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Abstract We propose a forward-backward splitting algorithm based on Bregman distances
for composite minimization problems in general reflexive Banach spaces. The convergence
is established using the notion of variable quasi-Bregman monotone sequences. Various
examples are discussed, including some in Euclidean spaces, where new algorithms are obtained.

Keywords Banach space · Bregman distance · Forward-backward algorithm · Legendre
function · Multivariate minimization · Variable quasi-Bregman monotonicity

Mathematics Subject Classification (2010) 90C25

1 Introduction

In this paper, we propose a forward-backward splitting algorithm to solve the following
composite convex minimization problem considered in Banach spaces.

Problem 1 Let X be a reflexive real Banach space, let ϕ : X →]−∞, +∞] and ψ : X →
] − ∞,+∞] be proper lower semi-continuous convex functions, and suppose that ψ is
Gâteaux differentiable on interior of its domain. The problem is to

minimize
x∈X ϕ(x) + ψ(x). (1)
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The set of solutions to (1) is denoted by S.

A particular instance of (1) when ψ is the Bregman distance associated to a differentiable
convex function f , i.e.,

Df : X × X → [0, +∞]
(x, y) �→

{
f (x) − f (y) − 〈x − y,∇f (y)〉 if y ∈ int dom f,

+∞ otherwise,

(2)

where dom f = {x ∈ X | f (x) < +∞} and int dom f is its interior, provides a framework
for many problems arising in applied mathematics. For instance, when X is a Euclidean
space and f is Boltzmann–Shannon entropy, it captures many problems in information
theory and signal recovery [9].

It was shown in [14] that if X is Hilbertian and ψ possesses a β−1-Lipschitz continuous
gradient for some β ∈]0, +∞[, then Problem 1 can be solved by the standard forward-
backward algorithm

(∀n ∈ N) xn+1 = proxγnϕ

(
xn − γ∇ψ(xn)

)
, where 0 < γ < 2β. (3)

Here, prox is Moreau proximity operator [19]. However, many problems in applications
do not conform to these hypotheses, for example when X is a Euclidean space and ψ is
Boltzmann–Shannon entropy which appears in many problems in image and signal pro-
cessing, in statistics, and in machine learning [2, 11, 12, 16–18]. Another difficulty in the
implementation of (3) is that the operator prox is not always easy to evaluate.

The objective of the present paper is to propose a forward-backward splitting algorithm
to solve Problem 1, which is so far limited to Hilbert spaces, in the general framework of
reflexive real Banach spaces. This algorithm, which employs Bregman distance-based prox-
imity operators, provides new algorithms in the framework of Euclidean spaces, which are,
in some instances, more favorable than the standard forward-backward splitting algorithm.
This framework can be applied in the case when ψ is not everywhere differentiable. The
paper is organized as follows. In Section 2, we provide some preliminary results. We present
the algorithm and prove its convergence in Section 3. Section 4 is devoted to an application
of our result to multivariate minimization problem together with examples.

Notation and Background Throughout this paper, X is reflexive, X ∗ is the dual space
of X , 〈·, ·〉 is the duality pairing between X and X ∗ and ‖ · ‖ is a norm of X . The symbols
⇀ and → represent respectively weak and strong convergence. The set of weak sequential
cluster points of a sequence (xn)n∈N is denoted by W(xn)n∈N. Let M : X → 2X

∗
. The

domain of M is dom M = {x ∈ X | Mx �= ∅} and the range of M is ran M = {x∗ ∈
X ∗ | (∃x ∈ X )x∗ ∈ Mx}. Let f : X →] − ∞, +∞]. Then, f is cofinite if dom f ∗ = X ∗,
is coercive if lim‖x‖→+∞ f (x) = +∞, is supercoercive if lim‖x‖→+∞ f (x)/‖x‖ = +∞,
and is uniformly convex at x ∈ dom f if there exists an increasing function φ : [0, +∞[→
[0, +∞] that vanishes only at 0 such that

(∀y ∈ dom f )(∀α ∈]0, 1[) f (αx + (1 − α)y) + α(1 − α)φ(‖x − y‖)
≤ αf (x) + (1 − α)f (y).

Denote by 	0(X ) the class of all lower semicontinuous convex functions f : X →
] − ∞,+∞] such that dom f = {x ∈ X | f (x) < +∞} �= ∅. Let f ∈
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	0(X ). Denote by Argmin f the set of global minimizers of f , by f ∗ : X ∗ →] −
∞, +∞]: x∗ �→supx∈X (〈x, x∗〉 − f (x)) the conjugate of f and by

∂f : X → 2X
∗ : x �→ {x∗ ∈ X ∗ | (∀y ∈ X )〈y − x, x∗〉 + f (x) ≤ f (y)}, (4)

the Moreau subdifferential of f . In addition, if f is Gâteaux differentiable on int dom f

�= ∅ then

f̂ : X →] − ∞, +∞] x �→
{

f (x) if x ∈ int dom f,

+∞ otherwise.
(5)

We denote

F(f ) = {g ∈ 	0(X ) | g is Gâteaux differentiable on dom g = int dom f }.
Moreover, if g1 and g2 are in F(f ), then

g1 � g2 ⇔ (∀x ∈ dom f )(∀y ∈ int dom f ) Dg1(x, y) ≥ Dg2(x, y).

For every α ∈ [0, +∞[, set

Pα(f ) = {g ∈ F(f ) | g � αf }.
Finally, �1+(N) is the set of all summable sequences in [0, +∞[.

2 Preliminary Results

In this section, we give some preliminary results on Legendre function, Bregman mono-
tonicity, and Bregman distance-based proximity operator that will be used in the next
section.

Definition 1 [5, 6] Let f ∈ 	0(X ) be Gâteaux differentiable on int dom f �= ∅. We say
that f is a Legendre function if it is essentially smooth in the sense that ∂f is both locally
bounded and single-valued on its domain, and essentially strictly convex in the sense that
∂f ∗ is locally bounded on its domain and f is strictly convex on every convex subset of
dom ∂f . Let C be a closed convex subset of X such that C ∩ int dom f �= ∅. The Bregman
projector onto C induced by f is

P
f
C : int dom f → C ∩ int dom f

y �→ argminx∈CDf (x, y),

and the Df -distance to C is the function

D
f
C : X → [0, +∞]

y �→ inf Df (C, y).

Definition 2 [20] Let f ∈ 	0(X ) be Gâteaux differentiable on int dom f �= ∅, let (fn)n∈N
be in F(f ), let (xn)n∈N ∈ (int dom f )N, and let C ⊂ X be such that C ∩ dom f �= ∅. Then
(xn)n∈N is:

1. quasi-Bregman monotone with respect to C relative to (fn)n∈N if

(∃(ηn)n∈N ∈ �1+(N))(∀x ∈ C ∩ dom f )(∃(εn)n∈N ∈ �1+(N))(∀n ∈ N)

Dfn+1(x, xn+1) ≤ (1 + ηn)D
fn(x, xn) + εn;
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2. stationarily quasi-Bregman monotone with respect to C relative to (fn)n∈N if

(∃(εn)n∈N ∈ �1+(N))(∃(ηn)n∈N ∈ �1+(N))(∀x ∈ C ∩ dom f )(∀n ∈ N)

Dfn+1(x, xn+1) ≤ (1 + ηn)D
fn(x, xn) + εn.

Condition 1 [6, Condition 4.4] Let f ∈ 	0(X ) be Gâteaux differentiable on int dom f

�= ∅. For every bounded sequences (xn)n∈N and (yn)n∈N in int dom f ,

Df (xn, yn) → 0 ⇒ xn − yn → 0.

