
Vietnam J. Math. (2017) 45:241–253
DOI 10.1007/s10013-016-0222-y

Transmission Conditions for the Helmholtz-Equation
in Perforated Domains

Christina Dörlemann1 ·Martin Heida1 ·Ben Schweizer1

Received: 7 April 2015 / Accepted: 6 June 2016 / Published online: 23 July 2016
© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore

2016

Abstract We study the Helmholtz equation in a perforated domain �ε . The domain �ε is
obtained from an open set � ⊂ R

3 by removing small obstacles of typical size ε > 0,
the obstacles are located along a 2-dimensional manifold �0 ⊂ �. We derive effective
transmission conditions across �0 that characterize solutions in the limit ε → 0. We obtain
that, to leading order O(ε0), the perforation is invisible. On the other hand, at order O(ε1),
inhomogeneous jump conditions for the pressure and the flux appear. The form of the jump
conditions is derived.

Keywords Helmholtz equation · Perforated domain · Transmission conditions · Neumann
sieve · Acoustics
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1 Introduction

Our aim is to study the acoustic properties of complex domains. Assuming that acoustic
waves are described by the linear wave equation, the acoustic properties of a domain �ε are
determined by the Helmholtz equation

− �pε = ω2pε + f in �ε, (1)

where ω is the frequency of waves and f is a right-hand side that models sound sources in
the domain �ε ⊂ R

3. Equation (1) is accompanied by a boundary condition on ∂�ε .
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We use a small parameter ε > 0 and write �ε for the domain, since we assume that the
domain contains structures of typical size ε. More specifically, we investigate a perforated
domain: We investigate three-dimensional domains that contain many obstacles (the number
of obstacles is of order ε−2) with the small diameter ε > 0, we denote the single obstacle
by �ε

k , where k ∈ Z
2 is an index to number the obstacles. We assume that the obstacles

are periodically distributed along a 2-dimensional hyperplane �0 ⊂ R
3. The domain �ε

is obtained from an ε-independent domain � ⊂ R
3 by removing the obstacles, �ε =

� \ ⋃
k �ε

k . Every point in the open set � \ �0 does not touch any obstacle for sufficiently
small ε > 0 (compare Fig. 1).

We ask for the effective influence of the perforations along �0. A rigorous description can
be obtained by the analysis of solution sequences pε to (1) in the sense of homogenization.
Denoting a weak limit of the solution sequence pε by p, we ask for the system of equations
that determines p. We will show rigorously that the limit p is characterized by the Helmholtz
equation in the domain �, hence the effect of the perforation gets lost at leading order,
see (6).

At first glance, this result seems to be counter-intuitive: One might expect some influence
of the perforation, some jump conditions for the pressure function across �0 and/or some
jump conditions for the velocities −∇p across �0. On the other hand, using analytical
knowledge, our first result cannot be much of a surprise: The solution sequence is bounded
in H 1(�ε), a subsequence is converging weakly in this space, the space H 1(�ε) admits to
evaluate traces, the continuity of the trace operator implies that the limit function cannot
have a jump of traces. Hence, we expect no jumps of the limit function p across �0, we write
this as [p] = 0. Similar arguments can be used for the flux: If the flux into the obstacles
vanishes on the ε-level (∂np

ε = 0 on ∂�ε
k ), then, effectively, no source can appear along

�0. We therefore expect [∂νp] = 0 along �0, where ν denotes a normal vector on �0. The
two conditions are established rigorously in Theorem 1.

A deeper insight can be gained by studying first order effects: The intuition (and some
rule-of-thumb equations of the more physical literature) can be confirmed if one considers
effects of order ε, or, in more technical terms, if one analyzes the weighted difference vε :=
(pε−p)/ε. Our result in Theorem 2 provides the form of the system for a weak limit v of the
sequence vε: The function v solves the Helmholtz equation on the domain � \ �0, and the
functions v and ∇v satisfy jump conditions across �0. These jump conditions contain the
pressure function p and its derivatives as specified in (10): The jump [v] of v is proportional

Fig. 1 Left: The domain �ε with many small obstacles �ε
k . Right: Each obstacle is a scaled and shifted copy

of a standard obstacle � ⊂ R
3
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to the slope ∂νp of p along �0. The jump [∂νv] of the velocity corrector is proportional to
the second derivative ∂2

ν p of p along �0. Our limit system includes a correction coefficient
α (introduced in assumption (9)), which is unfortunately not yet characterized. We hope that
we can derive a cell problem for this parameter in a later work.

1.1 Comparison with the Literature

The Helmholtz equation (1) describes the distribution of sound waves of a fixed frequency ω

in a prescribed geometry. The geometry studied here is of much interest in applications, for
example in the design of sound absorbing structures. If a wall with holes is used to separate
two chambers, this wall can have a decisive effect on the distribution of sound waves.

