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Abstract We consider the multiscale model for glioma growth introduced in (Math. Biosci.
Eng. 71: 443–460, 2016) to accommodate tumor heterogeneity by relying on the go-or-grow
dichotomy and extend it to account for therapy effects. Thereby, three treatment strategies
involving surgical resection, radio-, and chemotherapy are compared for their efficiency.
The chemotherapy relies on inhibiting the binding of cell surface receptors to the surround-
ing tissue, which impairs both migration and proliferation. The multiscale features of our
model allow to connect subcellular level information to individual cell dynamics and—upon
scaling—carry over such information to the population level on which a tumor is clinically
observed. This makes it particularly appropriate for investigating the effects of therapy, as
both ionizing radiation and chemotherapeutic agents act on the subcellular level, but their
outcome is assessed on the macroscopic scale. The model includes patient-specific brain
structure available in the form of DTI data and the numerical simulations are performed
relying on these.
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1 Introduction

Malignant gliomas are highly invasive and heterogeneous brain tumors. Their treatment is
still elusive, in spite of the development and diversification of the therapeutic approaches
[51]. The differentiated response of tumor cell subpopulations to treatment and the infil-
trative growth throughout the brain tissue [23, 39, 41] are two main causes for the lack of
surgical, radio-, and chemotherapeutical cure. Indeed, it is largely accepted that cells with a
highly proliferating phenotype are more sensitive to both chemo and radiotherapy, whereas
the migratory phenotype is attended by reduced treatment sensitivity, see, e.g., [41, 45, 63]
and the references therein. Moreover, because of the high affinity of glioma cells to myeli-
nated fiber tracts in the white matter [24, 26], in more than 90 % of cases, the recurrent
tumor develops immediately adjacent to the resection margin or within several centimeters
of the resection cavity [23, 41].

In this work, we address both the modeling of (infiltrative) glioma spread and growth,
and the response to surgical resection and radiotherapy. Concerning the treatment, we use
the idea of reducing tumor cell migration by inhibiting the binding of cell surface receptors
to the tissue fibers in the peritumoral region (see, e.g., [11, 23] and the references therein),
hence also rendering the cancer cells more sensitive against radiotherapy, in view of the go-
or-grow hypothesis stating that the tumor cells can either migrate or proliferate [9, 23, 25,
29]. On the other hand, however, the receptor-binding inhibition can also impair cell prolif-
eration, as the latter is known to be influenced by cell-matrix (and cell-cell) adhesion [14,
27, 32, 42, 48, 67]; hence, the balance between increasing proliferation through stopping
migration and reducing mitotic activity through inhibiting adhesion will be the driving fac-
tor for enhancing radiosensitivity. Mathematical models for the therapy of glioma have also
been considered, e.g., in [2, 36, 37, 54, 55], however in a much simplified monoscale case
not able to account for the highly infiltrative behavior of this type of cancer. Here, we start
from the multiscale setting introduced in [19] to describe the evolution of a heterogeneous
tumor consisting of migrating and proliferating glioma cells moving along white matter
tracts. The anisotropic structure of the brain is assessed from diffusion tensor imaging (DTI)
data and—as in [17]—the model involves on the microscopic, subcellular scale the recep-
tor binding dynamics to the tissue fibers, while the individual cell dynamics are modeled on
the mesoscale via kinetic transport equations. A parabolic scaling allows to deduce effec-
tive equations for the tumor growth on the macroscopic (population) scale, carrying the
information from the lower scales. This model permits to account for the infiltrative behav-
ior of glioma, and in this work, we extend it to also consider therapy in the sense stated
above. Another multiscale model involving intracellular (microscale) and extracellular pH
dynamics along with the evolution of tumor cells and normal tissue (macroscale) has been
proposed in [64] and extended in [47] to include the issue of treatment with sensitization
against radiotherapy via alkalinization of the tumor microenvironment and depletion of can-
cer cells via chemotherapy and radiotherapy. The tumor heterogeneity was addressed there
by considering a population of active and one of quiescent tumor cells, with their corre-
sponding transitions controlled by the pH dynamics, another important issue in determining
the extent and aggressiveness of a tumor. In the present work, we consider two cancer cell
subpopulations, one of which is moving (and less sensitive against therapy) and the other
is proliferating (and infers higher therapy sensitivity), the transitions and depletions being
regulated by the therapeutic doses. Our model accounts for a single chemotherapeutic agent
(some peptidomimetic, see Section 2) in combination with radiotherapy. An (a priori) micro-
macro version of the approach in this paper has recently been addressed and analyzed in
[65], where the transitions were controlled by the amount of receptors bound to the tissue.
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In all these works—including the present one—the chemotherapy is not aiming at direct cell
kill but rather at rendering the cells more sensitive towards radiotherapy and (this applies to
[65] and this paper) at reducing their motility and whence the tumor invasion.

This paper is organized as follows: In Section 2, we present the mathematical model
and describe the way in which therapy is considered and implemented, then use a parabolic
scaling to re-deduce (with the changes due to modeling therapy) the effective equations for
glioma spread involving the DTI information for the patient specific brain structure and
encompassing the subcellular receptor-binding dynamics in the diffusion, transport, and
haptotaxis coefficients. The well posedness of both formulations (multiscale and population
level, respectively) is proven as well. Section 3 is concerned with the (heuristic) estima-
tion of the functions and parameters employed in the model, and Section 4 presents the
numerical method and the simulations obtained from our setting, along with observations
about which of the therapy approaches considered therein seems to be the most adequate
one. In the absence of reliable biological as well as medical data, both due to this type of
chemotherapeutic agents being still in clinical trials, the model presented here could not be
validated. However, the simulations advise that the combination of chemotherapy (although
non-lethal for the cells) and radiotherapy will improve the outcome. The results suggest a
reduction of the peak tumor density using adjuvant chemotherapy of around 50 % compared
to radiotherapy alone. Eventually, Section 5 offers some comments about the potential of
this modeling approach and further issues to be addressed in this context.