Proposition 1 ([20]) Let f ∈ 	0(X ) be Gâteaux differentiable on int dom f �= ∅, let
α ∈]0, +∞[, let (fn)n∈N be in Pα(f ), let (xn)n∈N ∈ (int dom f )N, let C ⊂ X be such that
C ∩ int dom f �= ∅, and let x ∈ C ∩ int dom f . Suppose that (xn)n∈N is quasi-Bregman
monotone with respect to C relative to (fn)n∈N. Then the following hold.

1. (Dfn(x, xn))n∈N converges.
2. Suppose that Df (x, ·) is coercive. Then (xn)n∈N is bounded.

Proposition 2 ([20]) Let f ∈ 	0(X ) be Gâteaux differentiable on int dom f �= ∅, let
(xn)n∈N ∈ (int dom f )N, let C ⊂ X be such that C ∩ int dom f �= ∅, let (ηn)n∈N ∈ �1+(N),
let α ∈]0, +∞[, and let (fn)n∈N in Pα(f ) be such that (∀n ∈ N) (1 + ηn)fn � fn+1.
Suppose that (xn)n∈N is quasi-Bregman monotone with respect to C relative to (fn)n∈N,
that there exists g ∈ F(f ) such that for every n ∈ N, g � fn, and that, for every y1 ∈ X
and every y2 ∈ X ,

⎧⎨
⎩

y1 ∈ W(xn)n∈N ∩ C,

y2 ∈ W(xn)n∈N ∩ C,(〈y1 − y2,∇fn(xn)〉
)
n∈N converges

⇒ y1 = y2.

Moreover, suppose that (∀x ∈ int dom f ) Df (x, ·) is coercive. Then (xn)n∈N converges
weakly to a point in C ∩ int dom f if and only if W(xn)n∈N ⊂ C ∩ int dom f .

Proposition 3 ([20]) Let f ∈ 	0(X ) be a Legendre function, let α ∈]0, +∞[, let (fn)n∈N
be in Pα(f ), let (xn)n∈N ∈ (int dom f )N, and let C be a closed convex subset of X such
that C ∩ int dom f �= ∅. Suppose that (xn)n∈N is stationarily quasi-Bregman monotone with
respect to C relative to (fn)n∈N, that f satisfies Condition 1, and that (∀x ∈ int dom f )

Df (x, ·) is coercive. In addition, suppose that there exists β ∈]0, +∞[ such that (∀n ∈
N) βf̂ � fn. Then (xn)n∈N converges strongly to a point in C ∩ dom f if and only if
limD

f
C(xn) = 0.

Our framework uses the Bregman distance-based proximity operators whose definition
and properties are discussed in the following proposition.

Proposition 4 Let f ∈ 	0(X ) be Gâteaux differentiable on int dom f �= ∅, let ϕ ∈ 	0(X ),
and let

Proxf
ϕ : X ∗ → 2X

x∗ �→ {x ∈ X | ϕ(x) + f (x) − 〈x, x∗〉 = min(ϕ + f − x∗)(X ) < +∞} (6)
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be f -proximity operator of ϕ. Then the following hold.

(1) ranProxf
ϕ ⊂ dom f ∩ dom ϕ and Proxf

ϕ = (∂(f + ϕ))−1.
(2) Suppose that dom ϕ ∩ int dom f �= ∅ and that dom ∂f ∩ dom ∂ϕ ⊂ int dom f . Then

the following hold.

(a) ranProxf
ϕ ⊂ int dom f and Proxf

ϕ = (∇f + ∂ϕ)−1.

(b) int(dom f ∗ + dom ϕ∗) ⊂ dom Proxf
ϕ .

(c) Suppose that f |int dom f is strictly convex. Then Proxf
ϕ is single-valued on its

domain.

Proof Let us fix x∗ ∈ X ∗ and define fx∗ : X →]−∞, +∞]: x �→ f (x)−〈x, x∗〉+f ∗(x∗).
Then dom fx∗ = dom f and ϕ + fx∗ ∈ 	0(X ). Moreover, ∂(ϕ + fx∗) = ∂(ϕ + f ) − x∗.

(1): By definition, ranProxf
ϕ ⊂ dom f ∩ dom ϕ. For the second assertion, it is sufficient

to prove for the case dom f ∩ dom ϕ �= ∅ since otherwise both sides of the desired
identity reduce to the trivial operator x∗ �→ ∅. Now let x ∈ dom f ∩ dom ϕ. Then

x ∈ Proxf
ϕ x∗ ⇔ 0 ∈ ∂(ϕ + fx∗)(x)

⇔ 0 ∈ ∂(ϕ + f )(x) − x∗

⇔ x∗ ∈ ∂(ϕ + f )(x)

⇔ x ∈ (
∂(ϕ + f )

)−1
(x∗). (7)

(2): Suppose that x∗ ∈ int(dom f ∗ + dom ϕ∗). Since dom ϕ ∩ int dom f �= ∅, it follows
from [1, Theorem 1.1] and [23, Theorem 2.1.3(ix)] that

x∗ ∈ int(dom f ∗ + dom ϕ∗) = intdom(f + ϕ)∗. (8)

(2a): Since dom ϕ ∩ int dom f �= ∅, ∂(ϕ +f ) = ∂ϕ + ∂f by [1, Corollary 2.1], and hence
1) yields

ranProxf
ϕ = dom ∂(f + ϕ) = dom(∂f + ∂ϕ) = dom ∂f ∩ dom ∂ϕ ⊂ int dom f.

In turn, ranProxf
ϕ ⊂ dom ϕ ∩ int dom f . We now prove that Proxf

ϕ = (∇f + ∂ϕ)−1.
Note that dom(∇f + ∂ϕ) ⊂ dom ϕ ∩ int dom f . Let x ∈ dom ϕ ∩ int dom f . Then
∂(f + ϕ)(x) = ∂f (x) + ∂ϕ(x) = ∇f (x) + ∂ϕ(x) and therefore,

x ∈ Proxf
ϕ x∗ ⇔ x∗ ∈ ∂(f + ϕ)(x) = ∇f (x) + ∂ϕ(x) ⇔ x ∈ (∇f + ∂ϕ)−1(x∗).

(2b): We derive from (8) and [5, Fact 3.1] that ϕ+fx∗ is coercive. Hence, by [23, Theorem
2.5.1], ϕ + fx∗ admits at least one minimizer, i.e., x∗ ∈ dom Proxf

ϕ .
(2c): Since f |int dom f is strictly convex, so is (ϕ + fx∗)|int dom f and thus, in view of 2b),

ϕ + fx∗ admits a unique minimizer on int dom f . However, since

Argmin(ϕ + fx∗) = ranProxf
ϕ ⊂ int dom f,

it follows that ϕ +fx∗ admits a unique minimizer and that Proxf
ϕ is therefore single-

valued.

