LKF as

V (xt ) = V1(xt ) + V2(xt ) + V3(xt ) + V4(xt ) + V5(xt ), (4)
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where

V1(xt ) = ηT (t)Pη(t) +
∫ t

t−τ1

ẋT (s)Q0ẋ(s)ds

+2
n∑

k=1

ρk

∫ x(t)

0
[gk(s) − l−k s]ds + 2

n∑
k=1

σk

∫ x(t)

0
[l+k s − gk(s)]ds,

V2(xt ) =
∫ t

t−τ1

{
xT (s)Q1x(s) + gT (x(s))S1g(x(s))

}
ds

+
∫ t−τ1

t−τ(t)

{
xT (s)Q2x(s) + gT (x(s))S2g(x(s))

}
ds

+
∫ t−τ(t)

t−τ2

{
xT (s)Q3x(s) + gT (x(s))S3g(x(s))

}
ds,

V3(xt ) =
∫ t

t−τ1

{
τ1(τ1 − t + s)ẋT (s)Y1ẋ(s) + (τ1 − t + s)2ẋT (s)Y2ẋ(s)

}
ds,

V4(xt ) =
∫ t−τ1

t−τ2

{
τ21(τ2 − t + s)ẋT (s)R1ẋ(s) + (τ2 − t + s)2ẋT (s)R2ẋ(s)

}
ds,

V5(xt ) = k

∫ 0

−k

∫ t

t+θ

gT (x(s))S0g(x(s))dsdθ,

where η(t) = col{x(t), x(t − τ1),
∫ t

t−τ1
x(s)ds,

∫ t−τ1
t−τ(t)

x(s)ds,
∫ t−τ(t)

t−τ2
x(s)ds}, Qi > 0,

Si > 0, Y1 > 0, Y2 > 0, R1 > 0, R2 > 0, (i = 0, 1, 2, 3), U1 = diag{ρ1, ρ2, . . . , ρn} ≥ 0,
U2 = diag{σ1, σ2, . . . , σn} ≥ 0 are to be determined, a real matrix P with appropriate
dimension, τ21 = τ2 − τ1 and let

x(t) = G1υ(t),

g(x(t)) = G2υ(t),

where υ(t) = col{x(t), g(x(t))}, G1 = [I, 0] and G2 = [0, I ].
For the sake of simplicity on matrix representation, ei(i = 1, 2, . . . , 11) are

defined as block-row vectors of the 11n × 11n identity matrix (For example, e3 =
[0 0 I 0 0 0 0 0 0 0 0]) and v(t) = e1ζ(t), v(t − τ(t)) = e2ζ(t), . . . , ẋ(t − τ1) = e11ζ(t)

such that the notations of several matrices are defined as:

ζ(t) = col

{
v(t), v(t − τ(t)), v(t −τ1), v(t − τ2),

1

τ1

∫ t

t−τ1

x(s)ds,
1

τ(t) − τ1

∫ t−τ1

t−τ(t)

x(s)ds,

1

τ2 − τ(t)

∫ t−τ(t)

t−τ2

x(s)ds,

∫ t

t−k

g(x(s))ds, u(t), ẋ(t), ẋ(t − τ1)

}
.

We apply a matrix-based quadratic convex approach combined with some improved bound-
ary techniques for integral terms such as Wirtinger-based integral inequality; as a result, we
obtain inequality encompassing the Jensen’s inequality and also go to tractable LMIs criteria
to further reduce the conservatism over the existing results to derive a sufficient condition.
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Remark 1 It is shown that using Lemmas 3, 4, 5 one can obtain some less conservative
results than the other results [16, 25] that show the effectiveness in Table 1. However, these
lemmas contain many free-weighting matrices which may lead to higher computational
complexity than them.

Remark 2 Those of [9, 24], previous works only focused on some augment vectors but
our work includes not only x(t),

∫ t

t−τ1
x(s)ds but also x(t), x(t − τ1),

∫ t

t−τ1
x(s)ds,∫ t−τ1

t−τ(t)
x(s)ds,

∫ t−τ(t)

t−τ2
x(s)ds. We can see that the adaptation of new augmented vari-

ables, cross terms of variables and more multiple integral terms may lead to reduce to the
conservatism.

