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Abstract In the paper (Vietnam J. Math. 42: 153–157, 2014) (cf. also the earlier appeared
and more general paper (Kathmandu Univ. J. Sci. Eng. Technol. 8: 89–92, 2012)), Ganie and
Sheikh characterized matrices A = (ank) ∈ (bv(p), Y ) in terms of the matrix coefficients
ank , where Y ∈ {ac∞, ac, ac0} (the space of sequences being almost bounded, almost con-
vergent, and almost convergent to 0, respectively). In this publication, we pursue two aims:
The first one is to give an example showing that none of the results in (Vietnam J. Math.
42: 153–157, 2014) (and thus none of the Theorems 2.3 and 2.4 and Corallary 2.5 in (Kath-
mandu Univ. J. Sci. Eng. Technol. 8, 89–92, 2012)) is correct in general and to correct and
extend these results. The second one is to apply the reduction method presented in (J. Anal.
9: 149–181, 2001). In this way, we get easily the (corrected) results of Ganie and Sheikh
(cf. Remark 7) and many other theorems of Toeplitz–Silverman type (cf. Sections 5 and 6)
by reduction to known theorems of Toeplitz–Silverman type. So it is not necessary to prove
all the results completely anew, as Ganie and Sheikh tried.

Keywords Sequence spaces of non-absolute type · Theorems of toeplitz–silverman type
for matrix maps or SM-maps · Double sequence spaces · Almost convergence

Mathematics Subject Classification (2010) 40C05 · 40D25 · 46A45

1 Introduction, Notation, and Preliminaries

Throughout this note, we assume familiarity with summability and the standard sequence
spaces (see, e.g., [3, 20]). So we denote by ω, �∞, c, c0, cs, �, and bv the set of all sequences
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in K (K = R or K = C), of all bounded sequences, of all convergent sequences, of all
sequences converging to 0, of all convergent series, of all absolutely summable sequences,
and of all sequences with bounded variation, respectively. A sequence space X is defined to
be a linear subspace of ω. If X is any sequence space, then its β-dual Xβ is defined by

Xβ :=
{

(yk) ∈ ω

∣∣∣ ∀(xk) ∈ X :
∑

k

ykxk converges

}
.

If A = (ank) is an infinite matrix with scalar entries, then we consider the application
domain

ωA :=
{

(xk) ∈ ω

∣∣∣ ∑
k

ankxk converges for each n ∈ N

}

of A. We have the following obvious result:

Proposition 1 (cf. [3, 2.3.2(e)]) If A = (ank) is any matrix, then X ⊂ ωA if and only if
(ank)k ∈ Xβ for each n ∈ N.

For fixed sequence spaces X and Y and any infinite matrix A = (ank), we say that A

maps X into Y , if X ⊂ ωA and Ax := (
∑

k ankxk)n ∈ Y for all x ∈ X. The set of all
matrices A mapping X into Y is denoted by (X, Y ).

Let p = (pk) be a sequence of positive reals throughout this paper. In the following
considerations, we deal with the following sets of sequences:

�∞(p) :=
{
x ∈ ω

∣∣∣ sup
k

|xk|pk < ∞
}

,

c0(p) :=
{
x ∈ ω

∣∣∣ lim
k

|xk|pk = 0

}
,

c(p) :=
{
x ∈ ω

∣∣∣ ∃α ∈ K : x − αe ∈ c0(p)
}

, where e := (1, 1, . . .),

�(p) :=
{

x ∈ ω

∣∣∣ ∞∑
k=1

|xk|pk < ∞
}

,

bv(p) :=
{

x ∈ ω

∣∣∣ ∞∑
k=1

|xk − xk−1|pk < ∞
}

, where x0 := 0,

M(p) :=
{

x ∈ ω

∣∣∣ ∃N ∈ N :
∑

k

|xk|qkN
− qk

pk < ∞
}

, where
1

pk

+ 1

qk

= 1,

M∞(p) :=
∞⋂

N=2

{
x ∈ ω

∣∣∣ ∑
k

|xk|N
1

pk < ∞
}

,

M0(p) :=
∞⋃

N=2

{
x ∈ ω

∣∣∣ ∑
k

|xk|N
−1
pk < ∞

}
.

Remark 1 Let p = (pk) with pk > 0 be given.

(a) Each of the sets �∞(p), c0(p), c(p), �(p), and bv(p) is a linear space if and only if
p ∈ �∞ (cf. [8, p. 487]).
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(b) �∞(p) = �∞ if and only if (cf. [8, p. 487])1

0 < lim inf
k

pk ≤ lim sup
k

pk < ∞. (1)

(c) c0(p) = c0 if and only if (1) holds (cf. [12, Lemma 1]).
(d) c(p) = c if and only if (1) holds, which is an immediate consequence of statement (c)

since c = c0 ⊕ 〈e〉.
(e) Let 0 < pk ≤ 1 and qk the conjugate index of pk . Then �(p) = � if and only if there

exists an N ∈ N with
∑

k Nqk < ∞ (cf. [18, Theorem 3]).
(f) �(p) = � ⇐⇒ bv(p) = bv. 

Aiming to characterizeX ⊂ ωA whereA = (ank) is any infinite matrix andX ∈ {�∞(p),
c0(p), c(p), �(p), bv(p)}, by Proposition 1, it is sufficient to know the β-duals of the spaces
�∞(p), c0(p), c(p), �(p), and bv(p).

If y = (yk) ∈ cs, then we put Rk := ∑∞
j=k yj (k ∈ N).

Proposition 2 Let p = (pk) with pk > 0 (k ∈ N) be fixed.

(a) �∞(p)β =
{

M∞(p) (cf. [9, Theorem 2]),
�
β∞ = � if 0 < lim infk pk ≤ lim supk pk < ∞ (cf. Remark 1(b)).

(b) c0(p)β =
{

M0(p) (cf. [13, Theorem 6]),
c
β

0 = � if 0 < lim infk pk ≤ lim supk pk < ∞ (cf. Remark 1(c)).

(c) c(p)β =
{

cs ∩ M0(p) (cf. [8, Theorem 1]),
cβ = � if 0 < lim infk pk ≤ lim supk pk < ∞ (cf. Remark 1(d)).

(d) �(p)β =
{

�∞(p) if pk ≤ 1 for all k ∈ N (cf. [18, Theorem 7]),
M(p) if 1 < pk for all k ∈ N (cf. [13, Theorem 1]).

(e) bv(p)β =
⎧⎨
⎩

{
y ∈ ω | supn |Rn|pn < ∞}

if pk ≤ 1 for all k ∈ N,{
y ∈ ω | ∃N ∈ N \ {1} : ∑

k |Rk|qkN−qk < ∞ and
supn

∑n
k=1 |Rn|qkN−qk < ∞}

if 1 < pk (k ∈ N) and p ∈ �∞
(cf. [7, Theorem 2.2 and Theorem 2.1, respectively]).

General assumption : In the following, let p = (pk) be a bounded sequence with pk > 0
(k ∈ N) and let qk be such that 1 = 1

pk
+ 1

qk
(k ∈ N). Moreover, a strictly increasing

sequence (nk) in N will be called an index sequence.

2 Some Remarks on the Claims by Ganie and Sheikh in [5] (and [17])

In [10], Lorentz defined

ac :=
⎧⎨
⎩x = (xk) ∈ ω

∣∣∣ ∃αx ∈ K : 1
n

n∑
j=1

xν+j−1 −→ αx uniformly in ν ∈ N

⎫⎬
⎭ ,

1Note: 0 < infk pk ≤ supk pk < ∞ ⇐⇒ 0 < lim infk pk ≤ lim supk pk < ∞ since all pk > 0.
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the set of all almost convergent sequences. Analogously, we consider the sets

ac0 :=
⎧⎨
⎩x = (xk) ∈ ω

∣∣∣ 1

n

n∑
j=1

xν+j−1 −→ 0 uniformly in ν ∈ N

⎫⎬
⎭ ,

ac∞ :=
⎧⎨
⎩x = (xk) ∈ ω

∣∣∣ sup
n,ν

∣∣∣∣∣∣
1

n

n∑
j=1

xν+j−1

∣∣∣∣∣∣ < ∞
⎫⎬
⎭ ,

wac∞ :=
⎧⎨
⎩x = (xk) ∈ ω

∣∣∣ ∃N ∈ N : sup
n≥N,ν∈N

∣∣∣∣∣∣
1

n

n∑
j=1

xν+j−1

∣∣∣∣∣∣ < ∞
⎫⎬
⎭ ,

the set of all sequences being almost convergent to 0, the set of all almost bounded
sequences, and the set of all weakly almost bounded sequences. The space ac∞ (and more
generally ac∞(p) where p = (pk) ∈ �∞ with pk > 0 (k ∈ N)) has been defined and
studied by Nanda in [15] (cf. also [14]).

Proposition 3 ac∞ = �∞ = wac∞.2

Proof The inclusions �∞ ⊂ ac∞ ⊂ wac∞ are obvious (cf. [15, Proposition 2]). For a proof
of wac∞ ⊂ �∞, let x ∈ wac∞ and N ∈ N with

sup
n≥N,ν∈N

1

n

∣∣∣∣∣
ν+n−1∑
k=ν

xk

∣∣∣∣∣ =: M < ∞

be given. Then we have for each ν ∈ N the inequalities

|xν | =
∣∣∣∣∣∣
ν+N∑
k=ν

xk −
ν+N∑

k=ν+1

xk

∣∣∣∣∣∣ =
∣∣∣∣∣∣
ν+N∑
k=ν

xk −
ν+1+N−1∑

k=ν+1

xk

∣∣∣∣∣∣ ≤ (2N + 1)M,

thus x ∈ �∞.

In [5], Ganie and Sheikh aimed to characterize matrices A to be a member of
(bv(p), ac∞), (bv(p), ac0), and (bv(p), ac), respectively. As an example, we cite [5, The-
orem 1]:

Claim (cf. [5, Theorem 1]) Let 1 < pk ≤ H < ∞ for every k ∈ N. Then A ∈
(bv(p), ac∞) if and only if there exists an integer C > 1 such that3

sup
n,m∈N

∑
k

|a(n, k, m)|qkC−qk < ∞, (2)

where

a(n, k,m) := 1

m

m∑
j=1

an+j−1,k (n, k,m ∈ N).

