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Abstract In this paper, we show that the Js-radical and the nil-radical of zerosumfree com-
mutative semirings coincide. Based on this result, a semiring version of Snapper’s Theorem
is given for polynomial semirings over zerosumfree commutative semirings, and zerosum-
free commutative Js-semisimple semirings are completely described. Finally, Problem 1
in Katsov and Nam (Commun. Algebra 42: 5065–5099, 2014) is solved for semisimple,
additively π -regular, and anti-bounded artinian semirings.
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1 Introduction

Radical theory and radicals of algebraic structures were initiated by Wedderburn and Köthe
for rings (see, e.g., [4]) and constitute important areas in research which, in turn, initiate
research in new directions in other branches of mathematics. In 1945, Jacobson presented
the concept of a radical for rings. Since then, the Jacobson radical becomes a useful tool
in studying the structure of rings. A generalization of the structure of a ring is a hemiring.
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Hemirings were first introduced by Vandiver in 1934 [33], but did not immediately catch
the attention of the mathematical community. Then, hemirings showed to be important in
theoretical computer science [29, 30], as first recognized by Schützenberger [32] in his the-
ory of weighted automata and rational power series [2, 31]. Recently, idempotent hemirings
have entered into the mainstream mathematics because they are at the heart of the relatively
new subject of tropical geometry [5, 16] and tropical algebra [17]. These things have led us
to study the structure of hemirings. Similar to ring or group theory, we study the structure
of hemirings using radical theory.

In [3], Bourne defined the Jacobson radical of a hemiring based on left (right) semireg-
ular ideals and, subsequently, in [12], Iizuka proved that this radical can be determined
via irreducible semimodules. Katsov and Nam [18] received some results on the structure
of hemirings adopting this radical, such as Hopkins’s Theorem for a left artinian semir-
ing [18, Corollary 4.4] and a theorem on the structure for a primitive hemiring [18, Theo-
rem 4.5]. However, a limitation of this radical operator is an additively idempotent hemiring
(also known as an idempotent hemiring by some authors) belonged to its induced radical
class; that is, if R is an additively idempotent hemiring then J (R) = 0 [18, Example 3.7].
This shows that the Jacobson radical of a hemiring is not a useful tool in studying the
structure of additively idempotent hemirings. To remedy this problem, they defined the Js-
radical for hemirings using simple semimodules and obtained some results on the structure
of additively idempotent hemirings through this radical, such as a theorem on the structure
of finite additively idempotent hemirings [18, Theorem 3.11]. Simultaneously, they proved
that these Jacobson radical types are discrimination (see, [18, Example 3.7]) and pointed out
the relationship between them for additively regular hemirings and commutative hemirings.

This paper continues the above works. In Section 3, the Js-radical for zerosumfree com-
mutative semirings is calculated; it is exactly the nil-radical. Based on this result, a semiring
“version” of Snapper’s theorem is given for a polynomial semiring with coefficients from
a zerosumfree commutative semiring, and the zerosumfree commutative Js-semisimple
semirings are described. In Section 4, the relationship between the two Jacobson radical
types is considered. It is pointed out that the radicals are equal over “semisimple, additively
π -regular, and anti-bounded antinian semirings” which then solves [18, Problem 1] for these
classes of semirings. For the reader’s convenience, Section 2 includes necessary notions and
facts on semirings and semimodules, as well as on the radical theory of semirings; those
used in this paper without any comment can be found in [3, 6, 12, 18, 24].

2 Preliminaries

Recall [6] that a hemiring R is an algebra (R,+, ·, 0) such that the following conditions are
satisfied:

(1) (R,+, 0) is a commutative monoid with identity element 0;
(2) (R, ·) is a semigroup;
(3) Multiplication distributes over addition on either side;
(4) 0r = 0 = r0 for all r ∈ R.

A hemiring R is called a semiring if its multiplicative semigroup (R, ·) is a monoid with
identity element 1. A semiring R is said to be a division semiring if (R \ {0}, ·, 1) is a
group. When R is not a ring, it is often called a proper semiring. A hemiring R is said to be
additively cancellative if a + c = b + c implies a = b for all a, b, c ∈ R. It is zerosumfree
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if and only if a + b = 0 implies a = b = 0 for all a, b ∈ R. It is entire if and only if ab = 0
implies a = 0 or b = 0 for all a, b ∈ R. The notion of the ideal of a hemiring R is defined
similarly as for rings. The subtractive closure I = {r ∈ R | r + i ∈ I for some i ∈ I } of
an ideal I is an ideal of R. An ideal I of a hemiring R is called subtractive if I = I ; that is,
for all x, a ∈ R, if x + a, a ∈ I then x ∈ I . It is strong if x + y ∈ I then x, y ∈ I for all
x, y ∈ R. Denote by I(R) and SI(R) the sets of all ideals and all subtractive ideals of R,
respectively.