The Acoustic Properties of a Perforation With this application in mind, many contri-
butions from a very practical point of view are available. An effective description of the
perforation that is used in the literature can be written as

∂νp
+ = ∂νp

− = −i
ωρ

Z
(p+ − p−). (2)

In this formula, ρ denotes the density, ω the frequency, ν a normal vector on �0, pointing
into the domain �+, and Z is a complex number, the transmission impedance, a parameter
that characterizes the effective behavior of the obstacles (we cite from equation (2) of [13],
where the reference is given to [7]).

Let us compare the empirical formula (2) with our findings. As a first observation, we
note that in both, in (2) and in our results, the normal component of the pressure gradient has
no jump. The second equation in (2) seems to contradict our finding that also the effective
pressure function p has no jump. But we may as well compare the pressure difference
p+ − p− with the jump of the first order corrector, scaled with ε, i.e., p+ − p− behaves
like ε[v]. If we do so, we may also say that (2) is consistent with our formula α[v] =
|�|∂νp from (10), where α is a correction factor that is close to 1 for small obstacles. The
comparison provides a formula for the transmission impedance: Z = −iωρε|�|/α.

We note that a more mathematical treatment of a related problem has been performed in
[13]. In that work, the authors obtain a non-trivial effective transmission condition for the
pressure p. Their formula (29) can be written as

−iωDβ∂βp + ω2Fg0 = −iω

ε0
(p+ − p−).

In this formula, Dβ and F are effective coefficients and are given by cell problems, ∂β

denotes derivatives in direction β (β �= 3), g0 (which does not vanish) is a “fictitious acous-
tic transverse velocity”, which re-appears in their second transmission condition, ε0 is a
thickness parameter. Also, this formula can be compared to our result: After a division by
−iω, the (tangential) gradient of p and the fictitious transverse velocity on the left-hand
side is set in relation with (p+ − p−)/ε0 on the right-hand side.

Transmission Conditions for Perforated Domains Transmission problems have been
studied also in many other contributions, see, e.g., [1, 3, 9, 11]. The case with homogeneous
Neumann boundary conditions at the inclusions was treated in [9]. The authors show that
the perforation is invisible in the limit problem and provide rates of convergence. In [3],
the problem is investigated with the periodic unfolding method. In [1], a coating of the
inclusions with an absorbing material is introduced; this coating can lead to losses and to
more complex impedance parameters Z. The geometry of our problem has been studied
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also in [11], where equations are formulated in the inclusions. Using an appropriate scaling
with factors ε−1, the authors obtain a non-trivial effective problem (jump conditions appear
also at lowest order, whereas a jump condition appears in our setting only in the first order
term). Related works are [12], where the problem is further analyzed, and [10], where an
oscillatory (on small scales) boundary instead of an interface is studied. The transmission
problem where the interface consists not of holes but of small inclusions of a second material
is studied in [5], where also the asymptotic expansion of solutions is derived.

There are equations where order-1 effects are introduced by the perforation (even with-
out an ε−1 boundary condition). An example is the Stokes flow in a perforated geometry,
see [6, 14]. But even for the Helmholtz equation with a fixed frequency ω, order-1 effects
are possible, namely in a Helmholtz resonator geometry. For a mathematical study of the
Helmholtz resonator, we refer to [15]. We emphasize that the lowest order effect of [15] is
only possible by introducing three scales: The macroscopic scale (order 1, size of �), the
microscopic scale ε (size of the resonator), and a sub-micro-scale which is small compared
to ε (the diameter of a channel connecting the interior of the resonator to the exterior).

That effects of leading order can be created by small structures is also known from a
related equation, namely the time homogeneous Maxwell equation (of which the Helmholtz
equation is a special case): Using split-ring microscopic geometries, the effective behavior
of solutions to Maxwell equations can be changed dramatically: Negative index materials
with negative index of refraction can occur as homogenized materials, see [2, 8]. We note
that in these works, again, three scales are used: Each microscopic element of size ε contains
a substructure of a size that is small compared to ε (in this case: the diameter of the slit in
the ring).

1.2 Mathematical Setting and Results

Let � ⊂ R
3 be a domain with Lipschitz boundary, containing the origin. We use the unit cell

Y :=
[
− 1

2 , 1
2

)2 ×
[
− 1

2 , 1
2

]
and the obstacle shape � ⊂ Y . We assume that � is a domain

with Lipschitz boundary, which is strictly contained in Y , i.e., � ⊂
(
− 1

2 , 1
2

)3
. To construct

the obstacles in the complex geometry, we scale and shift the set �: We use k ∈ Z
2 to label

the different obstacles and set

Y ε
k := ε (Y + (k1, k2, 0)) , �ε

k := ε (� + (k1, k2, 0)) for k = (k1, k2) ∈ Z
2. (3)

The indices of cells inside � are Iε := {k ∈ Z
2 | Y ε

k ⊂ �}. The number of elements of Iε is
of order ε−2. We denote by �ε := ⋃

k∈Iε
�ε

k the union of all obstacles in � and define the
perforated domain by setting �ε := � \ �ε .

