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Abstract We propose a forward-backward splitting algorithm based on Bregman distances
for composite minimization problems in general reflexive Banach spaces. The convergence
is established using the notion of variable quasi-Bregman monotone sequences. Various
examples are discussed, including some in Euclidean spaces, where new algorithms are obtained.
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1 Introduction

In this paper, we propose a forward-backward splitting algorithm to solve the following
composite convex minimization problem considered in Banach spaces.

Problem 1 Let X’ be a reflexive real Banach space, let ¢: X —]— 00, +o0]and ¢: X —
] — 00, +00] be proper lower semi-continuous convex functions, and suppose that v is
Gateaux differentiable on interior of its domain. The problem is to

minir;)(ize o(x) + ¥ (x). (H
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The set of solutions to (1) is denoted by S.

A particular instance of (1) when v is the Bregman distance associated to a differentiable
convex function f, i.e.,

DY X x X — [0, +00]
f) = f(») = (x =y, Vf(») if y € intdom f, @)

+00 otherwise,

(x,y)r—>{

where dom f = {x € X | f(x) < 400} and intdom f is its interior, provides a framework
for many problems arising in applied mathematics. For instance, when X is a Euclidean
space and f is Boltzmann—Shannon entropy, it captures many problems in information
theory and signal recovery [9].

It was shown in [14] that if X is Hilbertian and v possesses a 8! -Lipschitz continuous
gradient for some S €]0, +ool, then Problem 1 can be solved by the standard forward-
backward algorithm

(Vn € N)  xyp1 =prox,, ,(x, — yVi(x,)), where 0 <y < 28. 3)

Here, prox is Moreau proximity operator [19]. However, many problems in applications
do not conform to these hypotheses, for example when X" is a Euclidean space and ¢ is
Boltzmann—Shannon entropy which appears in many problems in image and signal pro-
cessing, in statistics, and in machine learning [2, 11, 12, 16-18]. Another difficulty in the
implementation of (3) is that the operator prox is not always easy to evaluate.

The objective of the present paper is to propose a forward-backward splitting algorithm
to solve Problem 1, which is so far limited to Hilbert spaces, in the general framework of
reflexive real Banach spaces. This algorithm, which employs Bregman distance-based prox-
imity operators, provides new algorithms in the framework of Euclidean spaces, which are,
in some instances, more favorable than the standard forward-backward splitting algorithm.
This framework can be applied in the case when ¥ is not everywhere differentiable. The
paper is organized as follows. In Section 2, we provide some preliminary results. We present
the algorithm and prove its convergence in Section 3. Section 4 is devoted to an application
of our result to multivariate minimization problem together with examples.

Notation and Background Throughout this paper, X is reflexive, X'* is the dual space
of X, (-, ) is the duality pairing between X and X'* and || - || is a norm of X’. The symbols
— and — represent respectively weak and strong convergence. The set of weak sequential
cluster points of a sequence (x,),eN is denoted by 20(x,)nen. Let M: X — 2%" The
domain of M is domM = {x € X | Mx # @} and the range of M isranM = {x* €
X*| (Ax € X)x* € Mx}.Let f: X —] — 00, +00]. Then, f is cofinite if dom f* = A'*,
is coercive if lim|y |- oo f(x) = 400, is supercoercive if limx |- 100 f(X)/[lx]| = 400,
and is uniformly convex at x € dom f if there exists an increasing function ¢: [0, +-0co[—
[0, 4+-00] that vanishes only at O such that

(Vy edom f)(Va €]0, 1) flax + (1 —a)y) +a(l —a)¢(|lx — yl)
saf)+dA-a)f().

Denote by I'g(X) the class of all lower semicontinuous convex functions f: X —
] — 00,400] such that domf = {x € X | f(x) < 4o} # @. Let f €
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I'o(X). Denote by Argmin f the set of global minimizers of f, by f*: X* —] —
00, +00]: x* F>sup,c p ({x, x*) — f(x)) the conjugate of f and by

of 1 X > 2V x> (3 € XY | (Vy € X)(y —x, %) + f(x) < FO)), “

the Moreau subdifferential of f. In addition, if f is Gateaux differentiable on intdom f
# () then

(&)

. B f(x) if x € intdom f,
fi X —>]—00,+00] x > [+oo otherwise.

We denote
F(f) ={g € To(X) | g is Gateaux differentiable on dom g = intdom f}.
Moreover, if g; and g; are in F(f), then
gi>=g <& (Yx edom f)(Yy €intdom f) D8'(x,y) > D52(x,y).
For every a € [0, o0, set
Pu(f) ={g € F(N) g =af}

Finally, EL(N) is the set of all summable sequences in [0, +oo[.

2 Preliminary Results

In this section, we give some preliminary results on Legendre function, Bregman mono-
tonicity, and Bregman distance-based proximity operator that will be used in the next
section.

Definition 1 [5, 6] Let f € I'g(X) be Giteaux differentiable on intdom f # (. We say
that f is a Legendre function if it is essentially smooth in the sense that df is both locally
bounded and single-valued on its domain, and essentially strictly convex in the sense that
df* is locally bounded on its domain and f is strictly convex on every convex subset of
dom df. Let C be a closed convex subset of X’ such that C Nintdom f # (. The Bregman
projector onto C induced by f is

P‘Cf: intdom f — C Nintdom f
y = argminxeCDf(x,y),
and the D/ -distance to C is the function
Dé: X — [0, +o00]
y i inf D7 (C, y).
Definition 2 [20] Let f € I'o(X) be Gateaux differentiable on intdom f # @, let (fu)neN

be in F(f), let (x;)nen € (intdom )N, and let C C X be such that C Ndom f # @. Then
(Xn)neN is:

1. quasi-Bregman monotone with respect to C relative to (f;,)en if
Annen € €L MN)(Vx € € Ndom £)(F(en)nen € €L (N)(Vn € N)
DIt (x, xq1) < (14 0a) DI (x, x) + &
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2. stationarily quasi-Bregman monotone with respect to C relative to (fy,)nen if

A(ennen € LLMN)E)nen € €L M) (Vx € C Ndom f)(¥n € N)
DIt (x, xy41) < (14 0a) DI (x, x) + €.