Proposition 1 [20] For the Lyapunov–Krasovskii functional (4), and prescribed scalars
τ2 ≥ τ1 > 0, there exist scalars ε1 > 0 and ε2 > 0 such that

ε1‖x‖2 ≤ V (t, xt , ẋt ) ≤ ε2‖xt‖2W , (5)

if there exist real matrices M1 and N1 with appropriate dimensions such that

⎧⎨
⎩

[
M1 N1

NT
1 Y1

]
≥ 0, �0 ≥ 0, ẽ1P ẽT

1 > 0,

τ 21�0 + τ1�1 + �2 ≥ 0, τ 22�0 + τ2�1 + �2 ≥ 0,
(6)

where

�0 = DT
2 PD2,

�1 = DT
1 PD2 + DT

2 PD1 + C4 − C5,
�2 = �3 + �4 + C3 − τ1C4 + τ2C5 + DT

1 PD1 − ẽT
1 ẽ1P ẽT

1 ẽ1,

with

D1 = col{ẽ1, ẽ2, τ1ẽ3, −τ1ẽ4, τ2ẽ5},
D1 = col{0, 0, 0, ẽ4,−ẽ5},
�3 =

(
CT
1 UC1 + 3CT

2 UC2
)

/τ1,

�4 = τ1(ẽ1 − ẽ3)
T Y2(ẽ1 − ẽ3) −

(
τ 31 /2

)
CT
6 M1C6 − τ 21 (ẽ1 − ẽ3)

T NT
1

−τ 21 CT
6 N1(ẽ1 − ẽ3)C6,

C1 = ẽ1 − ẽ2, C2 = ẽ1 + ẽ2 − 2ẽ3,

C3 = τ1

[
ẽT
1 ẽT

4

]
Q1

[
ẽT
1 ẽT

4

]T

, C4 =
[
ẽT
1 ẽT

4 ]Q2[ẽT
1 ẽT

4

]T

,

C5 =
[
ẽT
1 ẽT

5

]
Q3

[
ẽT
1 ẽT

5

]T

, C6 = col{ẽ1, ẽ2, ẽ2}.
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Proof By [20] and V5(xt ) ≤ k2max{λs0}‖xt‖2W .

Remark 3 The constraint P > 0 is removed from Proposition 1. Thus, we can see that the
introduction of the vector ζ(t) plays a key role in deriving a quadratic convex combination
�(τ (t)). So, a matrix-based quadratic convex technique can be used to design an LMI-based
sufficient condition.

Then, we have the following result.

Theorem 1 Given scalars τ1, τ2 and k, the system (1) with (3) is passive for any delays
τ(t) and k(t) satisfying (2) if there exist real matrices Qi > 0, Si > 0, Y1 > 0, Y2 > 0,
R1 > 0, R2 > 0 (i = 0, 1, 2, 3), real positive diagonal matrices U1, U2, Ts , Tab(s =
1, 2, 3, 4; a = 1, 2, 3; b = 2, 3, 4; a < b), real matrices M2, N2, Z1, Z2, B1, B2, D, X1,
X2 and P with appropriate dimensions, and a scalar γ > 0 such that the following linear
matrix inequalities hold:

⎧⎪⎪⎨
⎪⎪⎩

�(τ (t), τ̇ (t)) < 0|τ(t)=τ1,τ̇ (t)=0,

�(τ (t), τ̇ (t)) < 0|τ(t)=τ1,τ̇ (t)=μ,

�(τ (t), τ̇ (t)) < 0|τ(t)=τ2,τ̇ (t)=0,

�(τ (t), τ̇ (t)) < 0|τ(t)=τ2,τ̇ (t)=μ,

(7)

⎧⎪⎪⎨
⎪⎪⎩

[
M2 N2
� Y2

]
> 0,

[
R̄1 D

� R̄1

]
> 0, Z1 > Z2,[

Z1 B1
� R2

]
> 0,

[
Z2 B2
� R2

]
> 0,

(8)

where R̄1 = diag{R1, 3R1} and

�(τ (t), τ̇ (t)) = �11 + �12 + �2 + �3 + �4 + �5 + �6 + �7

−eT
9 G2e1 − eT

1 GT
2 e9 − γ eT

9 e9, (9)