We denote by n the outer normal of �ε on ∂�ε . The perforation �ε is located along the
submanifold �0 := (R2 × {0}) ∩ �. The submanifold �0 separates the domain � into two
subdomains:

�+ := [R2 × (0, ∞)] ∩ � and �− := [R2 × (−∞, 0)] ∩ �,

leading to the disjoint decomposition � = �+ ∪ �0 ∪ �−.
Our analysis concerns the following Helmholtz equation on �ε:

−�pε = ω2pε + f in �ε,

∂np
ε = 0 on ∂�ε,

pε = 0 on ∂�.

(4)
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In this equation, f ∈ L2(�) is a given source term and the frequency ω > 0 is a fixed
parameter. The natural space of solutions of (4) is

Hε :=
{
u ∈ H 1(�ε) | u|∂� = 0

}
.

The weak formulation of (4) is: find pε ∈ Hε such that
∫

�ε

∇pε · ∇ϕ =
∫

�ε

ω2pεϕ +
∫

�ε

f ϕ ∀ϕ ∈ Hε. (5)

We assume that ω2 is not an eigenvalue of the operator −� to Dirichlet conditions on ∂�,
i.e., ω2 �∈ σ(−�). In what follows, we denote by Pε : L2(�ε) → L2(�) the extension
operator that continues every function by 0 to all of �.

Our first result characterizes limits p of solution sequences pε . We obtain that the
perforation is invisible in the limit ε → 0.

Theorem 1 (Limit behavior of solutions) Let f ∈ L2(�) be a source function and let
pε ∈ Hε be a sequence of weak solutions to (4). We assume ω2 �∈ σ(−�).

Effective system. The norms ‖Pεp
ε‖L2(�) and ‖Pε∇pε‖L2(�) are bounded. There exists

p ∈ H 1
0 (�) such that Pεp

ε → p strongly in L2(�) and Pε∇pε ⇀ ∇p weakly in
L2(�). The limit p is the unique weak solution of

− �p = ω2p + f in �. (6)

Rate of convergence. If f has the regularity H 1 ∩ C0 in an open neighborhood of �0
and if ∂� is of class C3 in a neighborhood of �̄0 ∩ ∂�, then there exists a constant
C = C(f ) > 0, independent of ε > 0, such that

‖p − Pεp
ε‖L2(�) + ‖∇p − Pε∇pε‖L2(�) + ‖�p − Pε�pε‖L2(�) ≤ Cε1/2. (7)

In order to see the effect of the interface, we have to study the first order behavior of
solutions. We consider solutions pε to the ε-problem (4) and the limit function p ∈ H 1(�)

of Theorem 1. We define vε as the variation of order ε,

vε := pε − p

ε
on �ε. (8)

In order to formulate our result, we will use some notation that is explained in more detail
in Section 2: For v ∈ W 1,1(� \ �0) with �v ∈ L1(� \ �0), we denote by [v] and [∂νv]
the jump of v and of its normal derivatives across �0. In our setting, the normal vector is
ν = e3. We denote by H2 the 2-dimensional Hausdorff measure.

Our second theorem provides a corrector result, i.e., formulas for limits of vε . This sec-
ond theorem has the weakness that the a priori bounds on vε and the existence of a limit
function v must be assumed. Furthermore, a characterization of the limit of gradients must
be assumed. Both assumptions are collected in (9), for more comments on this assumption
see Remark 3 below.

Theorem 2 (First order behavior) Let the situation be as in Theorem 1, in particular, let
pε ∈ Hε be a sequence of weak solutions to (4) and let p be the solution of the effective
system (6). Let the corrector vε be defined by (8), vε = (pε − p)/ε. Let f be of class
H 1∩C0 in an open neighborhood of �0, and let ∂� be of class C3. We assume that for some
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factor α ∈ C0(�0,R) the sequence vε satisfies the following: There exists a limit function
v ∈ W 1,1(� \ �0) such that, as ε → 0,

Pεv
ε ⇀ v weakly in L1(�) and Pε∇vε ⇀ ∇v + α[v]νH2�0 , (9)

the latter weakly in the sense of measures on �. Under these assumptions, the limit v is
determined by the following system of equations:

−�v = ω2v in � \ �0,

α[v] = |�|∂νp on �0,

[∂νv] = −|�|∂2
ν p on �0.