Condition 1 [6, Condition 4.4] Let f € T'g(X) be Giteaux differentiable on intdom f
# (. For every bounded sequences (x;),en and (y,)nen in intdom f,

D/ (xpyy) >0 = x,—y, — 0.

Proposition 1 ([20]) Let f € T'o(X) be Gdteaux differentiable on intdom f # @, let
o €10, +00[, let (fu)nen be in Py (f), let (xp)nen € (intdom )N, ler C € X be such that
C Nintdom f # @, and let x € C N intdom f. Suppose that (x,)neN is quasi-Bregman
monotone with respect to C relative to (f)neN- Then the following hold.

1. (DT (x, xp))nen converges.
2. Suppose that D/ (x, -) is coercive. Then (xy)nen is bounded.

Proposition 2 ([20]) Let f € T'o(X) be Gdteaux differentiable on intdom f # @, let
(Xn)nen € (intdom f)N, let C C X be such that C Nintdom f # @, let ()nen € €L(N),
let « €]0, +o0[, and let (f)neN in Po(f) be such that ¥n € N) (1 4+ n,) fu = fat1-
Suppose that (xp)neN i quasi-Bregman monotone with respect to C relative to ( fy)neN,
that there exists g € F(f) such that for everyn € N, g = f,, and that, for every y; € X
and every y, € X,

y1 € W(xp)nen N C,
2 € QU(xn)neN Nnc, = V1 = y2.
(1 = y2. Vfuxa))), o converges

Moreover, suppose that (YVx € intdom f) DY (x, ") is coercive. Then (xp)nen converges
weakly to a point in C Nintdom f if and only if 2(x,)nen C C Nintdom f.

Proposition 3 ([20]) Let f € To(X) be a Legendre function, let o €]0, +00], let (fu)neN
be in Py (f), let (xy)neny € (intdom f)N, and let C be a closed convex subset of X such
that C Nintdom f # (. Suppose that (x,)neN is stationarily quasi-Bregman monotone with
respect to C relative to (fy)nen, that f satisfies Condition 1, and that (Vx € intdom f)
DY (x, ) is coercive. In addition, suppose that there exists 8 €]0, +oo[ such that (Vn €
N) ﬁf = fn. Then (x,),en converges strongly to a point in C N dom f if and only if
limD/.(xy) = 0.

Our framework uses the Bregman distance-based proximity operators whose definition
and properties are discussed in the following proposition.

Proposition 4 Let f € ['g(X) be Gateaux differentiable on intdom f # 0, let ¢ € To(X),
and let

Proxgz X* — 2%

e fx e X o)+ f(x) — (x,x¥) = min(p + f — x™)(X) < +o0} (6)
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be f-proximity operator of ¢. Then the following hold.

(D) ranProx(j; C dom f Ndom ¢ and Prox£ =@(f +¢) L
(2) Suppose that dom ¢ N intdom f # @ and that dom df N dom dep C intdom f. Then
the following hold.
(a) ranProx) C intdom f and Prox}, = (Vf + d¢)~".
(b) int(dom f* 4 dom ¢*) C dom Prox{;.
f

(¢) Suppose that flintdom  is strictly convex. Then Proxy, is single-valued on its
domain.

Proof Letus fix x* € X'* and define fy+: X —]—00, +00]: x > f(x)—{(x, x*)+f*(x*).

Then dom fy+ = dom f and ¢ + fy+ € To(X). Moreover, 3(¢ + fy+) = (¢ + f) — x™.
(1): By definition, ranProx£ C dom f N dom ¢. For the second assertion, it is sufficient
to prove for the case dom f N dom ¢ # @ since otherwise both sides of the desired

identity reduce to the trivial operator x* > . Now let x € dom f N dom ¢. Then
x € Prox/x* & 0€d(p+ for)(x)
& 0e€dp+ Hx) —x*
& x*edlp+ fHx)
~1
& xe(@e+) @ ™)

(2):  Suppose that x* € int(dom f* 4 dom ¢™*). Since dom ¢ N intdom f # @, it follows
from [1, Theorem 1.1] and [23, Theorem 2.1.3(ix)] that
x* € int(dom f* + dom ¢*) = intdom( f + ¢)*. ¥

(2a): Since dom g Nintdom f # @, d(¢ + f) = d¢ + df by [1, Corollary 2.1], and hence
1) yields

ranProx{; =domd(f + ¢) = dom(df + d¢) = domdf Ndomd¢ C intdom f.
In turn, ranProx;; C dom ¢ Nintdom f. We now prove that Prox({,' =(Vf+ap) L

Note that dom(V f + d¢) C dom¢ Nintdom f. Let x € dom¢ N intdom f. Then
A(f + @)(x) = 3f (x) + dp(x) = V f(x) + d¢(x) and therefore,

x € Prox)x* & x* € A(f +¢)(x) = Vf(x) + dp(x) & x € (Vf +0p) " (x¥).

(2b):  We derive from (8) and [5, Fact 3.1] that ¢+ fy+ is coercive. Hence, by [23, Theorem

2.5.1], ¢ + fy+ admits at least one minimizer, i.e., x* € dom Prox{; .

(2¢):  Since flintdom f 18 strictly convex, 50 is (¢ + fy*)lintdom s and thus, in view of 2b),
¢ + fy+ admits a unique minimizer on intdom f. However, since

Argmin(¢ + fy+) = ranProx(J; C intdom f,

it follows that ¢ + fy+ admits a unique minimizer and that Prox£ is therefore single-
valued. 0

Proposition 5 Let m be a strictly positive integer, let (X;)1<i<m be reflexive real Banach
m

spaces, and let X be the vector product space X i1 Xi equipped with the norm x =
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Xi)1<i<m = ,/Z:»"zl lxi||2. For every i € {1,...,m}, let fi € To(X;) be a Legen-
dre function and let ¢; € T'o(X;) be such that domg; N intdom f; # (. Set f: X —
]—o00,400]: x > > 1L, fi(xi) and p: X —] — 00, +00]: x > Y il @i (x;). Then

Va* = () 1<iem € X int(dom f* + domg*))  Prox/x* = (Prox/ix*
= (x)1<i<m i=11nt( om f;* + dom ;") rox, x" = (Proxylx; .