2In his review, MR3218851 (Mathematical Reviews) on the paper [5] Faruk Özger mentioned already ac∞ =
�∞ without proof or some citation.
3In contrast to the notation in [5], we use during this claim and the following example N instead of N0 as
index set for sequences and matrices.
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The following example shows that Theorems 1, 2, and 3 in [5] are not correct in general.
In particular, the more general Theorems 2.3 and 2.4 in [17] are also not correct in general.

Example 1 We consider the matrix A = (ank) defined by a1k = 1
k
and ank = 0 for n > 1

(k ∈ N). Set also pk = 2 (k ∈ N), then qk = 2 (k ∈ N). First, we verify that the condition
(2) (that is (2) in [5, Theorem 1]) holds. By the definition of A, we get

a(n, k, m) = 1

m

m∑
j=1

an+j−1,k = 0 for n > 1

and

a(1, k, m) = 1

m
· 1
k

(k,m ∈ N).

Therefore, for any C ∈ N, we obtain

sup
m,n∈N

∑
k

|a(n, k,m)|qkC−qk = C−2 sup
m∈N

∑
k

(
1

m
· 1
k

)2

= C−2
∑

k

(
1

k

)2

< ∞.

So the condition (2) in [5, Theorem 2] holds. In view of

lim
m→∞ a(n, k, m) = lim

m→∞ 0 = 0 (n, k ∈ N)

and

lim
m→∞ a(1, k,m) = lim

m→∞
1

m
· 1
k

= 0 (k ∈ N)

the condition (3) in [5, Theorem 1] holds with βk = 0 (k ∈ N).
Now let us consider the sequence x = (1, 1, . . .). Since∑

k

|xk − xk−1|2 = 1 < ∞,

then x ∈ bv(p). On the other hand x �∈ ωA, since

[Ax]1 =
∑

k

a1kxk =
∑

k

1

k
· 1 = ∞.

Therefore A �∈ (bv(p), ac∞), thus A �∈ (bv(p), ac) and A �∈ (bv(p), ac0). 

Remark 2 The given example shows that bv(p) ⊂ ωA does not hold in general under the
conditions of [5, Theorems 1–3]. As we will state in Section 6, even under the additional
assumption bv(p) ⊂ ωA, the condition (2) in Theorem 2 of [5] is not correct in general.
Moreover, in Applications 1(e), we will state that the condition (2) in Theorem 1 of [5] char-
acterizes the matrices A ∈ (�(p), ac∞). Thus, because of (�(p), ac∞) � (bv(p), ac∞), the
condition (2) in Theorem 1 of [5] is not sufficient for A ∈ (bv(p), ac∞) with bv(p) ⊂ ωA.
Note that both parts of the proof of [5, Theorem 1] contain wrong conclusions. 

In [5], Ganie and Sheikh tried to prove Theorems 1, 2, and 3 entirely anew, in particular,
they do not use related results like those in [7]. In the following, we use a simple method,
developed in [4], to reduce results corresponding to those in [5] to results in [7]; we call it
the reduction method. Moreover, in this way, we are able to characterize matrices A to be
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a member of (X, ac∞), (X, ac0), and (X, ac) where X denotes one of the sequence spaces
�∞(p), c0(p), c(p), �(p), and bv(p) for any given sequence p = (pk) ∈ �∞ with pk > 0
(k ∈ N). We will do it in three steps and—following the expositions in [4]—we do it in a
very general as well as simple way.

3 Characterization of A ∈ (X, Y ) for Special X and Y

For the application of the reduction method, we need a characterization of A ∈ (X, Y )

in terms of the coefficients of A where X ∈ {�∞(p), c0(p), c(p), �(p), bv(p)} and Y ∈
{�∞, c, c0}. For that, we searched the bibliography for theorems of Toeplitz–Silverman type
in the case of the spaces X and Y being in consideration.

Proposition 4 (X = �∞(p) and Y ∈ {�∞, c0, c}) For any matrix A = (ank), the following
statements hold:

(a) A ∈ (�∞(p), �∞) ⇐⇒ supn

∑
k |ank|N

1
pk < ∞ for every N ∈ N\{1}

(cf. [9, Theorem 3]).

(b) A ∈ (�∞(p), c) ⇐⇒

⎧⎪⎨
⎪⎩

(i)
∑

k |ank|N
1

pk < ∞ converges uniformly in n

for every N ∈ N\{1},
(ii) (ank)n ∈ c (k ∈ N)

(cf. [9, Corollary of Theorem 3]).

(c) A ∈ (�∞(p), c0) ⇐⇒

⎧⎪⎨
⎪⎩

(i)
∑

k |ank|N
1

pk < ∞ converges uniformly in n

for every N ∈ N\{1},
(ii) (ank)n ∈ c0 (k ∈ N)

(immediate corollary of Part (b) and its proof).

Proposition 5 (X = c0(p) and Y ∈ {�∞, c0, c}) For any matrix A = (ank), the following
statements hold:

(a) A ∈ (c0(p), �∞) ⇐⇒ supn

∑
k |ank|M

−1
pk < ∞ for some M ∈ N \ {1}

(cf. [11, Theorem 1 with q := e]).

(b) A ∈ (c0(p), c) ⇐⇒
{
(i) supn

∑
k |ank|M

−1
pk < ∞ for some M ∈ N \ {1},

(ii) (ank)n ∈ c (k ∈ N)

(cf. [8, Corollary 2 of Theorem 9]).

(c) A ∈ (c0(p), c0) ⇐⇒
{
(i) supn

∑
k |ank|M

−1
pk < ∞ for some M ∈ N \ {1},

(ii) (ank)n ∈ c0 (k ∈ N)

(immediate corollary of Part (b)).

Proposition 6 (X = c(p) and Y ∈ {�∞, c0, c}) For any matrix A = (ank), the following
statements hold:

(a) A ∈ (c(p), �∞) ⇐⇒
{
(i) supn

∑
k |ank|M

−1
pk < ∞ for some M > 1,

(ii) (ank)k ∈ cs (n ∈ N) and supn

∣∣∑
k ank

∣∣ < ∞
(note e ∈ c(p), cf. [11, Theorem 1 with q := e]).
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(b) A ∈ (c(p), c) ⇐⇒

⎧⎪⎨
⎪⎩

(i) supn

∑
k |ank|M

−1
pk < ∞ for some M ∈ N \ {1},

(ii) (ank)n ∈ c (k ∈ N),

(iii) (ank)k ∈ cs (n ∈ N) and limn

∑
k ank exists

(cf. [8, Theorem 9]).

(c) A ∈ (c(p), c0) ⇐⇒

⎧⎪⎨
⎪⎩

(i) supn

∑
k |ank|M

−1
pk < ∞ for some M ∈ N \ {1},

(ii) (ank)n ∈ c0 (k ∈ N),

(iii) (ank)k ∈ cs (n ∈ N) and limn

∑
k ank = 0

(cf. Part (b)).

Remark 3 If 0 < lim infk pk ≤ lim supk pk < ∞, then �∞(p) = �∞, c(p) = c, and
c0(p) = c0 by Remark 1. Thus, on account of the corresponding well-known Toeplitz–
Silverman theorems, we may consider pk = qk = 1 and N = M = 1 in Propositions 4, 5,
and 6.

Proposition 7 (X = �(p) and Y ∈ {�∞, c0, c}) Let 1 < pk (k ∈ N). Then for any matrix
A = (ank), the following statements hold:

(a) A ∈ (�(p), �∞) ⇐⇒ supn

∑
k |ank|qkM−qk < ∞ for some M ∈ N \ {1}

(cf. [9, Theorem 1]).

(b) A ∈ (�(p), c) ⇐⇒
{
(i) supn

∑
k |ank|qkM−qk < ∞ for some M ∈ N \ {1},

(ii) (ank)n ∈ c (k ∈ N)

(cf. [9, Corollary 1]).

(c) A ∈ (�(p), c0) ⇐⇒
{
(i) supn

∑
k |ank|qkM−qk < ∞ for some M ∈ N \ {1},

(ii) (ank)n ∈ c0 (k ∈ N)

(cf. [9, Corollary 1 with αk = 0]).

Proposition 8 (X = �(p) and Y ∈ {�∞, c0, c}) Let 0 < pk ≤ 1 (k ∈ N). Then for any
matrix A = (ank), the following statements hold:

(a) A ∈ (�(p), �∞) ⇐⇒ supn,k |ank|pk < ∞ (cf. [9, Theorem 1]).

(b) A ∈ (�(p), c) ⇐⇒
{
(i) supn,k |ank|pk < ∞,

(ii) (ank)n ∈ c (k ∈ N)
(cf. [9, Corollary 1]).

(c) A ∈ (�(p), c0) ⇐⇒
{
(i) supn,k |ank|pk < ∞,

(ii) (ank)n ∈ c0 (k ∈ N)

(cf. [9, Corollary 1 with αk = 0]).

Proposition 9 (X = bv(p) and Y ∈ {�∞, c0, c}) Let 1 < pk (k ∈ N) and A = (ank) be an
infinite matrix with bv(p) ⊂ ωA, that is,

∀n ∈ N, ∃Nn ∈ N\{1} :
∑

r

∣∣∣∣∣
∞∑

k=r

ank

∣∣∣∣∣
qr

N
−qr
n < ∞ and sup

r

r∑
j=1

∣∣∣∣∣
∞∑

k=r

ank

∣∣∣∣∣
qj

N
−qj
n < ∞.

Then the following statements hold:

(a) A ∈ (bv(p), �∞) ⇐⇒ ∃M ∈ N \ {1} : supn

∑
k

∣∣∣∑∞
j=k anj

∣∣∣qk

M−qk < ∞
(cf. [7, Theorem 3.2(2.)]).
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(b) A ∈ (bv(p), c0) ⇐⇒
⎧⎨
⎩

(i) ∃M ∈ N \ {1} : supn

∑
k

∣∣∣∑∞
j=k anj

∣∣∣qk

M−qk < ∞,

(ii) ∀k ∈ N :
(∑∞

j=k anj

)
n

∈ c0

(cf. [7, Theorem 3.2(3.)]).