�11 = (�1 + τ(t)�2)
T P (�3 + τ̇ (t)�4) + (�3 + τ̇ (t)�4)

T P (�1 + τ(t)�2)

+eT
10Q0e10 − eT

11Q0e11, (10)

�12 = (�1 + �2)
T + �1 + �2, (11)

�2 = (1 − τ̇ (t))�3 + �4, (12)

�3 = eT
10(τ

2
1 Y1 + τ 21 Y2)e10 − φT

1 diag{Y1, 3Y1}φ1

+2τ1[N2(G1e1 − e5) + (G1e1 − e5)
T NT

2 ] + τ 21M2, (13)

�4 = (τ2 − τ(t))2(Z1 − Z2) + (τ2 − τ(t))�5 + (τ (t) − τ1)�6 + �7, (14)

�5 = eT
1 GT

2 S0G2e1 − eT
8 S0e8, (15)

�6 = �T
8 �9 + �T

9 �8, (16)
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�7 =
3∑

a=1

4∑
b=2,b>a

(ea − eb)
T �T

10Tab�11(ea − eb)

+
3∑

a=1

4∑
b=2,b>a

(ea − eb)
T �T

11Tab�10(ea − eb)

+
4∑

s=1

(
eT
s �T

10Ts�11es + eT
s �T

11Ts�10es

)
, (17)

with

�1 = col{G1e1,G1e3, τ1e5, −τ1e6, τ2e7},
�2 = col{0, 0, 0, e6,−e7},
�3 = col{e10, e11,G1(e1 − e3),G1(e3 − e2),G1(e2 − e4)},
�4 = col{0, 0, 0, G1e2,−G1e2},

�1 = eT
1 GT

2 (U1 − U2)e10,

�2 = eT
1 GT

1 (L+U2 − L−U1)e10,

�3 = (G1e2)
T (Q3 − Q2)(e1G2)

T + (G2e2)
T (S3 − S2)(G2e2),

�4 = (G1e1)
T Q1(G1e1) − (G1e4)

T Q3(G1e4) + (G1e3)
T (Q2 − Q1)(G1e3)

+(G2e1)
T S1(G2e1) − (G2e4)

T S3(G2e4) + (G2e3)
T (S2 − S1)(G2e3),

�5 = 2B1(G1e2 − e7) + 2(G1e2 − e7)
T BT

1 + 2B2G1(e3 − e2) + 2(e3 − e2)
T GT

1 BT
2 ,

�6 = 2B2(G1e3 − e6) + 2(G1e3 − e6)
T BT

2 ,

�7 = eT
11

(
τ 221R1 + τ 221R2

)
e11 + τ 221Z2 + φT

2 Dφ3 + φT
3 Dφ2 + φT

2 R̄1φ2 + φT
3 R̄1φ3,

�8 = eT
1 GT

1 X1 + eT
10X2,

�9 = −AG1e1 + WG2e1 + W1G2e2 + W2e8 + e9 − e10,

�10 = G2 − L−G1,

�11 = L+G1 − G2.

Proof Differentiating V (xt ) along the solution of (1), we get

V̇1(xt ) = ηT (t)P η̇(t) + η̇T (t)Pη(t) + ẋT (t)Q0ẋ(t) − ẋT (t − τ1)Q0ẋ(t − τ1)

+2
n∑

k=1

{
ρkẋ(t)[gk(x(t)) − l−k ] + σkẋ(t)[l+k − gk(x(t))]}

= ζ T (t)[(�1 + τ(t)�2)
T P (�3 + τ̇ (t)�4) + (�3 + τ̇ (t)�4)

T P (�1 + τ(t)�2)

+eT
10Q0e10 − eT

11Q0e11 + (�1 + �2)
T + �1 + �2]ζ(t),

= ζ T (t)(�11 + �12)ζ(t), (18)
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V̇2(xt ) = xT (t)Q1x(t) + gT (x(t))S1g(x(t)) − xT (t)(t − τ2)Q3x(t − τ2)