As for rings, for any homomorphism f : R → S between hemiringsR and S, there exists
a subtractive ideal, which is the kernel of f and is defined as Ker(f ) := {r ∈ R | f (r) =
0} ⊆ R. A surjective hemiring homomorphism f : R → S is called a semiisomorphism if
Ker(f ) = 0. As usual, the direct product R = ∏

i∈I Ri of a family (Ri)i∈I of hemirings
Ri consists of the elements r = (ri)i∈I for ri ∈ Ri and is determined by the surjective
homomorphisms πi : R → Ri defined by πi(r) = ri ; and a subhemiring S of R is called a
subdirect product S = ∏sub

i∈I Ri of (Ri)i∈I if, for each πi , the restriction πi |S : S → Ri is
also surjective.

Any ideal I of a hemiring R induces on R a congruence relation ≡I , which is referred
to as Bourne relation [6, p. 78] and is given by: r ≡I r ′ if and only if there exist elements
i1, i2 ∈ I such that r + i1 = r ′ + i2. Denote the factor hemiring R/≡I by R/I . It is easy to
see that ≡I and ≡I on R coincide for every ideal I of R, and hence R/I = R/I holds for
every ideal I of R.

As usual, a left R-semimodule over a hemiring R is a commutative monoid (M,+, 0M)

together with a scalar multiplication (r,m) �→ rm from R × M to M that satisfies the
following identities for all r, r ′ ∈ R and m, m′ ∈ M:

(1) (rr ′)m = r(r ′m);
(2) r(m + m′) = rm + rm′;
(3) (r + r ′)m = rm + r ′m;
(4) r0M = 0M = 0m.

Right semimodules over a hemiring R and homomorphisms between semimodules are
defined in the standard manner. If a hemiring R is a semiring, then all semimodules over R

are unitary ones. And, from now on, letMR and RM denote the categories of all right and
left semimodules, respectively, over a semiring R. A left semimodule M over a hemiring R

is cancellative if x + z = y + z implies x = y for all x, y, z ∈ M . A subsemimodule N of
an R-semimodule M is subtractive if, for all x, y ∈ M , from x + y, x ∈ N it follows that
y ∈ N , too.

The usual concepts of the Descending Chain Condition and artinian modules of the
theory of modules over rings, as well as results involving them, are easily extended in an
obvious fashion to a context of semimodules over semirings (see, e.g., [19]). For a left R-
semimodule RM , the ideal (0 : M)R := {r ∈ R | rM = 0} of R is called the annihilator of
M and RM is faithful if and only if (0 : M)R = 0.

Congruences on a left R-semimodule M are defined in the standard manner, and we
denote by Cong(M) the set of all congruences on RM . This set is non-empty because it
always contains at least two trivial congruences: the diagonal congruence �M := {(m,m) |
m ∈ M}, and the universal congruence M2 := {(m, n) | m, n ∈ M}. Any subsemimod-
ule N of a left R-semimodule M induces a congruence ≡N on M , known as the Bourne
congruence, by setting m ≡N m′ if and only if m + n = m′ + n′ for some n, n′ ∈ N .
Denote by M/N the factor left R-semimodule M/ ≡N that has the canonical R-surjection
πN : M → M/N .
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A nonzero cancellative left semimodule M over a hemiring R is irreducible [12, Defi-
nition 5] if, for an arbitrarily fixed pair of elements m1,m2 ∈ M with m1 �= m2 and any
m ∈ M , there exist r1, r2 ∈ R such that m + r1m1 + r2m2 = r1m2 + r2m1. The Jacobson
radical was defined by Iizuka [12, Definition 6] as follows:

J (R) = ∩{(0 : M)R | M ∈ J },
where J is the class of all irreducible left semimodules over a hemiring R. When J = ∅,
J (R) = R by convention. The hemiring R is said to be J -semisimple if J (R) = 0.

A left R-semimodule M is simple if RM �= 0 and there are only trivial subsemimodules
of, as well as congruences on, M . The Js-radical was defined by Katsov and Nam [18,
p. 5076] as follows:

Js(R) = ∩{(0 : M)R | M ∈ J ′},
where J ′ is the class of all simple left semimodules over a hemiring R. When J ′ = ∅,
Js(R) = R by convention. The hemiring R is Js-semisimple if Js(R) = 0.

Remark 1 If M is a simple semimodule over a semiring R then, according to [18, p. 5092],
M is always unitary, that is, 1.m = m for all m ∈ M .

Katsov and Nam in [18] briefly reviewed the Kurosh–Amitsur radical theory of the cate-
goryH of all hemirings, which was developed by various scientists in [9–11, 24–28]. In this
theory, a nonempty subclassU ofH is said to be hereditary if R ∈ U implies I(R) ⊆ U, and
homomorphically closed if R ∈ U implies ϕ(R) ∈ U for each homomorphism ϕ of R. If U
is both hereditary and homomorphically closed, then it is said to be universal. Similarly to
the radical theory of rings, there are three equivalent approaches to the Kurosh–Amitsur rad-
ical theory of hemirings, by means of radical classes, of radical operators, and of semisimple
classes. These approaches are independently defined in a fixed universal class U ⊆ H of
hemirings.

A nonempty subclass R of a fixed universal class U ⊆ H is called a radical class of U if
R satisfies the following two conditions [24, Definition 3.1]:

(1) R is homomorphically closed;
(2) For every hemiring R ∈ U \R, there is a subtractive ideal K ∈ SI(R) \ {R} such that

I(R/K) ∩ R = 0.