Proposition 5 Let m be a strictly positive integer, let (Xi )1≤i≤m be reflexive real Banach

spaces, and let X be the vector product space equipped with the norm x =
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(xi)1≤i≤m �→
√∑m

i=1 ‖xi‖2. For every i ∈ {1, . . . , m}, let fi ∈ 	0(Xi ) be a Legen-

dre function and let ϕi ∈ 	0(Xi ) be such that dom ϕi ∩ int dom fi �= ∅. Set f : X →
] − ∞,+∞]: x �→ ∑m

i=1 fi(xi) and ϕ : X →] − ∞, +∞]: x �→ ∑m
i=1 ϕi(xi). Then

Proof First, we observe that X ∗ is the vector product space equipped with the

norm x∗ = (x∗
i )1≤i≤m �→

√∑m
i=1 ‖x∗

i ‖2. Next, we derive from the definition of f that

dom and that

Thus, ∂f is single-valued on

Likewise, since

f ∗ : X ∗ →] − ∞, +∞]: (x∗
i )1≤i≤m �→

m∑
i=1

f ∗
i (x∗

i ),

we deduce that ∂f ∗ is single-valued on dom ∂f ∗ = int dom f ∗. Consequently, [5, Theorems
5.4 and 5.6] assert that

f is a Legendre function. (9)

In addition,

(10)

Hence, Proposition 4(2b) and (2c) assert that int(dom f ∗ + dom ϕ∗) ⊂ dom Proxf
ϕ and

Proxf
ϕ is single-valued on its domain. Now set x = Proxf

ϕ x∗ and q = (Proxfi
ϕi

x∗
i )1≤i≤m. We

derive from Proposition 4(2a) that

x = Proxf
ϕ x∗ ⇔ x = (∇f + ∂ϕ)−1(x∗) ⇔ x∗ − ∇f (x) ∈ ∂ϕ(x).

Consequently, by invoking (4), we get

(∀z ∈ dom ϕ) 〈z − x, x∗ − ∇f (x)〉 + ϕ(x) ≤ ϕ(z). (11)

Upon setting z = q in (11), we obtain

〈q − x, x∗ − ∇f (x)〉 + ϕ(x) ≤ ϕ(q). (12)

For every i ∈ {1, . . . , m}, let us set qi = Proxfi
ϕi

x∗
i . The same characterization as in (11)

yields

(∀i ∈ {1, . . . , m})(∀zi ∈ dom ϕi) 〈zi − qi, x
∗
i − ∇fi(qi)〉 + ϕi(qi) ≤ ϕi(zi).
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By summing these inequalities over i ∈ {1, . . . , m}, we obtain

(∀z ∈ dom ϕ) 〈z − q, x∗ − ∇f (q)〉 + ϕ(q) ≤ ϕ(z). (13)

Upon setting z = x in (13), we get

〈x − q, ∇f (x) − ∇f (q)〉 + ϕ(q) ≤ ϕ(x). (14)

Adding (12) and (14) yields

〈x − q, ∇f (x) − ∇f (q)〉 ≤ 0.

Now suppose that x �= q. Since f |int dom f is strictly convex, it follows from [23, Theorem
2.4.4(ii)] that ∇f is strictly monotone, i.e.,

〈x − q, ∇f (x) − ∇f (q)〉 > 0,

and we reach a contradiction.

In Hilbert spaces, the operator defined in (6) reduces to the Moreau’s usual proximity
operator proxϕ [19] if f = ‖·‖2/2. We provide illustrations of such instances in the standard
Euclidean space R

m.

Example 1 Let γ ∈]0, +∞[, let φ ∈ 	0(R) be such that dom φ∩]0, +∞[�= ∅, and let ϑ be
Boltzmann–Shannon entropy, i.e.,

ϑ : ξ �→
⎧⎨
⎩

ξ ln ξ − ξ if ξ ∈]0, +∞[,
0 if ξ = 0,

+∞ otherwise.

Set ϕ : (ξi)1≤i≤m �→ ∑m
i=1 φ(ξi) and f : (ξi)1≤i≤m �→ ∑m

i=1 ϑ(ξi). Note that f is a super-
coercive Legendre function [4, Sections 5 and 6], and hence, Proposition 4(2b) asserts that
dom Proxf

ϕ = R
m. Let (ξi)1≤i≤m ∈ R

m, set (ηi)1≤i≤m = Proxf
γϕ(ξi)1≤i≤m, let W be the

Lambert function [15], i.e., the inverse of ξ �→ ξeξ on [0, +∞[, and let i ∈ {1, . . . , m}.
Then ηi can be computed as follows.

1. Let ω ∈ R and suppose that

φ : ξ �→
⎧⎨
⎩

ξ ln ξ − ωξ if ξ ∈]0, +∞[,
0 if ξ = 0,

+∞ otherwise.

Then ηi = e(ξi+ω−1)/(γ+1).
2. Let p ∈ [1, +∞[ and suppose that either φ = | · |p/p or

φ : ξ �→
{

ξp/p if ξ ∈ [0, +∞[,
+∞ otherwise.

Then

ηi =

⎧⎪⎨
⎪⎩

(
W(γ (p − 1)e(p−1)ξi )

γ (p − 1)

) 1
p−1

if p ∈]1, +∞[,
eξi−γ if p = 1.

3. Let p ∈ [1, +∞[ and suppose that

φ : ξ �→
{

ξ−p/p if ξ ∈]0, +∞[,
+∞ otherwise.
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Then

ηi =
(

W(γ (p + 1)e−(p+1)ξi )

γ (p + 1)

) −1
p+1

.

4. Let p ∈]0, 1[ and suppose that

φ : ξ �→
{ −ξp/p if ξ ∈ [0, +∞[,

+∞ otherwise.

Then

ηi =
(

W(γ (1 − p)e(p−1)ξi )

γ (1 − p)

) 1
p−1

.

Example 2 Let φ ∈ 	0(R) be such that dom φ∩]0, 1[�= ∅ and let ϑ be Fermi–Dirac entropy,
i.e.,

ϑ : ξ �→
⎧⎨
⎩

ξ ln ξ − (1 − ξ) ln(1 − ξ) if ξ ∈]0, 1[,
0 if ξ ∈ {0, 1},
+∞ otherwise.

Set ϕ : (ξi)1≤i≤m �→ ∑m
i=1 φ(ξi) and f : (ξi)1≤i≤m �→ ∑m

i=1 ϑ(ξi). Note that f is a
cofinite Legendre function [4, Sections 5 and 6], and hence Proposition 4(2b) asserts
that dom Proxf

ϕ = R
m. Let (ξi)1≤i≤m ∈ R

m, set (ηi)1≤i≤m = Proxf
ϕ (ξi)1≤i≤m, and let

i ∈ {1, . . . , m}. Then ηi can be computed as follows.

1. Let ω ∈ R and suppose that

φ : ξ �→
⎧⎨
⎩

ξ ln ξ − ωξ if ξ ∈]0, +∞[,
0 if ξ = 0,

+∞ otherwise.

Then ηi = −eξi+ω−1/2 + √
e2(ξi+ω−1)/4 + eξi+ω−1.

2. Suppose that

φ : ξ �→
⎧⎨
⎩

(1 − ξ) ln(1 − ξ) + ξ if ξ ∈] − ∞, 1[,
1 if ξ = 1,

+∞ otherwise.

Then ηi = 1 + e−ξi /2 − √
e−ξi + e−2ξi /4.

Example 3 Let f : (ξi)1≤i≤m �→ ∑m
i=1 ϑ(ξi), where ϑ is Hellinger-like function, i.e.,

ϑ : ξ �→
{ −√

1 − ξ2 if ξ ∈ [−1, 1],
+∞ otherwise,

let γ ∈]0, +∞[, and let ϕ = f . Since f is a cofinite Legendre function [4, Sections 5
and 6], Proposition 4(2b) asserts that dom Proxf

γϕ = R
m. Let (ξi)1≤i≤m ∈ R

m, and set

(ηi)1≤i≤m = Proxf
γϕ(ξi)1≤i≤m. Then (∀i ∈ {1, . . . , m}) ηi = ξi/

√
(γ + 1)2 + ξ2

i .