m
Proof First, we observe that X'* is the vector product space X i=1 X7 equipped with the
norm x* = (xMi<i<m > /2y ||xi*||2. Next, we derive from the definition of f that
m
dom f = X ;—;dom f; and that

Af: X = 2% () 1<iem > X Ofi (xi).

i=1

Thus, df is single-valued on

m m

m
domdf = X domaf; = Xintdom f; = int(Xdomﬁ) = intdom f.
i=1

i=1 i=l1

Likewise, since

m
f*: X* 5] =00, +0ol: () i<izm > Y £ (X)),
i=1
we deduce that 9f* is single-valued on dom df* = intdom f*. Consequently, [5, Theorems
5.4 and 5.6] assert that
f is a Legendre function. )

In addition,

m m
dom¢ Nintdom f = (X d0m<pi> N (X intdomﬁ)
i=1 i=1
m

= X (domg; Nintdom f;) # .
i=1 (10)

Hence, Proposition 4(2b) and (2c) assert that int(dom f* + dom¢*) C dom Prox;g and

Prox({) is single-valued on its domain. Now set x = Prox(/,.x* andg = (Prox{;’; XV 1<i<m- We
derive from Proposition 4(2a) that

x=Prox/x* & x=(Vf+dp) 'x*) & xF—VfQ)ep).

Consequently, by invoking (4), we get

(Vzedomg) (z—x,x" = Vf(x))+ek) < Q). (1)

Upon setting z = ¢ in (11), we obtain
(g —x,x" = V) +ox) < o@. (12)
For every i € {1,...,m}, letus set ¢q; = Prox£ x. The same characterization as in (11)

yields
(Vi e{l,...,m)(Vz; e domg;) (zi —qi, x; =V fi(q) + ¢i(qi) < @i (zi)-
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Forward-Backward Splitting with Bregman Distances 525

By summing these inequalities overi € {1, ..., m}, we obtain
(Vzedomg) (z—gq.x" = V(@) +e(@) < ¢@). (13)
Upon setting z = x in (13), we get
(x=q. Vf(x) = V@) + el =< ). (14)

Adding (12) and (14) yields
(x—¢q,Vfx)—Vf(g)=0.

Now suppose that x # g. Since flintdom s is strictly convex, it follows from [23, Theorem
2.4.4(ii)] that V f is strictly monotone, i.e.,

(x—=q,Vf(x)=Vf(g) >0,

and we reach a contradiction. O

In Hilbert spaces, the operator defined in (6) reduces to the Moreau’s usual proximity
operator prox,, [19]if f = ||- 1> /2. We provide illustrations of such instances in the standard
Euclidean space R™.

Example 1 Let y €]0, 4o0[, let ¢ € I'g(R) be such that dom ¢N]0, +oo[# @, and let ¥ be
Boltzmann—Shannon entropy, i.e.,

§In§ — & if & €]0, +oof,
D:E— L0 if€ =0,

+00 otherwise.
Seto: (E)i<i<m — Y j @ (&) and f: (§)1<i<m > Y ;= ¥ (&;). Note that f is a super-
coercive Legendre function [4, Sections 5 and 6], and hence, Proposition 4(2b) asserts that
domProx) = R™. Let (§)1<i<m € R™, set (0)1<i<m = Prox), (&) 1<i<m. let W be the
Lambert function [15], i.e., the inverse of & +— Eeé on [0, +oo[,and leti € {1,...,m}.
Then n; can be computed as follows.

1. Letw € R and suppose that

EIné — wé if & €]0, +o0],
¢:E—> 30 if € =0,

+00 otherwise.

Then n; = e(i+e=D/(r+1),

2. Let p € [1, +oo[ and suppose that either ¢ = | - |P/p or
: §P/p if & €0, +o0l,
¢85 { 400 otherwise.
Then
1
W — De—DEy\ 7T
(e Det N e i, o,
= y(p—1)
esiTY if p=1.

3. Let p € [1, +oo[ and suppose that

§7P/p if & €]0, +ool,
+o00 otherwise.

¢5€'—>{
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Then

;]
W (y (p+ De”PHD5) | 7
i = :
’ yp+1)
4. Let p €]0, 1] and suppose that

—&7/p it & €0, +ool,
+00 otherwise.

e |

Then

1
W(y(1 — p)elP=Dsiy\ 7~
y(1—p) ’

i =

Example 2 Let ¢ € I'o(R) be such that dom ¢N]0, 1[# @ and let ¥ be Fermi—Dirac entropy,
ie.,
§lné —(1-§)In(1 -§) if§ €]0, 1],
D:E—~> 30 if & € {0, 1},
400 otherwise.
Set ¢: (E)i<iem > Y @) and f: E)i<iem > oo 9(&). Note that f is a
cofinite Legendre function [4, Sections 5 and 6], and hence Proposition 4(2b) asserts
that domProx}, = R™. Let (&)1<i<m € R™, set (0;)1<i<m = Prox} (&) 1<i<m, and let
i €{l,...,m}. Then n; can be computed as follows.
1. Let w € R and suppose that
Elné — wk if & €]0, +ool,
¢:E—> 10 if& =0,
400 otherwise.

Then n; = —ebit®=1/2 4\ /e2EiFo—1) /4 4 ehito—T,
2. Suppose that

(1—-=&In(1 =& +¢& if& €] —o0,1l,
p:E—> {1 ifé =1,
+00 otherwise.

Thenn; = 1 + e /2 — \Je~5i + =25 /4.
Example 3 Let f: (§i)1<i<m — Zl'-":] ¥ (&;), where ¥ is Hellinger-like function, i.e.,
PRI { ~VT=8 ifg e[-1,1],
400 otherwise,

let y €]0,4+o0[, and let ¢ = f. Since f is a cofinite Legendre function [4, Sections 5
and 6], Proposition 4(2b) asserts that dom Prox}],((p = R"™. Let (§)1<i<m € R, and set

(M) 1<i<m = Prox}y (&)1 <i<m. Then (Vi € {1, ..., m}) mi = &/\/(y + )2 + £~

Example 4 Lety €]0, +o0[, let ¢ € T'(R) be such that dom ¢N]0, +00[#£ @, and let ¥ be
Burg entropy, i.e.,

) —In& if & €]0, +oo[,
LR e { +00  otherwise.
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Set 9: (Ei<i<m = Y @) and f: Ei<i<m = Y imy 9(&), let (§)1<i<m € R™,
and set (7)) 1<i<m = Prox%(“;‘,-)lsism. Leti € {1,...,m}. Then n; can be computed as
follows.