A mapping ρ : U → U is called a radical operator in U if it assigns to each hemiring
R ∈ U a subtractive ideal ρ(R) ∈ SI(R) ⊆ U such that the following conditions are
satisfied for all S, T ∈ U [24, Definition 4.1]:

(1) ϕ(ρ(S)) ⊆ ρ(ϕ(S)) for each homomorphism ϕ : S → T ;
(2) ρ(S/ρ(S)) = 0;
(3) For every nonzero ideal I of S, ρ(I) = I implies that I ⊆ ρ(S);
(4) ρ(ρ(S)) = ρ(S).

The following observations will prove to be useful in the sequel:

Proposition 1 Let R be a radical class in a universal class U and ρ be a corresponding
radical operator. Then ρ(A ⊕ B) = ρ(A) ⊕ ρ(B) for every A,B ∈ U.

Proof Let x ∈ ρ(A) ⊕ ρ(B), then x = a + b for a ∈ ρ(A), b ∈ ρ(B). Suppose that
x = a + b /∈ ρ(A ⊕ B), by [24, Theorem 4.9], there exists an ideal I of A ⊕ B such that
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x = a + b /∈ I and ρ((A ⊕ B)/I) = 0. Since I is an ideal of A ⊕ B, there exist ideals I1
of A, I2 of B such that I = I1 ⊕ I2. For a + b /∈ I , it induces a /∈ I1 or b /∈ I2. In addition,
we have (A ⊕ B)/I ∼= (A/I1) ⊕ (B/I2), and so A/I1, B/I2 are ideals of (A ⊕ B)/I . Since
ρ((A ⊕ B)/I) = 0, it implies that ρ(A/I1) = ρ(B/I2) = 0; hence, a ∈ I1 and b ∈ I2
(contradiction). Thus, x = a + b ∈ ρ(A ⊕ B), that is, ρ(A) ⊕ ρ(B) ⊆ ρ(A ⊕ B).

Conversely, let x ∈ ρ(A ⊕ B). Suppose that x = a + b /∈ ρ(A) ⊕ ρ(B), it induces that
a /∈ ρ(A) or b /∈ ρ(B). Assume a /∈ ρ(A), there exists an ideal I of A such that a /∈ I

and ρ(A/I) = 0. On the other hand, (A ⊕ B)/(I ⊕ B) ∼= A/I . Since ρ(A/I) = 0, we
have ρ((A ⊕ B)/(I ⊕ B)) = 0; and hence, x = a + b ∈ I ⊕ B, it implies that a ∈ I

(contradiction). Therefore, x ∈ ρ(A) ⊕ ρ(B), that is, ρ(A ⊕ B) ⊆ ρ(A) ⊕ ρ(B). Thus,
ρ(A ⊕ B) = ρ(A) ⊕ ρ(B).

By [3, Theorems 5 and 6], the mapping � : H → H given by R �→ J (R) is, in fact, a
radical operator in H. So is the mapping � : H → H given by R �→ Js(R) (see [18]). From
these observations and using Proposition 1, we have the following.

Corollary 1 Let R be a hemiring and R1, R2 are its subhemirings. If R = R1 ⊕ R2 then
J (R) = J (R1) ⊕ J (R2) and Js(R) = Js(R1) ⊕ Js(R2).

3 Zerosumfree Commutative Semirings

The aim of this section is to calculate the Js-radical of a zerosumfree commutative semiring.
First, recall [6, Corollary 7.5] that an ideal I of a commutative semiring R is prime if
and only if, for all elements a, b ∈ R, ab ∈ I implies that a ∈ I or b ∈ I . Moreover,
every prime ideal I of a semiring R contains a minimal prime ideal [6, Proposition 7.14].
Denote by Pr(R) and Prm(R), the sets of all prime ideals and all minimal prime ideals
of a commutative semiring R, respectively. The prime radical (or simply the radical) of a
proper ideal I in R is known to be the intersection of all prime ideals of R containing I and
denoted by

√
I . The radical

√
(0) is the nil-radical of R, denoted by Nil(R) [6, p. 91]. On

the other hand, if I is an ideal of a commutative semiring R then
√

I = {r ∈ R | ∃n ∈ N :
rn ∈ I } [6, Proposition 7.28]. From these observations, we have the following result: If R

is a commutative semiring then

Nil(R) = ∩P∈Pr(R)P = ∩P∈Prm(R)P = {r ∈ R | ∃n ∈ N : rn = 0}.
To show that the Js-radical and the nil-radical are equivalent for zerosumfree commuta-

tive semirings (Theorem 1), first we prove that the nil-radical is contained in the Js-radical
for commutative semirings.

Lemma 1 Let R be a commutative semiring. Then Nil(R) ⊆ Js(R).