2 Mathematical Modeling

2.1 Equations on the Mesoscopic and Microscopic Levels

In [19], we considered a model for glioma invasion relying on the go-or-grow hypothesis.
In this work, we extend that setting in order to account for therapy. Thereby, in view of
the migratory/proliferative phenotype of cancer cells significantly influencing the response
of tumors to various treatments like radiotherapy and chemotherapy, we will characterize
this differentiated response by considering two tumor subpopulations: proliferative (hence
non-motile) and migrating cells, respectively.

We consider the density function p(t, x, v, y) of moving cells at time t and position
x ∈ R

n, with velocity v ∈ V ⊂ R
n and receptor state y ∈ R+, and the density function

r(t, x, y) of resting cells. Thereby, the receptor state y is a subcellular scale (microscale)
variable and refers to the volume fraction of cell surface receptors bound to insoluble ligands
in the surrounding tissue. While it is clear that integrins (a family of heterodimeric cell
adhesion molecules playing a crucial role in cell–cell and cell-matrix interaction [32, 33,
48]) with their binding to the ECM are essential for glioma migration [15, 67] and it has
been found that glioma cells follow the anisotropic brain structure along the white matter
tracts [24, 26], the mechanism of adhesion to the myelinated axons is still not elucidated, but
integrins alone do not seem to be responsible for such bindings [24]. Hence, there might be
some further receptors involved or the interaction is rather indirect; adapting the description
in [67] one can imagine the glioma cells “climbing” along a ladder whose long “rails” are
myelinated axons and whose “rungs” are made up of the ECM fibers present in the space
between myelinated axons, oligodendrocytes, astrocytes, etc. It is those ECM components
to which the crucial process of integrin binding takes place. In the following, we will use the
syntagma “cell surface receptors” for all kinds of receptors involved in cell-tissue adhesion
and will concentrate on integrins when referring to some chemotherapeutical agent which
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aims at inhibiting migration and proliferation. For further discussions on the issue of glioma-
tissue adhesion we refer to [17, 19].

The two cancer cell densities of interest satisfy on the mesoscale the system of partial
integro-differential equations

∂tp + ∇x · (vp) + ∂y (G(y,Q, dc, dr )p)

= L[λ(y)]p − a(x, dc)p + b(x, dc)
q(v̂)
ω

r − (l1(N) + R1(α1, dr ))p, (1)

∂t r = a(x, dc)

∫
V

p(v)dv − b(x, dc)r + g(N, dc)r − (l2(N) + R2(α2, dr ))r, (2)

where L[λ(y)]p := −λ(y)p + λ(y)
∫
V

K(x, v)p(v′)dv′ is the turning operator modeling
the cell velocity innovations due to contact guidance, environmental cues, etc. Here, the
turning kernel K accounting for such influences is taken for simplicity to be of the form
(see [30]) K(x, v) := q(v̂)

ω
, where v̂ is the normalized velocity, q(x, v̂) is the directional

distribution of tissue fibers, and ω = ∫
V

q(v̂)dv is a scaling constant (we assume V =
sSn−1, with s given) such that K is indeed a kernel. The function λ(y) denotes as in [17–
19] the turning rate of the cells. Motivated by existing experimental evidence (see, e.g.,
[43, 49]) that integrins expressed by resting cells do not in general bind their ligands in a
dynamic way (i.e., the binding/detachment steady-state is maintained), we assume this also
for our model, as we did in [19].1

In (1) and (4) below Q(t, x) denotes the (macroscopic) volume fraction of tissue (includ-
ing as in [17, 19] ECM and neuron bundles). The functions a(x, dc) and b(x, dc) denote the
rates with which cells stop and proliferate, respectively start moving after a resting (pro-
liferating) phase. The cells which exit proliferation and become motile are doing this by
interacting with the tissue, which motivates the factor q(v̂)

ω
in the corresponding term of (1).

Both a and b can depend on the position x and are supposed to also depend on the dose
dc of the chemotherapeutic agent. g(N, dc) and li (N) (i = 1, 2) are functions representing
gain and loss due to cell proliferation and death, respectively. Thereby, the gain is impaired
by the effect of chemotherapy and the loss is amplified by radiotherapy. The effects of the
latter are described by the terms Rj (αj , dr ), where

Rj (αj , dr ) =
ν∑

i=1

(1 − S(αj , dr ))ηδ(t − ti ), ti ∈ radiotherapy (3)

with j = 1, 2, 3 and “radiotherapy” denoting the set of times at which ionizing radiation is
applied to the patient (with dose dr ). Here, ν is the number of fractions, ηδ is a C∞

0 function
with unit mass and support in (−δ, δ), δ << 1, and S(αj , dr ) = exp(−αjdr−βjd

2
r ) models

the survival fraction of each subpopulation p (for j = 1), r (for j = 2) or normal tissue
(for j = 3), respectively, after application of radiotherapy with a dose dr (in Gy). Thus, we
adopted the linear quadratic (LQ) model [21, 28, 57], which in spite of its shortcomings [10,
35, 69] is still the standard choice in radiation treatments (see, e.g., [53, 62]). The parameter
αj represents lethal lesions produced by a single radiation track (they are linearly related
to the dose: αjdr , cell kill per Gy), while βj characterizes lethal lesions produced by two
radiation tracks (quadratically related to the dose: βjd

2
r , cell kill per Gy2). The relevant

parameter in the LQ model is actually the radiation sensitivity
αj

βj
, which correlates to the

1In particular, this justifies the omission of the “transport” term w.r.t. y on the left hand side of (2).
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cell cycle length: late responding tissues with a slow cell cycle have a small
αj

βj
ratio, while

it is large for early responding, highly aggressive cancers [62]. In clinical practice, the total
dose dr is given in ν fractions of size d̂r ; hence,

S(αj , dr ) = exp(−ν(αj d̂r + βj d̂
2
r )) = exp(−αjdr(1 + d̂r /(αj /βj ))).

