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Abstract In the paper (Vietnam J. Math. 42: 153-157, 2014) (cf. also the earlier appeared
and more general paper (Kathmandu Univ. J. Sci. Eng. Technol. 8: 89-92, 2012)), Ganie and
Sheikh characterized matrices A = (anx) € (bv(p), Y) in terms of the matrix coefficients
ank, where Y € {acso, ac, aco} (the space of sequences being almost bounded, almost con-
vergent, and almost convergent to 0, respectively). In this publication, we pursue two aims:
The first one is to give an example showing that none of the results in (Vietnam J. Math.
42: 153-157, 2014) (and thus none of the Theorems 2.3 and 2.4 and Corallary 2.5 in (Kath-
mandu Univ. J. Sci. Eng. Technol. 8, 89-92, 2012)) is correct in general and to correct and
extend these results. The second one is to apply the reduction method presented in (J. Anal.
9: 149-181, 2001). In this way, we get easily the (corrected) results of Ganie and Sheikh
(cf. Remark 7) and many other theorems of Toeplitz—Silverman type (cf. Sections 5 and 6)
by reduction to known theorems of Toeplitz—Silverman type. So it is not necessary to prove
all the results completely anew, as Ganie and Sheikh tried.

Keywords Sequence spaces of non-absolute type - Theorems of toeplitz—silverman type
for matrix maps or SM-maps - Double sequence spaces - Almost convergence
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1 Introduction, Notation, and Preliminaries

Throughout this note, we assume familiarity with summability and the standard sequence
spaces (see, e.g., [3, 20]). So we denote by w, £, ¢, co, cs, £, and bv the set of all sequences
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in K (K = R or K = C), of all bounded sequences, of all convergent sequences, of all
sequences converging to 0, of all convergent series, of all absolutely summable sequences,
and of all sequences with bounded variation, respectively. A sequence space X is defined to
be a linear subspace of w. If X is any sequence space, then its S-dual X? is defined by

xP = ((yk) cEw ’ V(xg) € X : Zykxk convergesI .
k

If A = (anx) is an infinite matrix with scalar entries, then we consider the application
domain

wyp = {(xk) cw ’ Zankxk converges for each n € N}
k
of A. We have the following obvious result:

Proposition 1 (cf. [3, 2.3.2(e)]) If A = (auk) is any matrix, then X C wy if and only if
(an)k € XP foreachn € N.

For fixed sequence spaces X and Y and any infinite matrix A = (anx), we say that A
maps X into ¥, if X C w4 and Ax := (O, anxx)n € Y for all x € X. The set of all
matrices A mapping X into Y is denoted by (X, ¥).

Let p = (pi) be a sequence of positive reals throughout this paper. In the following

considerations, we deal with the following sets of sequences:

loo(p) = xew‘ sup |xg | P* <oo},
k
co(p) = x€ew ‘ li]£n|xk|p" = 0},

c(p) == {xea)‘ElaeK:x—aeeco(p)}, where e := (1,1, ...),

o
op) = Ix ew‘ 3 el <oo},

k=1
o0
bu(p) = xcw ‘ Z'xk — X |P* < oo} . where xo := 0,
k=1
' 11
M(p) = xew‘ElNeN : Z|Xk|q"N % <oof, where —+ — =1,
k Pk qdk
a 1
Muo(p) = () [x Gw’ D N < oo},
N=2 k
o° =1
Mo(p) = |J [x co| YN < oo}.
N=2 k

Remark 1 Let p = (py) with pr > 0 be given.

(a) Each of the sets €0 (p), co(p), c(p), £(p), and bv(p) is a linear space if and only if
p € Lo (cf. [8, p. 487)).
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Theorems of Toeplitz—Silverman Type 371

(b) Loo(p) = Leo if and only if (cf. [8, p. 487])!

0< lin}{infpk < limsup py < oo. D
k

(¢) co(p) = coif and only if (1) holds (cf. [12, Lemma 1]).

(d) c¢(p) = cif and only if (1) holds, which is an immediate consequence of statement (c)
since ¢ = ¢y D (e).

(e) Let0 < py <1 and g; the conjugate index of pi. Then ¢(p) = ¢ if and only if there
exists an N € N with ), N% < oo (cf. [18, Theorem 3]).

