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Abstract In this paper, the problem of global exponential stability analysis of a class of
non-autonomous neural networks with heterogeneous delays and time-varying impulses is
considered. Based on the comparison principle, explicit conditions are derived in terms
of testable matrix inequalities ensuring that the system is globally exponentially stable
under destabilizing impulsive effects. Numerical examples are given to demonstrate the
effectiveness of the obtained results.
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1 Introduction

During the past few years, qualitative and asymptotic behavior of neural networks have
been intensively studied due to their potential applications in many fields such as image
and signal processing, pattern recognition, associative memory, parallel computing, solv-
ing optimization problems [6, 7, 38]. In most of the practical applications, it is of prime
importance to ensure that the designed neural networks are stable [2]. On the other hand, in
modeling neural networks and general complex dynamical networks, time delays are often
encountered in real applications due to the finite switching speed of amplifiers [40] which
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usually become a source of oscillation, divergence, instability, and poor performance [4,
33]. Considerable attention from researchers has been devoted to the problem of stability
analysis and control of delayed neural networks recently, see, [3, 10, 11, 15, 16, 18, 20,
25–27, 31, 41] and the references therein.

It is well known that, for simple circuits with a small number of cells, the use of fixed
constant delays may provide a good approximation when modeling them. However, in prac-
tical implementation, neural networks usually have a spatial nature due to the presence of
an amount of parallel pathways with a variety of axon sizes and lengths. As a consequence
of facts, the time-delay in neural networks is usually time-varying. Therefore, the study of
neural networks with time-varying delay is more relevant and important in practice than
that of neural networks with constant delay which has attracted increasing interest of many
researchers recently, see, for example, [3, 11, 12, 17, 18, 25, 44]. In addition, it is important
to note that the transmission of the signals experiencing different segments of networks, on
one hand, may cause different time delays [19]. On the other hand, the time required for
transmitting signal from a neuron to another neuron is generally different [8]. If a neural
network is designed for such an application with a single delay, the time delay is treated
as the maximal delay of the network. This obviously leads to certain conservatism when
analyzing stability of the network. Therefore, it is reasonable and essential to study the sta-
bility of neural networks with heterogeneous delays which contain the neural networks with
single and/or multiple delays as some special ones.

Besides the delay effect, the states of various dynamical networks in the fields of artificial
systems such as mechanics, electronic, and telecommunication networks, often suffer from
instantaneous disturbances and undergo abrupt changes at certain instants [36]. These may
arise from switching phenomena or frequency changes, and thus, they exhibit impulsive
effects [42]. With the effect of impulses, stability of the networks may be destroyed [43]
(see also the next section in this paper). Therefore, delays and impulses heavily affect the
dynamical behaviors of the networks, and thus, it is necessary to study both effects of time-
delay and impulses on the stability of neural networks. Up to now, considerable effort of
researchers has been devoted to investigating stability and asymptotic behavior of neural
networks with impulses [21, 23, 24, 29, 30, 35, 37, 42, 43].

However, the aforementioned works have been devoted to neural networks with constant
coefficients. As discussed in [11], non-autonomous phenomena often occur in realistic sys-
tems; for instance, when considering a long-term dynamical behavior of the system, the
parameters of the system usually change along with time [32, 39]. Also, the problem of
stability analysis for non-autonomous systems usually requires specific and quite differ-
ent tools from the autonomous ones (systems with constant coefficients). There are only
few papers concerning the stability of non-autonomous neural networks with heteroge-
neous time-varying delays and impulsive effects. Based on a new non-autonomous Halanay
inequality developed from the result of [36], a set of sufficient conditions ensuring the
exponential stability of a class of non-autonomous neural networks with impulses and time-
varying delays was proposed in [22]. Although the proposed stability conditions in [22]
were shown more effective than those in some previous results, they are still conserva-
tive, especially in estimating the exponential convergent rate of the network. Specifically,
the derived conditions guarantee exponential stability of the corresponding system without
impulses. Then, in order to ensure exponential stability of the impulsive model, a uni-
form upper bound of the growth of impulsive strengths is imposed which produces much
conservatism for models with time-varying impulses in a wide range.

Motivated by the aforementioned discussions, in this paper, we investigate the exponen-
tial stability of a class of non-autonomous neural networks with heterogeneous delays and
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time-varying impulses. Based on the comparison principle, an explicit criterion is derived
in terms of inequalities for M-matrices ensuring the global exponential stability of the
model under destabilizing impulsive effects. The obtained results are shown to improve
some recent existing results. Finally, numerical examples are given to demonstrate the
effectiveness of the proposed conditions.

The remainder of this paper is organized as follows. Section 2 presents the model descrip-
tion, notations and some preliminaries. In Section 3, an explicit stability criterion of the
system is derived in terms of inequalities for M-matrices. Illustrative examples and discus-
sions to the existing results are given in Section 4. The paper ends with a conclusion and
cited references.