Example 4 Let γ ∈]0, +∞[, let φ ∈ 	0(R) be such that dom φ∩]0, +∞[�= ∅, and let ϑ be
Burg entropy, i.e.,

ϑ : ξ �→
{ − ln ξ if ξ ∈]0, +∞[,

+∞ otherwise.
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Set ϕ : (ξi)1≤i≤m �→ ∑m
i=1 φ(ξi) and f : (ξi)1≤i≤m �→ ∑m

i=1 ϑ(ξi), let (ξi)1≤i≤m ∈ R
m,

and set (ηi)1≤i≤m = Proxf
γϕ(ξi)1≤i≤m. Let i ∈ {1, . . . , m}. Then ηi can be computed as

follows.

1. Suppose that φ = ϑ and ξi ∈] − ∞, 0]. Then ηi = −(1 + γ )−1ξi .
2. Suppose that φ : ξ �→ α|ξ | and ξi ∈] − ∞, γ α]. Then ηi = (γ α − ξi)

−1.

The following result will be used subsequently.

Lemma 1 Let X be a reflexive real Banach space, let f ∈ 	0(X ) be a Legendre func-
tion, let x ∈ int dom f , and let (xn)n∈N ∈ (int dom f )N. Suppose that (Df (x, xn))n∈N
is bounded, that dom f ∗ is open, and that ∇f ∗ is weakly sequentially continuous. Then
W(xn)n∈N ⊂ int dom f .

Proof [20, Proof of Theorem 4.1].

3 Forward-Backward Splitting in Banach Spaces

The main result in this section is a version of the forward-backward splitting algorithm in
reflexive real Banach spaces which employs different Bregman distance-based proximity
operators over the iterations.

Theorem 1 Consider the setting of Problem 1 and let f ∈ 	0(X ) be a Legendre function
such that S ∩ int dom f �= ∅, int dom f ⊂ int dom ψ , and f � βψ for some β ∈]0, +∞[.
Let (ηn)n∈N ∈ �1+(N), let α ∈]0, +∞[, and let (fn)n∈N be Legendre functions in Pα(f )

such that
(∀n ∈ N) (1 + ηn)fn � fn+1. (15)

Suppose that either −ran ∇ψ ⊂ dom ϕ∗ or (∀n ∈ N) fn is cofinite. Let ε ∈]0, αβ/(αβ+1)[
and let (γn)n∈N be a sequence in R such that

(∀n ∈ N) ε ≤ γn ≤ αβ(1 − ε) and (1 + ηn)γn − γn+1 ≤ αβηn. (16)

Furthermore, let x0 ∈ int dom f and iterate

(∀n ∈ N) xn+1 = Proxfn
γnϕ (∇fn(xn) − γn∇ψ(xn)) . (17)

Suppose in addition that (∀x ∈ int dom f ) Df (x, ·) is coercive. Then (xn)n∈N is a
bounded sequence in int dom f and W(xn)n∈N ⊂ S. Moreover, there exists x ∈ S such that
the following hold.

(1) Suppose that S ∩ dom f is a singleton. Then xn ⇀ x.
(2) Suppose that there exists g ∈ F(f ) such that for every n ∈ N, g � fn, and that, for

every y1 ∈ X and every y2 ∈ X ,⎧⎨
⎩

y1 ∈ W(xn)n∈N,

y2 ∈ W(xn)n∈N,(〈y1 − y2,∇fn(xn) − γn∇ψ(xn)〉
)
n∈N converges

⇒ y1 = y2. (18)

In addition, suppose that one of the following holds.

(a) S ⊂ int dom f .
(b) dom f ∗ is open and ∇f ∗ is weakly sequentially continuous.
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Then xn ⇀ x.
(3) Suppose that f satisfies Condition 1 and that one of the following holds.

(a) Either ϕ or ψ is uniformly convex at x.
(b) limD

f

S (xn) = 0 and there exists μ ∈]0, +∞[ such that (∀n ∈ N) μf̂ � fn.

Then xn → x.

Proof We first derive from Proposition 4(2c) that the operators (Proxf
γnϕ)n∈N are single-

valued on their domains. We also note that x0 ∈ int dom f . Suppose that xn ∈ int dom f for
some n ∈ N. If fn is cofinite then Proposition 4(2b) yields

∇fn(xn) − γn∇ψ(xn) ∈ X ∗ = dom Proxfn
γnϕ. (19)

Otherwise,

∇fn(xn) − γn∇ψ(xn) ∈ int dom f ∗
n + γndom ϕ∗ = int(int dom f ∗

n + γndom ϕ∗)
⊂ int(dom f ∗

n + γndom ϕ∗) = int(dom f ∗
n + dom(γnϕ

∗)). (20)

Since int(dom f ∗
n + dom (γnϕ

∗)) ⊂ dom Proxf
γnϕ by Proposition 4(2b), we deduce from

(17), (19), (20), and Proposition 4(2a) that xn+1 is a well-defined element in ranProxfn
γ ϕ =

dom ∂ϕ ∩ int dom fn = dom ∂ϕ ∩ int dom f ⊂ int dom f . By reasoning by induction, we
conclude that

(xn)n∈N ∈ (int dom f )N is well-defined.

Next, let us set � = ϕ + ψ and

(∀n ∈ N) gn : X → ] − ∞,+∞]
x �→

{
fn(x) − γnψ(x) if x ∈ int dom f,

+∞ otherwise.
(21)

Since int dom f ⊂ int dom ψ , it follows from (21) that (∀n ∈ N) gn is Gâteaux differ-
entiable on dom gn = int dom gn = int dom f . Since ψ is continuous on int dom ψ ⊃
int dom f and the functions (fn)n∈N are continuous on int dom f [21, Proposition 3.3], we
deduce that (∀n ∈ N) gn is continuous on dom gn. In addition,

(∀n ∈ N) gn − εαf = (1 − ε)(fn − αβψ) + ε(fn − αf ) + (
αβ(1 − ε) − γn

)
ψ. (22)

Note that f � βψ and (∀n ∈ N) fn � αf . Hence, (22) yields

(∀n ∈ N) fn � αβψ, (23)

and hence, we deduce from (16) and (22) that (∀n ∈ N) gn � εαf . In turn,

(∀n ∈ N)(∀x ∈ dom gn)(∀y ∈ dom gn)

〈x − y,∇gn(x) − ∇gn(y)〉 = Dgn(x, y) + Dgn(y, x) ≥ εα
(
Df (x, y) + Df (y, x)

) ≥ 0,

and it therefore follows from [23, Theorem 2.1.11] that (∀n ∈ N) gn is convex.
Consequently,

(∀n ∈ N) gn ∈ Pεα(f ). (24)

Set ω = 1 + 1/ε. Then

(∀n ∈ N) (1 + ωηn)gn − gn+1 = (1 + ωηn)(fn − γnψ) − (fn+1 − γn+1ψ)

= (1 + ηn)fn − fn+1 + ηnε
−1 (fn − (γn + εαβ)ψ)

+(
αβηn + γn+1 − (1 + ηn)γn

)
ψ.
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We thus derive from (15), (16) and (23) that

(∀n ∈ N) (1 + ωηn)gn � gn+1. (25)

By invoking (17) and Proposition 4(2a), we get

(∀n ∈ N) ∇fn(xn) − γn∇ψ(xn) ∈ ∇fn(xn+1) + γn∂ϕ(xn+1),

and therefore,

(∀n ∈ N) ∇fn(xn) − γn∇ψ(xn) ∈ ∇fn(xn+1) − γn∇ψ(xn+1)

+γn

(
∂ϕ(xn+1) + ∇ψ(xn+1)

)
. (26)

Since [23, Theorem 2.4.2(vii)–(viii)] yield

(∀n ∈ N) ∂ϕ(xn+1) + ∇ψ(xn+1) ⊂ ∂ϕ(xn+1) + ∂ψ(xn+1)