Concerning chemotherapy, we concentrate on reducing invasion and proliferation and not
necessarily on achieving cell kill. In our model, the latter is supposed to be due to ionizing
radiation; however, the setting can be easily extended to include a further chemotherapeu-
tic agent2 triggering cell death. Most types of cells depend on integrin-mediated adhesion
to ECM for migration, proliferation, and survival. In particular, glioma cells have highly
migrating potential, which accounts for glioma recurrence, often far away from the pri-
mary tumor site [15]. Moreover, integrin-ECM interactions have been shown to increase
cell survival after radiation exposure [13]. Supplementary to their role in cancer cells, inte-
grins on the surface of host cells (e.g., endothelial cells, perivascular cells, fibroblasts,
etc.) in the neoplastic microenvironment can boost the malignant potential of a tumor by
mediating angiogenesis, lymphangiogenesis, and desmoplasia [16]. These facts make inte-
grins an attractive target for anti-tumor therapy, the potential effects being on curtailing
angiogenesis, invasion, and tumor growth, see, e.g., [16, 66]. Among the types of integrin
inhibitors evaluated in preclinical or clinical studies, peptidomimetics (RGD3-based small
protein-like chains designed to mimic peptides and blocking ligand binding) are aimed at
treating glioblastoma [11]. Examples of pseudomimetics are cilengitide (targets αvβ3|αvβ6
integrins), ATN 161 (targets α5β1 integrins), and HYD1 (targets β1 integrins) [11]. In our
model, we will consider the action of such chemotherapeutic agents.

The effects of chemotherapy are described in our equations by way of dependence on
the chemotherapeutic dose dc. Hence, the influences are on the transition rates between
proliferating and migrating phenotypes, on the growth function of the (resting) tumor cells,
and on the binding of free receptors to the tissue fraction surviving irradiation (attachment
and detachment rates k+(dc) and k−(dc), respectively, in (4)).

The microscale dynamics of receptor binding is characterized by

ẏ = G(y,Q, dc, dr ) = k+(dc)(1 − y)Q S(α3, dr ) − k−(dc)y. (4)

In equations (1) and (2) above, the function N denotes the total glioma cell density and is
given by

N(t, x) =
∫

V

∫
Y

p(t, x, v, y)dy dv +
∫

Y

r(t, x, y)dy.

2.2 Derivation of the Effective Equations on the Macroscopic Level

The model ((1) and (2)) in Section 2.1 is a system coupling a partial differential equation
of first order with an ordinary differential equation. Its well posedness will be addressed
in Section 2.3, along with that of the macroscale equation for N obtained in this subsec-
tion via parabolic scaling. Before doing this scaling, however, we normalize the subcellular
dynamics as in [17–19]. The explicit equation becomes

ẏ = k+(dc)(1 − y)QS(α3, dr ) − k−(dc)y = −(k+QS + k−)y + k+QS.

2The standard treatment for newly diagnosed glioblastoma consists of maximal surgical resection, radiother-
apy, and concomitant and adjuvant chemotherapy with temozolomide, see, e.g., [22, 59].
3Arginylglycylaspartic acid.
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The unique steady state of this equation is given by

y∗ = k+QS

k+QS + k− =: f (k+, k−, Q, S).

As in [19], we introduce the deviation z := y∗−y from the steady state and consider the path
of a single cell starting in x0 and moving with velocity v through a time-invariant density
field Q(x). Then, with the notation x = x0 + vt , it follows that z satisfies the equation

ż = ḟ − ẏ = −(k+QS + k−)z + F(t) + f ′(Q)v · ∇Q(x),

where

F(t) := ḋc

(
∂f

∂k+ (k+)′(dc) + ∂f

∂k− (k−)′(dc)

)
+ ḋrf

′(S)S′(α3, dr ).

Thus, choosing (as in [17, 19]) the turning rate to be of the form λ(z) = λ0 − λ1z ≥ 0,
where λ0 and λ1 are some positive constants, the transformed system of equations reads:

∂tp + ∇ · (vp) − ∂

∂z

((
(k+QS + k−)z − F(t) − f ′(Q)v · ∇Q

)
p
)

= −λ0p + λ0
q(v̂)
ω

p̄ + λ1zp − λ1z
q(v̂)
ω

p̄ − a(x, dc)p

+b(x, dc)
q(v̂)
ω

r − L1(N, α1, dr )p, (5)

∂t r = a(x, dc)p̄ − b(x, dc)r + g(N, dc)r − L2(N, α2, dr )r, (6)

where p̄(t, x, y) := ∫
V

p(v)dv and Li(N, αi, dr ) := li (N) + Ri(αi, dr ), i = 1, 2.
Now doing the parabolic scaling x → εx, t → ε2t , we obtain

ε2∂tp + ε∇ · (vp) − ∂

∂z

((
(k+QS + k−)z − ε2F(t) − εf ′(Q)v · ∇Q

)
p
)

= −λ0p + λ0qp̄ + λ1zp − λ1z
q

ω
p̄ − a(dc)p

+b(dc)
q

ω
r − ε2L1(N, α1, dr )p, (7)

ε2∂t r = a(dc)p̄ − b(dc)r + ε2g(N, dc)r − ε2L2(N, α2, dr )r. (8)

Thereby, we scaled with ε2 the quantity F(t) involving time derivatives of the different
doses and the survival fraction S and accounting for fast dynamics.