Notation Throughout this paper, we denote n := {1, 2, . . . , n} for a positive integer
n ∈ Z

+. Rn and R
m×n denote the n-dimensional vector space with the vector norm

‖x‖∞ = maxi∈n |xi | and the set of m × n-matrices, respectively. Comparison between vec-
tors will be understood componentwise. Specifically, for u = (ui), v = (vi) in R

n, we
write u ≥ v and u � v, respectively, if ui ≥ vi and ui > vi for all i ∈ n. Rn+ denotes
the positive orthant of Rn, that is, Rn+ = {η ∈ R

n : η � 0}. For a continuous real-
valued function v(t), D+v(t) denotes the upper-right Dini derivative of v(t) defined by
D+v(t) = lim suph→0+ v(t+h)−v(t)

h
.

2 Model Description and Preliminaries

2.1 A Motivation Example

Consider a two-dimensional neural network of the following form{
ẋ(t) = −D(t)x(t) + W0f (x(t)) + W1f (x(t − τ(t))), t > 0,
x(t) = φ(t) ∈ C([−τ, 0],R2),

(1)

where D(t) = diag(4 + e−t2 , 4 − | sin(2t)|), W0 =
(
2 1
0 1

)
,W1 =

(
1 2
0 1

)
, τ(t) ∈ [0, τ ]

is a time-varying delay, f (x) = (fi(xi)), i = 1, 2, and fi(xi) = 1
2 (|xi + 1| − |xi − 1|).

By Theorem 3.2 in [12], the neural network (1) is globally exponentially stable for any
delay τ(t). A state trajectory of (1) with τ(t) = 1 + | sin(t)| and φ(t) = (1,−1)T ∈ R

2,
t ∈ [−2, 0], is presented in Fig. 1. This simulation result illustrates the stability of (1).

We now consider system (1) in the presence of impulsive effects. By incorporating
impulses, the impulsive neural network can be modeled in the form{

ẋ(t) = −D(t)x(t) + W0f (x(t)) + W1f (x(t − τ(t))), t �= tk,

x(t+k ) = γkx(t−k ), k ∈ Z
+.

(2)

For illustrative purpose, we consider uniform impulsive times tk = kTs , where Ts > 0 is
a sampling time. As mentioned before, system (1) is exponentially stable. However, in the
presence of impulses, stability of system (1) may be destroyed. For instance, in (2), we let
sampling time Ts = 0.2, impulsive strengths γk = 1.6(−1)k . The simulation result given in
Fig. 2 shows that (2) is unstable. It should be noted that, in this case, |γk| > 1∀k, which we
refer to as destabilizing impulses.

An important and natural question is that, with destabilizing impulses, can neural net-
work (2) be exponentially stable? In other words, in which conditions the stability of (1) is
preserved for (2) with destabilizing impulses. This will be addressed in this paper.
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Fig. 1 A state trajectory of (1) with τ(t) = 1 + | sin(t)|

2.2 Model Description and Preliminaries

Consider a class of non-autonomous impulsive neural networks with heterogeneous time-
varying delays of the following form⎧⎪⎪⎨

⎪⎪⎩

x′
i (t) = −di(t)xi(t) +∑n

j=1 aij (t)fj (xj (t))

+∑n
j=1 bij (t)gj (xj (t − τij (t))) + Ii(t), t > 0, t �= tk,

�xi(tk) := xi(t
+
k ) − xi(t

−
k ) = −σikxi(t

−
k ), t = tk, k ∈ Z

+,

xi(t) = φi(t), t ∈ [−τ, 0], i ∈ n,

(3)

where n is the number of neurons of the network, xi(t), i ∈ n, is the state associated with
neuron ith at time t , fj (·), gj (·), are neural activation functions, di(t) is the rate at which
the ith neuron will reset its potential to the resting state in isolation when disconnected
from the network and external inputs, aij (t), bij (t) are time-varying connection weights,
I (t) = (Ii(t)) ∈ R

n is the external input signal, τij (t), i, j ∈ n, are possibly heterogeneous
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Fig. 2 A state trajectoy of (2) with Ts = 0.2, γk = 1.6(−1)k
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communication delays of the neurons satisfying 0 ≤ τij (t) ≤ τ+
ij , τ = maxij τ+

ij and φ ∈
C([−τ, 0],Rn) is an initial function specifying the initial state of the network on [−τ, 0].
The sequence of impulsive moments (tk)k∈Z+ is strictly increasing, limk→∞ tk = ∞ and
(σik)i∈n, k ∈ Z

+, are real sequences representing the abrupt changes of the state xi(t) at
impulsive time tk . It is assumed that Ii(t), τij (t), i, j ∈ n, are piecewise continuous on R

+
with possible discontinuities at t = tk , k ∈ Z

+.
For convenience, system (3) shall be rewritten in the following vector form:{
x′(t) = −D(t)x(t) + A(t)f (x(t)) + B(t)g(x(t − τ(t))) + I (t), t > 0, t �= tk,

x(t+k ) = Jkx(t−k ), t = tk, k ∈ Z
+,

(4)

where Jk = diag(1 − σ1k, 1 − σ2k, . . . , 1 − σnk).
For system (3), we make the following assumptions.