⊂ ∂(ϕ + ψ)(xn+1) = ∂�(xn+1),

we deduce from (26) that

(∀n ∈ N) ∇gn(xn) − ∇gn(xn+1) ∈ γn∂�(xn+1). (27)

By appealing to (4) and (27), we get

(∀x ∈ dom � ∩ dom f )(∀n ∈ N)

γ −1
n 〈x − xn+1,∇gn(xn) − ∇gn(xn+1)〉 + �(xn+1) ≤ �(x), (28)

and hence, by [6, Proposition 2.3(ii)],

(∀x ∈ dom � ∩ dom f )(∀n ∈ N)

γ −1
n

(
Dgn(x, xn+1) + Dgn(xn+1, xn) − Dgn(x, xn)

) + �(xn+1) ≤ �(x). (29)

In particular,

(∀x ∈ S ∩ dom f )(∀n ∈ N) Dgn(x, xn+1) + Dgn(xn+1, xn) − Dgn(x, xn) ≤ 0. (30)

By using (25), we deduce from (30) that

(∀x ∈ S ∩ dom f )(∀n ∈ N)

Dgn+1(x, xn+1) + (1 + ωηn)D
gn(xn+1, xn) ≤ (1 + ωηn)D

gn(x, xn), (31)

and therefore,

(∀x ∈ S ∩ dom f )(∀n ∈ N) Dgn+1(x, xn+1) ≤ (1 + ωηn)D
gn(x, xn). (32)

This shows that (xn)n∈N is stationarily quasi-Bregman monotone with respect to S relative
to (gn)n∈N. Hence, we deduce from Proposition 1(2) that

(xn)n∈N ∈ (int dom f )N is bounded (33)

and, since X is reflexive,
W(xn)n∈N �= ∅. (34)

In addition, we derive from (32) and Proposition 1(1) that

(∀x ∈ S ∩ int dom f )
(
Dgn(x, xn)

)
n∈N converges, (35)

and thus, since (31) yields

(∀x ∈ S ∩ int dom f )(∀n ∈ N) 0 ≤ Dgn(xn+1, xn)

≤ (1 + ωηn)D
gn(xn+1, xn)

≤ (1 + ωηn)D
gn(x, xn) − Dgn+1(x, xn+1),
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and since ηn → 0, we obtain

Dgn(xn+1, xn) → 0. (36)

On the other hand, it follows from (24) that

(∀n ∈ N) εαDf (xn+1, xn) ≤ Dgn(xn+1, xn),

and hence, (36) yields

Df (xn+1, xn) → 0. (37)

Now, it follows from (29) that

(∀n ∈ N) �(xn+1) ≤ γ −1
n

(
Dgn(xn, xn+1) + Dgn(xn+1, xn)

) + �(xn+1) ≤ �(xn),

which shows that (�(xn))n∈N is decreasing and hence, since it is bounded from below by
inf �(X ), it is convergent. However, (29) and (32) yield

(∀x ∈ S ∩ int dom f )(∀n ∈ N)

ε−1
(

1

1 + ωηn

Dgn+1(x, xn+1) + Dgn(xn+1, xn) − Dgn(x, xn)

)
+ �(xn+1)

≤ γ −1
n

(
1

1 + ωηn

Dgn+1(x, xn+1) + Dgn(xn+1, xn) − Dgn(x, xn)

)
+ �(xn+1)

≤ �(x). (38)

Since ηn → 0, by taking the limit in (38) and then using (35) and (36), we get

inf �(X ) ≤ lim �(xn) ≤ inf �(X ),

and thus,

�(xn) → inf�(X ). (39)

We now show that

W(xn)n∈N ⊂ S. (40)

To this end, suppose that x ∈ W(xn)n∈N, i.e., xkn ⇀ x. Since � is weakly lower
semicontinuous [23, Theorem 2.2.1], by (39),

inf �(X ) ≤ �(x) ≤ lim �(xkn) = lim �(xn) = inf�(X ).

This yields �(x) = inf �(X ), i.e., x ∈ Argmin � = S.

(1) Let x ∈ W(xn)n∈N. Since (33) and (40) imply that W(xn)n∈N ⊂ S ∩ dom f , we
obtain W(xn)n∈N = {x}, and in turn, (34) yields xn ⇀ x.

(2) In view of (40) and Proposition 2, it suffices to show that W(xn)n∈N ⊂ int dom f .
(2a) We have W(xn)n∈N ⊂ S ⊂ int dom f .
(2b) This follows from Lemma 1.
(3) Let x ∈ S ∩ int dom f . Since f satisfies Condition 1, (37) yields

xn+1 − xn → 0. (41)

Now set

(∀n ∈ N) yn = xn+1 and y∗
n = γ −1

n

(∇gn(xn) − ∇gn(yn)
)
.

Then (27) and (41) imply that

(∀n ∈ N) y∗
n ∈ ∂�(yn) and yn − xn → 0. (42)
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Since (31) yields

(∀n ∈ N) Dgn+1(x, xn+1) = Dgn+1(x, yn)

≤ (1 + ωηn)D
gn(x, yn)

= (1 + ωηn)D
gn(x, xn+1)

≤ (1 + ωηn)D
gn(x, xn),

we deduce that

(∀n ∈ N) (1 + ωηn)
−1Dgn+1(x, xn+1) ≤ Dgn(x, yn) ≤ Dgn(x, xn). (43)

Altogether, (35) and (43) yield

Dgn(x, yn) − Dgn(x, xn) → 0. (44)

In (28), by setting x = x, we get

(∀n ∈ N) 0 ≤ γn〈yn − x, y∗
n〉

= 〈yn − x,∇gn(xn) − ∇gn(yn)〉
= Dgn(x, xn) − Dgn(x, yn) − Dgn(yn, xn)

≤ Dgn(x, xn) − Dgn(x, yn). (45)

By taking to the limit in (45) and using (44), we get

〈yn − x, y∗
n〉 → 0. (46)

(3a) In this case S = {x}. Since ϕ is uniformly convex at x, � is likewise and hence, there
exists an increasing function φ : [0, +∞[→ [0,+∞] that vanishes only at 0 such that

(∀n ∈ N)(∀τ ∈]0, 1[) �(τx + (1 − τ)yn) + τ(1 − τ)φ(‖yn − x‖)
≤ τ�(x) + (1 − τ)�(yn).

It therefore follows from [23, Page 201] that ∂� is uniformly monotone at x and its
modulus of convexity is φ, i.e,

(∀n ∈ N) 〈yn − x, y∗
n〉 ≥ φ(‖yn − x‖) ≥ 0. (47)

Altogether, (46) and (47) yield φ(‖yn − x‖) → 0, and thus, yn → x. In turn, (42)
yields xn → x. The case when ψ is uniformly convex at x is similar.

3b) First, we observe that S is closed and convex since � ∈ 	0(X ). Next, for every n ∈ N,
since μf̂ � fn, we derive from (21) that μf̂ � gn. Finally, the strong convergence
follows from Proposition 3.

In Theorem 1, when (∀n ∈ N) fn = f , condition (18) is satisfied when both ∇f and
∇ψ are weakly sequentially continuous. More precisely, we have the following result.