1. Suppose that ¢ = ¥ and §; €] — 00, 0]. Then n; = —(1 + y)’lé,-.
2. Suppose that ¢: £ > «|£| and & €] — oo, ya]. Then n; = (Yo — &)~ L.

The following result will be used subsequently.

Lemma 1 Let X be a reflexive real Banach space, let f € T'o(X) be a Legendre func-
tion, let x € intdom f, and let (xp)nen € (intdom £)N. Suppose that (Df (x, x,))nen
is bounded, that dom f* is open, and that V f* is weakly sequentially continuous. Then
W (xp)neN C intdom f.

Proof [20, Proof of Theorem 4.1]. O

3 Forward-Backward Splitting in Banach Spaces

The main result in this section is a version of the forward-backward splitting algorithm in
reflexive real Banach spaces which employs different Bregman distance-based proximity
operators over the iterations.

Theorem 1 Consider the setting of Problem 1 and let f € To(X) be a Legendre function
such that § Nintdom f # @, intdom f C intdom vy, and f = By for some B €]0, +00].
Let (Ny)neN € Zﬂr(N), let o €]0, +o00[, and let (f;)neN be Legendre functions in Py (f)
such that

VneN) (141 fu = fori. (15)

Suppose that either —ran Vi C dom ¢* or (Vn € N) f, is cofinite. Let ¢ €10, aB/(aB+ 1)[
and let (Vy)nenN be a sequence in R such that

(VneN) e<y,=<ap(l—¢) and (1+n0)Vn = Yas1 < afnn. (16)
Furthermore, let xo € intdom f and iterate
(Vn € N) a1 = Proxs?, (V fuGin) — vV (an)) - (17)

Suppose in addition that (Yx € intdom f) DY (x,) is coercive. Then (Xp)nen is a
bounded sequence in intdom f and 2 (x,)eNn C 8. Moreover, there exists X € 8 such that
the following hold.

(1) Suppose that S Ndom f is a singleton. Then x,, — X.
(2) Suppose that there exists g € F(f) such that for everyn € N, g = f,, and that, for
every y| € X and every y, € X,

y1 € W(xp)nen,
y2 € W(xXy)neN, = Y= (18)
((yl =2, V fulxn) — anw(xn»)nEN converges

In addition, suppose that one of the following holds.

(a) & Cintdom f.
(b) dom f* isopen and V f* is weakly sequentially continuous.
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Then x, — X.
(3) Suppose that f satisfies Condition 1 and that one of the following holds.

(a) Either ¢ or Y is uniformly convex at X.
(b) @Dg (x,) = 0 and there exists u €]0, +00[ such that (Vn € N) ,uf = fa-

Then x,, — X.

Proof We first derive from Proposition 4(2c) that the operators (PI’OX‘;}M)HEN are single-
valued on their domains. We also note that xo € intdom f. Suppose that x,, € intdom f for
some n € N. If f, is cofinite then Proposition 4(2b) yields

V fa(@n) = Ya VY (x5) € X* = dom Prox/r . (19)

Otherwise,
V fu(xn) — v V¥ (x,) € intdom f,* 4+ y,dom¢* = int(intdom f," 4+ y,dom ¢*)
C int(dom f,* 4+ y,dom¢*) = int(dom f,’ + dom(y,¢*)). (20)

Since int(dom f,* + dom (y,¢*)) C dom Prox)];(/, by Proposition 4(2b), we deduce from

(17), (19), (20), and Proposition 4(2a) that x,; is a well-defined element in ranProx{,("gJ =

dom d¢ Nintdom f,, = domdg Nintdom f C intdom f. By reasoning by induction, we
conclude that

(Xn)nen € (intdom f)N is well-defined.
Next, let us set ® = ¢ + ¢ and
WVneN) g,: X - ]—o00,+x]

Y { fa(x) — ¥ (x) if x € intdom f,

+00 otherwise. @n

Since intdom f C intdom v, it follows from (21) that (Vn € N) g, is Gateaux differ-
entiable on dom g, = intdomg, = intdom f. Since ¥ is continuous on intdomy D
intdom f and the functions ( f;;),en are continuous on intdom f [21, Proposition 3.3], we
deduce that (Vn € N) g, is continuous on dom g, . In addition,

(VneN) g, —eaf =1 —e)(fu —aBy) +e(fu —af) + (@B —&) —ya)¥. (22)
Note that f = By and (Vn € N) f;, = af. Hence, (22) yields
(Vn eN)  fu = By, (23)
and hence, we deduce from (16) and (22) that (Vn € N) g, = eaf. In turn,
(Vn € N)(Vx € dom g,)(Vy € dom g,)
(x =y, Vea(x) = Vgu(y)) = D" (x, y) + D¥"(y, x) = e (D’ (x, y) + D/ (v, %)) > 0,

and it therefore follows from [23, Theorem 2.1.11] that (Vn € N) g, is convex.
Consequently,
(Vn e N) gy € Pea(f)- (24)

Setw =1+ 1/e. Then
VneN) (A+own)gn — g1 = U +on)(fu — va¥) — (fat1 — Va1 ¥)
= (L+ 1) fu = fort + ™" (fo — (va + £aB)Y)
+(0‘,377n + Vo1 — (1 + nn)yn)l[f-
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We thus derive from (15), (16) and (23) that
(Vn e N) (I+wnu)gn = gnt1- (25)
By invoking (17) and Proposition 4(2a), we get
(Vn e N)  Vfu(xn) = va V¥ (xn) € Vfu(nt1) + vude(xnt1),
and therefore,
(Vn e N) V() —yaV¥(xn) € Vfu(Xng1) = Yo VY (Xny1)
+u (89 Xy 1) + VY (Xnp1)). (26)
Since [23, Theorem 2.4.2(vii)—(viii)] yield
(Vn e N)  9¢(xn41) + V¥ (Xnp1) C 09 (Xn41) + 0V (Xn41)
C 3@+ ¥)(xn41) = 0P (Xny1),
we deduce from (26) that
(Vn e N)  Vgu(xp) = Vgn(xnt1) € Y0P (xp11). 27
By appealing to (4) and (27), we get
(Vx € dom ® Ndom f)(Vn € N)
Vo N = X1, VEn () = Vgn(ng1)) + @ (ng1) < D (1), (28)

and hence, by [6, Proposition 2.3(ii)],
(Vx € dom ® Ndom f)(Vn € N)