(A1) The matrices D(t) = diag(d1(t), d2(t), . . . , dn(t)), A(t) = (aij (t)) and B(t) =
(bij (t)) are continuous on each interval (tk, tk+1), k ≥ 0, and there exist scalars d̂i ,
a+
ij , b

+
ij such that

di(t) ≥ d̂i > 0, |aij (t)| ≤ a+
ij , |bij (t)| ≤ b+

ij ∀t ≥ 0, i, j ∈ n.

(A2) The neural activation functions fi, gi , i ∈ n, satisfy

l−i1 ≤ fi(x) − fi(y)

x − y
≤ l+i1, l−i2 ≤ gi(x) − gi(y)

x − y
≤ l+i2 ∀x, y ∈ R, x �= y,

where l−ik, l
+
ik , k = 1, 2, are known constants.

(A3) There exists a positive sequence (γk)k∈Z+ such that 1 − γk ≤ σik ≤ 1 + γk∀i ∈ n,
k ∈ Z

+.

Remark 1 The constants l−ik , l+ik , i ∈ n, k = 1, 2, in Assumption (A2) are allowed to
be positive, negative or zero. As discussed in the existing literature, for autonomous neu-
ral networks, Assumption (A2) can lead to less conservative stability conditions than the
descriptions on the Lipschitz-type activation functions or the sigmoid activation functions.
However, in order to establish stability conditions for non-autonomous impulsive neural
network (3) we utilize the following estimations which can be easily derived from (A2)

fi(x) − fi(y) ≤ max{l+i1,−l−i1}|x − y|, gi(x) − gi(y) ≤ max
{
l+i2, −l−i2

} |x − y|.
Hereafter, let us denote for i ∈ n the constants Fi = max{l+i1,−l−i1} and Gi =
max

{
l+i2, −l−i2

}
.

Remark 2 Under Assumptions (A1), (A2), for each initial function φ ∈ C([−τ, 0],Rn),
there exists a unique solution x(t, φ) of (3) which is piecewise continuous on R

+ with
possible discontinuities at t = tk , k ∈ Z

+ (see, for example, [1, 28]).

Remark 3 When γk > 1, the absolute value of the state can be enlarged and the impulses
can potentially destroy the stability of system (3). We refer this type of impulses to as
destabilizing impulses. When γk ≤ 1, the impulsive effects are inactive or stabilizing. In
this paper, and as mentioned in the preceding section, we assume that the impulses are
destabilizing and taking values in a finite set {μ1, μ2, . . . , μq}, where μi > 1, i ∈ q.

Let us denote by tjk , j ∈ q, the activation times of the destabilizing impulses with
impulsive strength μj , that means tjk = tk if γk = μj .
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Remark 4 It is well-known that when the network dynamics are stable but the impulsive
effects are destabilizing, the impulses should not occur too frequently in order to guarantee
stability [23]. In this paper, we derive conditions ensuring that the non-autonomous neural
network (3) is globally exponentially stable under destabilizing impulsive effects. In regard
to this observation, we assume that

(A4) There are positive numbers ρj such that

tj (k+1) − tjk ≥ ρj ∀j ∈ q, k ∈ Z
+.

Remark 5 In the case of constant impulse [23, 34], q = 1, and Assumption (A4) can be
replaced by the average impulsive interval condition; that is, there exist positive integer N0
and positive number Ta such that

t − s

Ta

− N0 ≤ Nζ (t, s) ≤ t − s

Ta

+ N0 ∀t > s ≥ 0, (5)

where Nζ (t, s) denotes the number of impulsive times of the impulsive sequence ζ =
{t1, t2, . . .} on interval (s, t).

Definition 1 The impulsive neural network (3) is said to be globally exponentially stable
if there exist positive constants α, β such that, for any two solutions x(t), x̂(t) of (3) with
respectively initial functions φ, ψ ∈ C([−τ, 0],Rn), the following inequality holds

‖x(t) − x̂(t)‖∞ ≤ β‖φ − ψ‖∞e−αt t ≥ 0. (6)

The main objective of this paper is to derive new conditions in terms of testable matrix
inequalities ensuring the global exponential stability of the neural network (3) based on M-
matrix theory and some efficient techniques which have been developed for time-varying
systems with bounded delays [13].