(c) A ∈ (bv(p), c) ⇐⇒
⎧⎨
⎩

(i) ∃M ∈ N \ {1} : supn

∑
k

∣∣∣∑∞
j=k anj

∣∣∣qk

M−qk < ∞,

(ii) ∀k ∈ N :
(∑∞

j=k anj

)
n

∈ c

(cf. [7, Theorem 3.2(4.)]).

Proposition 10 (X = bv(p) and Y ∈ {�∞, c0, c}) Let 0 < pk ≤ 1 (k ∈ N). Then for any
matrix A = (ank), the following statements hold:

(a) A ∈ (bv(p), �∞) ⇐⇒ supn,k

∣∣∣∑∞
j=k anj

∣∣∣pk

< ∞ (cf. [7, Theorem 3.2(2.)]).

(b) A ∈ (bv(p), c0) ⇐⇒
⎧⎨
⎩

(i) supn,k

∣∣∣∑∞
j=k anj

∣∣∣pk

< ∞,

(ii) ∀k ∈ N :
(∑∞

j=k anj

)
n

∈ c0

(cf. [7, Theorem 3.2(3.)]).

(c) A ∈ (bv(p), c) ⇐⇒
⎧⎨
⎩

(i) supn,k

∣∣∣∑∞
j=k anj

∣∣∣pk

< ∞,

(ii) ∀k ∈ N :
(∑∞

j=k anj

)
n

∈ c

(cf. [7, Theorem 3.2(4.)]).

4 Theorems of Toeplitz–Silverman Type for SM-Maps

In the following, we deal with double sequence spaces with a, in some sense, ‘uniform
structure’, in particular we consider the following double sequence spaces:

� :=
{
x = (xnν)

∣∣∣ ∀ n, ν ∈ N : xnν ∈ K

}
(set of all double sequences),

Mp :=
{

x = (xnν) ∈ �

∣∣∣ ∃ Nx ∈ N : sup
n,ν≥Nx

|xnν | < ∞
}

(double sequences being bounded in the sense of Pringsheim),

Mau :=
{

x = (xnν) ∈ �

∣∣∣ ∃ Nx ∈ N : sup
n≥Nx ; ν∈N

|xnν | < ∞
}

(almost uniformly bounded double sequences),

Mu :=
{

x = (xnν) ∈ �

∣∣∣ sup
n,ν∈N

|xnν | < ∞
}

(uniformly bounded double sequences),

C :=
∏
n∈N

c = {x = (xnν) ∈ � | ∀ν ∈ N : (xnν)n ∈ c} ,
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Ct := {x = (xnν) ∈ � | (xνn) ∈ C} ,

Cp :=
{
x = (xnν) ∈ �

∣∣∣ ∃ px ∈ K : lim
r

sup
n,ν≥r

|xnν − px | = 0

}
(double sequences being convergent in the sense of Pringsheim),

Cp0 :=
{
x = (xnν) ∈ �

∣∣∣ lim
r

sup
n,ν≥r

|xnν | = 0

}
,

Cr := {
x = (xnν) ∈ Cp | (xnν)ν ∈ c (n ∈ N) and (xnν)n ∈ c (ν ∈ N)

}
= Cp ∩ C ∩ Ct

(double sequences being regularly convergent (in the sense of Hardy)),

Cr0 := Cp0 ∩ Cr ,

Ch :=
{

x = (xnν) ∈ �

∣∣∣ ∃ hx ∈ K : lim
r

sup
max{n,ν}≥r

|xnν − hx | = 0

}
,

(note, by mistake, in [4] this convergence was identified with Hardy convergence),

Ch0 :=
{

x = (xnν) ∈ �

∣∣∣ lim
r

sup
max{n,ν}≥r

|xnν | = 0

}
,

Cuc :=
{

x = (xnν) ∈ �

∣∣∣ ∃ ux ∈ K : lim
r

sup
n≥r;ν∈N

|xnν − ux | = 0

}

(double sequences being uniformly convergent to a constant value),

Cu0 :=
{

x = (xnν) ∈ �

∣∣∣ lim
r

sup
n≥r;ν∈N

|xnν | = 0

}

(double sequences being uniformly convergent to 0),

F := Mu ∩ Cuc,

F0 := Mu ∩ Cu0.

As it was stated in [4, Proposition 3], the members of the double sequence spaces defined
above may be easily characterized in terms of sequences:

Proposition 11 (cf. [4, Proposition 3]) Let x = (xnν) ∈ � be given. Then:

(a) x ∈ Mp ⇐⇒ ∀ index sequences (νr ) and (nr ) in N : (xnrνr ) ∈ �∞.
(b) x ∈ Mau ⇐⇒ ∀ (νr ) and index sequences (nr ) in N : (xnrνr ) ∈ �∞.
(c) x ∈ Mu ⇐⇒ ∀ (νr ) and (nr ) in N : (xnrνr ) ∈ �∞.
(d) x ∈ Cp ⇐⇒ ∃ px ∈ K, ∀ index sequences (νr ) and (nr ) in N : limr xnrνr = px .
(e) x ∈ Cp0 ⇐⇒ ∀ index sequences (νr ) and (nr ) in N : (xnrνr ) ∈ c0.
(f) x ∈ Ch ⇐⇒ ∃ hx ∈ K, ∀ (νr ) and (nr ) in N with max{nr, νr } ↗

∞ : limr xnrνr = hx .
(g) x ∈ Ch0 ⇐⇒ ∀ (νr ) and (nr ) in N with max{nr, νr } ↗ ∞ : (xnrνr ) ∈ c0.
(h) x ∈ Cuc ⇐⇒ ∃ ux ∈ K, ∀ (νr ) and index sequences (nr ) in N : limr xnrνr = ux .
(i) x ∈ Cu0 ⇐⇒ ∀ (νr ) and index sequences (nr ) in N : (xnrνr ) ∈ c0.

Now, we define maps defined by sequences of matrices (SM-maps).
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Definition 1 (cf. [4]) Let A = (A(ν)) be a sequence of infinite matrices A(ν) = (a
(ν)
nk ), X

be a sequence space, and Y be a double sequence space.

�A :=
{

x = (xk) ∈ ω

∣∣∣ ∀ n, ν ∈ N :
∑

k

a
(ν)
nk xk converges

}
=

⋂
ν

ωA(ν) ,

YA :=
{

x ∈ �A
∣∣∣ Ax :=

(
A(ν)x

)
ν

∈ Y with A(ν)x :=
(∑

k

a
(ν)
nk xk

)}

(domain ofA with respect to Y).

Then the map
A : �A −→ �, x �−→ Ax

is well-defined and called an SM-map. We use the notation

A ∈ (X,Y) : ⇐⇒ X ⊂ YA (that is,A maps X into Y).

Example 2 LetAσ := (A(ν)) where A(ν) = (a
(ν)
nk ) is defined by

a
(ν)
nk :=

{
1
n

if k = ν, . . . , ν + n − 1,
0 otherwise

(n, ν, k ∈ N). (3)

Then �∞ = ac∞ = MuAσ
= MauAσ

= wac∞ (cf. Proposition 3), ac = CucAσ
,

ac0 = Cu0Aσ
. 

The observations in Proposition 11 give us the tool to reduce theorems of Toeplitz–
Silverman type for SM-maps to corresponding Toeplitz–Silverman theorems for matrix
maps.

Corollary 1 (cf. Proposition 11, [4, Corollary 4]) Let A = (A(ν)) be a sequence of infinite
matrices A(ν) = (a

(ν)
nk ) and let X be a sequence space with X ⊂ �A. Then the following

equivalences are valid:

(a) A ∈ (X,Mp) ⇐⇒ ∀ index sequences (νr ) and (nr ) in N : (a
(νr )
nr k

) ∈ (X, �∞).

(b) A ∈ (X,Mau) ⇐⇒ ∀ (νr ) and index sequences (nr ) in N : (a
(νr )
nr k

) ∈ (X, �∞).

(c) A ∈ (X,Mu) ⇐⇒ ∀ (νr ) and (nr ) in N : (a
(νr )
nr k

) ∈ (X, �∞).

(d) A ∈ (X, Cp) ⇐⇒ ∀ index sequences (νr ) and (nr ) in N : (a
(νr )
nr k

) ∈ (X, c)

and all these matrices are pairwise consistent4 on X.
(e) A ∈ (X, Cp0) ⇐⇒ ∀ index sequences (νr ) and (nr ) in N : (a

(νr )
nr k

) ∈ (X, c0).

(f) A ∈ (X, Ch) ⇐⇒ ∀ (νr ), (nr ) in N with max{nr, νr } ↗ ∞ : (a
(νr )
nr k

) ∈ (X, c)

and all these matrices are pairwise consistent on X.
(g) A ∈ (X, Ch0) ⇐⇒ ∀ (νr ), (nr ) in N with max{nr, νr } ↗ ∞ : (a

(νr )
nr k

) ∈ (X, c0).

(h) A ∈ (X, Cuc) ⇐⇒ ∀ (νr ) and index sequences (nr ) in N : (a
(νr )
nr k

) ∈ (X, c)

and all these matrices are pairwise consistent on X.
(i) A ∈ (X, Cu0) ⇐⇒ ∀ (νr ) and index sequences (nr ) in N : (a

(νr )
nr k

) ∈ (X, c0).