Proof Suppose that M is a simple left R-semimodule. We then have M = Rm for 0 �=
m ∈ M , and the R-homomorphism ϕ : RR → RM defined by ϕ(r) = rm for all r ∈ R,
is surjective, and hence, it induces an R-isomorphism θ : R/ kerϕ → M , defined by
θ(r) = rm, where kerϕ := {(x, y) ∈ R2 | ϕ(x) = ϕ(y)} is a congruence on RR. Since
R is commutative, the congruence kerϕ is also a congruence on the semiring R, that is,
R := R/ kerϕ is a commutative semiring. Next, we will show that R is a semifield. Indeed,
let I be an ideal of R. Then we get that I is a subsemimodule of the R-semimodule R. So
θ(I ) is a subsemimodule of RM . Since RM is simple, θ(I ) = 0 or θ(I ) = M , and hence,
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I = 0 or I = R. This implies that R is a semifield. Now, for any r ∈ Nil(R), there exists
n ∈ N such that rn = 0, and so rn = 0 in R. It implies that r = 0, since R is a semifield;
that means, r ∈ Ker(ϕ) = ϕ−1(0M), and so r ∈ Js(R). Therefore Nil(R) ⊆ Js(R).

Theorem 1 Let R be a zerosumfree commutative semiring. Then

Js(R) = Nil(R).

Proof Applying Lemma 1, we only need to show that Js(R) ⊆ Nil(R). Assume that P is
a minimal prime ideal of R, from [34, Corollary 3.2], it implies that P is strong. Then, the
map ϕ : R → B such that ϕ(x) = 0 if x ∈ P and ϕ(x) = 1 if x ∈ R \ P is a surjective
homomorphism, where B = {0, 1} is the Boolean semiring. It implies that B is a simple
left R-semimodule and (0 : B)R = P . Thus, Js(R) = ∩M∈J ′(0 : M)R ⊆ ∩P∈Pr(R)P =
Nil(R). Hence, Js(R) = Nil(R).

Remark 2

(i) The “zerosumfree” condition in Theorem 1 cannot be omitted. For example, if D is a
local domain, thenD has a unique maximal ideal I . Consider the semiringR := D⊕B

which is commutative but non-zerosumfree. Obviously,

Nil(R) = 0 � I ⊕ 0 = Js(R).

(ii) By a (commutative, unitary) B-semialgebra A (B-semialgebra is also called B1-
algebra in [21–23]), we mean the data of a B-semimodule A and of an associative and
commutative multiplication on A that has a neutral element 1A and is bilinear with
respect to the operations of B-semimodule (see [21, Definition 4.1] or [22, Defini-
tion 1.2]). SinceB-semialgebraA is a zerosumfree commutative semiring, so [23, The-
orem 5.1] in fact is a corollary of the above Theorem 1.

By [20, Theorem 5.1], Snapper has proved that for a commutative ring R, J (R[x]) =
Nil(R[x]) = Nil(R)[x]. As a corollary of Theorem 1, in the following result, we are now
ready to present a semiring version of the famous Snapper’s theorem, which is fundamental
in the theory of rings and modules, for zerosumfree commutative semirings.

Corollary 2 (cf. [20, Theorem 5.1]) Let R be a zerosumfree commutative semiring and let
R[x] be a polynomial semiring over R. Then

Js(R[x]) = Nil(R[x]) = Nil(R)[x].

Proof Since R[x] is a zerosumfree commutative semiring, Js(R[x]) = Nil(R[x]), by The-
orem 1. Since R is commutative, Nil(R)[x] ⊆ Nil(R[x]). Conversely, for any f (x) =
a0 + a1x + · · · + anx

n ∈ Nil(R[x]), there exists k ∈ N such that f (x)k = 0, and so
ak
0 + · · · + ak

1x
k + · · · + ak

nxkn = 0, it induces ak
0 = ak

1 = · · · = ak
n = 0 because

R is zerosumfree, that is, f (x) ∈ Nil(R)[x]; and then, Nil(R[x]) ⊆ Nil(R)[x]. Thus,
Js(R[x]) = Nil(R)[x].

In [18, Theorem 3.11], the authors have used the Js-radical and proved that a finite
additively idempotent hemiring R is Js-semisimple if and only if it is semiisomorphic to a
subdirect product of some hemirings Si (i ∈ I ) such that each of the hemirings Si (i ∈ I ), in
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turn, is isomorphic to a dense subhemiring of the endomorphism hemiring End(Mi) (i ∈ I )
of a finite semilattice Mi (i ∈ I ) with zero. We conclude this section by describing zero-
sumfree commutative Js-semisimple semirings. To do this, first of all, recall [34, pp. 396
and 398] that a zerosumfree semiring R is quasi-positive if r �= 0 then rn �= 0 for all
natural numbers n ∈ N. A congruence ρ on a semiring R is entire if and only if R/ρ

is an entire semiring; in this case, R/ρ is called an entire quotient of R. An entire con-
gruence ρ is minimal if and only if ρ ≥ μ implies ρ = μ for any entire congruence μ

on R. Note that ρ is entire if and only if the set 0 := {r ∈ R | rρ 0} is a prime ideal
of R, and it is minimal entire if and only if 0 is a minimal prime ideal of R. Also, if
ρ is a minimal entire congruence then the semiring R/ρ is a maximal entire quotient of
R. From these results, together with Theorem 1 and [34, Theorem 3.3 and Theorem 3.4],
we have the following characterization of a zerosumfree commutative Js-semisimple
semiring.