−gT (x(t − τ2))S3g(x(t − τ2)) + xT (t − τ1)(Q2 − Q1)x(t − τ1)

+gT (x(t − τ1))(S2 − S1)g(x(t − τ1)) + (1 − τ̇ (t))
{
xT (t − τ(t))

×(Q3 − Q2)x(t − τ(t)) + gT (x(t − τ(t)))(S3 − S2)g(x(t − τ(t)))
}

,

= ζ T (t)�2ζ(t), (19)

V̇3(xt ) = τ 21 ẋT (t)(Y1 + Y2)ẋ(t) −
∫ t

t−τ1

τ1ẋ
T (s)Y1ẋ(s)ds

−
∫ t

t−τ1

2(τ1 − t + s)ẋT (s)Y2ẋ(s)ds, (20)

V̇4(xt ) = τ 221ẋ
T (t − τ1)(R1 + R2)ẋ(t − τ1) −

∫ t−τ1

t−τ2

τ21ẋ
T (s)R1ẋ(s)ds

−
∫ t−τ1

t−τ2

2(τ2 − t + s)ẋT (s)R2ẋ(s)ds, (21)

V̇5(xt ) = k2gT (x(t))S0g(x(t)) − k

∫ t

t−k

gT (x(s))S0g(x(s))ds,

≤ k2gT (x(t))S0g(x(t)) − k(t)

∫ t

t−k(t)

gT (x(s))S0g(x(s))ds, (22)

where �11, �12, and �2 are defined in (10), (11), and (12) respectively. Applying Lemmas
3–5, it can be shown that

−
∫ t

t−τ1

τ1ẋ
T (s)Y1ẋ(s)ds ≤ −ζ T (t)φT

1 diag{Y1, 3Y1}φ1ζ(t), (23)

−
∫ t

t−τ1

2(τ1 − t + s)ẋT (s)Y2ẋ(s)ds ≤ −ζ T (t)
[
τ 21M2 + 4τ1N2(G1e1 − e5)

]
ζ(t), (24)

−
∫ t−τ1

t−τ2

τ21ẋ
T (s)R1ẋ(s)ds

≤ −ζ T (t)
[
φT
2 Dφ3 + φT

3 Dφ2 − φT
2 R̄1φ2 − φT

3 R̄1φ3

]
ζ(t), (25)

−
∫ t−τ1

t−τ2

2(τ2 − t + s)ẋT (s)R2ẋ(s)ds

≤ −ζ T (t)
{
(τ2 − τ(t))2Z1 + 4(τ2 − τ(t))B1(G1e2 − e7) +

[
τ 221 − (τ2 − τ(t))2

]
×Z2 + 4B2[(τ2 − τ(t))G1(e3 − e2) + (τ (t) − τ1)(G1e3 − e6)]} ζ(t), (26)

−k(t)

∫ t

t−k(t)

gT (x(s))S0g(x(s))ds ≤ ζ T (t)eT
8 S0e8ζ(t), (27)

where R̄1 = diag{R1, 3R1}, (8) and
⎧⎨
⎩

φ1 = col{G1(e1 − e3),G1(e1 + e3) − 2e5},
φ2 = col{G1(e2 − e4),G1(e2 + e4) − 2e7},
φ3 = col{G1(e3 − e2),G1(e3 + e2) − 2e6}.

(28)
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From (20)–(27), we obtain

V̇3(xt ) ≤ ζ T (t)�3ζ(t), (29)

V̇4(xt ) ≤ ζ T (t)�4ζ(t), (30)

V̇5(xt ) ≤ ζ T (t)�5ζ(t), (31)

where �3, �4, and �5 are defined in (13)–(15), respectively.
On the other hand, for any matricesX1 andX2 with appropriate dimensions, it is true that

0 = 2[xT (t)X1 + ẋT (t)X2][−Ax(t) + Wg(x(t)) + W1g(x(t − τ(t)))

+W2

∫ t

t−k(t)

g(x(s))ds + u(t) − ẋ(t)],

= ζ T (t)�6ζ(t), (32)

where �6 is defined in (16).
From (3), the nonlinear function gk(xk) satisfies

l−k ≤ gk(xk)

xk

≤ l+k , k = 1, 2, . . . , n, xk �= 0.