4If X ⊂ ω and A,B are matrices with X ⊂ cA ∩ cB , then A and B are called consistent on X, if limA x =
limB x for each x ∈ X.
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Table 1 Summary of the results of Corollary 2

X \ Y Mp Mau Mu Cp Cp0 Cuc Cu0 F F0

�∞(p) 1) 8) 15) 22) 29) 36) 43) 50) 57)

c0(p) 2) 9) 16) 23) 30) 37) 44) 51) 58)

c(p) 3) 10) 17) 24) 31) 38) 45) 52) 59)

�(p),(0<pk≤1) 4) 11) 18) 25) 32) 39) 46) 53) 60)

�(p),(1<pk<∞) 5) 12) 19) 26) 33) 40) 47) 54) 61)

bv(p),(0<pk≤1) 6) 13) 20) 27) 34) 41) 48) 55) 62)

bv(p),(1<pk<∞) 7) 14) 21) 28) 35) 42) 49) 56) 63)

Using the reduction method, the first author and Seydel characterized SM-maps A ∈
(X,Y) in terms of the matrix coefficients, where X ∈ {ϕ, �∞, . . . , bs} and Y ∈
{Mp, . . . ,F0} (cf. the double sequence spaces listed in the headline of the following table).
In the following, we complete these results for X ∈ {�∞(p), c0(p), c(p), �(p), bv(p)} and
Y ∈ {Mp, . . . ,F0}. Further, at the end of this section, we will consider in Remark 4 the
cases of the double sequence spaces C, Ct , Cr , Cr0, Ch, and Ch0.

For example,A ∈ (c(p),Cuc) is characterized in part 38) of Corollary 2.
In all cases we assume X ⊂ �A, or equivalently, (a

(ν)
nk )k ∈ Xβ (n, ν ∈ N) which is a

necessary condition for X ⊂ YA. Note that in almost all cases the characterizing conditions
are already contained in those listed below.

To present clearly the characterizations 1)–63), we proceed as follows: We list all
these characterizations in the following corollary, prove the second one and give for the
remaining—completely analogous—proofs only some hints (in square brackets). Unusu-
ally, for the sake of clarity, we place directly the proof and the hints behind the respective
characterization (Table 1).

Corollary 2 Let p = (pk) ∈ �∞ with pk > 0 (k ∈ N).

1) A ∈ (�∞(p),Mp) ⇐⇒ (4), where

∀N ∈ N\{1}, ∃KN ∈ N : sup
n,ν≥KN

∑
k

∣∣∣a(ν)
nk

∣∣∣ N 1
pk < ∞. (4)

[Apply Corollary 1(a) and Proposition 4(a).]
2) A ∈ (c0(p),Mp) ⇐⇒ (5), where

∃M ∈ N \ {1}, ∃N ∈ N : sup
n,ν≥N

∑
k

∣∣∣a(ν)
nk

∣∣∣ M −1
pk < ∞. (5)

Proof By Corollary 1(a) (cf. [4, Corollary 4]) and Proposition 5(a), the statement
A ∈ (c0(p),Mp) is equivalent to

(∇) ∀ index sequences (νr ), (nr ) in N, ∃M ∈ N \ {1} : supr

∑
k |a(νr )

nr k
|M −1

pk < ∞.
Obviously, (5) implies (∇). For a proof of the converse implication, we assume that
(∇) holds and that (5) fails, that is,

∀M ∈ N \ {1}, ∀N ∈ N : sup
n,ν≥N

∑
k

∣∣∣a(ν)
nk

∣∣∣ M −1
pk = ∞.
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By that, we can find index sequences (νr ) and (nr ) such that∑
k

∣∣∣a(νr )
nr k

∣∣∣ r −1
pk > r (r ∈ N\{1}).

By (∇), we may choose an M ∈ N \ {1} such that supr

∑
k |a(νr )

nr k
|M −1

pk < ∞. Then

∞ = sup
r≥M

∑
k

∣∣∣a(νr )
nr k

∣∣∣ r −1
pk ≤ sup

r≥M

∑
k

∣∣∣a(νr )
nr k

∣∣∣ M −1
pk < ∞,

which contradicts our assumption.

3) A ∈ (c(p),Mp) ⇐⇒ (5) and (6), where

∃Ne ∈ N : sup
n,ν≥Ne

∣∣∣∣∣
∑

k

a
(ν)
nk

∣∣∣∣∣ < ∞. (6)

[Apply Corollary 1(a) and Proposition 6(a).]
4) Let 0 < pk ≤ 1. ThenA ∈ (�(p),Mp) ⇐⇒ (7), where

∃N ∈ N : sup
n,ν≥N, k∈N

∣∣∣a(ν)
nk

∣∣∣pk

< ∞. (7)

[Apply Corollary 1(a) and Proposition 8(a).]
5) Let 1 < pk . ThenA ∈ (�(p),Mp) ⇐⇒ (8), where

∃M ∈ N \ {1}, ∃N ∈ N : sup
n,ν≥N

∑
k

∣∣∣a(ν)
nk

∣∣∣qk

M−qk < ∞. (8)

[Apply Corollary 1(a) and Proposition 7(a).]
6) Let 0 < pk ≤ 1. ThenA ∈ (bv(p),Mp) ⇐⇒ (9), where

∃N ∈ N : sup
n,ν≥N, k∈N

∣∣∣∣∣∣
∞∑

j=k

a
(ν)
nj

∣∣∣∣∣∣
pk

< ∞. (9)

[Apply Corollary 1(a) and Proposition 10(a).]
7) Let 1 < pk . ThenA ∈ (bv(p),Mp) ⇐⇒ (10) and (11), where

∀n, ν ∈ N, ∃Mnν > 1 : sup
m

m∑
k=1

∣∣∣∣
∞∑

j=m

a
(ν)
nj

∣∣∣∣
qk

M
−qk
nν < ∞, (10)

∃M ∈ N \ {1}, ∃N ∈ N : sup
n,ν≥N

∑
k

∣∣∣∣
∞∑

j=k

a
(ν)
nj

∣∣∣∣
qk

M−qk < ∞. (11)

[Apply Corollary 1(a) and Proposition 9(a).]
8) A ∈ (�∞(p),Mau) ⇐⇒ (12), where

∀N ∈ N\{1}, ∃KN ∈ N : sup
n≥KN, ν∈N

∑
k

∣∣∣a(ν)
nk

∣∣∣ N 1
pk < ∞. (12)

[Apply Corollary 1(b) and Proposition 4(a).]
9) A ∈ (c0(p),Mau) ⇐⇒ (13), where

∃M ∈ N \ {1}, ∃N ∈ N : sup
n≥N, ν∈N

∑
k

∣∣∣a(ν)
nk

∣∣∣ M −1
pk < ∞. (13)



Theorems of Toeplitz–Silverman Type 381

[Apply Corollary 1(b) and Proposition 5(a).]
10) A ∈ (c(p),Mau) ⇐⇒ (13) and (14), where

∃Ne ∈ N : sup
n≥Ne, ν∈N

∣∣∣∣∣
∑

k

a
(ν)
nk

∣∣∣∣∣ < ∞. (14)

[Apply Corollary 1(b) and Proposition 6(a).]
11) Let 0 < pk ≤ 1. ThenA ∈ (�(p),Mau) ⇐⇒ (15), where

∃N ∈ N : sup
n≥N; k,ν∈N

∣∣∣a(ν)
nk

∣∣∣pk

< ∞. (15)

[Apply Corollary 1(b) and Proposition 8(a).]
12) Let 1 < pk . ThenA ∈ (�(p),Mau) ⇐⇒ (16), where

∃M ∈ N \ {1}, ∃N ∈ N : sup
n≥N, ν∈N

∑
k

∣∣∣a(ν)
nk

∣∣∣qk

M−qk < ∞. (16)

[Apply Corollary 1(b) and Proposition 7(a).]
13) Let 0 < pk ≤ 1. ThenA ∈ (bv(p),Mau) ⇐⇒ (17), where

∃N ∈ N : sup
n≥N; k,ν∈N

∣∣∣∣∣∣
∞∑

j=k

a
(ν)
nj

∣∣∣∣∣∣
pk

< ∞. (17)

[Apply Corollary 1(b) and Proposition 10(a).]
14) Let 1 < pk . ThenA ∈ (bv(p),Mau) ⇐⇒ (10) and (18), where

∃M ∈ N \ {1}, ∃N ∈ N : sup
n≥N, ν∈N

∑
k

∣∣∣∣∣∣
∞∑

j=k

a
(ν)
nj

∣∣∣∣∣∣
qk

M−qk < ∞. (18)

[Apply Corollary 1(b) and Proposition 9(a).]
15) A ∈ (�∞(p),Mu) ⇐⇒ (19), where

∀N ∈ N\{1} : sup
n,ν∈N

∑
k

∣∣∣a(ν)
nk

∣∣∣ N 1
pk < ∞. (19)

[Apply Corollary 1(c) and Proposition 4(a).]
16) A ∈ (c0(p),Mu) ⇐⇒ (20), where

∃M ∈ N \ {1} : sup
n,ν∈N

∑
k

∣∣∣a(ν)
nk

∣∣∣ M −1
pk < ∞. (20)

[Apply Corollary 1(c) and Proposition 5(a).]
17) A ∈ (c(p),Mu) ⇐⇒ (20) and (21), where

sup
n,ν∈N

∣∣∣∣∣
∑

k

a
(ν)
nk

∣∣∣∣∣ < ∞. (21)

[Apply Corollary 1(c) and Proposition 6(a).]
18) Let 0 < pk ≤ 1. ThenA ∈ (�(p),Mu) ⇐⇒ (22), where

sup
k,n,ν∈N

∣∣∣a(ν)
nk

∣∣∣pk

< ∞. (22)

[Apply Corollary 1(c) and Proposition 8(a).]