Y H(D#" (X, Xn g 1) + D (n1, Xn) — DO (x, x0)) 4+ @ (xp41) < P(x). (29

In particular,

(Vx € SNdom f)(Yn € N)  D#"(x, xp41) + D¥" (Xpt1, xn) — DE"(x, xn) < 0. (30)

By using (25), we deduce from (30) that
(Vx € SNdom f)(Vn € N)
D81 (x’ xn+1) + (1 + wnn)Dg" (xn+l 5 xn) =< (1 + w’]n)Dgn (.X, xn)y

and therefore,

€1y

(Vx € 8Ndom f)(Vrn € N) D8+ (x, x,41) < (1 + wn,) D8 (x, x,). (32)

This shows that (x,),eN is stationarily quasi-Bregman monotone with respect to S relative

to (gn)nenN- Hence, we deduce from Proposition 1(2) that
(X1)nen € (intdom f)N is bounded
and, since X is reflexive,
W (xn)neN # B.
In addition, we derive from (32) and Proposition 1(1) that
(Vx € SNintdom f) (Dg" (x, x,,))neN converges,
and thus, since (31) yields

(Vx € 8Nintdom f)(Vn € N) 0 < D5 (xp+1, Xn)
<1+ Cl)']n)Dgn (Xn41, Xn)

< (1 +w77n)Dg" (x7 xn) - Dg”“(xa Xn

(33)
(34)

(35)

+1),
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and since 1,, — 0, we obtain

D3 (xp41, xp) — O. (36)
On the other hand, it follows from (24) that

(Vn € N)  eaD’ (oui1, x) < D (tns1, ),

and hence, (36) yields

D' (xp41, xp) = 0. (37)
Now, it follows from (29) that

(Vn €N)  ®(xpr1) < ¥y (DF (s Xn1) + DO (a1, %)) + P (Xag1) < D(xa),

which shows that (®(x,)),cn is decreasing and hence, since it is bounded from below by
inf ®(X), it is convergent. However, (29) and (32) yield

(Vx € 8Nintdom f)(Vn € N)

_ 1
& ! <7Dg”+l(x7 Xpg1) + Dén (Xp41, Xp) — Dé» (x, xn)) + @ (xp41)
1+ wnp

<y, (ﬁDg”“ (X, Xp41) + D3 (Xp41, X0) — D3 (x, xn)) + @ (xn+1)
< ®(x). (38)
Since n,, — 0, by taking the limit in (38) and then using (35) and (36), we get
inf ®(X) < lim ®(x,) < inf &(X),

and thus,
®(x,) — infd(X). 39)
We now show that

Szﬂ(xn)neN C . (40)

To this end, suppose that x € 20(x,),en, i.€., x;, — x. Since & is weakly lower
semicontinuous [23, Theorem 2.2.1], by (39),

inf ®(X) < &(x) < lim & (xg,) = lim P(x,) = infd(X).
This yields ®(x) = inf ®(X), i.e., x € Argmin ® = 8.

(1) Letx € Q(x,)neN- Since (33) and (40) imply that W (x,)peny C SN doimf, we
obtain WW(x,),eny = {X}, and in turn, (34) yields x,, — Xx.
(2) Inview of (40) and Proposition 2, it suffices to show that 23 (x;),en C intdom f.
(2a) We have 20(x,,)neny C 8 C intdom f.
(2b) This follows from Lemma 1.
(3) Letx € SNintdom f. Since f satisfies Condition 1, (37) yields

Xn41 — Xp — 0. (€Y
Now set
Y e€N) yu=xpe1 and y; =y, (Ven () = Vgu(m))-
Then (27) and (41) imply that
(VneN) yredd(y,) and y, —x, —> 0. (42)
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(3a)

3b)

Since (31) yields

(Vn e N) D&+ (X, xp41) = D¥H1(X, yu)
(1 + wny) D& (X, yn)
= (1 + ony) D" (X, xp41)
< (14 @ny) D3 (X, xp),

IA

we deduce that
(Vn € N) (14 wn,) "' D¥HI (X, x411) < D (X, yn) < D¥" (X, xp). (43)
Altogether, (35) and (43) yield
D8 (x, y,) — D% (X, x,,) — 0. (44)
In (28), by setting x = X, we get
(VneN) 0 < yulyn—%, )
= (Vn =X, Vgn(xn) = Vgu(yn))
= D*"(x, xn) — D" (X, yn) — D*"(yn, xn)
< D¥(x,xp) — D% (X, yn). (45)
By taking to the limit in (45) and using (44), we get
(yn =%, y;) = 0. (46)
In this case 8 = {x}. Since ¢ is uniformly convex at x, & is likewise and hence, there
exists an increasing function ¢ : [0, 4-00[— [0, +00] that vanishes only at 0 such that
(Vn e N)(VT €]0, 1))  @(x+ (A —1)yn) + 71 — D)@ (lyn — X1
<TtP)+ A —1)P(n).
It therefore follows from [23, Page 201] that d® is uniformly monotone at X and its
modulus of convexity is ¢, i.e,
(VneN)  (yn —%,y,) = ¢lya —xI) = 0. (47

Altogether, (46) and (47) yield ¢ (]ly, — X||) — 0, and thus, y, — X. In turn, (42)
yields x,, — X. The case when v is uniformly convex at X is similar.

First, we observe that 8 is closed and convex since ® € I'g(X). Next, foreveryn € N,
since [ f %= fn, we derive from (21) that u f = g,. Finally, the strong convergence
follows from Proposition 3. O

In Theorem 1, when (Vn € N) f,, = f, condition (18) is satisfied when both V f and
V1 are weakly sequentially continuous. More precisely, we have the following result.