® €(p)=+L < bv(p) =bv. A

Aiming to characterize X C w4 where A = (ani) is any infinite matrix and X € {£-,(p),
co(p), c(p), £(p), bv(p)}, by Proposition 1, it is sufficient to know the S-duals of the spaces

Lo (p), co(p), c(p), £(p), and bu(p).
If y = (yx) € cs, then we put Ry := Z;’ik yj (k € N).

Proposition 2 Let p = (py) with pr > 0 (k € N) be fixed.

@ Loo(p)f = { A/’{oo(p) (cf. [9, Theorem 2]),
l =€ if 0 < liminfy py < limsup, px < oo (cf. Remark 1(b)).

) co(p)f = { A;{o(p) (cf. [13, Theorem 6]),

¢y = ¢ if0 < liminfy py < limsup; pr < oo (cf. Remark 1(c)).

g_lesn My (p) (cf. [8, Theorem 1]),
c(p) P =1 if 0 < liminfy py < limsup; pr < oo (cf. Remark 1(d)).
@ e(p)P = {Zoo(p) if px < 1 forallk € N (cf. [18, Theorem 7]),

M(p) if1 < pi forall k € N (cf. [13, Theorem 1]).

(©)

y €@ | sup, |Ry|P" < oo} if pr < 1forallk e N,
(e) bu(p)f = [y €ew|3IN e N\ {1}: ), |Rk|%*N~% < oo and
sup, Y i_; |Ry|%N~% < o0} ifl < p (k€ N)and p € loo
(cf. [7, Theorem 2.2 and Theorem 2.1, respectively]).

General assumption: In the following, let p = (pi) be a bounded sequence with py > 0
(k € N) and let qx be such that 1 = ﬁ + qik (k € N). Moreover, a strictly increasing
sequence (ny) in N will be called an index sequence.

2 Some Remarks on the Claims by Ganie and Sheikh in [5] (and [17])

In [10], Lorentz defined

1 . .
ac:=3x=(x) €ew|Ja, eK: — wa,-,] — a, uniformlyinv e N,
n ;
j=1

INote: 0 < infy py < sup; px < 00 <= 0 < liminfy p; < limsup, px < oo since all p; > 0.
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the set of all almost convergent sequences. Analogously, we consider the sets

n
acy = x=(xk)ew‘%vaﬂ,l—)OuniformlyinveN ,
j=1
1 n
ACoo = 31X = (Xr) € @ | sup fovﬂ-,l <00¢,
n,v nj—l
l n
WdCoo = x:(xk)ew‘EINeN: sup |—

Xy4j—1| <O ¢,
n>N,veN nj 1

the set of all sequences being almost convergent to O, the set of all almost bounded
sequences, and the set of all weakly almost bounded sequences. The space ac, (and more
generally acoo(p) where p = (pr) € £ with pr > 0 (k € N)) has been defined and
studied by Nanda in [15] (cf. also [14]).

Proposition 3 daceo = Loo = WaCso.2

Proof The inclusions £, C acs C wacs are obvious (cf. [15, Proposition 2]). For a proof
of waces C £, let x € wacy and N € N with

v4+n—1
sup — Z Xp| =M < 00
n>N,veN 1t p

be given. Then we have for each v € N the inequalities

v+N v+N v+N v+1+N—1
bl =2 = Do w| =) m— ) m[=@N+DM,
k=v k=v+1 k=v k=v+1
thus x € £. O

In [5], Ganie and Sheikh aimed to characterize matrices A to be a member of
(bv(p), acs), (bv(p), acp), and (bv(p), ac), respectively. As an example, we cite [5, The-
orem 1]:

Claim (cf. [5, Theorem 1]) Let 1 < pr < H < oo for every k € N. Then A €
(bv(p), acx) if and only if there exists an integer C > 1 such that3

sup Y " la(n, k, m)|%C~% < oo, 2)

n,meN X
where

1 m
a(n,k,m) = % ;an+j—l,k (na kvm € N)
j=

2In his review, MR3218851 (Mathematical Reviews) on the paper [5] Faruk Ozger mentioned already acoo =
£~ without proof or some citation.

3In contrast to the notation in [5], we use during this claim and the following example N instead of N as
index set for sequences and matrices.
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Theorems of Toeplitz—Silverman Type 373

The following example shows that Theorems 1, 2, and 3 in [5] are not correct in general.
In particular, the more general Theorems 2.3 and 2.4 in [17] are also not correct in general.