Thus, for any tk > 0, (k = 1, 2, . . . , n), we have

2tk[gT
k (x(θ)) − l−k x(θ)][l+k x(θ) − gk(x(θ))] ≥ 0,

which implies

2[gT (x(θ)) − xT (θ)L−]T T [L+x(θ) − g(x(θ))] ≥ 0,

where T = diag{t1, t2, . . . , tn}. Let θ be t , t − τ(t), t − τ1, and t − τ2, and replace T by
Ts(s = 1, 2, 3, 4), then we have

2ζ T (t)eT
s �T

10Ts�11esζ(t) ≥ 0, (33)

where s = 1, 2, 3, 4 and {
�10 = G2 − L−G1,

�11 = L+G1 − G2.
(34)

As another observation from (3), we have

l−k ≤ gk(x(θ1)) − gk(x(θ2))

x(θ1) − x(θ2)
≤ l+k , k = 1, 2, . . . , n.

Thus, for any tk > 0(k = 1, 2, . . . , n) and � = gk(x(θ1)) − gk(x(θ2)), we have

2tk[� − l−k (x(θ1) − x(θ2))]
[
l+k (x(θ1) − x(θ2)) − �

] ≥ 0,

which implies

2[� − L−(x(θ1) − x(θ2))]T T [L+(x(θ1) − x(θ2)) − �] ≥ 0,

where � = col{�1,�2, . . . , �n}.
Let θ1 and θ2 take values in t , t − τ(t), t − τ1 and t − τ2, and replace T by Tab(a =

1, 2, 3; b = 2, 3, 4; b > a), then we have

2ζ T (t)(ea − eb)
T �T

10Tab�11(ea − eb)ζ(t) ≥ 0, (35)

where a = 1, 2, 3, b = 2, 3, 4, b > a.
From (33) and (35), it can be shown that

ζ T (t)�7ζ(t) ≥ 0, (36)

where �7 is defined in (17).
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Next, to show the passivity of system (1), we set

J (tf ) =
∫ tf

0
[−γ u(t)T u(t) − 2y(t)T u(t)]dt.

where tf ≥ 0. Noting the zero initial condition, we have

J (tf ) =
∫ tf

0
[V̇ (xt ) − γ u(t)T u(t) − 2y(t)T u(t)]dt − V (xtf )

≤
∫ tf

0
[V̇ (xt ) − γ u(t)T u(t) − 2y(t)T u(t)]dt. (37)

From (18), (19), (29)–(32), and (36), we obtain

V̇ (xt ) − γ u(t)T u(t) − 2y(t)T u(t) ≤ ζ T (t)�(τ (t), τ̇ (t))ζ(t),

where �(τ (t), τ̇ (t)) is defined in (9). It is clear to see that �(τ (t), τ̇ (t)) is a quadratic
convex combination of matrices on τ(t) ∈ [τ1, τ2] and �(τ (t), τ̇ (t)) is also a convex
combination of matrices on τ̇ (t) ∈ [0, μ].

If we have �(τ (t), τ̇ (t)) < 0, then V̇ (t, xt ) − γ u(t)T u(t) − 2y(t)T u(t) < 0 for any
ζ(t) �= 0. By (37), we have

J (tf ) < 0

for any tf ≥ 0, when (3) is satisfied. Thus, neural network (1) is passive. This completes
the proof.

Remark 4 Theorem 1 presents estimating of the integral terms in (23), (24), (25), and (26)
by Wirtinger’s inequality and [20], which provided a tighter lower bound than Jensen’s
inequality [24].

In the following, it is interesting to consider passivity condition of passivity analysis for
uncertain neural networks with discrete interval and distributed time-varying delays:⎧⎪⎪⎨

⎪⎪⎩

ẋ(t) = −(A + A(t))x(t) + (W + W(t))g(x(t)) + (W1 + W1(t))

×g(x(t − τ(t))) + (W2 + W2(t))
∫ t

t−k(t)
g(x(s)) ds + u(t),

y(t) = g(x(t)),

x(t) = φ(t), t ∈ [−τmax, 0], τmax = max{τ2, k},
(38)

where A(t), W(t), W1(t), and W2(t) represent the time-varying parameter uncer-
tainties that are assumed to satisfy the following conditions:

[A(t) W(t) W1(t) W2(t)] = HF(t)[E1E2E3E4], (39)

where H , E1, E2, E3, and E4 are known real constant matrices, and F(·) is an unknown
time-varying matrix function satisfying

FT (t)F (t) ≤ I.