(10)

Let us provide some further remarks on the two theorems.

Remark 1 (Well-defined expressions in the limit system of Theorem 2) The regularity
property v ∈ W 1,1(� \ �0) implies that the jump [v] is well-defined on �0 in the sense of
traces in L1(�0). Moreover, relation (10)1 implies that �v is an L1-function on both sides
of �0, hence the jump [∂νv] is well-defined on �0 as a distribution. Since f is of class
H 1(�), the solution p of the Helmholtz equation in � is of class H 3(�). This implies that
the right-hand side of (10)2,3 is well defined in the sense of traces.

Remark 2 (Rate of convergence) Let us try to depict the microscopic situation in the vicinity
of one obstacle. The function p is a smooth function: the gradient ∇p is essentially constant
in an ε-neighborhood of the single obstacle. In contrast to that, the function pε sees the
obstacle: the gradient ∇pε always has a vanishing normal component at the boundary of the
obstacles due to the homogeneous Neumann condition. This implies that the values of ∇pε

have variations of order 1 in the vicinity of the obstacle. In turn, the gradients ∇pε and ∇p

necessarily differ by the order 1 in the neighborhood of the perforation.
This picture helps to develop an idea about the rates of convergence that can be expected.

If we calculate the L2-norm of the difference of the gradients, already an ε-layer around the
obstacles (with volume of order ε) induces a contribution of order ‖∇p − ∇pε‖L2(�ε)

�
(12 · ε)1/2 = ε1/2. This order of convergence is consistent with (7). In particular, we can
expect that the rate ε1/2 is the optimal rate of convergence for gradients in the L2-norm.

On the other hand, the situation changes if we consider the L1-norm. The contribution
of an ε-layer around the obstacles is now ‖∇p − ∇pε‖L1(�ε)

� (11 · ε)1/1 = ε. We can
therefore hope that this error is of order O(ε) when the L1-metric is used. This order of
convergence is consistent with our assumption (9): If ∇vε is bounded in L1, we can select
a subsequence which converges in the sense of measures.

Remark 3 (On assumption (9)) The assumption essentially contains two points: (i) The
boundedness of the sequence vε in W 1,1. (ii) The characterization of the factor α (possibly
with a cell-problem).

Let us assume that the boundedness of vε in the space W 1,1(�ε) can be shown, i.e.,
‖vε‖W 1,1(�ε)

≤ C. This estimate implies that the trivial extension of the gradient is bounded
in L1, wε := Pε∇vε satisfies ‖wε‖L1(�) ≤ C. This boundedness implies that we can select
a subsequence ε → 0 and a limit measure μ ∈ M(�) with Pε∇vε = wε ⇀ μ in the sense
of measures as ε → 0. We can restrict all the further considerations to this subsequence.

For an arbitrary subdomain �̃ ⊂⊂ � \ �0, we can exploit the fact that the embedding
W 1,1(�̃) ⊂ L1(�̃) is compact. This implies that vε converges on �̃ strongly in L1 to a
function v. Since a family of sets �̃ can be chosen to cover all of � \ �0 (and we can
continue to take subsequences), the limit function v is defined on � \ �0. Furthermore,
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since the bound ‖vε‖W 1,1(�̃) ≤ C is satisfied independent of �̃, the limit function satisfies

v ∈ W 1,1(� \ �0) ⊂ L1(�). This implies the first part of assumption (9).
Again restricting ourselves to an arbitrary subset �̃ ⊂⊂ �\�0, we note that ∇vε → ∇v

holds in the sense of distributions on �̃ since vε → v holds in L1. On the other hand, we
have ∇vε → μ in the sense of measures on �̃. This implies the characterization μ = ∇v

on � \ �0. At this point, we have verified for the second part of (9) that Pε∇vε ⇀ μ with
μ = ∇v on � \ �0.

In order to verify (9), it remains to characterize the singular part of μ as α[v]νH2. Let us
assume that vε can be extended across the obstacles to a function ṽε with ‖ṽε‖W 1,1(�) ≤ C.
Such an extension is known to exist in L2-based Sobolev spaces (see (13)), but we are not
aware of a reference in L1 (nevertheless, we expect the result to be true). Since W 1,1(�)

is a subset of the space of functions with bounded variation, W 1,1(�) ⊂ BV (�) with
continuous embedding, the sequence ṽε is a bounded sequence in BV (�). Compactness
in BV (�) implies that there is a subsequence and a limit function ṽ ∈ BV (�) such that
ṽε ⇀ ṽ in BV (�). In particular, we have ṽε → ṽ in L1(�), hence ṽ = v. Furthermore,
the gradients ∇ṽε converge in the sense of measures to the measure-valued gradient of v,
which is ∇ṽε ⇀ ∇v|�\�0 + [v]νH2 in the sense of measures. This fact seems to suggest
that the singular part of the measure μ is given by [v]νH2, but we have to take into account
the error Pε∇vε − ∇ṽε �= 0.