Example 1 We consider the matrix A = (apx) defined by aj; = % and a,; = O forn > 1
(k € N). Set also pr = 2 (k € N), then gx = 2 (k € N). First, we verify that the condition
(2) (thatis (2) in [5, Theorem 1]) holds. By the definition of A, we get

1 m
aln,k,m) = — Z;a,,ﬂ-,l,k =0 forn=>1
j:

and

a(l,k,m) = (k,m € N).

| =

1
m

Therefore, for any C € N, we obtain

1 1\? 1\2
sup Z Ia(n, k, m)|chqu = Ciz sup Z (g . %> = Ciz Z <E> =
k

m,neN k meN &
So the condition (2) in [5, Theorem 2] holds. In view of
Iim a(n,k,m)= lim 0=0 (n,keN)
m— 00 m—0oQ

and
. . 1 1
Iim a(l,k,m)= lim —-—-=0 (keN)
m—o0 m—oom k
the condition (3) in [5, Theorem 1] holds with g = 0 (k € N).

Now let us consider the sequence x = (1, 1, ...). Since

2
Dl —xalP=1<o0,
k

then x € bv(p). On the other hand x & w4, since

[Ax]) = Zalkxk = Z% 1= oco.
k

k
Therefore A & (bv(p), acso), thus A & (bv(p),ac) and A & (bv(p), acyp). A

Remark 2 The given example shows that bv(p) C w4 does not hold in general under the
conditions of [5, Theorems 1-3]. As we will state in Section 6, even under the additional
assumption bv(p) C w4, the condition (2) in Theorem 2 of [5] is not correct in general.
Moreover, in Applications 1(e), we will state that the condition (2) in Theorem 1 of [5] char-
acterizes the matrices A € (£(p), acx). Thus, because of (£(p), aceo) S (bv(p), acso), the
condition (2) in Theorem 1 of [5] is not sufficient for A € (bv(p), acso) With bv(p) C w4.
Note that both parts of the proof of [5, Theorem 1] contain wrong conclusions. A

In [5], Ganie and Sheikh tried to prove Theorems 1, 2, and 3 entirely anew, in particular,
they do not use related results like those in [7]. In the following, we use a simple method,
developed in [4], to reduce results corresponding to those in [5] to results in [7]; we call it
the reduction method. Moreover, in this way, we are able to characterize matrices A to be
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a member of (X, acs), (X, acp), and (X, ac) where X denotes one of the sequence spaces

Lo (P), co(p), c(p), £(p), and bv(p) for any given sequence p = (pi) € oo With pr > 0
(k € N). We will do it in three steps and—following the expositions in [4]—we do it in a
very general as well as simple way.

3 Characterization of A € (X, Y) for Special X and Y

For the application of the reduction method, we need a characterization of A € (X,Y)
in terms of the coefficients of A where X € {£~(p), co(p), c(p),£(p),bv(p)} and Y €
{0, c, cp}. For that, we searched the bibliography for theorems of Toeplitz—Silverman type
in the case of the spaces X and Y being in consideration.

Proposition 4 (X = ¢ (p) and Y € {{, co, c}) For any matrix A = (aui), the following
statements hold:

1
@ A€ (lao(p). Loo) <= sup, Yy lank|N 7% < 00 for every N € N\{1}
(cf. [9, Theorem 3]).
1
() > lank|NPc < 0o converges uniformly in n
(b) A€ lx(p) o) forevery N € N\{1},
(i) (@ni)n € ¢ (k € N)
(cf. [9, Corollary of Theorem 3]).
1
(i) >4 lank|NPc < 00 converges uniformly in n
©) A€ (lx(p),c) < for every N € N\{1},
(i) (ank)n € co (k € N)

(immediate corollary of Part (b) and its proof).

Proposition 5 (X = co(p) and Y € {{w, co, c}) For any matrix A = (auy), the following
statements hold:

-1
(@ A€ (co(p),los) < sup, Dy lank|M P < oo for some M € N\ {1}
(cf. [11, Theorem 1 with g := e]).

-1
(i) sup, >y lank|M 7c < oo for some M € N\ {1},
(i) (@ux)n € ¢ (k €N)

(cf. [8, Corollary 2 of Theorem 9]).

() A€ (clp).c) —

-1
A (i) sup,, > lank|M Pk < oo for some M € N\ {1},
© Acp.a = { (i) (@ € co (k€ N)

(immediate corollary of Part (b)).