Theorem 2 Consider the setting of Problem 1 and let f € To(X) be a Legendre function
such that § Nintdom f # ¢, intdom f C intdom ¥, and f = By for some B €]0, +ool.
Suppose that either f is cofinite or —ranViy C dom ¢*, and that (Vx € intdom f)
D/ (x, ) is coercive. Let ¢ €10, B/(B + DI, let (M)nen € €L(N), and let (yn)nen be a
sequence in R such that

(VneN) e<y,<p(—¢e) and (1+0)¥n = Yut1 < Bl (48)

Furthermore, let xo € intdom f and iterate

(Vn € N)  xup1 = Proxd, (V£ (xn) = ya Vi (). (49)
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Then there exists X € 8 such that the following hold.
(1) Suppose that one of the following holds.

(a) SNdomf isa singleton.
(b) Vf and Vi are weakly sequentially continuous and 8§ C intdom f.
(¢) dom f*isopenandV f, V f*, and Vr are weakly sequentially continuous.

Then x,, — X.
(2) Suppose that f satisfies Condition I and that one of the following holds.

(a) Either ¢ or ¥ is uniformly convex at X.
(b) lim D (x,) = 0.
Then x, — X.

Proof Set (Vn € N) f, = f. Then

Jn € P1(f),
(Vn e N) = I (50)

(L +n) fn = fos1.

(1a): This is a corollary of Theorem 1(1).

(1b)—(1c): Firstly, the proof of Theorem 1(2a) and (2b) shows that 2J(x,)pen C
intdom f. Next, in view of Theorem 1(2), it suffices to show that (18) holds. To this end,
suppose that y; and y; are two weak sequential cluster points of (x,),en such that

(1 = ¥2. V£ (i) = 7V (ia))), oy converges. (51)

Then, there exist two strictly increasing sequences (kj),en and (I,),en in N such that
Xk, — y1 and x;, — y». We derive from (48) and [22, Lemma 2.2.2] that there exists
0 € [e, B(1 —¢)] such that ¥, — 6. Since V f and Vi are weakly sequentially continuous,
after taking the limit in (51) along the subsequences (x,),cN and (x;,)neN, respectively, we
get

(y1 =2, Vf(y1) —0VY(yD)) = (y1 — y2. V.f(y2) — OV (). (52)
Let us define

h: X — ]— 00, +0o0]

{ f(x) — 0y (x) if x € intdom f,
X .
+00 otherwise.

Then A is Gateaux differentiable on intdom 2 = intdom f and (52) yields
(y1 = y2, Vi(y1) — Vh(y)) = 0. (53)
On the other hand,
h—ef =f—0y —ef =1 —e)(f = BY) + (Bl —¢&) —0)y.
In turn, since f = By and 0 < B(1 — ¢), we obtain & = ¢f, and hence,
D"(y1,y2) = eD/(y1,y2) and D" (y2, y1) = eD/ (32, y1).
Therefore, (53) yields
0= (y1 = y2, VA(y1) = VA(y2)) = D" (31, 32) + D" (32, y1)
> e (Df(yl, y2) + DY (32, )’1))
e(y1 = y2. V() = Vf(2)).

\Y
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Suppose that y; # y>. Since flintdom s 18 strictly convex, V f is strictly monotone [23,
Theorem 2.4.4(ii)], i.e.,

1=y, VIO = Vi) >0
and we reach a contradiction.

(2):  The conclusions follow from (50) and Theorem 1(3). O]

Remark 1 In condition (48), if we take (Vn € N) 5, = 0 then we get the forward-backward
splitting algorithm with monotonic step size whose particular case is forward-backward
splitting algorithm with constant step-size.

Remark 2 Let us rewrite algorithm (49) as follows

(Vn €M) = argmin (06 + (6 = X, VI i)+ ¥ 0) + 37 DI (2, x0))

xXeX
(54)
Another method to solve Problem 1 was proposed in [10]. In that method, instead of solving
(54), the authors solve

(Vn €N) o = argmin (9(6) + (x = X, VI G0} + ¥ () + 1,7 1 =5 l1”) (55)
xex

for some 1 < p < 2. The weak convergence is established under the assumptions that
Problem 1 admits a unique solution, Vi is (p — 1)-Holder continuous with constant 8, and
0 < infyen ¥n < sup,eny ¥n < (1 —8)/B, where 0 < § < 1. The high nonlinearity of the
regularization in (55) compared to (54) makes the numerical implementation of this method
difficult in general. Furthermore, since (55) yields

(VneN) 0€39ptus1) + V() + v, (Ilxnr1 — xall?),

and since (Vn € N) 9 (||x,,+1 —xull? ) is not separable, this method is not a splitting method.

Remark 3 We can reformulate Problem 1 as the following joint minimization problem
minimize ¢(x) + ¥ (y),
(x,y)ev

where V = {(x,y) € X x X | y = x}. This constrained problem is equivalent to the
following unconstrained problem

minimize ,Y).

(x,})éxlxzx‘pm Y +wx, y)
In [8], a different coupling term between the variables x and y was considered and the
problem considered there was

minimizgw(x) +v () + Dl (x, ),

(x,y)eX x

in Euclidean spaces. Their method activates ¢ and ¥ via their so-called left and right
Bregman proximity operators alternatively (see also [7] for the projection setting). This
method does not require the smoothness of i but it requires the computation of Bregman
distance-based proximity operator of .

Next, we provide a particular instance of Theorem 2 in finite-dimensional spaces.

@ Springer



534 Q. V. Nguyen

Corollary 1 In the setting of Problem 1, suppose that X and ) are finite-dimensional. Let
f € To(X) be a Legendre function such that § N intdom f # @, intdom f C intdom ¥,
f = By for some B €]0, +oo[, and dom f* is open. Suppose that either f is cofinite or
—ran V¢ C domg*. Let ¢ €]0, 8/(B + D[, let (N)neN € EL(N), and let (Yn)neN be a
sequence in R such that

VneN) e<y, <B(0—e) and (1+0)Vn — Vnt1 < Bma.