382 J. Boos, M. Zeltser

19) Let 1 < pk . ThenA ∈ (�(p),Mu) ⇐⇒ (23), where

∃M ∈ N \ {1} : sup
n,ν∈N

∑
k

∣∣∣a(ν)
nk

∣∣∣qk

M−qk < ∞. (23)

[Apply Corollary 1(c) and Proposition 7(a).]
20) Let 0 < pk ≤ 1. ThenA ∈ (bv(p),Mu) ⇐⇒ (24), where

sup
n,k,ν∈N

∣∣∣∣∣∣
∞∑

j=k

a
(ν)
nj

∣∣∣∣∣∣
pk

< ∞. (24)

[Apply Corollary 1(c) and Proposition 10(a).]
21) Let 1 < pk . ThenA ∈ (bv(p),Mu) ⇐⇒ (10) and (25), where

∃M ∈ N \ {1} : sup
n,ν∈N

∑
k

∣∣∣∣∣∣
∞∑

j=k

a
(ν)
nj

∣∣∣∣∣∣
qk

M−qk < ∞. (25)

[Apply Corollary 1(c) and Proposition 9(a).]
22) A ∈ (�∞(p),Cp) ⇐⇒ (26) and (27), where

∀N ∈ N\{1}, ∃KN ∈ N :
∑

k

∣∣∣a(ν)
nk

∣∣∣ N 1
pk converges uniformly in n, ν ≥ KN,(26)

∀k ∈ N, ∃αk ∈ K : lim
r

sup
n,ν≥r

∣∣∣a(ν)
nk − αk

∣∣∣ = 0. (27)

[Apply Corollary 1(d) and Proposition 4(b).]
23) A ∈ (c0(p),Cp) ⇐⇒ (5) and (27).

[Apply Corollary 1(d) and Proposition 5(b).]
24) A ∈ (c(p),Cp) ⇐⇒ (5), (27) and (28), where

∃α ∈ K : lim
r

sup
n,ν≥r

∣∣∣∣∣
∑

k

a
(ν)
nk − α

∣∣∣∣∣ = 0. (28)

[Apply Corollary 1(d) and Proposition 6(b).]
25) Let 0 < pk ≤ 1. ThenA ∈ (�(p),Cp) ⇐⇒ (7) and (27).

[Apply Corollary 1(d) and Proposition 8(b).]
26) Let 1 < pk . ThenA ∈ (�(p),Cp) ⇐⇒ (8) and (27).

[Apply Corollary 1(d) and Proposition 7(b).]
27) Let 0 < pk ≤ 1. ThenA ∈ (bv(p),Cp) ⇐⇒ (9) and (29), where

∀k ∈ N, ∃Ak ∈ K : lim
r

sup
n,ν≥r

∣∣∣∣∣∣
∞∑

j=k

a
(ν)
nj − Ak

∣∣∣∣∣∣ = 0. (29)

[Apply Corollary 1(d) and Proposition 10(b).]
28) Let 1 < pk . ThenA ∈ (bv(p),Cp) ⇐⇒ (10), (11), and (29).

[Apply Corollary 1(d) and Proposition 9(b).]
29) A ∈ (�∞(p),Cp0) ⇐⇒ (26) and (30), where

∀k ∈ N : lim
r

sup
n,ν≥r

∣∣∣a(ν)
nk

∣∣∣ = 0. (30)

[Apply Corollary 1(e) and Proposition 4(c).]
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30) A ∈ (c0(p),Cp0) ⇐⇒ (5) and (30).
[Apply Corollary 1(e) and Proposition 5(c).]

31) A ∈ (c(p),Cp0) ⇐⇒ (5), (30), and (31), where

lim
r

sup
n,ν≥r

∣∣∣∣∣
∑

k

a
(ν)
nk

∣∣∣∣∣ = 0. (31)

[Apply Corollary 1(e) and Proposition 6(c).]
32) Let 0 < pk ≤ 1. ThenA ∈ (�(p),Cp0) ⇐⇒ (7) and (30).

[Apply Corollary 1(e) and Proposition 8(c).]
33) Let 1 < pk . ThenA ∈ (�(p),Cp0) ⇐⇒ (8) and (30).

[Apply Corollary 1(e) and Proposition 7(c).]
34) Let 0 < pk ≤ 1. ThenA ∈ (bv(p),Cp0) ⇐⇒ (9) and (32), where

∀k ∈ N : lim
r

sup
n,ν≥r

∣∣∣∣∣∣
∞∑

j=k

a
(ν)
nj

∣∣∣∣∣∣ = 0. (32)

[Apply Corollary 1(e) and Proposition 10(c).]
35) Let 1 < pk . ThenA ∈ (bv(p),Cp0) ⇐⇒ (10), (11), and (32).

[Apply Corollary 1(e) and Proposition 9(c).]
36) A ∈ (�∞(p),Cuc) ⇐⇒ (33) and (34), where

∀N ∈ N\{1}, ∃KN ∈ N :
∑

k

∣∣∣a(ν)
nk

∣∣∣ N 1
pk (33)

converges uniformly in n ≥ KN, ν ∈ N,

∀k ∈ N, ∃αk ∈ K : lim
r

sup
n≥r,ν∈N

∣∣∣a(ν)
nk − αk

∣∣∣ = 0. (34)

[Apply Corollary 1(h) and Proposition 4(b).]
37) A ∈ (c0(p),Cuc) ⇐⇒ (13) and (34).

[Apply Corollary 1(h) and Proposition 5(b).]
38) A ∈ (c(p),Cuc) ⇐⇒ (13), (34), and (35), where

∃α ∈ K : lim
r

sup
n≥r,ν∈N

∣∣∣∣∣
∑

k

a
(ν)
nk − α

∣∣∣∣∣ = 0. (35)

[Apply Corollary 1(h) and Proposition 6(b).]
39) Let 0 < pk ≤ 1. ThenA ∈ (�(p),Cuc) ⇐⇒ (15) and (34).

[Apply Corollary 1(h) and Proposition 8(b).]
40) Let 1 < pk . ThenA ∈ (�(p),Cuc) ⇐⇒ (16) and (34).

[Apply Corollary 1(h) and Proposition 7(b).]
41) Let 0 < pk ≤ 1. ThenA ∈ (bv(p),Cuc) ⇐⇒ (17) and (36), where

∀k ∈ N, ∃Ak ∈ K : lim
r

sup
n≥r,ν∈N

∣∣∣∣∣∣
∞∑

j=k

a
(ν)
nj − Ak

∣∣∣∣∣∣ = 0. (36)

[Apply Corollary 1(h) and Proposition 10(b).]
42) Let 1 < pk . ThenA ∈ (bv(p),Cuc) ⇐⇒ (10), (18), and (36).

[Apply Corollary 1(h) and Proposition 9(b).]
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43) A ∈ (�∞(p),Cu0) ⇐⇒ (33) and (37), where

∀k ∈ N : lim
r

sup
n≥r,ν∈N

∣∣∣a(ν)
nk

∣∣∣ = 0. (37)

[Apply Corollary 1(i) and Proposition 4(c).]
44) A ∈ (c0(p),Cu0) ⇐⇒ (13) and (37).

[Apply Corollary 1(i) and Proposition 5(c).]
45) A ∈ (c(p),Cu0) ⇐⇒ (13), (37), and (38), where

lim
r

sup
n≥r,ν∈N

∣∣∣∣∣
∑

k

a
(ν)
nk

∣∣∣∣∣ = 0. (38)

[Apply Corollary 1(i) and Proposition 6(c).]
46) Let 0 < pk ≤ 1. ThenA ∈ (�(p),Cu0) ⇐⇒ (15) and (37).

[Apply Corollary 1(i) and Proposition 8(c).]
47) Let 1 < pk . ThenA ∈ (�(p),Cu0) ⇐⇒ (16) and (37).

[Apply Corollary 1(i) and Proposition 7(c).]
48) Let 0 < pk ≤ 1. ThenA ∈ (bv(p),Cu0) ⇐⇒ (17) and (39), where

∀k ∈ N : lim
r

sup
n≥r,ν∈N

∣∣∣∣∣∣
∞∑

j=k

a
(ν)
nj

∣∣∣∣∣∣ = 0. (39)

[Apply Corollary 1(i) and Proposition 10(c).]
49) Let 1 < pk . ThenA ∈ (bv(p),Cu0) ⇐⇒ (10), (18), and (39).

[Apply Corollary 1(i) and Proposition 9(c).]
50) A ∈ (�∞(p),F) ⇐⇒ (19), (33), and (34). [Cf. 15) and 36).]
51) A ∈ (c0(p),F) ⇐⇒ (20) and (34). [Cf. 16) and 37).]
52) A ∈ (c(p),F) ⇐⇒ (20), (34), and (35). [Cf. 17) and 38).]
53) Let 0 < pk ≤ 1. ThenA ∈ (�(p),F) ⇐⇒ (22) and (34). [Cf. 18) and 39).]
54) Let 1 < pk . ThenA ∈ (�(p),F) ⇐⇒ (23) and (34). [Cf. 19) and 40).]
55) Let 0 < pk ≤ 1. ThenA ∈ (bv(p),F) ⇐⇒ (24) and (36). [Cf. 20) and 41).]
56) Let 1 < pk . ThenA ∈ (bv(p),F) ⇐⇒ (10), (25), and (36). [Cf. 21) and 42).]
57) A ∈ (�∞(p),F0) ⇐⇒ (19), (33), and (37). [Cf. 15) and 43).]
58) A ∈ (c0(p),F0) ⇐⇒ (20) and (37). [Cf. 16) and 44).]
59) A ∈ (c(p),F0) ⇐⇒ (20), (37), and (38). [Cf. 17) and 45).]
60) Let 0 < pk ≤ 1. ThenA ∈ (�(p),F0) ⇐⇒ (22) and (37). [Cf. 18) and 46).]
61) Let 1 < pk . ThenA ∈ (�(p),F0) ⇐⇒ (23) and (37). [Cf. 19) and 47).]
62) Let 0 < pk ≤ 1. ThenA ∈ (bv(p),F0) ⇐⇒ (24) and (39). [Cf. 20) and 48).]
63) Let 1 < pk . ThenA ∈ (bv(p),F0) ⇐⇒ (10), (25), and (39). [Cf. 21) and 49).]

Remark 4 (a) Let A = (A(ν)) be a sequence of infinite matrices A(ν) and let X and Y (ν),
ν ∈ N, be arbitrary sequence spaces. If Y is the cartesian product of Y (ν) (ν ∈ N), that is
Y := ∏

ν Y (ν), then obviously

A ∈ (X,Y) ⇐⇒ ∀ν ∈ N : A(ν) ∈ (X, Y (ν)).