3 Stability Conditions

To facilitate in presenting our results, let us introduce the following matrix notations:

D = diag(d̂1, d̂2, . . . , d̂n), Â = (a+
ij ), B̂ =

(
e
σ0τ

+
ij b+

ij

)
, σ0 =

q∑
j=1

lnμj

ρj

,

F = diag(F1, F2, . . . , Fn), G = diag(G1,G2, . . . , Gn),

M = ÂF + B̂G + σ0I − D.

We have the following result.

Theorem 1 Let Assumptions (A1)–(A4) hold. Then the impulsive neural network (3) is
globally exponentially stable if there exists a vector χ ∈ R

n+ such that

(ÂF + B̂G + σ0I − D)χ � 0. (7)

Proof We present a constructive proof in the following three steps.
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Step 1 Prior estimates Let x(t) = (xi(t)) and x̂(t) = (x̂i (t)) be solutions of (3) with initial
conditions φ, ψ ∈ C([−τ, 0],Rn), respectively. Define zi(t) = xi(t) − x̂i (t), t ≥ 0, and
zi(t) = φi(t) − ψi(t), t ∈ [−τ, 0], i ∈ n, then from (3) we have

z′
i (t) = −di(t)zi(t) +

n∑
j=1

aij (t)
[
fj (xj (t)) − fj (x̂j (t))

]

+
n∑

j=1

bij (t)
[
gj (xj (t − τij (t))) − gj (x̂j (t − τij (t)))

]
, t �= tk. (8)

By (8) and (A1), the upper-right Dini derivative of zi(t) is bounded as follows:

D+|zi(t)| = sgn(zi(t))z
′
i (t)

≤ −di(t)|zi(t)| +
n∑

j=1

|aij (t)||fj (xj (t)) − fj (x̂j (t))|

+
n∑

j=1

|bij (t)||gj (xj (t − τij (t))) − gj (x̂j (t − τij (t)))|

≤ −d̂i |zi(t)| +
n∑

j=1

a+
ij Fj |zj (t)| +

n∑
j=1

b+
ijGj |zj (t − τij (t))|, t ∈ [tk−1, tk), (9)

where, for convenience, we let t0 = 0.
At the impulsive moment t = tk , from (3) and (A3), we have

|zi(t
+
k )| = |1 − σik||zi(t

−
k )| ≤ γk|zi(t

−
k )|, k ∈ Z

+. (10)

Step 2 Constructing a comparative system In regard to (9) and (10), we now consider the
following impulsive system in the vector form⎧⎨

⎩
ẑ′(t) = −Dẑ(t) + ÂF ẑ(t) + B+Gẑ(t − τ(t)), t �= tk,

ẑ(tk) = γkẑ(t
−
k ), t = tk,

ẑ(t) = |φ(t) − ψ(t)|, t ∈ [−τ, 0],
(11)

where B+ =
(
b+
ij

)
.

As mentioned in Remark 2, and by similar approach proposed in [1], it can be verified
that, for given φ, ψ ∈ C([−τ, 0],Rn), system (11) has a unique solution ẑ(t) on [−τ, ∞).
Since M1 = −D + ÂF is a Metzler matrix and M2 = B+G ≥ 0, (11) is a positive system
[34]. Furthermore, by some similar lines used in the proof of Lemma 2.1 in [14], it is found
that |zi(t)| ≤ ẑi (t), ∀t ≥ 0, i ∈ n.

Let χ ∈ R
n+ satisfy condition (7), that isMχ � 0. Then we have

σ0χi +
n∑

j=1

(
a+
ij Fj + b+

ij e
σ0τ

+
ij Gj

)
χj < d̂iχi, i ∈ n. (12)

Consider the function Hi(λ), i ∈ n, defined by

Hi(λ) =
n∑

j=1

(
a+
ij Fj + b+

ij e
λτ+

ij Gj

)
χj + (λ − d̂i )χi, λ ∈ [0, ∞).

Clearly, Hi(λ) is continuous and strictly increasing on [0, ∞), Hi(0) < 0 by (12) and Hi(λ)

tends to infinity as λ tends to infinity. Thus, there exists a unique positive solution λi of the
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scalar equation Hi(λ) = 0. Let λ∗ = min1≤i≤n λi > 0 then Hi(λ∗) ≤ 0, ∀i ∈ n, which
yields

− d̂iχi +
n∑

j=1

(
a+
ij Fj + b+

ij e
λτ+

ij Gj

)
χj < −λχi, i ∈ n, λ ∈ (0, λ∗). (13)