Proposition 6 (X = c¢(p) and Y € {£, co, c}) For any matrix A = (auy), the following
statements hold:

;|
(@) A€ (c(p), loo) (@) sup, >y lankIM P < oo forsome M > 1,

(i) (an)xk €cs (neN) and sup, |Zk a,,k| < 00
(note e € c(p), cf. [11, Theorem 1 with g := e]).
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Theorems of Toeplitz—Silverman Type 375

(@) sup, > |ank|M;7; <00 forsome M € N\ {1},
(b) Ae€(cp)co) < @) @uwncc (keN),
(i) (@ni)k € cs (n € N)  and  lim, Y au exists

(cf. [8, Theorem 9]).

(@) sup, > |a,,k|Mf_’7c1 < oo forsome M € N\ {1},
© Ae(ep)c) < {Gi) (@), cco keN),
(iil) (@) €cs meN) and lim, ) pan =0

(cf. Part (b)).

Remark 3 If 0 < liminfy py < limsup; pxy < 00, then £oo(p) = €oo, c(p) = ¢, and
co(p) = co by Remark 1. Thus, on account of the corresponding well-known Toeplitz—
Silverman theorems, we may consider py = gx = 1 and N = M = 1 in Propositions 4, 5,
and 6.

Proposition 7 (X = ¢(p) and Y € {{oo, co, c}) Let 1 < pi (k € N). Then for any matrix
A = (ank), the following statements hold:

(@) Ae(p)le) < sup, D ;lawl|* M™% < oo forsome M € N\ {1}
(cf. [9, Theorem 1]).

b) Aep)o) {

(cf. [9, Corollary 1]).
@) sup, >y lank|%*M~% < oo  forsome M € N\ {1},
© 4elpha) = { (i) (@) € co (k € N)
(cf. [9, Corollary 1 with oz = 0]).

) sup, Dy lank|%* M™% < oo for some M € N\ {1},
(i) (ank)n € ¢ (k € N)

Proposition 8 (X = €(p) and Y € {€so, co,c}) Let O < px < 1 (k € N). Then for any
matrix A = (ank), the following statements hold:

(@ A€ lp)lx) < sup,  lan|P* < oo (cf. [9, Theorem 1]).

(i) sup,, ¢ lank|P* < oo,
®) Aclp)o = {(n) (@ndn € ¢ (k € N)

(i) supy  lancl? < oo,
© Acrna s [GE I I

(cf. [9, Corollary 1 with ax = 0]).

(cf. [9, Corollary 1]).

Proposition 9 (X = bv(p) and Y € {€, co, c}) Let 1 < pr (k € N) and A = (a,x) be an
infinite matrix with bv(p) C wa, that is,

00 o0 qj

Zay,k N,V < .

k=r

VneN, N, e N\{1}: >

r

ar .
Ny " < oo and sup E
r .

j=l1

Ank
k=r

Then the following statements hold:

@ A€ Bup)te) < M eN\(1): sup, ¥ |V an|" M0 <o

(cf. [7, Theorem 3.2(2.)]).
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376 J. Boos, M. Zeltser

a
M™% < o0,

(i)IM e N\ {1} : sup, % i
b) Acbop)e) < | Vil Oosup Zk‘Z, k @nj
(ii) Vk e N : (ijk anj) € co

(cf. [7, Theorem 3.2(3.)]).

())3M e N\ {1} : sup, ¥, ‘z;‘;k 1)
(i) Vk e N: (T3 an) €c

(cf. [7, Theorem 3.2(4.)]).

@
M™% < oo,

(c) Ae(bv(p),c) <<

Proposition 10 (X = bv(p) and Y € {€, co, c}) Let O < px <1 (k € N). Then for any
matrix A = (ank), the following statements hold:

< oo (cf.[7, Theorem 3.2(2.)]).

Pk
@ A€ BUp),boe) = sup, i [Tt

Pk
< 00,

® Aebup),a e | Pk T o
(ii)Vk e N : (Zj:kanj) € ¢p

(cf. [7, Theorem 3.2(3.)]).

Pk
< 00,

(i) sup,, x ‘Ziik Anj
(i) Vk eN: (X3 an) €c
(cf. [7, Theorem 3.2(4.)]).