We have introduced the volume factor α > 0 in order to capture the corresponding error,
i.e., the measure valued limit of ∇ṽε|�ε on the obstacles �ε . We note that we can expect
this contribution to be small for small obstacles, we therefore expect α < 1 to be close to 1
for small obstacles.

Methods of Proof Astonishingly, our proofs do not use any of the typical homogeniza-
tion tools, such as two-scale convergence, periodic unfolding, or compensated compactness
(while in [3] periodic unfolding is used). This seems to be a special feature of the transmis-
sion problem (sometimes also called the “sieve-problem”): The behavior of the solution is
very regular except for a lower dimensional manifold.

The only homogenization tool that we use is the extension operator P̃ε, which extends
H 1(�ε)-functions to functions of the same class in all of �. Otherwise, only elementary
calculations are performed (integration by parts, cut-off functions, dominated convergence).
An interesting method of proof is used in the derivation of a priori estimates and conver-
gence rates: We argue by contradiction and exploit compactness arguments, similar to the
more intricate reasoning in [2] or [8].

2 Notation and Preliminaries

For Q ⊂ R
3, we write L2(Q) for the space of square integrable functions over Q and

Hk(Q) = Wk,2(Q) for the Bessel-potential spaces. We further denote Hk
0 (Q) the closure

of Ck
c (Q) in Hk(Q). For a measurable domain Q ⊂ R

3 of finite measure and g ∈ L1(Q),
we write for the average of g over Q.

With � ⊂ R
3 and �0 as in the introduction, we note that the hypersurface �0 cuts � into

the two subdomains �± := {x ∈ � | ± x3 > 0}. For p ∈ W 1,1(� \ �0), we denote by p±
the trace of p|�± on �0, respectively. Furthermore, if �p ∈ L1(� \ �0), we use

∂±
ν p := ∇p± · ν,
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where ν = e3 is the outer normal of �− on �0. The jumps of p and ∇p are introduced as

[p] := p+ − p−,

[∂νp] := ∂+
ν p − ∂−

ν p.

Note that p ∈ H 1(� \ �0) together with [p] = 0 is equivalent to p ∈ H 1(�). This leads to
the following observation:

Remark 4 Let p ∈ H 1(� \ �0) and f ∈ L2(�). The partial differential equation

− �p = ω2p + f in � (11)

is equivalent to the system

−�p = ω2p + f in � \ �0,

[p] = 0 on �0,

[∂νp] = 0 on �0.

(12)

Both (11) and (12)1 are understood in the sense of distributions or, equivalently, in the weak
sense. We emphasize that (12)1 guarantees �p ∈ L2(�±), hence [∂νp] is well defined.

In the proofs of our main theorems, we are dealing with sequences pε ∈ Hε = {u ∈
H 1(�ε) | u|∂� = 0}. Since these functions are defined on �ε and not on �, we need suitable
extension operators. The most elementary operator is the extension by 0, which we denote
as Pε : L2(�ε) → L2(�). Furthermore, it is well known that there exists a family of
extension operators P̃ε : H 1(�ε) → H 1(�), such that

∥
∥
∥P̃εp

ε
∥
∥
∥

H 1(�)
≤ C‖pε‖H 1(�ε)

(13)

for some C > 0 independent of ε ([4], Chapter 1). Essentially, P̃ε is defined by using in
each obstacle the harmonic extension of the boundary values.

The subsequent elementary lemma will turn out to be useful in the proofs. Note that the
assumptions of the lemma are not yet checked for solution sequences pε .

Lemma 1 (A compactness criterion in perforated domains) Let pε ∈ H 1(�ε) satisfy the a
priori estimate ‖Pεp

ε‖L2(�) + ‖Pε∇pε‖L2(�) ≤ C for every ε > 0. Then, there exist p ∈
H 1(�) and a subsequence ε → 0 such that Pεp

ε → p strongly in L2(�), Pε∇pε ⇀ ∇p

weakly in L2(�) and P̃εp
ε ⇀ p weakly in H 1(�). Furthermore, if pε|∂� = 0 holds for

every ε > 0, then also p|∂� = 0.