Furthermore, let xo € intdom f and iterate

(Yn € N) 241 = Prox) (V£ (xn) = ya VY ().

Then there exists x € 8 such that x,, — X.

Proof Since dom f* is open, [5, Lemma 7.3(ix)] asserts that (Vx € intdom f) Df(x,)is
coercive. Hence, the claim follows from Theorem 2(1c). O

4 Application to Multivariate Minimization

In this section, we apply Theorem 2 to solve the following multivariate minimization
problem.

Problem 2 Let m and p be strictly positive integers, let (Xj)1<i<m and (Vi)1<k<p be
reflexive real Banach spaces. For every i € {l,...,m} and every k € {l,..., p}, let
wi € To(X;), let Y € To(Yx) be Giteaux differentiable on intdom 1, # @, and let
Lii: X; = Y be linear and bounded. The problem is to

m )4 m
minimize Z i (x;i) + Z Y (Z L,-kx,-). (56)
=1 k=1 i=1

X1E€XTY,..., Xm € X £
i=

Denote by 8 the set of solutions to (56).
We derive from Theorem 2 the following result.

Proposition 6 Consider the setting of Problem 2. For every k € {1,..., p}, suppose
that there exists oy €]0, +o00[ such that for every (yix)1<i<m € intdomyy and every
(ViK)1<i<m € intdomyy satisfying Y ;- yik € intdomyy and > ;- vix € intdom vy,

one has
m m m
DV (Z Yik: Y Uik) <or Yy DV (yik, vik). (67
=1 =l i=1

For every i € {l1,...,m}, let f; € To(&X;) be a Legendre function such that
Vx; € intdomﬁ)Dﬁ (xi,-) is coercive. For every k € {1,...,p}, suppose that
Z;":l Lir(intdom f;) C intdom vy, that, for every i € {l,...,m}, there exists
Bik €10, +oo[ such that f; = Bix Wk o Lix, and set B = mini<;<; Bik. In addition, sup-
m

pose that & N X ;—; intdom f; # @ and that either (Vi € {1,...,m})f; is cofinite or
(Vi € {1,...,m)) ¢; is cofinite. Let ¢ € |0, 1/(1 + 3F_ oxB "), let (n)nen € €L(N),
and let (Vy)nen be a sequence in R such that

1—¢ M

VneN) esyp=——= ad (A+n)Vn—Vut1 = 57
Zlf:l 0By Zlf:l okPy
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m
Furthermore, let (x;0)1<i<m € X ;— intdom f; and iterate

forn=0,1,...
fori=1,...,m (58)
| it = Proxthg, (Vi) = v 20y L3V (X Lisxin)) -

Then there exists (§~)1<,~<m € 8 such that the following hold.

(1)  Suppose that S N X dOIIl fi is a singleton. Then (Vi € {1, ..., m}) xi, — X;.
(2) Foreveryi € {1,. m} and every k € {1, ..., p}, suppose that V fi and Vi are
weakly sequentially continuous, and that one of the following holds.

(a) domg; C intdom f;.
(b) dom f* is open and V f}* is weakly sequentially continuous.

Then (Vi € {1,...,m}) xj, = X,.

m P
Proof Denote by X' and ) the standard vector product spaces )X i and X o1 Yk

equipped with the norms x = (X;)1<i<m = ./ Z;"Zl [lxi|? and y = V) 1<k<p >
N Z/f: 1 1k |2, respectively. Then X'* is the vector product space X :n:l X equipped with
the norm x* > /> | ||lx||2 and Y* is the vector product space X :zly,f equipped with
the norm y* > />"7_, |ly#]|. Let us introduce the functions and operator

¢: X >]—o00,+00]: x > YL, ¢i(x),

fiX =>]—o00,400]: x> > filxi),

Y Y —>]—o00, 400l y > Y b Y.

L: X > ): X (Z;":] Likxi)lgkgp'
Then v is Gateaux differentiable on intdom = szlintdom Vr and Problem 2
is a special case of Problem 1. Since (59) yields dom f* = Xl ,dom f* a

domg* = X m dom ¢}, we deduce from our assumptions that either f is cofinite or ¢
is cofinite. As 1n (9) and (10), f is a Legendre function and dom ¢ N intdom f # @. In
addition,

(59)

p

L(intdom f) = X ZLk, (intdom f;) C X intdom ¥, = intdom 1.

k=1 ;_1

Now set ¥y, = ¥ o L and let x € intdom f. Then v is Gateaux differentiable at Lx
and hence 7 is Gateaux differentiable at x. This implies that x € intdom ¥; and thus
intdom f C intdom vr. To show that D/ (x, -) is coercive, we fix p € R. On one hand,

m

{z=(G@)1<iem € X | DY (x,2) < p}y € X{zi € X | DT (xi, z) < p}.
i=1 (60)

On the other hand, for every i € {1, ..., m}, since D/i(x;, ) is coercive, we deduce that

{zi € X | DTi(x;,zi) < p} is bounded.
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Hence, (60) implies that {z € X | Df(x z) < p} is bounded and D/ (x, -) is therefore
coercive. Next, set § = 1/ Z,le ak,Bk We shall show that f = Bir. To this end, fix
2= (2i)1<i<m € intdom f. We have

14 m m
DVt (x,2) = DV(Lx, L2) = Z DY (Z Likxi, ZLm)
=< ZZO’](DW’((L,/(X,, Likzi)

=1i=1

0B DT (xi, z1)

M”B
M= I

~
Il
Il

i=1

0By ' DY (x, 2).

Mm

=

~
Il

Now let us set (Vn € N) x, = (x;n)1<i<m- By virtue of Proposition 5, (58) is a particular
case of (49).

(1) Since S Ndomf is a singleton, the claim follows from Theorem 2(1a).
(2) Our assumptions on (f;)1<i<m and (Y)1<k<p imply that V f and Vyr are weakly
sequentially continuous

(2a) Since SN X = ldom(p, C X _, intdom f; = intdom f, the claim follows from
Theorem 2(1b).