In addition, since Hi(σ0) < 0, and by the monotonicity of Hi(λ), then λ∗ > σ0.
Inspired by the technique used in the proof of generalized Halanay inequalities [14, 36],

we now show that

ẑ(t) ≤ χ

min1≤i≤n χi

‖φ − ψ‖∞e−λt
∏
ts≤t

γs, t > 0, (14)

where σ0 < λ < λ∗. To this end, let us consider the functions vi(t), i ∈ n, defined as
follows: ⎧⎪⎨

⎪⎩
vi(t) = kie

−λt
k−1∏
s=0

γs, t ∈ [tk−1, tk),

vi(tk) = vi

(
t+k
) = γkvi

(
t−k
)
, t = tk, k ∈ Z

+,

(15)

where γ0 = 1, ki = χi

χ+ ‖φ − ψ‖∞ and χ+ = min1≤i≤n χi . It can be verified from (15) that,
for each i ∈ n, the function vi(t) is piecewise continuous on [0, ∞). More precisely, vi(t)

is continuous on intervals (tk, tk+1) and right continuous at t = tk .

Step 3 Exponential estimate For a given θ >1, sup−τ≤t≤t0
ẑi (t) < θvi(t0) ∀i ∈ n. Assume

that there exist i ∈ n and t∗ ∈ (t0, t1) such that ẑi (t∗) = θvi(t∗) and ẑl (t) − θvl(t) ≤ 0 ∀t ∈
[t0, t∗], l ∈ n. Then D+(ẑi − θvi)(t∗) ≥ 0. On the other hand, it follows from (11) that

D+ẑi (t∗) ≤ −d̂i ẑi (t∗) +
n∑

j=1

a+
ij Fj ẑj (t∗) +

n∑
j=1

b+
ijGj sup

t∗−τ+
ij ≤t≤t∗

ẑj (t)

≤
⎛
⎝−d̂iki +

n∑
j=1

a+
ij Fj kj +

n∑
j=1

b+
ij e

λτ+
ij Gj kj

⎞
⎠ θe−λt∗

< −λθvi(t∗), (16)

hence D+(ẑi −θvi)(t∗) < 0. This is clearly a contradiction. Therefore, ẑi (t) < θvi(t) holds
for all i ∈ n and t ∈ [t0, t1) from which we obtain

ẑ(t) ≤ χ

χ+
‖φ − ψ‖∞e−λt , t ∈ [t0, t1), (17)

by letting θ → 1+.
Suppose that for some positive integer k, the estimate

ẑ(t) ≤ χ

χ+
‖φ − ψ‖∞

∏
ts≤t

γse
−λt , t ∈ [tl−1, tl), (18)

holds for all l = 1, 2, . . . , k. Then, from (11) and (18), we readily obtain

ẑ
(
t+k
) ≤ χ

χ+
‖φ − ψ‖∞

k∏
s=0

γse
−λtk = v

(
t+k
)
. (19)
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On the other hand, for t ∈ [tk, tk+1) and υ ∈
[
−τ+

ij , 0
]
, we have

vj (t + υ) = kj e
−λ(t+υ)

∏
tl≤t+υ

γl ≤ e
λτ+

ij vj (t)

which leads to supt−τ+
ij ≤s≤t vj (s) ≤ e

λτ+
ij vj (t). Similar to (16) we have

−d̂ivi(t) +
n∑

j=1

a+
ij Fj vj (t) +

n∑
j=1

b+
ijGj sup

t−τ+
ij ≤s≤t

vj (s)

≤ −d̂ivi(t) +
n∑

j=1

(
a+
ij Fj + b+

ijGj e
λτ+

ij
)
vj (t)

=
⎡
⎣−d̂iki +

n∑
j=1

(
a+
ij Fj + b+

ijGj e
λτ+

ij
)
kj

⎤
⎦ k∏

l=0

γle
−λt

≤ −λki

k∏
l=0

γle
−λt .

Therefore,

D+vi(t) ≥ −d̂ivi(t) +
n∑

j=1

a+
ij Fj vj (t) +

n∑
j=1

b+
ijGj sup

t−τ+
ij ≤s≤t

vj (s), t ∈ [tk, tk+1). (20)

By similar arguments used in deriving (17), it follows from (11), (19), and (20) that
ẑi (t) ≤ vi(t) holds for all i ∈ n and t ∈ [tk, tk+1). Consequently, estimate (18) holds for
t ∈ [tk, tk+1), and thus, by induction, (14) holds.

For any t > 0, let Nμj
(t) denote the number of impulses with the impulsive strength μj

in interval (0, t). Then, by (A4), we have (Nμj
(t) − 1)ρj ≤ t , and hence

∏
ts≤t

γs =
q∏

j=1

μ
Nμj

(t)

j ≤
q∏

j=1

μ

t
ρj

+1

j =
q∏

j=1

μje

(∑q
j=1

lnμj
ρj

)
t =

q∏
j=1

μje
σ0t .