For instance, we may apply this equivalence to sequence spacesX and Y (ν) under consid-
eration in [6, 11, 16, 19]. In particular, we may consider the space C of all double sequences
with all columns being convergent. Obviously, C = ∏

ν Y (ν) with Y (ν) := c (ν ∈ N) is a
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simple application example. Considering Y = Ct forA = (A(ν)) with A(ν) = (aν
nk), we get

obviously

A ∈ (X, Ct ) ⇐⇒ ∀n ∈ N : B(n) ∈ (X, c) with B(n) := (a
(ν)
nk )ν,k, n ∈ N.

(b) Let A = (A(ν)) be a sequence of infinite matrices A(ν) = (a
(ν)
nk ) and let X be an

arbitrary sequence space. IfY = ⋂
i∈I Yi , where {Yi | i ∈ I } is a family of double sequence

spaces, then we obviously have

(X,Y) =
⋂
i∈I

(X,Yi ), thusA ∈ (X,Y) ⇐⇒ ∀i ∈ I : A ∈ (X,Yi ).

For instance, we may apply this observation to the double sequence space Cr of all
regularly convergent double sequences where Cr = Cp ∩ C ∩ Ct .

Now, if A = (A(ν)) is a sequence of infinite matrices A(ν) = (a
(ν)
nk ), then

A ∈ (X, Cr ) ⇐⇒ A ∈ (X, Cp) ∧ A ∈ (X, C) ∧ A ∈ (X, Ct ).

Here, we should note that A ∈ (X, Ct ) if and only if B ∈ (X, C) where B = (B(n)) is the
sequence of the matrices B(n) := (a

(ν)
nk )νk , n ∈ N. Thus, in both cases, we may apply Part

(a) of these remarks.

(c) Quite similarly, we may handle the cases A ∈ (X, Ch) and A ∈ (X, Ch0) since
Ch0 = Cu0 ∩ Ct

u0 and Ch = 〈̂e〉 ⊕ Ch0 where Ct
u0 := {x = (xnν) ∈ � | (xνn) ∈ Cu0} and ê

denotes the double sequence with ‘1’ in each position.

5 Characterization of A ∈ (X,YA) where Y ∈ {Mau,Mu,Cuc}
We start—similarly as in the previous sections—with some more general considerations:
We aim to characterize A ∈ (X,YA) where A is any matrix, A is a sequence of row
finite matrices A(ν) = (a

(ν)
nk ), X ∈ {�∞(p), c0(p), c(p), �(p), bv(p)}, and Y is at first any

double sequence space and then, specially, Mau, Mu, and Cuc, respectively. Under these
assumptions, we have

A(ν)(Ax) =
(
A(ν)A

)
x (x ∈ ωA, ν ∈ N). (40)

Now, as an easy consequence of (40), we get

Proposition 12 (cf. [4, Proposition 7]) Let X be a sequence space, Y be a double sequence
space, and A(ν) (ν ∈ N) be row-finite. Then for each matrix A with X ⊂ ωA, we have
X ⊂ �A and

A ∈ (X,YA) ⇐⇒ AA ∈ (X,Y),

whereAA := (A(ν)A).

For further considerations, we apply Proposition 12 to the special case X ∈
{�∞(p), c0(p), c(p), �(p), bv(p)} and, as three examples, Y ∈ {Mau,Mu, Cuc}. Appli-
cations to other special spaces X and Y are also straightforward. Note, X ⊂ ωA implies
X ⊂ ωAA, if A(ν) is row-finite. So the results in Section 4 are applicable to AA here.



386 J. Boos, M. Zeltser

We aim to obtain results like Corollary 8(a) in [4] where the space c0 is replaced with
any one of the spaces bv(p), �(p), �∞(p), c0(p), and c(p).

The same simple procedure is naturally also possible for all double sequence spaces Y
considered in Section 4 and for all sequence spaces X with known characterizations of
A ∈ (X, Y ) where Y ∈ {�∞, c, c0}.

Let Y = Mau. The following Corollaries are immediate applications of Proposition 12
and Corollary 2, parts 8)–14).

Corollary 3 Let A(ν) (ν ∈ N) be row-finite and let A be any matrix with �∞(p) ⊂ ωA, that
is (ank)k ∈ M∞(p) for each n ∈ N. Then the following statements are equivalent:

(a) A ∈ (�∞(p),MauA).
(b) B = AA ∈ (�∞(p),Mau).
(c) The condition (41) holds, where

∀N ∈ N \ {1}, ∃KN ∈ N : sup
n≥KN,ν∈N

∑
k

∣∣∣∣∣
∑
μ

a(ν)
nμaμk

∣∣∣∣∣ N
1

pk < ∞. (41)

Proof The statements (a) and (b) are equivalent by Proposition 12 and (b) and (c) are
equivalent by part 8) of Corollary 2, applied toAA.

Corollary 4 Let A(ν) (ν ∈ N) be row-finite and let A be any matrix with c0(p) ⊂ ωA,
that is (ank)k ∈ M0(p) for each n ∈ N. Then the following statements are equivalent (by
application of Proposition 12 and Corollary 2, part 9)):

(a) A ∈ (c0(p),MauA).
(b) B = AA ∈ (c0(p),Mau).
(c) The condition (42) holds, where

∃M ∈ N \ {1}, ∃N ∈ N : sup
n≥N, ν∈N

∑
k

∣∣∣∣∣
∑
μ

a(ν)
nμaμk

∣∣∣∣∣ M
−1
pk < ∞. (42)

Corollary 5 Let A(ν) (ν ∈ N) be row-finite and let A be any matrix with c(p) ⊂ ωA, that
is (ank)k ∈ cs ∩ M0(p) for each n ∈ N. Then the following statements are equivalent (by
application of Proposition 12 and Corollary 2, part 10)):

(a) A ∈ (c(p),MauA).
(b) B = AA ∈ (c(p),Mau).
(c) The conditions (42) and (43) hold, where

∃Ne ∈ N : sup
n≥Ne,ν∈N

∣∣∣∣∣
∑

k

∑
μ

a(ν)
nμaμk

∣∣∣∣∣ < ∞. (43)

Corollary 6 Let 0 < pk ≤ 1, A(ν) (ν ∈ N) be row-finite matrices, and A be any matrix
with �(p) ⊂ ωA, that is (ank)k ∈ M(p) for each n ∈ N. Then the following statements are
equivalent (by application of Proposition 12 and Corollary 2, part 11)):

(a) A ∈ (�(p),MauA).
(b) B = AA ∈ (�(p),Mau).
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(c) The condition (44) holds, where

∃N ∈ N : sup
n≥N; k,ν∈N

∣∣∣∣∣
∑
μ

a(ν)
nμaμk

∣∣∣∣∣
pk

< ∞. (44)

Corollary 7 Let 1 < pk , A(ν) (ν ∈ N) be row-finite matrices, and A be any matrix with
�(p) ⊂ ωA, that is (ank)k ∈ �∞(p) for each n ∈ N. Then the following statements are
equivalent (by application of Proposition 12 and Corollary 2, part 12)):

(a) A ∈ (�(p),MauA).
(b) B = AA ∈ (�(p),Mau).
(c) The condition (45) holds, where

∃M ∈ N \ {1}, ∃N ∈ N : sup
n≥N, ν∈N

∑
k

∣∣∣∣∣
∑
μ

a(ν)
nμaμk

∣∣∣∣∣
qk

M−qk < ∞. (45)

Corollary 8 Let 0 < pk ≤ 1, A(ν) (ν ∈ N) be row-finite matrices, and let A be any matrix
with bv(p) ⊂ ωA, that is, supr | ∑∞

k=r ank|pr < ∞ for each n ∈ N. Then the following
statements are equivalent (by application of Proposition 12 and Corollary 2, part 13)):

(a) A ∈ (bv(p),MauA).
(b) B = AA ∈ (bv(p),Mau).
(c) The condition (46) holds, where

∃N ∈ N : sup
n≥N; k,ν∈N

∣∣∣∣∣∣
∞∑

j=k

∑
μ

a(ν)
nμaμj

∣∣∣∣∣∣
pk

< ∞. (46)

Corollary 9 Let 1 < pk , A(ν) (ν ∈ N) be row-finite matrices, and A be any matrix with
bv(p) ⊂ ωA, that is,

∀n ∈ N, ∃N ∈ N \ {1} :
∑

r

∣∣∣∣∣
∞∑

k=r

ank

∣∣∣∣∣
qr

N−qr < ∞ and sup
r

r∑
j=1

∣∣∣∣∣
∞∑

k=r

ank

∣∣∣∣∣
qj

N−qj < ∞.

Then the following statements are equivalent (by application of Proposition 12 and
Corollary 2, part 14)):

(a) A ∈ (bv(p),MauA).
(b) B = AA ∈ (bv(p),Mau).
(c) The condition (47) holds, where

∃M ∈ N \ {1}, ∃N ∈ N : sup
n≥N, ν∈N

∑
k

∣∣∣∣∣∣
∞∑

j=k

∑
μ

a(ν)
nμaμj

∣∣∣∣∣∣
qk

M−qk < ∞. (47)

Let Y = Mu. The following corollaries are immediate applications of Proposition 12
and Corollary 2, parts 15)–21); for an example of a proof see the proof of Corollary 3.