(2b) Since, foreveryi € {1, ..., m},dom f is open and V f;* is weakly sequentially con-
tinuous, we deduce that dom f* is open and V f* is weakly sequentially continuous.
The assertion therefore follows from Theorem 2(1c¢). O

Example 5 In Problem 2, suppose that m = 1, that X and (Qk)1<k<p are Hilbert spaces,
and that, for every k € {1 .y Pl ok = wxll - —rk||2/2 where (wp)1<k<p €10, +oo[?

and let (re) 1<k<p € X ke 1)7k Then the weak convergence result in [13 Proposition 6.3]
without errors is a particular instance of Proposition 6 with fi = || - [|2/2.

Example 6 Let m and p be strictly positive integers. For every i € {1, ..., m} and every
k e {l,..., p}, let wi €]0, 4o00[, let g €]0, +o00[, and let ¢; € T'y(R) be cofinite. The
problem is to

minimize 290’ &) + Z( 1wzk§z Zi:l wikki 1>. 1)

(€ &m)€]0,+oo[™ Ok

Denote by § the set of solutions to (61) and suppose that SN]0, +oo[" # @. Let

—In& if€ >0,

U:R —]—o00,+00]: & > { +o00  otherwise

be Burg entropy, let ¢ €]0, 1/(1 + p)[, let (§,)neN € ¢! 1 (N), and let (¥u)nen be a sequence
in R such that

(VneN) e<y,<p '(—e and (140D~ Vatr1 <P '
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Let (§,0)1<i<m €10, +00[™ and iterate

forn=0,1,...
fori=1,...,m
Sintt = Prox) o (e — v o o (s o T o
Vi \ & I k=1 ST o€, ook ) )
Then there exists (£;)1<i<m € S such that (Vi € {1,...,m}) &, — &;.

Proof For every i € {1,...,m} and every k € {1,..., p},letus set &; = R, Yy = R,
Y = DV (., ok),and L : & — w;ir&;. Then (61) is a particular case of (56). Since v is not
differentiable on R”, the standard forward-backward algorithm is inapplicable. We show
that the problem can be solved by using Proposition 6. First, let (§;)1<;<m and (1;)1<i<m be
in ]0, +o00[™, and consider
. ) —In§+§&—1 if § €]0, +oof,
¢: R —]—00 400l & > { ~+o00 otherwise.

We see that ¢ is convex and positive. Thus,

¢<§::11i)_ (ZZ 1n1m> ZZ 10 (ill)<§:¢<ilz)

1

Yo & Y& “ ( )
—h=E— 4+ == — ln——e———l .
Z:r'":l Ni Z;nzl ni Z

and hence,

In turn,

3

D’ (ZEI!ZUI) Z (%_17771

This shows that (57) is satisfied with (Vk € {1,..., p}) ox = 1. Next, let us set (Vi €
{1,...,m}) fi=v.Fixi € {1,...,m}and k € {1, ..., p},and let & and n; be in ]O, +o00[.
Then

DY (Lix&;, Lixni) = D (wix&i, wini) = D° (& ni) = DI (&, ny),
which implies that f; = ¥ o L. In addition, since dom fl* =] — o0, O[ is open, [5, Lemma
7.3(ix)] asserts that D (&, -) is coercive. We therefore deduce the convergence result from
Proposition 6(2b). O

Example 7 Let m and p be strictly positive integers. For every i € {1, ..., m} and every
kef{l,...,p},letwi €]0, 400, let ox €]0, +o0[, and let ¢; € T'o(R). The problem is to

Z 1 ik
minimize i (&) + wirk; | In ==L wiki +or]. (62)
(1) €10, 400 Z o ;((; o Qk 121: o

Denote by § the set of solutions to (62) and suppose that SN]0, +oo[" £ (. Let

§Ing —§ if§ €]0, +ool,
V:R—>]—00,+00]: E—~ {0 if &€ =0,
+00 otherwise

be Boltzmann—Shannon entropy, let 8 = max<i<, max|<;<m Wik, let ¢ €10, 1/(1 + B)[,
let (Mn)neN € ¢! 1 (N), and let (y)nen be a sequence in R such that

VneN) e<y, <P 'd—e) and A+ 1)V — Yar1 < (PB) '
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Let (§;,0)1<i<m €10, +o00[™ and iterate

forn=0,1,...

fori=1,....,m
| i1 = Proxl, (i = v 0y it (0 (S @i ) —Inex ) ) -

Then, there exists (E,-)lsism € $suchthat (Vi € {1,...,m}) &, — E;.
Proof For every i € {I,...,m} and every k € {1,. ..,p} letusset X; = R, Vi = R,

Y = DY(, ok), and Ljx: & +— wir&;. Then (62) is a particular case of (56). We cannot
apply the standard forward-backward algorithm here since v is not differentiable on R”.
We shall verify the assumptions of Proposition 6. First, let (§;)1<i<m and (1;)1<i<m be in
10, +o0[™. Since

Elng if &€ €]0, +o0f,
¢:R—>]—00,+00]: £~ 10 if € =0,
400 otherwise

is convex, we have
21§ ) _ ni <§)
¢(Zz 17 (ZZJ 11j ’71) ZZ, yni\mi )’

" m m e &
Sh LA S w5 Thiehd

SR Y _EZ, TR S

and hence,

In turn,

which implies that

D’ (Z .Y m)
i=1 =l

A
M§ﬁ
N
e :
=3
NWY

|

ore

+

3
N—

D’ (&, mi).

This shows that (57) is satisfied with (Vk € {1,..., p}) or = 1. Next, let us set (Vi €
{1,...,m}) fi=v.Fixi e {1,...,m}and k € {1, ..., p},and let & and n; be in ]O, +o0[.
Then

DV¥(Lix&;, Likni) = D” (wiki, wixni) = oD’ (i, i) < BD? (&, mi),

which implies that f; %= S8~ !4 o Lix. In addition, since f; is supercoercive, f; is cofinite
and [5, Lemma 7.3(viii)] asserts that D/i (&, -) is coercive. Therefore, the claim follows
from Proposition 6(2b). O

Remark 4 The Bregman distance associated with Burg entropy, i.e., the Itakura—Saito diver-
gence, is used in linear regression [3, Section 3]. The Bregman distance associated with
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Boltzmann—Shannon entropy, i.e., the Kullback—Leibler divergence, is used in information
theory [3, Section 3] and image processing [11].
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