Proof In what follows, we successively pass to subsequences of pε , keeping the notation
pε for each subsequence. Since ‖Pεp

ε‖L2(�) + ‖Pε∇pε‖L2(�) ≤ C, upon changing the

constant, there also holds ‖P̃εp
ε‖H 1(�) ≤ C. Thus, there is p ∈ H 1(�) such that P̃εp

ε ⇀

p weakly in H 1(�) and P̃εp
ε → p strongly in L2(�). By the trace theorem, the condition

pε|∂� = 0 for all ε > 0 implies p|∂� = 0.
For δ > 0 let φδ ∈ L∞(R) be the indicator function φδ(z) = 1 for |z| < δ and φδ(z) = 0

for |z| ≥ δ. We set ϕδ : � → R, ϕδ(x) := φδ(x3) and obtain for ε < δ:

lim sup
ε→0

∫

�

∣
∣
∣Pεp

ε − P̃εp
ε
∣
∣
∣
2 = lim sup

ε→0

∫

�ε

∣
∣
∣P̃εp

ε
∣
∣
∣
2 ≤ lim sup

ε→0

∫

�

∣
∣
∣P̃εp

ε
∣
∣
∣
2
ϕ2

δ

= lim sup
ε→0

∥
∥
∥ϕδP̃εp

ε
∥
∥
∥

2

L2(�)
= ‖ϕδp‖2

L2(�)
.
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The last limit follows from the strong convergence ϕδP̃εp
ε → ϕδp in L2(�). Since δ > 0

was arbitrary, the right-hand side is arbitrarily small. We conclude that Pεp
ε → p strongly

in L2(�).
Similarly, we obtain for every ψ ∈ L2(�;R3):

lim
ε→0

∫

�

Pε∇pε · ψ = lim
ε→0

∫

�

Pε∇pε · ψ(1 − ϕδ) + lim
ε→0

∫

�

Pε∇pε · ψϕδ

=
∫

�

∇p · ψ(1 − ϕδ) + lim
ε→0

∫

�

Pε∇pε · ψϕδ.

Since lim supε→0

∣
∣
∫
�
Pε∇pε · ψϕδ

∣
∣ ≤ lim supε→0 ‖Pε∇pε‖L2(�)‖ψϕδ‖L2(�) → 0 as

δ → 0, we obtain Pε∇pε ⇀ ∇p weakly in L2(�).

3 Limit of pε

Proof of Theorem 1 We will prove Theorem 1 in three steps: In Step 1, we prove the
homogenization result under the assumption that ‖pε‖L2(�ε)

is bounded. In Step 2, we use
Step 1 to prove boundedness of ‖pε‖L2(�ε)

by a contradiction argument. In Step 3, we
prove the convergence rates (7).

Step 1: Limit behavior of pε . We assume here that ‖pε‖L2(�ε)
is bounded. We use pε as a

test function in (5) and obtain

‖∇pε‖2
L2(�ε)

≤ ‖pε‖L2(�ε)

(
ω2‖pε‖L2(�ε)

+ C
)

, (14)

which implies boundedness of ‖∇pε‖2
L2(�ε)

.

From the estimates for ‖pε‖L2(�ε)
and ‖∇pε‖2

L2(�ε)
and Lemma 1, we conclude the

existence of p ∈ H 1
0 (�) such that Pεp

ε → p strongly in L2(�) and Pε∇pε ⇀ ∇p weakly
in L2(�) along a subsequence. We choose a test function ϕ ∈ C∞

c (�), and obtain from (5)
and Lemma 1

∫

�

∇p · ∇ϕ = lim
ε→0

∫

�

Pε∇pε · ∇ϕ

= lim
ε→0

∫

�

ω2Pεp
εϕ + lim

ε→0

∫

�ε

f ϕ =
∫

�

ω2pϕ +
∫

�

f ϕ. (15)

This provides (6) and hence the homogenization result under the assumption of bounded-
ness. We note that the above calculations also hold if in (5), f is replaced by a sequence
(fε)ε>0 with fε → f strongly in L2(�) as ε → 0.

Step 2: L2(�)-boundedness of pε . Let us assume for a contradiction argument that the
sequence ‖pε‖L2(�ε)

is not bounded. For every ε > 0, we define rescaled quantities by
setting

p̃ε := pε

‖pε‖L2(�ε)

in �ε and f̃ ε := f

‖pε‖L2(�ε)

in �. (16)
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We achieve ‖p̃ε‖L2(�ε)
= 1 for every ε > 0 and ‖f̃ ε‖L2(�) → 0 for ε → 0. Since pε

solves (4), we conclude that p̃ε solves

−�p̃ε = ω2p̃ε + f̃ ε in �ε,

∂np̃
ε = 0 on ∂�ε.

(17)

Since ‖p̃ε‖L2(�ε)
is bounded, we can apply Step 1 and obtain the existence of p̃ ∈ H 1

0 (�)

such that Pεp̃
ε → p̃ strongly in L2(�) and Pε∇p̃ε ⇀ ∇p̃ weakly in L2(�), where p̃

solves

− �p̃ = ω2p̃ in �. (18)

Since p̃ ∈ H 1
0 (�) solves (18) and ω2 is not an eigenvalue of −� on �, we conclude p̃ = 0.