Corollary 10 Let A(ν) (ν ∈ N) be row-finite and let A be any matrix with �∞(p) ⊂ ωA,
that is (ank)k ∈ M∞(p) for each n ∈ N. Then the following statements are equivalent (by
application of Proposition 12 and Corollary 2, part 15)):
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(a) A ∈ (�∞(p),MuA).
(b) B = AA ∈ (�∞(p),Mu).
(c) The condition (48) holds, where

∀N ∈ N \ {1} : sup
n,ν∈N

∑
k

∣∣∣∣∣
∑
μ

a(ν)
nμaμk

∣∣∣∣∣ N
1

pk < ∞. (48)

Corollary 11 Let A(ν) (ν ∈ N) be row-finite and let A be any matrix with c0(p) ⊂ ωA,
that is (ank)k ∈ M0(p) for each n ∈ N. Then the following statements are equivalent (by
application of Proposition 12 and Corollary 2, part 16)):

(a) A ∈ (c0(p),MuA).
(b) B = AA ∈ (c0(p),Mu).
(c) The condition (49) holds, where

∃M ∈ N \ {1} : sup
n,ν∈N

∑
k

∣∣∣∣∣
∑
μ

a(ν)
nμaμk

∣∣∣∣∣ M
−1
pk < ∞. (49)

Corollary 12 Let A(ν) (ν ∈ N) be row-finite and let A be any matrix with c(p) ⊂ ωA, that
is (ank)k ∈ cs ∩ M0(p) for each n ∈ N. Then the following statements are equivalent (by
application of Proposition 12 and Corollary 2, part 17)):

(a) A ∈ (c(p),MuA).
(b) B = AA ∈ (c(p),Mu).
(c) The conditions (49) and (50) hold, where

sup
n,ν∈N

∣∣∣∣∣
∑

k

∑
μ

a(ν)
nμaμk

∣∣∣∣∣ < ∞. (50)

Corollary 13 Let 0 < pk ≤ 1, A(ν) (ν ∈ N) be row-finite matrices, and A be any matrix
with �(p) ⊂ ωA, that is (ank)k ∈ M(p) for each n ∈ N. Then the following statements are
equivalent (by application of Proposition 12 and Corollary 2, part 18)):

(a) A ∈ (�(p),MuA).
(b) B = AA ∈ (�(p),Mu).
(c) The condition (51) holds, where

sup
n,k,ν∈N

∣∣∣∣∣
∑
μ

a(ν)
nμaμk

∣∣∣∣∣
pk

< ∞. (51)

Corollary 14 Let 1 < pk , A(ν) (ν ∈ N) be row-finite matrices, and A be any matrix with
�(p) ⊂ ωA, that is (ank)k ∈ �∞(p) for each n ∈ N. Then the following statements are
equivalent (by application of Proposition 12 and Corollary 2, part 19)):

(a) A ∈ (�(p),MuA).
(b) B = AA ∈ (�(p),Mu).
(c) The condition (52) holds, where

∃M ∈ N \ {1} : sup
n,ν∈N

∑
k

∣∣∣∣∣
∑
μ

a(ν)
nμaμk

∣∣∣∣∣
qk

M−qk < ∞. (52)
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Corollary 15 Let 0 < pk ≤ 1, A(ν) (ν ∈ N) be row-finite matrices, and let A be any matrix
with bv(p) ⊂ ωA, that is, supr | ∑∞

k=r ank|pr < ∞ for each n ∈ N. Then the following
statements are equivalent (by application of Proposition 12 and Corollary 2, part 20)):

(a) A ∈ (bv(p),MuA).
(b) B = AA ∈ (bv(p),Mu).
(c) The condition (53) holds, where

sup
n,k,ν∈N

∣∣∣∣∣∣
∞∑

j=k

∑
μ

a(ν)
nμaμj

∣∣∣∣∣∣
pk

< ∞. (53)

Corollary 16 Let 1 < pk , A(ν) (ν ∈ N) be row-finite matrices, and A be any matrix with
bv(p) ⊂ ωA, that is

∀n ∈ N, ∃N ∈ N\{1} :
∑

r

∣∣∣∣∣
∞∑

k=r

ank

∣∣∣∣∣
qr

N−qr < ∞ and sup
r

r∑
j=1

∣∣∣∣∣
∞∑

k=r

ank

∣∣∣∣∣
qj

N−qj < ∞.

Then the following statements are equivalent (by application of Proposition 12 and
Corollary 2, part 21)):

(a) A ∈ (bv(p),MuA).
(b) B = AA ∈ (bv(p),Mu).
(c) The condition (54) holds, where

∃M ∈ N \ {1} : sup
n,ν∈N

∑
k

∣∣∣∣∣∣
∞∑

j=k

∑
μ

a(ν)
nμaμj

∣∣∣∣∣∣
qk

M−qk < ∞. (54)

Let Y = Cuc. The following corollaries are immediate applications of Proposition 12
and Corollary 2, parts 36)–42); for an example of a proof see the proof of Corollary 3.

Corollary 17 Let A(ν) (ν ∈ N) be row-finite and let A be any matrix with �∞(p) ⊂ ωA,
that is (ank)k ∈ M∞(p) for each n ∈ N. Then the following statements are equivalent (by
application of Proposition 12 and Corollary 2, part 36)):

(a) A ∈ (�∞(p),CucA).
(b) B = AA ∈ (�∞(p), Cuc).
(c) The conditions (55) and (56) hold, where

∀N ∈ N\{1}, ∃KN ∈ N :
∑

k

∣∣∣∣∣
∑
μ

a(ν)
nμaμk

∣∣∣∣∣ N
1

pk (55)

converges uniformly in n ≥ KN and ν ∈ N,

∀k ∈ N, ∃βk ∈ K : lim
r

sup
n≥r,ν∈N

∣∣∣∣∣
∑
μ

a(ν)
nμaμk − βk

∣∣∣∣∣ = 0. (56)

Corollary 18 Let A(ν) (ν ∈ N) be row-finite and let A be any matrix with c0(p) ⊂ ωA,
that is (ank)k ∈ M0(p) for each n ∈ N. Then the following statements are equivalent (by
application of Proposition 12 and Corollary 2, part 37)):
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(a) A ∈ (c0(p), CucA).
(b) B = AA ∈ (c0(p),Cuc).
(c) The conditions (56) and (42) hold.

Corollary 19 Let A(ν) (ν ∈ N) be row-finite and let A be any matrix with c(p) ⊂ ωA, that
is (ank)k ∈ cs ∩ M0(p) for each n ∈ N. Then the following statements are equivalent (by
application of Proposition 12 and Corollary 2, part 38)):

(a) A ∈ (c(p),CucA).
(b) B = AA ∈ (c(p),Cuc).
(c) The conditions (56), (42), and (57) hold, where

∃β ∈ K : lim
r

sup
n≥r,ν∈N

∣∣∣∣∣
∑

k

∑
μ

a(ν)
nμaμk − β

∣∣∣∣∣ = 0. (57)

Corollary 20 Let 0 < pk ≤ 1, A(ν) (ν ∈ N) be row-finite matrices, and A be any matrix
with �(p) ⊂ ωA, that is (ank)k ∈ M(p) for each n ∈ N. Then the following statements are
equivalent (by application of Proposition 12 and Corollary 2, part 39)):

(a) A ∈ (�(p),CucA).
(b) B = AA ∈ (�(p),Cuc).
(c) The conditions (56) and (44) hold.

Corollary 21 Let 1 < pk , A(ν) (ν ∈ N) be row-finite matrices, and A be any matrix with
�(p) ⊂ ωA, that is (ank)k ∈ �∞(p) for each n ∈ N. Then the following statements are
equivalent (by application of Proposition 12 and Corollary 2, part 40)):

(a) A ∈ (�(p),CucA).
(b) B = AA ∈ (�(p),Cuc).
(c) The conditions (56) and (45) hold.

Corollary 22 Let 0 < pk ≤ 1, A(ν) (ν ∈ N) be row-finite matrices, and let A be any matrix
with bv(p) ⊂ ωA, that is, supr | ∑∞

k=r ank|pr < ∞ for each n ∈ N. Then the following
statements are equivalent (by application of Proposition 12 and Corollary 2, part 41)):

(a) A ∈ (bv(p),CucA).
(b) B = AA ∈ (bv(p),Cuc).
(c) The conditions (46) and (58) hold, where

∀k ∈ N, ∃Bk ∈ K : lim
r

sup
n≥r,ν∈N

∣∣∣∣∣∣
∞∑

j=k

∑
μ

a(ν)
nμaμj − Bk

∣∣∣∣∣∣ = 0. (58)

Corollary 23 Let 1 < pk , A(ν) (ν ∈ N) be row-finite matrices, and A be any matrix with
bv(p) ⊂ ωA, that is,

∀n ∈ N, ∃N ∈ N\{1} :
∑

r

∣∣∣∣∣
∞∑

k=r

ank

∣∣∣∣∣
qr

N−qr < ∞ and sup
r

r∑
j=1

∣∣∣∣∣
∞∑

k=r

ank

∣∣∣∣∣
qj

N−qj < ∞.

Then the following statements are equivalent (by application of Proposition 12 and
Corollary 2, part 42)):
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(a) A ∈ (bv(p),CucA).
(b) B = AA ∈ (bv(p),Cuc).
(c) The conditions (58) and (47) hold.

Remark 5 For the case Y := Cu0 consider Corollary 2, part 43)–49) and replace in
Corollaries 17–23 the space Cuc by Cu0 as well as βk , Bk(k ∈ N) and β by 0.

6 Characterization of A ∈ (X, Y ) where Y ∈ {ac∞, ac, ac0}
Now we are ready to deduce the characterizations of A ∈ (X, Y ) where X ∈
{�∞(p), c0(p), c(p), �(p), bv(p)} and Y ∈ {ac∞, ac, ac0} from the results in Section 4; in
particular, we get the correct versions of the claims by Ganie and Sheikh in [5].

The following results are simple applications of the corresponding results in Section 5 in
the case ofAσ (cf. Example 2) and also in Section 3. So we state the results without proofs.

First of all, let Y = ac∞, that is, Y = ac∞ = wac∞ = �∞ by Proposition 3. Thus
we may characterize A ∈ (X, Y ) where X is a fixed member of {�∞(p), c0(p), c(p),

�(p), bv(p)}. Through this, we get three equivalent statements characterizing A ∈
(X, ac∞); in the cases, ac∞ and wac∞, we deduce the characterization from our results in
Section 5 and in the case �∞ from the results of Jarrah and Malkowsky in [7] (which we pre-
sented in Section 3). Without doubt, in any case of X ∈ {�∞(p), c0(p), c(p), �(p), bv(p)},
the third characterization is much easier to handle than the others.