Theorem 2 Consider the setting of Problem 1 and let f ∈ 	0(X ) be a Legendre function
such that S ∩ int dom f �= ∅, int dom f ⊂ int dom ψ , and f � βψ for some β ∈]0, +∞[.
Suppose that either f is cofinite or −ran ∇ψ ⊂ dom ϕ∗, and that (∀x ∈ int dom f )

Df (x, ·) is coercive. Let ε ∈]0, β/(β + 1)[, let (ηn)n∈N ∈ �1+(N), and let (γn)n∈N be a
sequence in R such that

(∀n ∈ N) ε ≤ γn ≤ β(1 − ε) and (1 + ηn)γn − γn+1 ≤ βηn. (48)

Furthermore, let x0 ∈ int dom f and iterate

(∀n ∈ N) xn+1 = Proxf
γnϕ

(∇f (xn) − γn∇ψ(xn)
)
. (49)
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Then there exists x ∈ S such that the following hold.

(1) Suppose that one of the following holds.

(a) S ∩ domf is a singleton.
(b) ∇f and ∇ψ are weakly sequentially continuous and S ⊂ int dom f .
(c) dom f ∗ is open and ∇f , ∇f ∗, and ∇ψ are weakly sequentially continuous.

Then xn ⇀ x.
(2) Suppose that f satisfies Condition 1 and that one of the following holds.

(a) Either ϕ or ψ is uniformly convex at x.
(b) lim D

f

S (xn) = 0.

Then xn → x.

Proof Set (∀n ∈ N) fn = f . Then

(∀n ∈ N)

⎧⎨
⎩

fn ∈ P1(f ),

f � fn,

(1 + ηn)fn � fn+1.

(50)

(1a): This is a corollary of Theorem 1(1).
(1b)–(1c): Firstly, the proof of Theorem 1(2a) and (2b) shows that W(xn)n∈N ⊂

int dom f . Next, in view of Theorem 1(2), it suffices to show that (18) holds. To this end,
suppose that y1 and y2 are two weak sequential cluster points of (xn)n∈N such that(〈y1 − y2,∇f (xn) − γn∇ψ(xn)〉

)
n∈N converges. (51)

Then, there exist two strictly increasing sequences (kn)n∈N and (ln)n∈N in N such that
xkn ⇀ y1 and xln ⇀ y2. We derive from (48) and [22, Lemma 2.2.2] that there exists
θ ∈ [ε, β(1 − ε)] such that γn → θ . Since ∇f and ∇ψ are weakly sequentially continuous,
after taking the limit in (51) along the subsequences (xkn)n∈N and (xln )n∈N, respectively, we
get

〈y1 − y2, ∇f (y1) − θ∇ψ(y1)〉 = 〈y1 − y2,∇f (y2) − θ∇ψ(y2)〉. (52)

Let us define

h : X → ] − ∞,+∞]
x �→

{
f (x) − θψ(x) if x ∈ int dom f,

+∞ otherwise.

Then h is Gâteaux differentiable on int dom h = int dom f and (52) yields

〈y1 − y2, ∇h(y1) − ∇h(y2)〉 = 0. (53)

On the other hand,

h − εf = f − θψ − εf = (1 − ε)(f − βψ) + (
β(1 − ε) − θ

)
ψ.

In turn, since f � βψ and θ ≤ β(1 − ε), we obtain h � εf , and hence,

Dh(y1, y2) ≥ εDf (y1, y2) and Dh(y2, y1) ≥ εDf (y2, y1).

Therefore, (53) yields

0 = 〈y1 − y2, ∇h(y1) − ∇h(y2)〉 = Dh(y1, y2) + Dh(y2, y1)

≥ ε
(
Df (y1, y2) + Df (y2, y1)

)
= ε〈y1 − y2, ∇f (y1) − ∇f (y2)〉.
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Suppose that y1 �= y2. Since f |int dom f is strictly convex, ∇f is strictly monotone [23,
Theorem 2.4.4(ii)], i.e.,

〈y1 − y2,∇f (y1) − ∇f (y2)〉 > 0

and we reach a contradiction.

(2): The conclusions follow from (50) and Theorem 1(3).

Remark 1 In condition (48), if we take (∀n ∈ N) ηn = 0 then we get the forward-backward
splitting algorithm with monotonic step size whose particular case is forward-backward
splitting algorithm with constant step-size.

Remark 2 Let us rewrite algorithm (49) as follows

(∀n ∈ N) xn+1 = argmin
x∈X

(
ϕ(x) + 〈x − xn,∇ψ(xn)〉 + ψ(xn) + γ −1

n Df (x, xn)
)

.

(54)
Another method to solve Problem 1 was proposed in [10]. In that method, instead of solving
(54), the authors solve

(∀n ∈ N) xn+1 = argmin
x∈X

(
ϕ(x) + 〈x − xn, ∇ψ(xn)〉 + ψ(xn) + γ −1

n ‖x − xn‖p
)

(55)

for some 1 < p ≤ 2. The weak convergence is established under the assumptions that
Problem 1 admits a unique solution, ∇ψ is (p − 1)-Hölder continuous with constant β, and
0 < infn∈N γn ≤ supn∈N γn ≤ (1 − δ)/β, where 0 < δ < 1. The high nonlinearity of the
regularization in (55) compared to (54) makes the numerical implementation of this method
difficult in general. Furthermore, since (55) yields

(∀n ∈ N) 0 ∈ ∂ϕ(xn+1) + ∇ψ(xn) + γ −1
n ∂

(‖xn+1 − xn‖p
)
,

and since (∀n ∈ N) ∂
(‖xn+1 −xn‖p

)
is not separable, this method is not a splitting method.

Remark 3 We can reformulate Problem 1 as the following joint minimization problem

minimize
(x,y)∈V

ϕ(x) + ψ(y),

where V = {(x, y) ∈ X × X | y = x}. This constrained problem is equivalent to the
following unconstrained problem

minimize
(x,y)∈X×X

ϕ(x) + ψ(y) + ιV (x, y).

In [8], a different coupling term between the variables x and y was considered and the
problem considered there was

minimize
(x,y)∈X×X

ϕ(x) + ψ(y) + Df (x, y),

in Euclidean spaces. Their method activates ϕ and ψ via their so-called left and right
Bregman proximity operators alternatively (see also [7] for the projection setting). This
method does not require the smoothness of ψ but it requires the computation of Bregman
distance-based proximity operator of ψ .

Next, we provide a particular instance of Theorem 2 in finite-dimensional spaces.
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Corollary 1 In the setting of Problem 1, suppose that X and Y are finite-dimensional. Let
f ∈ 	0(X ) be a Legendre function such that S ∩ int dom f �= ∅, int dom f ⊂ int dom ψ ,
f � βψ for some β ∈]0, +∞[, and dom f ∗ is open. Suppose that either f is cofinite or
−ran ∇ψ ⊂ dom ϕ∗. Let ε ∈]0, β/(β + 1)[, let (ηn)n∈N ∈ �1+(N), and let (γn)n∈N be a
sequence in R such that

(∀n ∈ N) ε ≤ γn ≤ β(1 − ε) and (1 + ηn)γn − γn+1 ≤ βηn.

Furthermore, let x0 ∈ int dom f and iterate

(∀n ∈ N) xn+1 = Proxf
γnϕ

(∇f (xn) − γn∇ψ(xn)
)
.

Then there exists x ∈ S such that xn → x.

Proof Since dom f ∗ is open, [5, Lemma 7.3(ix)] asserts that (∀x ∈ int dom f ) Df (x, ·) is
coercive. Hence, the claim follows from Theorem 2(1c).

4 Application to Multivariate Minimization

In this section, we apply Theorem 2 to solve the following multivariate minimization
problem.