In the next step, we set up a moment system w.r.t. the involved distribution functions and
introduce the notations

m(t, x, v) =
∫

Z

p(t, x, v, z)dz, M(t, x) =
∫

V

m(t, x, v)dv,

mz(t, x, v) =
∫

Z

zp(t, x, v, z)dz, Mz(t, x) =
∫

V

mz(t, x, v)dv,

W(t, x) =
∫

Z

r(t, x, z)dz, Wz(t, x) =
∫

Z

zr(t, x, z)dz,

where Z ⊆ [y∗ − 1, y∗] is our new domain for the internal dynamics. The higher order
moments are neglected, in virtue of the subcellular dynamics being much faster than the
events on the higher scales, which permits to assume z to be close to zero (i.e., the steady
state of the subcellular dynamics is rapidly reached). As in [17–19], we assume the functions
to have a relatively compact support in this interval and be compactly supported in the
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(x, z)-space, which allows to perform the subsequent calculations.
With the moment notations, we get (after integrating (7) and (8) w.r.t. z)

ε2∂tm + εv · ∇m = −λ0m + λ0
q

ω
M + λ1m

z − λ1
q

ω
Mz − am + b

q

ω
W − ε2L1m, (9)

ε2∂tW = aM − bW + ε2(g − L2)W, (10)

ε2∂tm
z + εv · ∇mz = −(k+QS + k−)mz + εf ′(Q)v · ∇Qm + ε2Fm

−λ0m
z + λ0

q

ω
Mz − amz + b

q

ω
Wz − ε2L1m

z, (11)

ε2∂tW
z = aMz − bWz + ε2(g − L2)W

z. (12)

Now we consider the Hilbert expansions � = ∑∞
k=0 �kε

k for � ∈ {m, mz,M,Mz,W,Wz}
and collect corresponding powers of ε:
ε0:

0 = −(λ0 + a)m0 + λ0
q

ω
M0 + λ1m

z
0 − λ1

q

ω
Mz

0 + b
q

ω
W0,

0 = aM0 − bW0,

0 = −(k+QS + k− + λ0 + a)mz
0 + λ0

q

ω
Mz

0 + b
q

ω
Wz

0 ,

0 = aMz
0 − bWz

0 .

From these equations, we deduce by integrating w.r.t. v (where appropriate) that Mz
0 = 0,

Wz
0 = 0, mz

0 = 0, m0 = q
ω
M0, and W0 = a

b
M0.

ε1:

v · ∇m0 = −(λ0 + a)m1 + λ0
q

ω
M1 + λ1m

z
1 − λ1

q

ω
Mz

1 + b
q

ω
W1, (13)

0 = aM1 − bW1, (14)

v · ∇mz
0 = −(k+QS + k− + λ0 + a)mz

1 + f ′(Q)v · ∇Qm0 + λ0
q

ω
Mz

1 + b
q

ω
Wz

1 , (15)

0 = aMz
1 − bWz

1 . (16)

Using the above deduced facts in (16), then in (15) (integrated w.r.t. v) and (13), we obtain
Mz

1 = Wz
1 = 0

mz
1 = 1

γ (x)
f ′(Q)v · ∇Qm0, (17)

m1 = 1

λ0 + a

(
λ1

γ
f ′(Q)v · ∇Qm0 − v · ∇m0 + aq

ω
M1

)
,

where γ (x) := k+QS + k− + λ0 + a .

By (13) and (14), we can write

v · ∇m0 = L[λ0 + a]m1 + λ1m
z
1.

Then, L[λ0 + a] defined on the weighted L2-space L2
q(V ) with the weight function q−1(v̂)

is a compact Hilbert–Schmidt operator (see [30]) with pseudoinverse L[λ0 + α]−1
|〈q〉⊥ζ =

− 1
λ0+α

ζ . As in [19], this leads to

m1 = − 1

λ0 + α
(v · ∇m0 − λ1m

z
1). (18)
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We also have the set of equations
ε2:

∂tm0 + v · ∇m1 = L[λ0]m2 + λ1m
z
2 − λ1

q

ω
Mz

2 − am2 + b
q

ω
W2 − L1(N0)m0, (19)

∂tW0 = aM2 − bW2 + (g(N0) − L2(N0))W0. (20)

From (20), we have

b

ω
W2 = 1

ω
[aM2 + (g(N0) − L2(N0))W0 − ∂tW0],

which plugged into (19) leads to

∂tm0 + v · ∇m1 = L[λ0 + a]m2 − L[λ1]mz
2

+ q

ω

[a

b
M0(g(N0) − L2(N0)) − ∂t (W0)

]
− L1(N0)m0.

After integrating w.r.t. v and rearranging, this becomes

∂tM0 +
∫

V

v · ∇m1 dv = (g(N0) − L2(N0))W0 − ∂tW0 − L1(N0)M0.

Hence, with N0 = M0 + W0 = (1 + a
b
)M0, we get

∂tN0 + ∇ ·
∫

V

(vm1)dv = (g(N0) − L2(N0))W0 − L1(N0)M0

= a

a + b
N0 (g(N0) − L2(N0)) − b

a + b
N0L1(N0). (21)

It remains to express
∫
V
vm1 dv in terms of N0. From (18), we have

m1 = − 1

λ0 + α

(
v · ∇

( q

ω
M0

)
− λ1m

z
1

)
,

and from (17), we know mz
1 = 1

γ (x) f
′(Q)v · ∇Q

q
ω
M0; hence,

∇ ·
∫

V

vm1 dv = ∇ ·
(

− 1

λ0 + a
∇ ·

(
1

ω

∫
V

vvt q dvM0

))

+∇ ·
(

λ1

λ0 + a

1

γ (x)
f ′(Q)

1

ω

∫
V

vvt q dv∇QM0

)
.