(c) Ae(bv(p),c) <

4 Theorems of Toeplitz—Silverman Type for SM-Maps

In the following, we deal with double sequence spaces with a, in some sense, ‘uniform
structure’, in particular we consider the following double sequence spaces:

Q= {x = (xpv)

Vn,veN: x,, € ]K} (set of all double sequences),

M, = x=(xm,)€§2’EINx€N: sup |xnv|<OO]

n,v>Ny

(double sequences being bounded in the sense of Pringsheim),

Moy = x:(x,w)EQ‘HNXGN: sup  |xu] <OO}

n>N,;veN

(almost uniformly bounded double sequences),

My = 3{x= () €Q

sup [xuy| < 00
n,veN

(uniformly bounded double sequences),

C = Hc:{x:(xnv)€Q|VveN: (Xnv)n € ¢},
neN
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Theorems of Toeplitz—Silverman Type 377

C' = {x = (xn) € Q| (x) €C},
C, = {x:(xnv)GQ‘Elpx €K : lim sup |xm,—px|=0}
' no>r
(double sequences being convergent in the sense of Pringsheim),
Cpo = {x = (Xpy) € Q| lim sup |x,y| = 0} ,
r nov>r
Cr = {x= () €Cp| (xn)y €c(neN) and (xy)n € ¢ (v e N)}
=C,nCncC’
(double sequences being regularly convergent (in the sense of Hardy)),
Cro = CpO ney,
Ch = x:(x,w)eQ‘Elhx €K: lim sup |xtww —he =0},
" max{n,v}>r
(note, by mistake, in [4] this convergence was identified with Hardy convergence),
Cho = {x = (xm) €Q ‘ lim  sup |x;| =07,
T max{n,v}>r
Cuc = {x=(0n) € Q| Ju,y €eK: lim sup |xu —uyx| =0
" n>r;veN
(double sequences being uniformly convergent to a constant value),
Cuo == 1x = (xp) € Q ‘ lim sup |x;,] =0
" n>r;veN
(double sequences being uniformly convergent to 0),
F = M, NCye,
Fo = M, NCyo.

As it was stated in [4, Proposition 3], the members of the double sequence spaces defined
above may be easily characterized in terms of sequences:

Proposition 11 (cf. [4, Proposition 3]) Let x = (x,,,) € Q be given. Then:

(@)
(b)
(©)
d
(e)
()

R R R R R R

o

€ M, <= Vindex sequences (v;) and (n;) in N : (x,,,,) € Lco.
€ May <= V (v;) and index sequences (n;) in N : (xp,,) € Lo
eM, < VY (v)and (n,)inN: (xn,y,) € Loo.
€ Cp, < 3 py €K, Vindex sequences (v) and (n;) in N : lim, x,,,., = py.
€ Cpo <= V index sequences (v;) and (n;) in N : (xp,,,) € co.
€e ¢ < 3 h, € K, V (v)and(n,)inNwith max{n,,v,}

lim, xp,,., = hy.

(&) xe€Ch < VY (vv)and (n,) in Nwith max{n,, v.} / 00: (Xp,,) € co.

(h) x €Cy <= Fu, € K, V (v,) and index sequences (n,) in N : lim, x,,,,, = uty.
(i) x e€Cy < V (v) and index sequences (n,) in N : (x,,1,) € co.

Now, we define maps defined by sequences of matrices (SM-maps).
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378 J. Boos, M. Zeltser

Definition 1 (cf. [4]) Let A = (A®") be a sequence of infinite matrices A®) = (a')), X
be a sequence space, and ) be a double sequence space.

Qg = :x =) Ew ‘ Vn,veN: Zank Xk converges} = ﬂa)Am,
v

Va4 = :x €Qy ’ Ax = (A(”) ) €Y with AWx = (Zank xk>}

(domain of A4 with respect to V).
Then the map
A: Q4 — Q, x+— Ax
is well-defined and called an SM-map. We use the notation

Ae(X,)): &= X C Y4 (thatis, A maps X into ).
Example 2 Let Ay := (A®)) where A® = (a'}) is defined by

1 _
<v>._{ ifk=v,....,vtn—1, (, v, k € N). 3)

a = n
nk 0 0therw1se

Then oo = acoo = My, = Maua, = wace (cf. Proposition 3), ac = Cyc 4,,
acy = CMO.AU‘ A

The observations in Proposition 11 give us the tool to reduce theorems of Toeplitz—
Silverman type for SM-maps to corresponding Toeplitz—Silverman theorems for matrix
maps.