Corollary 3 The following conditions on a zerosumfree commutative semiring R are
equivalent:

(1) R is Js-semisimple;
(2) ∩P∈Prm(R)P = 0;
(3) ∩P∈Pr(R)P = 0;
(4) R is quasi-positive;
(5) R is semiisomorphic to a subdirect product of its maximal entire quotients.

Proof (1) ⇒ (2). This follows from Theorem 1.
(2) ⇒ (3) and (3) ⇒ (4). This follows from [34, Theorem 3.3].
(4) ⇒ (5). This follows from [34, Theorem 3.4].
(5) ⇒ (1). Let {Ri | i ∈ I } be the family of all maximal entire quotients of R and

ϕ : R → ∏sub
i∈I Ri be a semiisomorphic. Since Ri (i ∈ I ) is a maximal entire quotient of

R, there exists a minimal entire congruence ρi on R such that Ri = R/ρi . Then, the set
0 := {r ∈ R | rρi 0} is a minimal prime ideal of R. By [34, Corollary 3.2], 0 is a strong
prime ideal. It implies that Ri is zerosumfree. Indeed, let x, y ∈ Ri be such that x + y = 0,
that is, x + y = 0, and hence, x + y ∈ 0. Since 0 is strong, x, y ∈ 0, that is, x = y = 0.
Since Ri is entire and zerosumfree, there exists the surjective semiring homomorphism
f : Ri → B, defined by f (x) = 0 if x = 0 and f (x) = 1 if 0 �= x ∈ Ri . We have
that B is a simple left Ri-semimodule with (0 : B)Ri

= 0. Therefore, Js(Ri) = 0 for any
i ∈ I . From this observation and [11, Theorem 4.3(a)], we obtain that Js(

∏sub
i∈I Ri) = 0.

Then, applying [11, Theorem 3.7(b)], one gets immediately that Js(R) = 0, which ends our
proof.

4 Semisimple, Additively π -Regular and Anti-bounded Artinian
Semirings

Obviously, on the subclass of all rings of the classH, both radicals J (R) and Js(R) coincide.
However, in general, they are different (see [18, Example 3.7]). And a problem raised [18,
Problem 1] as follows: Describe the subclass of all hemirings R of the classHwith Js(R) ⊆
J (R), particularly, with Js(R) = J (R). In this section, we solve [18, Problem 1] for the
above-mentioned three important classes of semirings.
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First, we calculate the Js-radical and the Jacobson radical of a division semiring (Propo-
sition 2) and provide a necessary and sufficient condition under which two radicals are equal
for the semisimple semirings class (Theorem 2).

Next, we give a complete description of additively π -regular J -semisimple semirings
(Proposition 3). We prove that Js-radical is contained in Jacobson radical (Corollary 5),
and we provide a necessary and sufficient condition under which two radicals are equal
(Theorem 3) for additively π -regular semirings.

Finally, for anti-bounded semirings, we prove that if M is an additively idempotent and
simple left R-semimodule, then (0 : M)R = V (R) and if the two radicals are equal then the
zeroid Z(R) = 0 (Lemma 3). The Js-radical is contained in Jacobson radical (Theorem 4).
In addition, we provide a necessary and sufficient condition under which two radicals are
equal for the anti-bounded artinian semirings class (Theorem 5).

4.1 On Semisimple Semirings

As usual, a semiring R is said to be left (right) semisimple if the regular semimodule RR

(RR) is a direct sum of minimal left (right) ideals. Recall (see, for example, [8, Theorem 7.8]
or [19, Theorem 4.5]) that a semiring R is (left, right) semisimple if and only if

R ∼= Mn1(D1) × · · · × Mnr (Dr),

where Mn1(D1), . . . , Mnr (Dr) are the semirings of n1 × n1, . . . , nr × nr matrices for
suitable division semiringsD1, . . . , Dr and positive integers n1, . . . , nr , respectively. More-
over, Z(R) = {r ∈ R | r + x = x for some x ∈ R} denotes the zeroid of a hemiring R

(see [6, p. 50]).

Proposition 2 Let R be a division semiring. Then Js(R) = 0 and J (R) = Z(R).

Proof Because R is a division semiring, we have R is a division ring or a zerosumfree
division semiring, according to [6, Proposition 4.34]. If R is a division ring then Js(R) = 0
is obvious. If R is a zerosumfree division semiring then there exists a semiisomorphism
f : R → B such that f (0) = 0, f (r) = 1 for any 0 �= r ∈ R. Since B is a simple left
B-semimodule, B is also a simple left R-semimodule. Thus, Js(R) = 0.

From [12, p. 420, Section 4e], J (R) = {x ∈ R | x∗ ∈ J (R∗)} and J (R∗) = J (D(R)) ∩
R∗ for R∗ = R/≡ = {x∗ | x ∈ R}, where the congruence ≡ is defined by x ≡ y if and only
if x+a = y+a for x, y, a ∈ R, and the ring of differences D(R) = (R×R)/W = {(x, y) |
(x, y) ∈ R × R}, where W = {(r, r) | r ∈ R} is an ideal of R × R (see, e.g., [6, Chapter 8]
or [18, p. 5083]). SinceR is a division semiring, and soD(R) is a division ring orD(R) = 0,
it induces J (D(R)) = 0, and so J (R∗) = 0. This shows that J (R) = Z(R).