Now denote

DT (x) := 1

ω

∫
V

vvt q dv

to obtain

∇ ·
∫

V

vm1 dv = ∇ ·
(

− 1

λ0 + a
∇ ·

(
b

a + b
DT (x)N0

))

+∇ ·
(

λ1

λ0 + a

1

γ (x)
b

a + b
f ′(Q)DT (x)∇QN0

)
.
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Plug this into (21) to obtain the macroscopic equation for N0:

∂tN0 − ∇ ·
(

1

λ0 + a
∇ ·

(
b

a + b
DT (x)N0

))

+∇ ·
(

λ1f
′(Q)

γ (x)
b

(λ0 + a)(b + a)
DT (x)∇QN0

)

=
(

(g(N0) − L2(N0))
a

a + b
− L1(N0)

b

a + b

)
N0. (22)

Throughout the rest of this paper, we will assume for simplicity that the functions a and b

depend only on time.

2.3 Well Posedness of the Settings

2.3.1 Micro-meso System

The system (1), (2), and (4) fits in the more general framework handled in [44]; hence, its
well posedness follows (with corresponding initial conditions) like in that reference.

2.3.2 Macroscopic Equation

For the well posedness of the macroscopic equation (22) set in a bounded space-time
domain, we rely on the theory of monotone operators for nonlinear parabolic equations (see,
e.g., [56]).

Let � be a bounded domain in R
3 with the Lipschitz boundary ∂�. We want to verify

the existence of a solution to the nonlinear parabolic initial-boundary-value problem

∂tu − ∇ · (D(x, t)∇u − H(x, t)u) + G(u) = 0 in � × (0, T ),

(D(x, t)∇u − H(x, t)u) · n = 0 on ∂� × (0, T ), (23)

u(0) = u0 on � × {0},
where

D(x, t) = b(t)

(λ0 + a(t))(a(t) + b(t))
DT (x),

H(x, t) = λ1f
′(Q)

γ (t, x)
b(t)

(λ0 + a(t))(b(t) + a(t))
DT (x)∇Q

− b(t)

(λ0 + a(t))(a(t) + b(t))
div(DT (x)),

G(u, t) = −
(

(g(u, t) − L2(u, t))
a(t)

a(t) + b(t)
− L1(u, t)

b(t)

a(t) + b(t)

)
u.

Assumptions

(A.i) The functions D and H are continuous in time and essentially bounded in space.
Moreover, D satisfies the condition ξT D(x, t)ξ ≥ θ(t)|ξ |2 with a positive θ(t)

bounded away from zero: 0 < cθ ≤ θ(t) ≤ Cθ < ∞ for all t ≥ 0.
(A.ii) G is continuous w.r.t. time and the solution variable. Moreover, G satisfies the con-

dition G(0, t) = 0, the growth condition |G(u, t)| ≤ C(1 + |u|2), with a constant
C independent of time and space, and the coercivity condition infζ∈R+ G(ζ, t)ζ >

−∞.
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For our concrete setting above, we require that:

(i) The diffusion tensor DT is uniformly positive definite and lies in the space W 1,∞(�).
(ii) The volume fraction of tissue fibers Q has to lie in the space W 1,∞(�), as

well.
(iii) The rates a, b, k+ and k− are continuous in the variable dc (which has to be

continuous in time) and uniformly bounded.
(iv) The gain and loss functions g and l (the latter is contained in the expression of Li ,

i = 1, 2) are continuous and bounded.

Remark 1 Assumptions (i) and (ii) express the fact that the intrinsic properties of the brain
structure are smooth. This can be justified at a reasonable level of detail. Moreover, the
diffusion tensor DT is (re)constructed in such a way that the uniform positive definiteness
is assured in every computational voxel.

Lemma 1 For non-negative initial data u0 a solution of (23) remains non-negative for all
future times.

Proof This follows immediately from our assumptions, by applying the parabolic compar-
ison principle.

As we are only interested in non-negative initial values, leading to non-negative
solutions, we assume in the following that G(t, u) = 0 for u < 0.

Define the spaces V := H 1(�) and H := L2(�) and the corresponding Gelfand triple
(V ,H, V �). We look for a solution to (23) in the space W := {v ∈ L2(0, T ; V ), v′ ∈
L2(0, T ;V �)}, with T > 0 fixed.

Now define the operators

〈A(t)u, v〉 :=
∫

�

(D(x, t)∇u − H(x, t)u) · ∇v dx,

〈B(t)u, v〉 :=
∫

�

G(u, t)v dx

for u, v ∈ W .

Remark 2 The operators A and B defined above are continuous w.r.t. time, due to (iii).

Lemma 2 The family of operators A(t) is continuous from V to V � and satisfies Garding’s
inequality

〈A(t)u, u〉 ≥ c1‖u‖2
V − c2‖u‖2

H

with the constants c1 > 0 and c2 ≥ 0.

Proof The claim follows straightforwardly by usual estimates.

Remark 3 We assume without loss of generality that c2 = 0. Otherwise, we transform
(23) into an equivalent problem by û = exp(c2t)u. Note that after this transformation the
operators A and B remain continuous in time.

The following result is obtained (as a particular case) by a simple adaptation of the proofs
in Section 3.3.6, [56] (or of Section III.4, [61]):
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Theorem 1 Let u0 ∈ H . Under the previous assumptions about the function G and the
coefficients involved in A there exists a solution u ∈ W to (23), in the sense that

−
∫ T

0
〈v′(t), u(t)〉V dt +

∫ T

0
〈A(t)u(t), v(t)〉V dt +

∫ T

0
〈B(t)u(t), v(t)〉V = (u0, v(0))H

for all v ∈ W with v(T ) = 0. If G is strictly monotone, then the solution u is unique.