This, together with (14), leads to

‖ẑ(t)‖∞ ≤ β‖φ − ψ‖∞e−(λ−σ0)t , t > 0,

where β = Cχ

∏q

j=1 μj and Cχ = 1
χ+ max1≤j≤n χj . Note that α = λ − σ0 > 0 as λ > σ0.

By Step 1, we finally obtain

‖x(t) − x̂(t)‖∞ ≤ β‖φ − ψ‖∞e−αt , t > 0. (21)

Estimate (21) shows that the neural network (3) is exponentially stable. The proof is
complete.

Remark 6 Since −M is an M-matrix [5], condition (7) is satisfied if and only if −M is a
nonsingular M-matrix. Therefore (7) can be verified by various criteria (see, for example,
Chapter 6 in [5] and Proposition 2.1 in [12]).

Remark 7 It can be found in many existing works which deal with time-varying impulses,
the impulsive strength sequence (γk) is usually assumed to be bounded; that is, there exists
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a constant μ > 0 such that γk ≤ μ ∀k ∈ Z
+. In this case, by the same arguments used in

the proof of Theorem 1, we have the following result.

Corollary 1 Assume that Assumptions (A1)–(A3) hold and there exists a Ta > 0 satisfying
(5). Then the neural network (3) is globally exponentially stable if there exist a constant
μ ≥ 1 and a vector χ̃ ∈ R

n+ such that γk ≤ μ, k ∈ Z
+, and

(ÂF + B̃G + σ̃0I − D)χ̃ � 0, (22)

where σ̃0 = lnμ
Ta

and B̃ = (e
σ̃0τ

+
ij b+

ij ).

Remark 8 It should be pointed out that Theorem 1 and Corollary 1 are devoted to non-
autonomous neural networks with bounded impulses. However, it can be seen from the
proof of Theorem 1 that our approach can also be used for non-autonomous neural networks
with unbounded impulses. In that case, the following condition which is widely used in the
literature (see, for example, [22, 36]) can be employed

∃γ0 ≥ 0 : ln γk

tk − tk−1
≤ γ0 ∀k ≥ 1. (23)

Then, stability conditions of the network (3) incorporating (23) are formulated in the
following corollary.

Corollary 2 Let Assumptions (A1)–(A3) and condition (23) hold. Then, the neural network
(3) is globally exponentially stable if there exists a vector χ̂ ∈ R

n+ satisfying

(ÂF + B̌G + γ0I − D)χ̂ � 0, (24)

where B̌ = (e
γ0τ

+
ij b+

ij ).

As a special case, when σik = 0, i ∈ n, k ≥ 1, and I (t) = 0, system (3) becomes the
following nonlinear non-autonomous system without impulses⎧⎨
⎩

x′
i (t) = −di(t)xi(t) +

n∑
j=1

aij (t)fj (xj (t)) +
n∑

j=1
bij (t)gj (xj (t − τij (t))), t ≥ 0,

xi(t) = φi(t), t ∈ [−τ, 0].
(25)

From the proof of Theorem 1 we get the following result.

Corollary 3 Under Assumptions (A1), (A2), assume that there exists a vector υ ∈ R
n+ such

that
(ÂF + B+G − D)υ � 0, (26)

where B+ =
(
b+
ij

)
. Then system (25) is globally exponentially stable. Furthermore, every

solution x(t, φ) of (25) satisfies

‖x(t, φ)‖∞ ≤ Cυ‖φ‖∞e−η0t , t ≥ 0,

where Cυ = max1≤i≤n

(
υi

min1≤j≤n υj

)
, 0 < η0 ≤ min1≤i≤n ηi and ηi is the unique positive

solution of the scalar equation

− d̂i + 1

υi

n∑
j=1

(
a+
ij Fj + b+

ij e
ηiτ

+
ij Gj

)
υj + ηi = 0. (27)
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Remark 9 It is worth mentioning here that Corollary 3 in this paper encompasses Theorem
3 in [9] as a special case. More precisely, system (25) includes linear time-invariant (LTI)
systems with time-varying delays as its particular form. For LTI systems with single delay,
the result of Corollary 3 is same as that of Theorem 3 in [9].

4 Examples

In this section, we give some numerical examples to illustrate the effectiveness and less
conservativeness of the proposed conditions in this paper.

Example 1 Let us reconsider model (2) with heterogeneous delays, where τ11(t) =
0.2| sin(2t)|, τ12(t) = τ21(t) = 1 + 0.5| cos(3t)| and τ22(t) = 0.1| sin(4t)|. We have

D = diag(4, 3), Â =
(
2 1
0 1

)
, B̂ =

(
1 2
0 1

)
, F = G = I

and τ = maxi,j=1,2 τ+
ij = 1.5. With periodic impulsive times tk = kTs and σik = 1.6(−1)k ,

i = 1, 2, we have σ0 = 0.47
Ts

. Therefore,

M =
⎛
⎝−2 + 0.47

Ts
+ e

0.094
Ts 1 + 2e

0.705
Ts

0 −2 + 0.47
Ts

+ e
0.047
Ts

⎞
⎠ .