Then, we have the following result.

Theorem 2 Given scalars τ1, τ2 and k, the uncertain system (38) with (3) is robust passive
for any delays τ(t) and k(t) satisfying (2) if there exist real matrices Qi > 0, Si > 0,
Y1 > 0, Y2 > 0, R1 > 0, R2 > 0(i = 0, 1, 2, 3), real positive diagonal matrices U1, U2,
Ts , Tab(s = 1, 2, 3, 4; a = 1, 2, 3; b = 2, 3, 4; a < b), real matrices M2, N2, Z1, Z2, B1,
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B2, D, X1, X2 and P with appropriate dimensions, and scalars γ > 0 and ε > 0 such that
the following linear matrix inequalities hold:[

� + εMT
2 M2 MT

1
M1 −εI

]
< 0, (40)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
M2 N2
� Y2

]
> 0,

[
R̄1 D

� R̄1

]
> 0, Z1 > Z2,

[
Z1 B1
� R2

]
> 0,

[
Z2 B2
� R2

]
> 0,

(41)

where

M1 = eT
1 GT

1 X1H + eT
10X2H,

M2 = −E1G1e1 + E2G2e1 + E3G2e2 + E4e8,

� and (41) are defined in Theorem 1.

Proof Replacing A, W , W1, and W2 in (7) with A + HF(t)E1, W + HF(t)E2, W1 +
HF(t)E3, and W2 + HF(t)E4 respectively, so we have

� + MT
1 F(t)M2 + MT

2 F(t)M1 < 0.

By Lemma 7, it can be deduced that ε > 0 and

� + ε−1MT
1 M1 + εMT

2 M2 < 0

is equivalent to (40) in the sense of the Schur complements Lemma 8. The proof is complete.

4 Numerical Examples

In this section, we present examples to illustrate the effectiveness and the reduced
conservatism of our results.

Example 1 Revisit nominal neural network with (1) with the following parameters:

A =
[
2.2 0
0 1.8

]
, W =

[
1.2 1

−0.2 0.3

]
, W1 =

[
0.8 0.4

−0.2 0.1

]
, W2 =

[
0 0
0 0

]
.

Table 1 Allowable upper bounds of τ2 for μ

Methods τ1 μ = 0.5 μ = 0.9 μ ≥ 1

Ref. [16] 0 τ2 = 0.5227 τ2 = 0.4613 τ2 = 0.4613

Ref. [23] 0 τ2 = 1.3752 τ2 = 1.3027 τ2 = 1.3027

Ref. [25] 0 τ2 = 1.4693 τ2 = 1.4243 τ2 = 1.4240

Theorem 1 0 τ2 = 3.0835 τ2 = 2.6350 τ2 = 2.7433

Improvements (%) 109.86 89.00 92.64

Theorem 1 0.2 τ2 = 3.2116 τ2 = 2.7793 τ2 = 2.7433

0.3 τ2 = 3.2768 τ2 = 2.8518 τ2 = 2.8193
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Fig. 1 State trajectory of neural network in Example 1

The neural activation functions are assumed to be gi(xi(t)) = 0.5(|xi + 1| − |xi − 1|), i =
1, 2. It is easy to see

L− =
[
0 0
0 0

]
, L+ =

[
1 0
0 1

]
.

According to Theorem 1, we get the upper bounds of the time-varying delay τ(t) for various
μ, and summarize them in Table 1 for comparison with the results obtained in [16, 25]. It
is concluded that our results have improvements at the amount of 109.86%, 89.00%, and
92.64% for μ = 0.5, 0.9 and μ ≥ 1 respectively, compared with the recent work [25].
Figure 1 gives the state trajectory of the neural network (1) under zero input, 0.3 ≤ τ(t) ≤
2.8193 and the initial condition [x1(t), x2(t)]T = [0.3, −0.2]T , which shows that the neural
network is stable.