3 Assessing the Parameters and Coefficient Functions

3.1 Fiber Density q

To determine the diffusion tensor DT , we need to determine the fiber orientation distribution
q. As in [17–19], we could select q to be the peanut distribution proposed by Hillen and
Painter in [31]:

q(x, θ) = n

|Sn−1|tr(DW (x))
θ t
DW θ , (24)

where DW denotes the DTI-measured water diffusion tensor and θ ∈ S
n−1 gives the fiber

orientation. The major problem occurring with this choice is that the tumor diffusion tensor
may not reproduce the brain structure in enough detail, as it consists of only six gradient
directions and cannot resolve crossing fiber tracts [8]. Different other choices try to over-
come this drawback. One is to use a bimodal von Mises–Fisher distribution (see [46]) as
proposed in [50]

q(x, θ) = k(x)
8π sinh(k(x))

(exp(k(x)φ · θ) + exp(−k(x)φ · θ)), (25)

where k(x) = κFA(x), with the measured fractional anisotropy FA and a real constant
κ to be determined. The vector φ represents the leading eigenvector of the diffusion ten-
sor for each voxel. This choice, however, has several disadvantages: On the one hand, the
parameter κ cannot be measured and has to be assessed by using different clinical DTI
data sets. On other hand, the fractional anisotropy is a not satisfactory enough indicator for
anisotropy (see [70]), as well as for the fiber density. Moreover, the leading eigenvector does
not resemble the fiber orientation in all voxels [34]. Another way to enhance the quality
of the diffusion tensor description is to use the concept of an orientation distribution func-
tion (ODF) [1, 8] which describes the probability of diffusion in a direction θ . The usual
definition of this probability is

ODF(θ) =
∫ ∞

0
P(rθ)r2 dr,

where P(rθ) denotes the displacement probability of a spatial point in spherical coordi-
nates.4 For more details we refer to the cited paper. Hence, we may set our fiber orientation
density to the orientation distribution function

q(θ) = ODF(θ). (26)

4Note that the factor r2 in this expression is often left out, but [1] argued that it is actually essential when
considering normalized solid angles.
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For diffusion tensor imaging, the fiber orientation q in (26) can be computed explicitly ([1]):

q(x, θ) = 1

4π |DW (x)| 1
2
(
θ t
DW (x)−1θ

) 3
2

; (27)

thus, we do not need reconstruction procedures involving the integral expression to obtain
this quantity. The ODF is available for different medical imaging techniques [1, 8], among
them also the high quality imaging procedures Q-Ball and HARDI. This is a major advan-
tage allowing to include different medical data in the model. For our test data5, we use here
this ODF; the issue of comparison between this and the peanut distribution for the tumor
diffusion tensor setup will be addressed in a forthcoming work.

3.2 Estimation of Q

We estimated the volume fraction of tissue fibers Q as in [18]. Hence, we chose

Q = 1 − l3
c

h3
,

where h is the side length of one voxel and the characteristic length lc is estimated via

lc =
√

tr(DW )h2

4l1
,

using l1 as the leading eigenvalue of the diffusion tensor DW . The determination of an
unbiased estimator for the fiber volume fraction is ongoing work.

3.3 Coefficient Functions

First, we have to select the transition rates a and b between the migrating population p in
(1) and the proliferating population r in (2). These functions depend on the space variable
and the dose of chemotherapeutic agent; however, as mentioned before, we choose the con-
stant w.r.t. x, as there is no known procedure to quantify this dependency. As mentioned
in Section 2, the chemotherapeutic drug modeled in this paper concentrates its impact on
the integrin bindings. These are essential for cell migration; thus, this has to be taken into
account for the choice of a and b. The rate a models the cell transition from the migrating
to the resting (and hence proliferating) regime. As migrating cells seem to be responsible
for the infiltrative behavior of the tumor and its recurrence, we aim at inhibiting the migra-
tory phenotype of the cell population. Hence, a should be monotonically increasing in its
only variable dc. The rate b describes the transition rate to migratory behavior, so it has to
be monotonically decreasing in dc. Therefore, a possible choice is

a(dc) = 0.05 · (1 + dc),

b(dc) = 0.1 ·
(

1 + dc

1 + d2
c

)
.

As there is no quantitative information available for these rates, they cannot be fit to mea-
surements. Therefore, we concentrate on their qualitative behavior. This also applies to the
rates k+ and k−. However, there is some indication that this choice is reasonable, because

5provided by Carsten Wolters, Institute of Biosignal Analysis, WWU Münster, see [68].



A Multiscale Modeling Approach to Glioma Invasion with Therapy 233

it is of the same order as the constants α and β [19] modeling the same rates. The unit of
these rates is 1

s .
Next, we address the receptor-binding rates k+ and k−, the first of which describes

the rate of a cell binding to unsoluble ligands (fibers) in its environment, while k− is the
detachment rate. Since the chemotherapeutical agent under consideration is meant to inhibit
receptor bindings, we assume the function k+ to be monotonically decreasing, while k− is
supposed to be monotonically increasing. This means that it is more likely for a cell under
the influence of the chemotherapeutical substance to detach from the ECM than to attach to
it. Thus, our choices are

k+(dc) = 0.1 ·
(

1 + dc

1 + d2
c

)
,

k−(dc) = 0.1 · (1 + dc).