Corollary 1 (cf. Proposition 11, [4, Corollary 4]) Let A = (A™)) be a sequence of infinite
matrices AV = (a,(l];()) and let X be a sequence space with X C Q2. 4. Then the following
equivalences are valid:

(@) Ae(X,M,) < Vindex sequences (v;) and (n,) in N : (a(v’)) € (X, Loo)-
by Ae (X, My) < V (v,) and index sequences (n,) in N : (a(v')) € (X, o).
© AeX.M,) & V@) and@n)inN: @) e (X, o).
(d Ae(X,C,) < Vindex sequences (v;) and (n,) in N : (a(v’)) € (X, o)
and all these matrices are pairwise conszslent4 on X.
e) Ae (X, Cpo) <= V index sequences (v,) and (n,) in N : (a(u')) e (X, ¢p).
6 Ae X,Cp) < Y (), (n,)in Nwith max{n,, v} /1 o0: (a(”’)) € (X,0)
and all these matrices are pairwise consistent on X.
(® Ae(X,Cho) & ¥ (), (ny) in Nwith max{n,, v} /00 (@) € (X, co).
(h)y Ae(X,Cyu) < V (vy) and index sequences (n,) in N : (a(U’)) € (X,0)
and all these matrices are pairwise consistent on X.
1) Ae(X,Cyp) < V (v) and index sequences (n,) in N : (a(v’)) e (X, ¢p).

4If X C w and A, B are matrices with X C ¢4 N cg, then A and B are called consistent on X, if limy x =
limpg x for each x € X.
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Theorems of Toeplitz—Silverman Type 379

Table 1 Summary of the results of Corollary 2

X\Yy M, M M, Cp Cpo Cuc Cuo F Fo
Lo (p) 1) 8) 15) 22) 29) 36) 43) 50) 57)
co(p) 2) 9) 16) 23) 30) 37) 44) 51) 58)
c(p) 3) 10) 17) 24) 31) 38) 45) 52) 59)
£(p),0<pr<1) 4) 11) 18) 25) 32) 39) 46) 53) 60)
£(p),(1<pr<o0) 5) 12) 19) 26) 33) 40) 47) 54) 61)
bv(p),(0<pc<1) 6) 13) 20) 27) 34) 41) 48) 55) 62)
bv(p),(1<pr<o0) 7 14) 21) 28) 35) 42) 49) 56) 63)

Using the reduction method, the first author and Seydel characterized SM-maps A €
(X,)) in terms of the matrix coefficients, where X € {¢,%o0,...,bs} and ) €
{M,, ..., Fo} (cf. the double sequence spaces listed in the headline of the following table).
In the following, we complete these results for X € {€o(p), co(p), c(p), £(p), bv(p)} and
Y e {M proves JFo}. Further, at the end of this section, we will consider in Remark 4 the
cases of the double sequence spaces C, C', C,, Cyo, Cp, and Cpy.

For example, A € (c(p), Cyc) is characterized in part 38) of Corollary 2.

In all cases we assume X C 24, or equivalently, (ai‘,?)k € X (n,v € N) which is a
necessary condition for X C ) 4. Note that in almost all cases the characterizing conditions
are already contained in those listed below.

To present clearly the characterizations 1)-63), we proceed as follows: We list all
these characterizations in the following corollary, prove the second one and give for the
remaining—completely analogous—proofs only some hints (in square brackets). Unusu-
ally, for the sake of clarity, we place directly the proof and the hints behind the respective
characterization (Table 1).

Corollary 2 Let p = (pi) € oo with pr > 0 (k € N).
) Ae ({o(p),Mp) < (4), where

i
VN € N\{1}, 3Ky € N: sup Z a,(l‘;c) NPk < 00. (@)
nv>Ky &
[Apply Corollary 1(a) and Proposition 4(a).]
2) Ae(co(p),Mp) < (5), where
-1
IMeN\{1}, INeN: sup Z‘a’gz)‘Mﬁ<oo. (5)

n,v>N k

Proof By Corollary 1(a) (cf. [4, Corollary 4]) and Proposition 5(a), the statement
A € (co(p), M) is equivalent to

-1

(V) V index sequences (v,), (n,) in N, 3M € N\ {1} : sup, ¥ la\ ) |M 7% < 0.
Obviously, (5) implies (V). For a proof of the converse implication, we assume that
(V) holds and that (5) fails, that is,

-1
YM e N\ {1}, YN eN: sup Z’a’(l];{)’Mpk = o0.
k

n,v>N
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By that, we can find index sequences (v,) and (n,) such that
(vr)
Z }antk
k
-1
By (V), we may choose an M € N\ {1} such that sup, ) |a(”r)|Mf’k < 00. Then