Theorem 2 The following conditions for a semisimple semiring R are equivalent:

(1) Js(R) = J (R);
(2) Z(R) = 0.

Proof Since R is a semisimple semiring,

R ∼= Mn1(D1) × · · · × Mnr (Dr),
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where Mn1(D1), . . . ,Mnr (Dr) are the semirings of n1 × n1, . . . , nr × nr matrices for suit-
able division semirings D1, . . . , Dr and positive integers n1, . . . , nr , respectively. From
Corollary 1, Theorem 5.8 in [18] and Proposition 2, we have Js(R) ∼= Js(⊕Mni

(Di)) =
⊕Js(Mni

(Di)) = ⊕Mni
(Js(Di)) = 0 and J (R) ∼= J (⊕Mni

(Di)) = ⊕J (Mni
(Di)) =

⊕Mni
(J (Di)) = ⊕Mni

(Z(Di)). Thus, Js(R) = J (R) if and only if ⊕Mni
(Z(Di)) = 0 if

and only if Mni
(Z(Di)) = 0 for i = 1, . . . , r if and only if Z(Di) = 0 for i = 1, . . . , r .

Next, we prove Z(R) = 0 if and only if Z(Di) = 0 for i = 1, . . . , r . It is easy to show that

Z(R) ∼= Z(⊕Mni
(Di)) = ⊕Z(Mni

(Di)) = ⊕Mni
(Z(Di)).

Therefore, Z(R) = 0 if and only if Z(Di) = 0 for i = 1, . . . , r .

4.2 On Additively π-Regular Semirings

Now, recall some notions for subsequent needs. A commutative monoid (R,+, 0) is called
π -regular (or a epigroup) if every element of it has a power in some subgroup of R (see,
for example, [7]). Using Clifford representations of commutative inverse monoids [7, Theo-
rem 4.2.1], it is easy to show that the last condition is equivalent to the condition that for any
a ∈ R, there exist a natural number n and an element x ∈ R such that na + x +na = na. A
semiring R is called additively π -regular if and only if its additive reduct (R,+, 0) is a π -
regular monoid. Then, it is clear that a semiring R is additively π -regular if and only if for
any a ∈ R, there exist a natural number n and an element x ∈ R such that na+x+na = na.
Note that the element x in the last equation can be chosen to be mutually inverse with the
element na, that is, na + x + na = na and x + na + x = x. Indeed, if na + x + na = na

for x ∈ R, then one can immediately verify that na and x + na + x are mutually inverse.
Moreover, as every our semirings contain a multiplicative identity 1, we can just define an
additively π -regular semiring as a semiring R for which there exist a natural number n and
an element x ∈ R such that n1 and x are mutually inverse, that is, n1 + x + n1 = n1 and
x+n1+x = x. Note that the class of additively π -regular semirings is sufficiently abundant.
It includes the classes of associative rings, additively regular (particularly, additively idem-
potent) semirings, finite and finite locally semirings whose finitely generated subsemirings
are finite.

In [18, Corollary 4.6], given such a general result on characterization of J -semisimple
hemirings that a hemiring R is J -semisimple if and only if it is semiisomorphic to a
subdirect product of some additively cancellative hemirings S whose rings of differences
D(S) are isomorphic to dense subrings of linear transformations of vector spaces over
division rings. Applying this result, we receive a characterization of additively π -regular
J -semisimple semirings.

Proposition 3 For an additively π -regular semiring R, the following conditions are
equivalent:

(1) R is J -semisimple;
(2) R is a ring with J (R) = 0;
(3) R is a ring isomorphic to a subdirect product of primitive rings.

Proof (1) ⇒ (2) Assume that R is a J -semisimple semiring. Applying [18, Corollary
4.6], R is semiisomorphic to a subdirect product

∏sub
i∈I Ri of some additively cancellative

semirings Ri for i ∈ I . Moreover, since R is an additively π -regular semiring and Ri

for i ∈ I are additively cancellative semirings, then
∏sub

i∈I Ri is an additively π -regular,
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additively cancellative semiring. Therefore,
∏sub

i∈I Ri is a ring. This implies that R is also a
ring and is isomorphic to

∏sub
i∈I Ri . Finally, J (R) = 0 is obvious.

(2) ⇒ (1) It is obvious.
(2) ⇔ (3) It follows immediately from [18, Corollary 3.8].

It is easily verified that ifR is a finite semiring thenR is an additively π -regular semiring.
From Proposition 3 and applying the Wedderburn–Artin theorem in ring theory (see, for
example, [20]), we obtain the following result.

Corollary 4 A finite semiring R is J -semisimple if and only if

R ∼= Mn1(F1) × Mn2(F2) × · · · × Mnk
(Fk),

where F1, . . . , Fk are finite fields and n1, . . . , nk are positive integers.