We obtain the desired contradiction between the strong convergence Pεp̃
ε → 0 in L2(�)

and ‖Pεp̃
ε‖L2(�) = 1 for every ε > 0.

Step 3: Rate of convergence. It remains to prove (7). For a contradiction argument, let us
assume ε−1/2‖Pεp

ε −p‖L2(�) → ∞, which also implies Gε := ε−1/2‖P̃εp
ε −p‖L2(�) →

∞ by the uniform boundedness of p in �ε . We study the sequence of functions wε :=
G−1

ε ε−1/2(P̃εp
ε − p) with ‖wε‖L2(�) = 1, satisfying

−�wε = ω2wε in �ε,

∂nw
ε = −G−1

ε ε− 1
2 ∂np on ∂�ε,

wε = 0 on ∂�,

with the weak formulation
∫

�ε

∇wε · ∇ϕ = −
∫

∂�ε

G−1
ε ε− 1

2 ∂npϕdH2 +
∫

�ε

ω2wεϕ ∀ϕ ∈ H 1
0 (�). (19)

Due to our assumptions on � and f , the functions �p and ∇p are of class C0 and bounded
in an open neighborhood of �0. This allows to estimate the boundary integral as

∣
∣
∣
∣

∫

∂�ε

ε− 1
2 ∂np ϕdH2

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∑

k∈Iε

∫

∂�ε
k

ε− 1
2 ∂np ϕdH2

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

k∈Iε

∫

�ε
k

ε− 1
2 (−�pϕ − ∇p · ∇ϕ)

∣
∣
∣
∣
∣
∣

≤ ε− 1
2 ‖|�p| + |∇p|‖L2(�ε) · ‖|ϕ| + |∇ϕ|‖L2(�ε)

≤ C‖ϕ‖H 1(�ε). (20)

Using ϕ = wε as a test function in (19), exploiting ‖∇wε‖L2(�ε) ≤ C‖∇wε‖L2(�ε)
from

(13), we obtain
∫

�ε

|∇wε|2 ≤ CG−1
ε ‖wε‖H 1(�ε)

+ ω2‖wε‖2
L2(�ε)

, (21)

and thus the boundedness of wε in H 1(�ε). From the construction of wε and Lemma 1, we
conclude that, for a limit function w ∈ H 1

0 (�) and a subsequence, there holdsPε(w
ε|�ε ) →

w strongly in L2(�) and Pε(∇wε|�ε ) ⇀ ∇w weakly in L2(�) and wε → w strongly in
L2(�).
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Since G−1
ε → 0 as ε → 0, (19) yields the following limit equation for w:

∫

�

∇w · ∇ϕ =
∫

�

ω2wϕ ∀ϕ ∈ H 1
0 (�).

Since ω2 is not an eigenvalue of −�, we find w = 0. We obtain the desired contradiction,
since the strong convergence of wε to 0 contradicts the normalization ‖wε‖L2(�) = 1.

With this contradiction to the assumption Gε → ∞, we have ‖p − Pεp
ε‖L2(�) ≤

Cε
1
2 . Estimate (21) is valid in general and provides the estimate with improved regularity:

boundedness of ∇wε in L2(�ε) and thus ‖∇p−Pε∇pε‖L2(�) ≤ Cε
1
2 . The estimate ‖�p−

Pε�pε‖L2(�) ≤ Cε
1
2 follows from the Helmholtz equations (4)1 and (6).

4 First Order Behavior

Proof of Theorem 2 We prove the theorem in three steps. In Step 1, we reduce the proof
of the statement to the convergence behavior of a boundary integral. In Step 2, we prove
the convergence of this boundary integral. In Step 3, we show that the weak limit problem
is equivalent to the distributional formulation of (10).

Step 1: Reduction to one boundary integral. Our aim is to analyze the first order corrector
function vε := ε−1(pε − p). The function vε solves the following Helmholtz equation:

−�vε = ω2vε in �ε,

∂nv
ε = − 1

ε
∂np on ∂�ε,

vε = 0 on ∂�.