—supZ’ (vr) rl’k1 <supZ

r>M r>M

rﬁ >r (r e N\{1}).

which contradicts our assumption. O

3) Ae(c(p),Mp) < (5 and (6), where

AN, e N: sup

Z ank
n,v>N,

< o0. (6)

[Apply Corollary 1(a) and Proposition 6(a).]
4) Let0 < py < 1. Then A € (U(p),Mp) <> (7), where

) )| Px
AN e N: sup a,; < 0. 7
n,v>N, keN
[Apply Corollary 1(a) and Proposition 8(a).]
5) Let1 < pi. Then A € ({(p),Mp) < (8), where
IM e N\ {1}, AN e N : supZ M < oo, ®)

n,v>N
[Apply Corollary 1(a) and Proposition 7(a).]
6) Let0 < py < 1. Then A € (bv(p),Mp) < (9), where
o Pk
AN e N: sup Z ,(,j) < 0. )
n,v>N, keN =k

[Apply Corollary 1(a) and Proposition 10(a).]
7) Let1 < pi. Then A € (bv(p), Mp) <= (10) and (11), where

Va,veN, IM,, > 1: supz Za(”) M % < oo, (10)
" k=1 j=m
o qk
IM e N\ {1}, IN e N: sup Y 1Y a| M < oo, (11)
n,v>N & =k J
[Apply Corollary 1(a) and Proposition 9(a).]
8) A€ (lw(p), May) < (12), where
1
VN eN\{1}, 3Ky €eN:  sup ‘ | NP < 0. (12)
n>Kpy, VEN k
[Apply Corollary 1(b) and Proposition 4(a).]
9) A e (co(p), May) <= (13), where
—1
IMeN\{l}, AN eN:  sup Z‘ a| M7 < oo, (13)
n>N,veN &
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10)

11)

12)

13)

14)

15)

16)

17)

18)

[Apply Corollary 1(b) and Proposition 5(a).]
A € (¢(p), May) < (13) and (14), where

Z ank

k

iN, e N: sup

n>N,, veN

[Apply Corollary 1(b) and Proposition 6(a).]
Let0 < py < 1. Then A € ({(p), Muay) <= (15), where

(v) Pk
a,r < Q.

dN e N: sup
n>N; k,veN

[Apply Corollary 1(b) and Proposition 8(a).]
Let 1 < py. Then A € (£(p), My,) <= (16), where

AM e N\ {1}, AN e N:

n>N,veN 1
[Apply Corollary 1(b) and Proposition 7(a).]
Let 0 < py < 1. Then A € (bv(p), Ma,) < (17), where
oo Pk
N e N: sup Z r(l;) < 00.
n>N; k,veN =k
[Apply Corollary 1(b) and Proposition 10(a).]
Let 1 < py. Then A € (bv(p), My,) <= (10) and (18), where
9k

M‘fk<oo.

(14)

5)

16)

a7

IM eN\ {1}, INeN: sup » Z W M~ % <00, (18)

n>N,veN & |j=k

[Apply Corollary 1(b) and Proposition 9(a).]
A€ (Uo(p), M) > (19), where

VN € N\{1} : sup Z‘()‘Nl’k < 00.

n,veN
[Apply Corollary 1(c) and Proposition 4(a).]
A € (co(p), M,) < (20), where

IMeN\(1}: sup Z‘ v)

n,veN

Mpk < 00.

[Apply Corollary 1(c) and Proposition 5(a).]
A € (¢(p), M,) <= (20) and (21), where

Z ank

k

sup
n,veN

< Q.

[Apply Corollary 1(c) and Proposition 6(a).]
Let0 < p; < 1. Then A € (L(p), M) < (22), where

sup a(';{)

k,n,veN

< OQ.

[Apply Corollary 1(c) and Proposition 8(a).]

19

(20)

1)

(22)
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19)

20)

21)

22)

23)

24)

25)
26)

27)

28)

29)

Let 1 < py. Then A € (£(p), M) < (23), where

AM e N\ {1}: sup Z'a(
n,veN

M™% < co. (23)

[Apply Corollary 1(c) and Proposition 7(a).]
Let0 < p; < 1. Then A € (bv(p), M,) <= (24), where

00 Pk

sup Zafl‘]’.) < o0. (24)
n,k,veN =k
[Apply Corollary 1(c) and Proposition 10(a).]
Let 1 < pi. Then A € (bv(p), My) <= (10) and (25), where

00 qk

IMeN\{1}: sup Y. Zag) M™% < oo. (25)

n,veN & |j=k

[Apply Corollary 1(c) and Proposition 9(a).]
A € (U(p), Cp) < (26) and (27), where

1
VN € N\{1},3Ky € N : Z ‘a,(l';{)‘ N Pk converges uniformly inn, v > Ky (26)
k

Vk € N,Jop € K: lim sup

" nv>r

aly) — | =o0. @7)

[Apply Corollary 1(d) and Proposition 4(b).]
A € (co(p), Cp) < (5) and (27).