The following result is extended from [18, Proposition 4.8] for additively π -regular
semirings.

Corollary 5 Let R be an additively π -regular semiring. Then

Js(R) ⊆ J (R).

Proof Since R is an additively π -regular semiring, so is R/I . By [24, Theorem 4.9], we
have J (R) = ∩{I ∈ SI(R) | J (R/I) = 0}. Therefore, R/I is a ring, according to Propo-
sition 3, and hence Js(R/I) = J (R/I) = 0. Then, applying [24, Theorem 4.9] again, we
obtain J (R) = ∩{I ∈ SI(R) | J (R/I) = 0} ⊇ ∩{I ∈ SI(R) | Js(R/I) = 0} = Js(R),
which means J (R) ⊇ Js(R).

Lemma 2 If R is an additively idempotent semiring then there exists a simple left
R-semimodule.

Proof By [6, Proposition 23.5], an additively idempotent semiring R can be embedded in a
finitary complete semiring S. Moreover, according to [6, Proposition 22.27], any complete
semiring S has an infinite element ∞, that is, s + ∞ = ∞ + s = ∞ for all s ∈ S.
Let M := R∞, then M is an additively idempotent cyclic subsemimodule of the left R-
semimodule S, and therefore, there exists a maximal congruence ρ on M , and so the left
R-semimodule M := M/ρ has only trivial congruences. Next, we show that M has no
nonzero proper subsemimodules. Assume that there is a nonzero proper subsemimodule N

of M . Then, Bourne congruence ≡N on M is not trivial (contradiction). Thus, M is a simple
left R-semimodule.

Theorem 3 The following conditions for an additively π -regular semiring R are equiva-
lent:

(1) Js(R) = J (R);
(2) R is a ring.

Proof Given (2), it is obvious that (1) is satisfied. Nowwe show that (1) implies (2). Assume
that R is a proper semiring. First, we show that there exists a nonzero additively idempotent
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ideal I of R. Let n1 and x be mutually inverse elements of a proper additively π -regular
semiring R. Denote I := (n1 + x)R = {(n1 + x)r | r ∈ R}. By the proof of [14, Theo-
rem 3.3], I is a nonzero additively idempotent subsemiring of R and the element n1+x is a
central multiplicative idempotent in R. Therefore, I is also a nonzero additively idempotent
ideal of R.

By [12, Theorem 2], J (I) = I ∩ J (R). In addition, by [15, Theorem 4.5], Js(I ) =
I ∩ Js(R). Since Js(R) = J (R), we have Js(I ) = J (I). Furthermore, since I is additively
idempotent, J (I) = I [18, Example 3.7] and Js(I ) � I , according to Lemma 2. It follows
that Js(I ) � J (I) (contradiction). Therefore, R is exactly a ring.

We note that the “additively π -regular” condition in Theorem 3 cannot be omitted. For
example, the semiring N of nonnegative integers has J (N) = Js(N) = 0, but N is not a
ring, because it is not additively π -regular.

4.3 On Anti-Bounded Semirings

In [1, p. 4637], the authors introduced a quite interesting class of semirings that naturally
extend the class of all rings as follows: For any semiring R, let P(R) = V (R) ∪ {1 + r |
r ∈ R}, where V (R) = {r ∈ R | r + r ′ = 0 for some r ′ ∈ R}. It is easy to see that P(R) is
always a subsemiring of R. When P(R) = R, we say that the semiring R is anti-bounded.
To solve the above mentioned problem for the class of anti-bounded semirings, we first
prove the following lemma.

Lemma 3 For an anti-bounded semiring R, the following statements hold:

(1) If M is an additively idempotent and simple left R-semimodule, then (0 : M)R =
V (R);

(2) If Js(R) = J (R) then Z(R) = 0.

Proof (1) Since R is an anti-bounded semiring, we have R = V (R) ∪ {1 + r | r ∈ R}.
Assume that there exists element 1 + r ∈ (0 : M)R for r ∈ R, i.e., (1 + r)m = 0 for
all m ∈ M , hence m + rm = 0. It implies that (M,+) is a group (contradiction). Thus,
(0 : M)R ⊆ V (R). In addition, since (M,+) is idempotent, i.e., m+m = m for all m ∈ M ,
we have rm + rm = rm implies rm + rm + (−r)m = rm + (−r)m for any r ∈ V (R).
Then, rm = 0; that is, r ∈ (0 : M)R or V (R) ⊆ (0 : M)R . Therefore, (0 : M)R = V (R).

(2) If R is a ring then Z(R) = 0 is true. If R is a proper semiring then V (R) �= R,
and thus R := R/V (R) is a nonzero zerosumfree, entire quotient semiring. Therefore, R is
semiisomorphic to the Boolean semiring B. Since B is a simple left B-semimodule, it is also
a simple left R-semimodule and (0 : B)R = V (R). Thus, Js(R) ⊆ V (R). Moreover, for
any z ∈ Z(R), we have z + x = x for some x ∈ R. Suppose that M is any irreducible left
R-semimodule, then zm = 0 for any m ∈ M . Therefore, z ∈ (0 : M)R; that is, z ∈ J (R)

induces Z(R) ⊆ J (R). Thus, if Z(R) �= 0 then JS(R) �= J (R) (contradiction). This shows
that Z(R) = 0.