Applications 1 As above we assume in any case that X ⊂ ωA where X is a fixed member
of {�∞(p), c0(p), c(p), �(p), bv(p)}.
(a) A ∈ (�∞(p), ac∞) ⇐⇒ (59) holds (by (48)), where

∀N ∈ N \ {1} : sup
n,ν∈N

∑
k

∣∣∣∣∣1n
ν+n−1∑
μ=ν

aμk

∣∣∣∣∣ N
1

pk < ∞ (59)

⇐⇒ (60) holds (by (41)), where

∀N ∈ N \ {1}, ∃KN ∈ N : sup
n≥KN,ν∈N

∑
k

∣∣∣∣∣1n
ν+n−1∑
μ=ν

aμk

∣∣∣∣∣N
1

pk < ∞ (60)

⇐⇒ (61) holds (by Proposition 4(a)), where

∀N ∈ N\{1} : sup
n

∑
k

|ank|N
1

pk < ∞. (61)

(b) A ∈ (c0(p), ac∞) ⇐⇒ (62) holds (by (49)), where

∃M ∈ N \ {1} : sup
n,ν∈N

∑
k

∣∣∣∣∣1n
ν+n−1∑
μ=ν

aμk

∣∣∣∣∣ M
−1
pk < ∞ (62)

⇐⇒ (63) holds (by (42)), where

∃M ∈ N \ {1}, ∃N ∈ N : sup
n≥N,ν∈N

∑
k

∣∣∣∣∣1n
ν+n−1∑
μ=ν

aμk

∣∣∣∣∣ M
−1
pk < ∞ (63)
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⇐⇒ (64) holds (by Proposition 5(a)), where

∃M ∈ N \ {1} : sup
n

∑
k

|ank|M
−1
pk < ∞. (64)

(c) A ∈ (c(p), ac∞) ⇐⇒ (62) and (65) holds (by Corollary 12(c)), where

sup
n,ν∈N

∣∣∣∣∣1n
∑

k

ν+n−1∑
μ=ν

aμk

∣∣∣∣∣ < ∞ (65)

⇐⇒ (63) and (66) hold (by Corollary 5(c)), where

∃Ne ∈ N : sup
n≥Ne,ν∈N

∣∣∣∣∣1n
∑

k

ν+n−1∑
μ=ν

aμk

∣∣∣∣∣ < ∞ (66)

⇐⇒ (64) and (67) hold (by Proposition 6(a)), where

(ank)k ∈ cs (n ∈ N) and sup
n

∣∣∣∣∣
∑

k

ank

∣∣∣∣∣ < ∞. (67)

(d) Let 0 < pk ≤ 1. Then A ∈ (�(p), ac∞) ⇐⇒ (68) holds (by (51)), where

sup
n,k,ν∈N

∣∣∣∣∣1n
ν+n−1∑
μ=ν

aμk

∣∣∣∣∣
pk

< ∞ (68)

⇐⇒ (69) holds (by (44)), where

∃N ∈ N : sup
n≥N,k,ν∈N

∣∣∣∣∣1n
ν+n−1∑
μ=ν

aμk

∣∣∣∣∣
pk

< ∞ (69)

⇐⇒ (70) holds (by Proposition 8(a)), where

sup
n,k∈N

|ank|pk < ∞. (70)

(e) Let 1 < pk . Then A ∈ (�(p), ac∞) ⇐⇒ (71) holds (by (52)), where

∃M ∈ N \ {1} : sup
n,ν∈N

1

n

∑
k

∣∣∣∣∣
ν+n−1∑
μ=ν

aμk

∣∣∣∣∣
qk

M−qk < ∞ (71)

⇐⇒ (72) holds (by (45)), where

∃M ∈ N \ {1}, ∃N ∈ N : sup
n≥N,ν∈N

1

n

∑
k

∣∣∣∣∣
ν+n−1∑
μ=ν

aμk

∣∣∣∣∣
qk

M−qk < ∞ (72)

⇐⇒ (73) holds (by Proposition 7(a)), where

∃M ∈ N \ {1} : sup
n

∑
k

|ank|qkM−qk < ∞. (73)

(f) Let 0 < pk ≤ 1. Then A ∈ (bv(p), ac∞) ⇐⇒ (74) holds (by (53)), where

sup
n,k,ν∈N

1

n

∣∣∣∣∣∣
∞∑

j=k

ν+n−1∑
μ=ν

aμj

∣∣∣∣∣∣
pk

< ∞ (74)



Theorems of Toeplitz–Silverman Type 393

⇐⇒ (75) holds (by (46)), where

∃N ∈ N : sup
n≥N,k,ν∈N

1

n

∣∣∣∣∣∣
∞∑

j=k

ν+n−1∑
μ=ν

aμj

∣∣∣∣∣∣
pk

< ∞ (75)

⇐⇒ (76) holds (by Proposition 10(a)), where

sup
n,k

∣∣∣∣∣∣
∞∑

j=k

anj

∣∣∣∣∣∣
pk

< ∞. (76)

(g) Let 1 < pk . Then A ∈ (bv(p), ac∞) ⇐⇒ (77) holds (by Corollary 16(c)), where

∃M ∈ N \ {1} : sup
n,ν∈N

1

n

∑
k

∣∣∣∣∣∣
∞∑

j=k

ν+n−1∑
μ=ν

aμj

∣∣∣∣∣∣
qk

M−qk < ∞ (77)

⇐⇒ (78) holds (by Corollary 9(c)), where

∃M ∈ N \ {1}, ∃N ∈ N : sup
n≥N,ν∈N

1

n

∑
k

∣∣∣∣∣∣
∞∑

j=k

ν+n−1∑
μ=ν

aμj

∣∣∣∣∣∣
qk

M−qk < ∞ (78)

⇐⇒ (79) holds (by Proposition 9(a)), where

∃M ∈ N \ {1} : sup
n

∑
k

∣∣∣∣∣∣
∞∑

j=k

anj

∣∣∣∣∣∣
qk

M−qk < ∞. (79)

Now, let Y = ac or Y = ac0.

Applications 2 As above we assume in any case that X ⊂ ωA, where X is a fixed member
of {�∞(p), c0(p), c(p), �(p), bv(p)}.
(a) A ∈ (�∞(p), ac) ⇐⇒ (80) and (81) hold (by Corollary 17(c)), where

∀N ∈ N\{1}, ∃KN ∈ N :
∑

k

∣∣∣∣∣1n
ν+n−1∑
μ=ν

aμk

∣∣∣∣∣ N
1

pk

converges uniformly in n ≥ KN and ν ∈ N, (80)

∀k ∈ N, ∃βk ∈ K : lim
r

sup
n≥r,ν∈N

∣∣∣∣∣1n
ν+n−1∑
μ=ν

aμk − βk

∣∣∣∣∣ = 0. (81)

(b) A ∈ (c0(p), ac) ⇐⇒ (81) and (63) hold (by Corollary 18(c)).
(c) A ∈ (c(p), ac) ⇐⇒ (81), (63) and (82) hold (by Corollary 19(c)), where

∃β ∈ K : lim
r

sup
n≥r,ν∈N

∣∣∣∣∣1n
∑

k

ν+n−1∑
μ=ν

aμk − β

∣∣∣∣∣ = 0. (82)

(d) Let 0 < pk ≤ 1. Then A ∈ (�(p), ac) ⇐⇒ (81) and (69) hold (by Corollary 20(c)).
(e) Let 1 < pk . Then A ∈ (�(p), ac) ⇐⇒ (81) and (83) hold (by Corollary 21(c)), where

∃M ∈ N \ {1}, ∃N ∈ N : sup
n≥N, ν∈N

1

n

∑
k

∣∣∣∣∣
ν+n−1∑
μ=ν

aμk

∣∣∣∣∣
qk

M−qk < ∞. (83)
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(f) Let 0 < pk ≤ 1. Then A ∈ (bv(p), ac) ⇐⇒ (84) and (85) hold (by Corollary 22(c)),
where

∃N ∈ N : sup
n≥N; k,ν∈N

1

n

∣∣∣∣∣∣
∞∑

j=k

ν+n−1∑
μ=ν

aμj

∣∣∣∣∣∣
pk

< ∞, (84)

∀k ∈ N, ∃Bk ∈ K : lim
r

sup
n≥r,ν∈N

1

n

∣∣∣∣∣∣
∞∑

j=k

ν+n−1∑
μ=ν

aμj − Bk

∣∣∣∣∣∣ = 0. (85)

(g) Let 1 < pk . Then A ∈ (bv(p), ac) ⇐⇒ (85) and (86) hold (by Corollary 23(c)),
where

∃M ∈ N \ {1}, ∃N ∈ N : sup
n≥N, ν∈N

1

n

∑
k

∣∣∣∣∣∣
∞∑

j=k

ν+n−1∑
μ=ν

aμj

∣∣∣∣∣∣
qk

M−qk < ∞. (86)

Remark 6 For the case Y = ac0 replace in Applications 2 (a)–(g), the space ac by ac0 as
well as βk , Bk (k ∈ N) and β by 0.

Remark 7 (Claims by Ganie and Sheikh)

(a) The first equivalence in Applications 1(g) corresponds to Theorem 1 in [5], where
the (wrong) characterizing condition in [5, Theorem 1] has been replaced by (77).
The further equivalences in this application may be considered as an extension of [5,
Theorem 1].

(b) Application 2(g) corresponds to Theorem 2 in [5], where the (wrong) characterizing
conditions in [5, Theorem 2] have been replaced by (85) and (86).

(c) Following Remark 6, we get a corresponding theorem to [5, Theorem 3] if we replace
in Applications 2(g) the space ac by ac0 as well as βk , Bk (k ∈ N) and β by 0.

(d) Ganie and Sheikh assumed in [5, Theorems 1–3] that p ∈ �∞ and 1 < pk (k ∈ N).
Analogously to (a), (b), and (c), we get the corresponding results in the case 0 < pk ≤
1 (k ∈ N) by Applications 1(f) and 2(f) as well as Remark 6, respectively.

Remark 8 Differently than in Section 3, we did not consider the special case 0 <

lim infk pk ≤ lim supk pk < ∞ in Sections 4–6. The interested reader should note Remarks
1 and 3 and may consult [4] for the corresponding results.
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154, 1–16 (1977)
20. Wilansky, A.: Summability through Functional Analysis Notas De Matemática, vol. 85. North Holland,
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