Problem 2 Let m and p be strictly positive integers, let (Xi )1≤i≤m and (Yk)1≤k≤p be
reflexive real Banach spaces. For every i ∈ {1, . . . , m} and every k ∈ {1, . . . , p}, let
ϕi ∈ 	0(Xi ), let ψk ∈ 	0(Yk) be Gâteaux differentiable on int dom ψk �= ∅, and let
Lik : Xi → Yk be linear and bounded. The problem is to

minimize
x1∈X1,...,xm∈Xm

m∑
i=1

ϕi(xi) +
p∑

k=1

ψk

(
m∑

i=1

Likxi

)
. (56)

Denote by S the set of solutions to (56).

We derive from Theorem 2 the following result.

Proposition 6 Consider the setting of Problem 2. For every k ∈ {1, . . . , p}, suppose
that there exists σk ∈]0, +∞[ such that for every (yik)1≤i≤m ∈ int dom ψk and every
(vik)1≤i≤m ∈ int dom ψk satisfying

∑m
i=1 yik ∈ int dom ψk and

∑m
i=1 vik ∈ int dom ψk ,

one has

Dψk

(
m∑

i=1

yik,

m∑
i=1

vik

)
≤ σk

m∑
i=1

Dψk (yik, vik). (57)

For every i ∈ {1, . . . , m}, let fi ∈ 	0(Xi ) be a Legendre function such that
(∀xi ∈ int dom fi)D

fi (xi, ·) is coercive. For every k ∈ {1, . . . , p}, suppose that∑m
i=1 Lik(int dom fi) ⊂ int dom ψk , that, for every i ∈ {1, . . . , m}, there exists

βik ∈]0, +∞[ such that fi � βikψk ◦ Lik , and set βk = min1≤i≤m βik . In addition, sup-

pose that int dom fi �= ∅ and that either (∀i ∈ {1, . . . , m})fi is cofinite or
(∀i ∈ {1, . . . , m}) ϕi is cofinite. Let ε ∈ ]

0, 1/
(
1 + ∑p

k=1 σkβ
−1
k

)[
, let (ηn)n∈N ∈ �1+(N),

and let (γn)n∈N be a sequence in R such that

(∀n ∈ N) ε ≤ γn ≤ 1 − ε∑p

k=1 σkβ
−1
k

and (1 + ηn)γn − γn+1 ≤ ηn∑p

k=1 σkβ
−1
k

.
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Furthermore, let int dom fi and iterate

for n = 0, 1, . . .⌊
for i = 1, . . . , m⌊

xi,n+1 = Proxfi
γnϕi

(
∇fi(xi,n) − γn

∑p

k=1 L∗
ik∇ψk

(∑m
j=1 Ljkxj,n

))
.

(58)

Then there exists (xi)1≤i≤m ∈ S such that the following hold.

(1) Suppose that is a singleton. Then (∀i ∈ {1, . . . , m}) xi,n ⇀ xi .
(2) For every i ∈ {1, . . . , m} and every k ∈ {1, . . . , p}, suppose that ∇fi and ∇ψk are

weakly sequentially continuous, and that one of the following holds.

(a) dom ϕi ⊂ int dom fi .
(b) dom f ∗

i is open and ∇f ∗
i is weakly sequentially continuous.

Then (∀i ∈ {1, . . . , m}) xi,n ⇀ xi .

Proof Denote by X and Y the standard vector product spaces and

equipped with the norms x = (xi)1≤i≤m �→
√∑m

i=1 ‖xi‖2 and y = (yk)1≤k≤p �→√∑p

k=1 ‖yk‖2, respectively. Then X ∗ is the vector product space equipped with

the norm x∗ �→
√∑m

i=1 ‖x∗
i ‖2 and Y∗ is the vector product space equipped with

the norm y∗ �→
√∑p

k=1 ‖y∗
k ‖2. Let us introduce the functions and operator

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ : X →] − ∞, +∞]: x �→ ∑m
i=1 ϕi(xi),

f : X →] − ∞, +∞]: x �→ ∑m
i=1 fi(xi),

ψ : Y →] − ∞, +∞]: y �→ ∑p

k=1 ψk(yk),

L : X → Y : x �→ (∑m
i=1 Likxi

)
1≤k≤p

.

(59)

Then ψ is Gâteaux differentiable on and Problem 2

is a special case of Problem 1. Since (59) yields and

, we deduce from our assumptions that either f is cofinite or ϕ

is cofinite. As in (9) and (10), f is a Legendre function and dom ϕ ∩ int dom f �= ∅. In
addition,

Now set ψL = ψ ◦ L and let x ∈ int dom f . Then ψ is Gâteaux differentiable at Lx

and hence ψL is Gâteaux differentiable at x. This implies that x ∈ intdom ψL and thus
intdom f ⊂ intdom ψL. To show that Df (x, ·) is coercive, we fix ρ ∈ R. On one hand,

(60)

On the other hand, for every i ∈ {1, . . . , m}, since Dfi (xi, ·) is coercive, we deduce that

{zi ∈ Xi | Dfi (xi, zi) ≤ ρ} is bounded.
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Hence, (60) implies that {z ∈ X | Df (x, z) ≤ ρ} is bounded and Df (x, ·) is therefore
coercive. Next, set β = 1/

∑p

k=1 σkβ
−1
k . We shall show that f � βψL. To this end, fix

z = (zi)1≤i≤m ∈ int dom f . We have

DψL(x, z) = Dψ(Lx, Lz) =
p∑

k=1

Dψk

(
m∑

i=1

Likxi,

m∑
i=1

Likzi

)

≤
p∑

k=1

m∑
i=1

σkD
ψk (Likxi, Likzi)

≤
p∑

k=1

m∑
i=1

σkβ
−1
ik Dfi (xi, zi)

≤
p∑

k=1

σkβ
−1
k Df (x, z).

Now let us set (∀n ∈ N) xn = (xi,n)1≤i≤m. By virtue of Proposition 5, (58) is a particular
case of (49).

(1) Since S ∩ domf is a singleton, the claim follows from Theorem 2(1a).
(2) Our assumptions on (fi)1≤i≤m and (ψk)1≤k≤p imply that ∇f and ∇ψ are weakly

sequentially continuous.

(2a) Since , the claim follows from
Theorem 2(1b).

(2b) Since, for every i ∈ {1, . . . , m}, dom f ∗
i is open and ∇f ∗

i is weakly sequentially con-
tinuous, we deduce that dom f ∗ is open and ∇f ∗ is weakly sequentially continuous.
The assertion therefore follows from Theorem 2(1c).

Example 5 In Problem 2, suppose that m = 1, that X1 and (Yk)1≤k≤p are Hilbert spaces,
and that, for every k ∈ {1, . . . , p}, ϕk = ωk‖ · −rk‖2/2, where (ωk)1≤k≤p ∈]0, +∞[p
and let Then the weak convergence result in [13, Proposition 6.3]
without errors is a particular instance of Proposition 6 with f1 = ‖ · ‖2/2.

Example 6 Let m and p be strictly positive integers. For every i ∈ {1, . . . , m} and every
k ∈ {1, . . . , p}, let ωik ∈]0, +∞[, let �k ∈]0, +∞[, and let ϕi ∈ 	0(R) be cofinite. The
problem is to

minimize
(ξ1,...,ξm)∈]0,+∞[m

m∑
i=1

ϕi(ξi) +
p∑

k=1

(
− ln

∑m
i=1 ωikξi

�k

+
∑m

i=1 ωikξi

�k

− 1

)
. (61)

Denote by S the set of solutions to (61) and suppose that S∩]0, +∞[m �= ∅. Let

ϑ : R →] − ∞, +∞]: ξ �→
{ − ln ξ if ξ > 0,

+∞ otherwise

be Burg entropy, let ε ∈]0, 1/(1 + p)[, let (ηn)n∈N ∈ �1+(N), and let (γn)n∈N be a sequence
in R such that

(∀n ∈ N) ε ≤ γn ≤ p−1(1 − ε) and (1 + ηn)γn − γn+1 ≤ p−1ηn.
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Let (ξi,0)1≤i≤m ∈]0, +∞[m and iterate

for n = 0, 1, . . .⎢⎢⎢⎣ for i = 1, . . . , m⌊
ξi,n+1 = Proxϑ

γnϕi

(
−1
ξi,n

− γn

∑p

k=1 ωik

(
−1∑m

j=1 ωjkξj,n
+ 1

�k

))
.