Theorem 4 Let R be an anti-bounded semiring. Then Js(R) ⊆ J (R).

Proof By [13, Proposition 1.2] and Lemma 3(1), Js(R) = ∩{(0 : M) | M are simple left
R-semimodules with (M,+) being groups} ∩ V (R). Let 0 �= x ∈ Js(R); that is, x ∈ ∩{(0 :
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M) | M are simple left R-semimodules with (M,+) being groups} and x ∈ V (R). Assume
that x /∈ J (R), there exists an irreducible left R-semimodule M such that xM �= 0; that is,
there exists 0 �= m ∈ M such that xm �= 0.

Let M̃ = {rm | r ∈ V (R)}. Then, it is easy to show that M̃ �= 0 and M̃ is an
R-subsemimodule of M with (M̃, +) being a group. In addition, for any m′ ∈ M , the
differences left R-module D(M) of M contains m′ and is a simple left D(R)-module
(see [18, p. 5083]). Therefore, for any 0 �= sm ∈ M̃ , we have D(M) = D(R)sm, and hence
m′ = (r − r ′)sm = (rs − r ′s)m ∈ M̃ since rs − r ′s ∈ V (R). This shows that M̃ = M .

Let Ñ = {rn | 0 �= n ∈ M̃, r ∈ V (R)}, then Ñ �= 0. Indeed, since M = D(R)n,
therefore, m = (r − r ′)n for r, r ′ ∈ R, and then xm = (xr)n − (xr ′)n for xr, xr ′ ∈ V (R).
Since xm �= 0, we have (xr)n �= 0 or (xr ′)n �= 0, it implies that Ñ �= 0. Similarly, it
is easy to show that Ñ = M . Now, we will prove M is minimal, indeed, Rn ⊆ M̃ for
some 0 �= n ∈ M̃ . Conversely, for any sm ∈ M̃ = Ñ , there exists s′ ∈ V (R) such
that sm = s′n ∈ Rn, therefore, M = Rn. This shows that M has no nonzero proper
subsemimodules. Since M is cyclic, there exists a maximal congruence ρ over M such that
M = M/ρ is a simple left R-semimodule and (M, +) is a group. By xM �= 0, it implies
that xM �= 0 (contradiction). Therefore, x ∈ J (R) deduces Js(R) ⊆ J (R).

Theorem 5 The following conditions for an anti-bounded artinian semiring R are equiva-
lent:

(1) Js(R) = J (R);
(2) R is an artinian ring.

Proof Given (2), it is obvious that (1) is satisfied. Now we show that (1) implies (2). Sup-
pose that R is a proper semiring. Then, we have the maximal subring V (R) �= R. In
addition,

S := R/V (R) = {[0]} ∪ {[1 + r] | r ∈ R}
is a nonzero zerosumfree, entire quotient semiring. Let S∗ := S/≡, where the congruence
≡ on S is defined by [x] ≡ [y] if and only if [x]+[z] = [y]+[z] for [x], [y], [z] ∈ S. Then,
S∗ is an additively cancellative semiring. Let a := [1]∗ + [1]∗ ∈ S∗. If [1]∗ + [1]∗ = [0]∗,
then [1]+[1]+[x] = [x] for [x] ∈ S. Therefore, 1+1+x+v1 = x+v2 for v1, v2 ∈ V (R);
that is, 1 + 1 + v1 − v2 ∈ Z(R). Since Js(R) = J (R), we have Z(R) = 0, according to
Lemma 3(2). This leads to V (R) = R (contradiction). Thus, [1]∗ + [1]∗ �= [0]∗. We have

S∗a ⊇ S∗a2 ⊇ · · · ⊇ S∗an ⊇ · · · ,

since R is an artinian semiring, S∗ is also an artinian semiring. It implies that S∗an =
S∗an+1; that is, an = ban+1 for b ∈ S∗. Therefore,

([1]∗ + [1]∗)n = ([1]∗ + [s]∗)([1]∗ + [1]∗)n+1,

which implies that ([1]∗ + [1]∗)n = ([1]∗ + [1]∗)n+1 + [s]∗([1]∗ + [1]∗)n+1. We then have

n∑

i=0

Ci
n[1]∗ =

n+1∑

i=0

Ci
n+1[1]∗ + [s]∗

n+1∑

i=0

Ci
n+1[1]∗.
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Since S∗ is additively cancelllative, we have [1]∗ + [y]∗ = [0]∗ for [y]∗ ∈ S∗. It implies
that 1+y+z+v1 = z+v2 for z ∈ R and v1, v2 ∈ V (R). Then, 1+y+v1−v2 ∈ Z(R) = 0,
and hence V (R) = R (contradiction). Thus, R is exactly a ring.

We note that the “artinian” condition in Theorem 5 cannot be omitted. For example, the
semiring N of nonnegative integers is an anti-bounded one that has J (N) = Js(N) = 0, but
N is not a ring, because it is not artinian.
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