This corresponds to the rates selected in [18, 19]. The rate k− could be determined to be
around 0.1 in absence of the chemotherapeutical substance [40]. The rate k+ should be
larger than k−, since the attachment of the cell to the surrounding fibers should be more
probable then detachment, if no further (bio)chemical information is available. Like for the
rates a and b, the unit of k+ and k− is 1

s .
Eventually, we have to adjust the functions included in the nonlinear term G and describ-

ing radiotherapy and proliferation. Like in [18, 19], we model the growth in a logistic way
and select

g(s) = cg,

L1(dc, dr , u) = cgu +
ν∑

i=1

(1 − S(α1, dr )) ηδ(t − ti ),

L2(dc, dr , u) = cgu +
ν∑

i=1

(1 − S(α2, dr )) ηδ(t − ti ).

As in (3), ν is the number of therapy fractions. Altogether, we have

− G(w) = a

a + b
cgw − cgw

2 −
(

b

a + b

ν∑
i=1

(1 − S(α1, dr )) ηδ(t − ti )

+ a

a + b

ν∑
i=1

(1 − S(α2, dr )) ηδ(t − ti )

)
w. (28)

Note that this G satisfies the requirements of Assumption (A.ii). The growth rate cg has to
be measured as a density growth rate. This is different from the commonly considered cell
doubling rates or even volume growth rates, targeting the size of individual cells. Both are
not appropriate for a cell density variable, therefore we estimated in [18] the density growth
rate cg to be approximately 8 · 10−7 1

s − 10−6 1
s by using information about the cell cycle.

3.4 Constants

We selected the necessary constants as in Table 1 below. The necessary therapy parameters
change from scenario to scenario, so we will specify them where occurring.



234 A. Hunt, C. Surulescu

Table 1 Model parameters

Parameter Value Source

s 0.21 · 10−6 m
s [12]

λ0 0.8 1
s K. Wolf (Radboud Univ. Nijmegen), unpublished data

λ1 10000 1
s Estimated, corresponds to [17]

cg ≈ 8 · 10−7 1
s − 10−6 1

s Chosen as in [18]

α1
0.033

Gy − 0.058
Gy Corresponding to the glioma cell line TK1 in [6]

α2
0.311

Gy − 0.401
Gy Corresponding to the glioma cell line A172 in [6]

α3
0.37
Gy Corresponding to fibroblasts in [6]

β1
0.047
Gy2 − 0.048

Gy2 Corresponding to the glioma cell line TK1 in [6]

β2
0.061
Gy2 − 0.091

Gy2 Corresponding to the glioma cell line A172 in [6]

β3
0.016
Gy2 − 0.052

Gy2 Corresponding to fibroblasts in [6]

4 Numerical Simulations

We solve the equation (22). While all necessary data, i.e., the diffusion tensor DT and the
volume fraction of tissue fibers Q, are computed in advance from the DTI measurements
using C++ and the Armadillo linear algebra library [58], we implemented the simulation
of the PDE via the numerical framework DUNE [3–5, 7]. The coefficients and the drift
term depend on time and space, so we expect time dependent regions of the computational
domain that are dominated by the diffusion term and others dominated by the drift term.
Thus, we need numerical methods capable to handle both diffusion dominated and degen-
erate parabolic equations. Moreover, the selected method has to handle full tensors and it
should be locally mass conservative and positivity preserving.

4.1 Implementation

For the simulations, we use a parallel structured quadrilateral mesh as implemented in Yasp-
Grid of DUNE. The cells are chosen in such a way that we have a subset of the voxel mesh
given by the medical data set consisting of the regions occupied by gray and white matter.
These were given by a segmentation of the brain in the data set. On this mesh, we use a cell-
centered finite volume method as described in [20]. For the time discretization, we employ
an implicit Euler scheme with a step size τ satisfying a CFL-condition near 1. In our case,
we considered τ to be one half of a day.

4.2 Results

We performed numerical simulations for different scenarios. The coefficients are those
given in Section 3. Different therapy strategies are to be compared, all of which involve
resection followed after 21 days6 by radio- and chemotherapy, the latter applied in a con-
current way. The starting point is considered the detection of the tumor. Recall that here the

6For a discussion about the timing of starting radiotherapy after resection see, e.g., [38] and the references
therein.
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chemotherapy is aiming merely at inhibiting receptor binding to the tissue fibers; the cell
kill is achieved by radiotherapy.

Strategy 1: Resection (2 weeks after start), no further therapy.
Strategy 2: Resection (2 weeks after start), followed after 3 weeks by radiotherapy (a daily

dose of 2 Gy—except on weekends) for 6 weeks.
Strategy 3: Resection (2 weeks after start), followed after 3 weeks by concurrent

chemotherapy (a normalized dose of 5.0 in our model) and radiotherapy
(a daily dose of 2 Gy—except on weekends) for 6 weeks.

As therapies with inhibitors of receptor/integrin binding to unsoluble ligands in the envi-
ronment of tumor cells are not yet approved for clinical practice, we relied on some
clinical trials when designing the strategies 1 to 3, thereby intentionally omitting the
effect of a chemotherapeutic agent (like temozolomide) directly aiming at cell kill. Hence,
these strategies (and the involved parameters) are motivated by the trials NCT01165333
(Cilengitide in Combination With Irradiation in Children With Diffuse Intrinsic Pontine
Glioma) and NCT00689221 (Cilengitide, Temozolomide, and Radiation Therapy in Treat-
ing Patients With Newly Diagnosed Glioblastoma and Methylated Gene Promoter Status)
at ClinicalTrials.gov.

In our simulations, the resection is numerically obtained by setting to zero the actual
tumor density above a threshold of 0.2, in each computational cell and during the cor-
responding time step. This is of course not a mathematical, but a computational way to
proceed. The effect of this procedure is that after resection there is no tumor left in the
resected area. The main problem with modeling the resection mathematically in a continu-
ous manner is the nonlinearity of this process (no simple loss term can describe it) and the
sharp discontinuity of the solution in this time step. Since here we do not focus on model-
ing resection, but rather on a novel therapy approach (involving a chemotherapeutic agent
from the class of peptidomimetics, for which clinical studies are ongoing), we consider this
simplified computational approach, which is nevertheless able to solve the problem and to
capture to a reliable extent the effect of resection. Moreover, it preserves the non-negativity
of the solution. The maximal chemotherapeutical dose is selected such that the upper value
of k− is of the order chosen in [17–19].