It is easy to verify that condition (7) holds if and only if

0.47

Ts

+ e
0.094
Ts < 2

which yields Ts > 0.5722. A simulation result with sampling time Ts = 0.58 is given in
Fig. 3 which illustrates the obtained theoretical result.
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Fig. 3 State trajectories of the network with Ts = 0.58



436 L.D. Hai An et al.

Example 2 Consider a three-dimensional non-autonomous neural network in the following
vector form{

x′(t) = −D(t)x(t) + A(t)f (x(t)) + B(t)g(x(t − τ(t))), t ≥ 0,
x(t) = φ(t), t ∈ [−τ, 0], (28)

where D(t) = diag(1 + 4e−0.1| sin t |, 3e−0.1 cos2 t , 4 − 0.2| cos(2t)|) and

A(t) =
⎛
⎜⎝

sin2 t 2| cos(2t)| 0
0 | sin(√2t)| 0√

t sin t

1+t2
0 te−0.5t

⎞
⎟⎠ ,

B(t) =
⎛
⎜⎝

| sin(3t)| 0 e−0.5t cos(4t)

1 + 0.2 cos2(4t)
√

t cos t

1+t2
0

te−0.8t 0 1 + 0.1| sin(√3t)|

⎞
⎟⎠ .

Activation functions f (x), g(x), x ∈ R
3, are given by

f (x) = (
f1(x1), f2(x2), 0

)
, fi(xi) = 0.5

(|xi + 1| − |xi − 1|), i = 1, 2,

g(x) = (0, tanh(x2), tanh(x3)),

and heterogeneous time-varying delays

τ13(t) = | sin(√3t)|, τ22(t) = 0.5| cos(4t)|, τ33(t) = 0.5| sin(5t)|.

(a) It is easy to verify that Assumptions (A1), (A2) are satisfied. In addition, we have

F = diag(1, 1, 0), G = diag(0, 1, 1), D = diag(1 + 4e−0.1, 3e−0.1, 3.8),

Â =
⎛
⎜⎝

1 2 0
0 1 0
3

4 4√3
0 2e−1

⎞
⎟⎠ , B+ =

⎛
⎜⎝

1 0 1
1.2 3

4 4√3
0

5
4e

−1 0 1.1

⎞
⎟⎠ ,

and τ+
13 = 1, τ+

22 = τ+
33 = 0.5. Therefore, condition (26) is equivalent to{−4e−0.1υ1 + 2υ2 + υ3 < 0,

υi > 0, i = 1, 2, 3.
(29)

It is obvious that the solution region of (29) is nonempty. By Corollary 3, system (28)
is globally exponentially stable. Let us take υ = (1, 0.5, 1)T satisfying (29) then, by
solving (27), the exponential convergent rate η0 = 0.6683 and every solution x(t, φ)

of (28) satisfies
‖x(t, φ)‖∞ ≤ 2‖φ‖∞e−0.6683t , t ≥ 0.

Remark 10 In [22], an improved stability criterion was derived for a class of non-
autonomous neural networks with time-varying delays. However, the proposed method of
[22] leads to a hard constraint in deriving the exponential convergent rate. Specifically, by
[22], the matrices P(t) = −D(t) + |A(t)|F and Q(t) = |B(t)|G will be estimated as
follows

P(t) ≤
⎛
⎝−1 − 4e−0.1 0 0

0 −3e−0.1 0
0 0 −4

⎞
⎠

︸ ︷︷ ︸
P̂

+
⎛
⎝ sin2 t 2| cos(2t)| 0

0 | sin(√2t)| 0
0 0 0.2| cos(2t)|

⎞
⎠

︸ ︷︷ ︸
(α̂ij (t))
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and Q(t) ≤ Q̂ = diag(0, 3
4 4√3

, 1.1). It can be seen that there exists a vector υ ∈ R
3+

satisfying (λI3 + P̂ + eλτ Q̂)υ � 0, where τ = maxij τ+
ij = 1, if and only if λ < 1.0025.