Then there exists (ξ i)1≤i≤m ∈ S such that (∀i ∈ {1, . . . , m}) ξi,n → ξ i .

Proof For every i ∈ {1, . . . , m} and every k ∈ {1, . . . , p}, let us set Xi = R, Yk = R,
ψk = Dϑ(·, �k), and Lik : ξi �→ ωikξi . Then (61) is a particular case of (56). Since ψ is not
differentiable on R

p , the standard forward-backward algorithm is inapplicable. We show
that the problem can be solved by using Proposition 6. First, let (ξi)1≤i≤m and (ηi)1≤i≤m be
in ]0, +∞[m, and consider

φ : R →] − ∞, +∞]: ξ �→
{ − ln ξ + ξ − 1 if ξ ∈]0, +∞[,

+∞ otherwise.

We see that φ is convex and positive. Thus,

φ

( ∑m
i=1 ξi∑m
i=1 ηi

)
= φ

(
m∑

i=1

ηi∑m
j=1 ηj

ξi

ηi

)
≤

m∑
i=1

ηi∑m
j=1 ηj

φ

(
ξi

ηi

)
≤

m∑
i=1

φ

(
ξi

ηi

)
,

and hence,

− ln

∑m
i=1 ξi∑m
i=1 ηi

+
∑m

i=1 ξi∑m
i=1 ηi

− 1 ≤
m∑

i=1

(
− ln

ξi

ηi

+ ξi

ηi

− 1

)
.

In turn,

Dϑ

(
m∑

i=1

ξi,

m∑
i=1

ηi

)
≤

m∑
i=1

Dϑ(ξi, ηi).

This shows that (57) is satisfied with (∀k ∈ {1, . . . , p}) σk = 1. Next, let us set (∀i ∈
{1, . . . , m}) fi = ϑ . Fix i ∈ {1, . . . , m} and k ∈ {1, . . . , p}, and let ξi and ηi be in ]0, +∞[.
Then

Dψk (Likξi , Likηi) = Dϑ(ωikξi , ωikηi) = Dϑ(ξi, ηi) = Dfi (ξi, ηi),

which implies that fi � ψk ◦Lik . In addition, since dom f ∗
i =]−∞, 0[ is open, [5, Lemma

7.3(ix)] asserts that Dfi (ξi, ·) is coercive. We therefore deduce the convergence result from
Proposition 6(2b).

Example 7 Let m and p be strictly positive integers. For every i ∈ {1, . . . , m} and every
k ∈ {1, . . . , p}, let ωik ∈]0, +∞[, let �k ∈]0, +∞[, and let ϕi ∈ 	0(R). The problem is to

minimize
(ξ1,...,ξm)∈[0,+∞[m

m∑
i=1

ϕi(ξi) +
p∑

k=1

((
m∑

i=1

ωikξi

)
ln

∑m
i=1 ωikξi

�k

−
m∑

i=1

ωikξi + �k

)
. (62)

Denote by S the set of solutions to (62) and suppose that S∩]0, +∞[m �= ∅. Let

ϑ : R →] − ∞, +∞]: ξ �→
⎧⎨
⎩

ξ ln ξ − ξ if ξ ∈]0, +∞[,
0 if ξ = 0,

+∞ otherwise

be Boltzmann–Shannon entropy, let β = max1≤k≤p max1≤i≤m ωik , let ε ∈]0, 1/(1 + β)[,
let (ηn)n∈N ∈ �1+(N), and let (γn)n∈N be a sequence in R such that

(∀n ∈ N) ε ≤ γn ≤ (pβ)−1(1 − ε) and (1 + ηn)γn − γn+1 ≤ (pβ)−1ηn.
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Let (ξi,0)1≤i≤m ∈]0, +∞[m and iterate

for n = 0, 1, . . .⌊
for i = 1, . . . , m⌊

ξi,n+1 = Proxϑ
γnϕi

(
ln ξi,n − γn

∑p

k=1 ωik

(
ln

(∑m
j=1 ωjkξj,n

)
− ln �k

))
.

Then, there exists (ξ i)1≤i≤m ∈ S such that (∀i ∈ {1, . . . , m}) ξi,n → ξ i .
Proof For every i ∈ {1, . . . , m} and every k ∈ {1, . . . , p}, let us set Xi = R, Yk = R,
ψk = Dϑ(·, �k), and Lik : ξi �→ ωikξi . Then (62) is a particular case of (56). We cannot
apply the standard forward-backward algorithm here since ψ is not differentiable on R

p .
We shall verify the assumptions of Proposition 6. First, let (ξi)1≤i≤m and (ηi)1≤i≤m be in
]0, +∞[m. Since

φ : R →] − ∞, +∞]: ξ �→
⎧⎨
⎩

ξ ln ξ if ξ ∈]0, +∞[,
0 if ξ = 0,

+∞ otherwise

is convex, we have

φ

( ∑m
i=1 ξi∑m
i=1 ηi

)
= φ

(
m∑

i=1

ηi∑m
j=1 ηj

ξi

ηi

)
≤

m∑
i=1

ηi∑m
j=1 ηj

φ

(
ξi

ηi

)
,

and hence,
∑m

i=1 ξi∑m
i=1 ηi

ln

∑m
i=1 ξi∑m
i=1 ηi

≤
m∑

i=1

ηi∑m
j=1 ηj

ξi

ηi

ln
ξi

ηi

=
∑m

i=1 ξi ln ξi

ηi∑m
i=1 ηi

.

In turn, (
m∑

i=1

ξi

)
ln

∑m
i=1 ξi∑m
i=1 ηi

≤
m∑

i=1

ξi ln
ξi

ηi

,

which implies that

Dϑ

(
m∑

i=1

ξi,

m∑
i=1

ηi

)
=

(
m∑

i=1

ξi

)
ln

∑m
i=1 ξi∑m
i=1 ηi

−
m∑

i=1

ξi +
m∑

i=1

ηi

≤
m∑

i=1

(
ξi ln

ξi

ηi

− ξi + ηi

)

=
m∑

i=1

Dϑ(ξi, ηi).

This shows that (57) is satisfied with (∀k ∈ {1, . . . , p}) σk = 1. Next, let us set (∀i ∈
{1, . . . , m}) fi = ϑ . Fix i ∈ {1, . . . , m} and k ∈ {1, . . . , p}, and let ξi and ηi be in ]0, +∞[.
Then

Dψk (Likξi , Likηi) = Dϑ(ωikξi , ωikηi) = ωikD
ϑ(ξi, ηi) ≤ βDϑ(ξi, ηi),

which implies that fi � β−1ψk ◦ Lik . In addition, since fi is supercoercive, fi is cofinite
and [5, Lemma 7.3(viii)] asserts that Dfi (ξi, ·) is coercive. Therefore, the claim follows
from Proposition 6(2b).

Remark 4 The Bregman distance associated with Burg entropy, i.e., the Itakura–Saito diver-
gence, is used in linear regression [3, Section 3]. The Bregman distance associated with
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Boltzmann–Shannon entropy, i.e., the Kullback–Leibler divergence, is used in information
theory [3, Section 3] and image processing [11].
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