(22)

System (22) has the following weak formulation: vε ∈ H 1(�ε) satisfies vε|∂� = 0 and
∫

�ε

∇vε · ∇ϕ = −
∫

∂�ε

1

ε
∂np ϕdH2 +

∫

�ε

ω2vεϕ ∀ϕ ∈ H 1
0 (�). (23)

Our aim is to analyze the limit ε → 0 in relation (23). On the right-hand side, we use
assumption (9), which contains the weak L1-convergence of Pεv

ε ⇀ v and hence the
convergence of the bulk integral. Also on the left-hand side, we use assumption (9), but now
the measure convergence Pε∇vε ⇀ ∇v + α[v]νH2�0 . For smooth test-functions ϕ, we
obtain

∫

�

∇v · ∇ϕ +
∫

�0

α[v]ν · ∇ϕdH2 = − lim
ε→0

∫

∂�ε

1

ε
∂np ϕ dH2 +

∫

�

ω2vϕ ∀ϕ ∈ C∞
c (�). (24)

The main step of the proof is therefore to determine the limit of the boundary integral. We
will derive in Step 2

lim
ε→0

∫

∂�ε

1

ε
∂np ϕdH2 = −|�|

∫

�0

(
∂2
ν p ϕ + ∂νp ∂νϕ

)
dH2 ∀ϕ ∈ C∞

c (�). (25)

Inserting the characterization (25) in (24) will provide the limit system for v.

Step 2: Proof of (25). Let ϕ ∈ C∞
c (�) be a test function. We consider the contribution of the

boundary integral for every obstacle; we recall that the obstacles are numbered with indices
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k ∈ Iε . The contribution of the boundary integral in the cell with number k is denoted by
Fε(k), i.e.: For every k ∈ Iε , we set

Fε(k) := ε−2
∫

∂�ε
k

1

ε
∂np ϕdH2.

An integration by parts can be used to evaluate Fε(k) as

where we have used that n is the inner normal of �ε
k and that the measure of obstacle k is

|�ε
k | = ε3|�| for every k ∈ Iε .
Our next aim is to construct out of the sequence (F ε(k))k∈Iε a function that lives on the

interface �0. To this end, let ε > 0 be fixed and let y ∈ �0 be any point on the interface.
We define the index k(y, ε) ∈ Z

2 to be that index such that y ∈ Y ε
k(y,ε). This index is

well-defined for almost every y ∈ �0.
The elliptic equation −�p = ω2p + f and our regularity assumptions imply that the

functions ∇p and �p are of class C0 in a neighborhood of �0. This allows to calculate, for
almost every point y ∈ �0, the limit of the above functions:

(26)

We now want to conclude from this point-wise convergence a convergence for integrals,
more precisely, the convergence

∫
∂�ε

1
ε
∂np(y) ϕ(y)dH2(y) → ∫

�0
F(y)dH2(y) as ε → 0.

Since the interface area in the single cell is |Y ε
k ∩ �0|H2 = ε2 for every k ∈ Iε , we obtain

∫

∂�ε

1

ε
∂np ϕdH2 =

∑

k∈Iε

∫

∂�ε
k

1

ε
∂np ϕdH2

=
∑

k∈Iε

F ε(k)|Y ε
k ∩ �0|H2 =

∫

�0

Fε(k(y, ε))dH2(y). (27)

By the definition of F in (26)1, we have the pointwise convergence Fε(k(y, ε)) → F(y).
Since ∇p and �p are bounded in a neighborhood of �0, the family Fε(k) is uniformly
bounded. We can therefore apply Lebesgue’s dominated convergence theorem and obtain,
in the limit ε → 0,

∫

∂�ε

1

ε
∂np ϕdH2 −→

∫

�0

FdH2 = −|�|
∫

�0

(�p ϕ + ∇p · ∇ϕ)dH2. (28)

Since ϕ|�0 ∈ C∞
c (�0), we may integrate by parts in the last expression with respect to the

tangential coordinates x1 and x2, with vanishing boundary integrals. We obtain
∫

�0

FdH2 = −
∫

�0

|�|
(
∂2

3 pϕ + ∂3p∂3ϕ
)

dH2. (29)

Because of e3 = ν, we have thus obtained (25).

Step 3: The limit equations. It remains to insert (25) into (24), which provides
∫

�

∇v · ∇ϕ +
∫

�0

α[v]∂νϕdH2 =
∫

�0

|�|
(
∂2
ν p ϕ + ∂νp∂νϕ

)
dH2 +

∫

�

ω2vϕ
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for every ϕ ∈ C∞
c (�). This relation is the weak formulation of (10), since a formal

integration by parts yields

−
∫

�

�v ϕ −
∫

�0

[∂νv]ϕdH2 +
∫

�0

α[v]∂νϕdH2

=
∫

�0

|�|
(
∂2
ν p ϕ + ∂νp ∂νϕ

)
dH2 +

∫

�

ω2vϕ

for every smooth ϕ. Comparing the factors of ϕ in the bulk provides −�v = ω2v (the equa-
tion thus holds rigorously in the sense of distributions in � \ �0). Comparing the factors of
∂νϕ in boundary integrals provides (10)2. Comparing the factors of ϕ in boundary integrals
provides (10)3.
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