In that case, let υ = (1, 1, 1)T then the exponential convergent rate is defined by 0 < α <

λ − μ, where μ > 0 is a constant satisfying the following estimate for some b ≥ 0

∫ t

0
θ̂ (s)ds ≤ μt + b ∀t ≥ 0,

where θ̂ (s) = max1≤i≤3
∑3

j=1 α̂ij (s). Firstly, it is hard to compute
∫ t

0 θ̂ (s)ds. Secondly,

the estimate μ ≥ 1
t

∫ t

0 (sin2(s) + 2| cos(2s)|)ds − b
t
∀t > 0, implies that α < λ −

lim inft→∞ 1
t

∫ t

0

(
sin2(s) + 2| cos(2s)|) ds. Since sin2(t)+2| cos(2t)| ≥ 1

2 ∀t ≥ 0, the expo-
nential convergent rate derived by the method of [22] does not exceed 0.5025, which is
obviously less than η0.

(b) Now, we consider the neural network (28) with impulsive effects specified by
{

γk = 1.6 + 0.5 sin kπ
2 , k ∈ Z

+,

tk − tk−1 = 1 − 1
k(k+1) , t0 = 0.

(30)

Note at first that (tk) is a strictly increasing sequence, tk = ∑k
j=1

(
1 − 1

j (j+1)

)
=

k −1+ 1
k+1 → ∞. Also, it is evident that γk ∈ {μ1, μ2, μ3} ∀k ≥ 1, where μ1 = 2.1,

μ2 = 1.6, μ3 = 1.1. In addition, (A4) holds with ρ1 = infk≥1

{
4 − 4

(k+1)(k+5)

}
=

11
3 , ρ2 = infk≥2

{
2 − 2

(k+1)(k+3)

}
= 28

15 and ρ3 = infk≥3

{
4 − 4

(k+1)(k+5)

}
= 31

8 .

Therefore σ0 =∑3
j=1

lnμj

ρj
= 0.4787 and

M = ÂF + B̂G + σ0I3 − D =
⎛
⎝−3.1406 2 1.6140

0 −0.5118 0
0 0 −1.9238

⎞
⎠ .

Let χ = (1, 0.5, 1)T ∈ R
3+ then Mχ � 0. By Theorem 1, the impulsive neural net-

work (28) and (30) is globally exponentially stable. According to (21), every solution
x(t, φ) of (28), (30) satisfies the following exponential estimate

‖x(t, φ)‖∞ ≤ 7.392‖φ‖∞e−0.1396t , t ≥ 0.

A state trajectory of (28) with impulsive effects defined by (30) is given in Fig. 4
which illustrates the obtained theoretical results.

Remark 11 It is found from (30) that a constant γ satisfies ln γk

tk−tk−1
≤ γ∀k ≥ 1, if and only

if γ ≥ 2 ln(2.1). Therefore, a positive number λ satisfying condition

{
(λI3 + P̂ + eλτ Q̂)υ � 0, υ ∈ R

3+,

λ > γ,

does not exist. Thus, stability conditions proposed in [22] cannot be applied to the impulsive
neural network (28), (30).
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Fig. 4 A state trajectory of (28), (30)

Example 3 Consider the following linear system with constant impulsive strength μ

{
ẋ(t) = −x(t) + B(t)x(t − 0.2), t �= kTs, k ∈ Z

+,

x(t) = μx(t−), t = kTs,
(31)

where Ts > 0 is a sampling time and B(t) =
(
0.8 1 + 0.5| sin(2t)|
0 0.8

)
.

Let Ts = 0.25. Theorem 1 ensures that system (31) is globally exponentially stable for
impulsive strength |μ| < 1.0439. However, the system can be stable for |μ| < 1.0499
by simulation results. This result shows that, for this example, the sufficient conditions
proposed in Theorem 1 are very closed to the critical result which demonstrates the
effectiveness of the proposed method in this paper.

5 Concluding Remarks

In this paper, the problem of global exponential stability analysis has been addressed for
a class of non-autonomous neural networks with heterogeneous delays and time-varying
impulsive effects. Based on the comparison principle, sufficient delay-dependent condi-
tions have been derived using M-matrix theory ensuring that, under destabilizing impulsive
effects, the system is globally exponentially stable. The effectiveness of the derived
conditions has been illustrated by numerical examples.

The approach presented in this paper can also be extended to some related important
problems such as state bounding or synchronization analysis and control of non-autonomous
impulsive networks where the existing methods, for example, based on the Lyapunov–
Krasovskii functionals or using fixed-point theorems are not effective. However, as men-
tioned above, a gap between the derived sufficient conditions and necessary-type conditions
still exists which produces conservativeness in the derived stability conditions. Reducing
this gap or furthermore establishing if and only if -type conditions is an interesting issue. In
addition, unlike autonomous systems, for non-autonomous systems, the rate of change of
the system parameters affects stability of the system. How to utilize the rate of change of
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the system parameters to derive stability conditions is another interesting and challenging
problem. These issues require further investigations in the future works.

Acknowledgments The authors would like to thank the Editors and the anonymous Referees for their
constructive comments and suggestions that helped to improve the present paper.
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