Remark 5 Our obtained results have been shown to be the less conservative than some
existing results, but still have some comments because Wirtinger-based integral inequal-
ity approach still requires less decision variables to manipulate of Lyapunov–Krasovskii
functional candidates. Recently, a new class of integral inequalities for quadratic functions
via some intermediate terms called auxiliary functions, are recent bounding techniques
because these inequalities turn into the existing inequality, such as the Jensen inequal-
ity, the Wirtinger based integral inequality and the Bessel–Legendre (B-L) inequality by
appropriately choosing the auxiliary functions.

Table 2 Allowable upper bounds of τ2 for μ

Methods τ1 μ = 0.5 μ = 0.6 μ = 0.7

Ref. [10] 0.2 τ2 = 0.9098 τ2 = 0.9097 τ2 = 0.9096

0.3 τ2 = 0.9972 τ2 = 0.9971 τ2 = 0.9096

Theorem 2 0.2 τ2 = 1.7101 τ2 = 1.5034 τ2 = 1.4838

Improvements (%) 87.96 65.26 63.12

Theorem 2 0.3 τ2 = 1.8090 τ2 = 1.5940 τ2 = 1.5714

Improvements (%) 81.41 59.86 72.75
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Table 3 Allowable upper bounds of τ2 for μ

Methods μ = 0.7 μ = 0.8 μ = 0.9 μ = 1

Ref. [22] 2.0205 1.6377 1.2632 0.9987

Ref. [11] 2.3368 1.9109 1.5523 1.2263

Theorem 2 2.9436 2.5630 2.2150 2.1644

Improvements (%) 25.96 34.12 42.69 76.49

Example 2 Consider the uncertain neural networks (38) with the following parameters:

A =
[
2.1 0
0 2.3

]
, W =

[ −0.2 0.1
−0.2 0.1

]
, W1 =

[
0.7 0.5
0.5 0.4

]
,

W2 =
[
0.5 −0.3
0.2 1.2

]
, L− =

[ −0.5 0
0 −1

]
, L+ =

[
0.5 0
0 1

]
,

H =
[
0.4 0
0 0.4

]
, E1 = E2 = E3 = E4 =

[
1 0
0 1

]
.

According to Theorem 2, we get the upper bounds of the interval time-varying delay τ(t)

for various μ, and summarize them in Table 2 for comparison with the results obtained in
[10]. On the other hand, the eigenvalues of P for 0.3 ≤ τ(t) ≤ 1.5714 and μ = 0.7 are
0.1813, −0.0284, −0.0206, −0.0000, 0.0001, 0.0121, 0.0418, 0.0556, 0.1581, 0.5081, and
0.5081. So, P is not a positive matrix.

Example 3 Consider the uncertain neural networks (38) with the following parameters:

A =
[
2 0
0 1.5

]
, W =

[ −1 1
0.5 −1

]
, W1 =

[ −0.5 0.6
0.7 0.8

]
, W2 =

[
0 0
0 0

]
,

L− =
[
0 0
0 0

]
, L+ =

[
1 0
0 1

]
, H = I,

E1 =
[
0.4 0
0 0.4

]
, E2 =

[
0.3 0
0 0.3

]
, E3 =

[
0.2 0
0 0.2

]
, E4 =

[
0 0
0 0

]
.

By Theorem 2, we get the upper bounds of the interval time-varying delay τ(t) for various
μ, and summarize them in Table 3 for comparison with the results obtained in [11, 22].

5 Conclusions

In this paper, the delay-dependent passivity analysis issue for uncertain neural networks
with discrete interval and distributed time-varying delays was studied by the Lyapunov–
Krasovskii functional method, via an LMIs approach. The delay-dependent passivity
conditions have been considered for two types of time-varying delays. To estimate the
derivative of the Lyapunov–Krasovskii functional, we applied Wirtinger’s inequality to
provide a tighter lower bound than Jensen’s inequality, which established less conserva-
tive results. Numerical examples are given to illustrate the effectiveness of our theoretical
results.
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