(a) Starting point (b) Before resection (c) After resection

Fig. 1 Tumor at starting point, before, and after resection
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(a) End of therapy

(b) End of therapy, color range scaled to actual values

(c) Follow-up after two months

(d) Follow-up after two months, color range scaled to actual values

Fig. 2 Comparison of strategy 1 (left column), strategy 2 (middle), and strategy 3 (right)

Figure 1 shows the starting point (when the tumor has been assessed by medical
imaging), the time point of resection (2 weeks after start), and the result of surgical resec-
tion. Observe in Fig. 1b the heterogeneous structure of the tumor, which corresponds to
the known fact that glioma expand according to the brain structure, exhibiting a highly
anisotropic behavior, as commented in Section 1. Due to this infiltrative growth, the
resection is less successful at the tumor margins (Fig. 1c).

Figure 2 shows the time point at the end of therapy in strategies 2 and 3 (i.e., 9 weeks after
resection), follow-up pictures after 2 months for the different strategies, and scaled versions
of these pictures. Notice the tumor recurrence which is more pronounced at the marginal
region of the original neoplastic bulk. As expected, resection alone (first column in Fig. 2)
provides the poorest therapeutic outcome; the spread of glioma along white matter tracts
of the brain tissue leads to the scattered shape of the tumor. This behavior is in line with
clinically observed patterns (see e.g., [23, 60] and the references therein). Subsequent radio-
therapy (middle column in Fig. 2) is expected to enhance tumor eradication, and concurrent
chemotherapy aiming at impairing cell-tissue adhesion by inhibiting receptor binding pro-
vides in our simulations an even better outcome (last column in Fig. 2). However, complete



A Multiscale Modeling Approach to Glioma Invasion with Therapy 237

eradication seems to be out of reach, as the scaled pictures in Fig. 2b, d show. This is due to
the high proliferation and migration ability of the glioma cells. We also compared adjuvant
and neo-adjuvant chemotherapy (where the same chemotherapeutic agent was used) with
surgery and radiotherapy, but the most significant differences were achieved with the strate-
gies presented here in more detail. Whenever merely small improvements were obtained we
opted for the less expensive and more conservative strategy.

5 Conclusions and Outlook

In this note, we started from previous multiscale models for glioma invasion and pro-
posed some descriptions of therapy approaches, partly involving the already standard one of
surgery followed by radiotherapy, but also considering more recent therapeutic ideas con-
nected to inhibition of cell-tissue attachment and its effects on migration and proliferation.
Our multiscale setting with explicit subcellular dynamics seems particularly well suited
to account for such features. Although we eventually work with the effective equations
deduced on the macroscopic level, they carry in their coefficients the information from the
lower (subcellular and individual cell) levels and assimilate DTI data allowing for a patient-
specific description of the brain structure. Notice that on the macroscale, we are merely
interested in the tumor bulk (as assessed by medical imaging), therefore the macroscopic
limit does no longer feature two different subpopulations, as they could not be distinguished
by the imaging procedures which are clinical standard. Nevertheless, the influence of the
two subpopulations is still contained in the coefficients of (22), in particular also visible in
the growth/decay term on the right hand side, which contains the main therapy effects. We
also stress out that the spatiality is an essential feature and that an ODE model with two
compartments for the two cell subpopulations would not be able to properly account for
the tumor heterogeneity w.r.t. migration and proliferation: The very notion of migration is
tightly connected to the question of how far do the cells invade into the tissue and not expli-
cable by proliferation/growth alone. Moreover, an ODE setting is neither able to describe
the highly anisotropic spread of glioma nor to include haptotaxis, which is crucial in tumor
invasion. As observed in [17–19], the latter is obtained in the macroscopic equations as a
consequence of taking into account the subcellular level of information in our multiscale
model.

Several issues are yet to be addressed in future works; here, we mention just a few: (i)
When describing resection we set to zero all densities above 0.2. While this is convenient
to do in the computer, in clinical practice it is hardly possible to zoom (rescale) and assess
the tumor heterogeneity at this level of detail; only the regions with high cell density can be
observed by medical imaging and the tumor volume to be resected/irradiated (i.e., the CTV-
PTV margin7) is established by following some general guidelines. However, our modeling
approach opens the way for assessing the evolution of the tumor on the particular brain
structure obtained by DTI and to account thereby for the infiltrative growth of glioma, which
is a main factor in tumor recurrence. Hence, in forthcoming works more attention will be
paid to tumor delineation and treatment planning. (ii) Throughout the simulations we used
the same DTI-assessed tissue structure via the functions q and Q. Including an equation
for characterizing the evolution of normal tissue would be desirable, but difficult to realize
in this framework and with the available data, as the tissue structure would need to be

7CTV=clinical target volume, PTV=planning target volume.
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assessed after each stage of therapy (resection and irradiation), which is expensive (if at
all possible, at this level of detail). (iii) The parameters involved in our simulations have
been taken from literature or empirically estimated. Determining them in a more precise
way would mean to combine medical imaging techniques with biopsy and cell tracking; we
refer, e.g., to [52] for DTI image-guided biopsy studies. (iv) The effects of supplementary
cell sensitization towards therapy and even enhancement of tumor cell degradation can be
addressed by considering another chemotherapeutic agent, like temozolomide. It is one of
the great advantages of mathematical modeling to be able to investigate a large variety of
therapeutic approaches and to compare them.
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