[Apply Corollary 1(d) and Proposition 5(b).]
A € (c(p), Cp) < (5), (27) and (28), where

Z LI(U) o

[Apply Corollary 1(d) and Proposition 6(b).]
Let0 < px < 1. Then A € (£(p), Cp) <= (7) and (27).
[Apply Corollary 1(d) and Proposition 8(b).]
Let 1 < pi. Then A € (£(p), Cp) <= (8) and (27).
[Apply Corollary 1(d) and Proposition 7(b).]
Let 0 < py < 1. Then A € (bv(p), Cp) < (9) and (29), where

doe e K: lim sup =0. (28)

" nyv>r

Vk e N, 3Ar € K: lim sup Za(v) — A =0 (29)

n
' nv>r 4

[Apply Corollary 1(d) and Proposition 10(b).]

Let 1 < pi. Then A € (bv(p), Cp) < (10), (11), and (29).
[Apply Corollary 1(d) and Proposition 9(b).]

A € (Ueo(p), Cpo) < (26) and (30), where

a

| =o0. (30)

Vk e N: lim sup

" no>r

[Apply Corollary 1(e) and Proposition 4(c).]
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30)

31)

32)
33)

34)

35)

36)

37)

38)

39)
40)

41)

42)

A € (co(p), Cpo) < (5) and (30).
[Apply Corollary 1(e) and Proposition 5(c).]
A € (c(p), Cpo) < (5), (30), and (31), where

Za

[Apply Corollary 1(e) and Proposition 6(c).]

Let 0 < py < 1. Then A € (£(p), Cpo) < (7) and (30).

[Apply Corollary 1(e) and Proposition 8(c).]

Let 1 < pi. Then A € (£(p), Cpo) < (8) and (30).

[Apply Corollary 1(e) and Proposition 7(c).]

Let 0 < py < 1. Then A € (bv(p), Cpo) <= (9) and (32), where

lim sup
" nyv>r

oo

VkeN: lim sup Z Wl = o.

a,
T on>r | ST Y

[Apply Corollary 1(e) and Proposition 10(c).]

Let 1 < pi. Then A € (bv(p), Cpo) < (10), (11), and (32).
[Apply Corollary 1(e) and Proposition 9(c).]

A€ (Ueo(p), Cuc) = (33) and (34), where

i
N Pk

YN e N\{1}, 3Ky eN: ). ‘afljj
k

(€29

(32)

(33)

converges uniformlyinn > Ky,v € N,

(v)

Vk e N,Jop € K: lim sup |a,; —ak‘ 0.

T n>r,veN

[Apply Corollary 1(h) and Proposition 4(b).]

A € (co(p), Cuc) <= (13) and (34).

[Apply Corollary 1(h) and Proposition 5(b).]

A € (c(p), Cuc) <= (13), (34), and (35), where

> e —a

k

de e K: hrn sup

n>r,veN

[Apply Corollary 1(h) and Proposition 6(b).]

Let0 < py < 1. Then A € ({(p), Cuc) <= (15) and (34).

[Apply Corollary 1(h) and Proposition 8(b).]

Let 1 < py. Then A € (£(p), Cue) <= (16) and (34).

[Apply Corollary 1(h) and Proposition 7(b).]

Let0 < py < 1. Then A € (bv(p), Cyc) <= (17) and (36), where

VkeN, 34, e K: lim sup Za(”) =0.

" n>rveN =k

[Apply Corollary 1(h) and Proposition 10(b).]
Let 1 < py. Then A € (bv(p), Cue) <= (10), (18), and (36).
[Apply Corollary 1(h) and Proposition 9(b).]

(34)

(35)

(36)
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43) A € (Uuo(p), Cuo) == (33) and (37), where

. : )
VkeN: lim sup |a,,

" n>r,veN

=0. (37)

[Apply Corollary 1(i) and Proposition 4(c).]
44) A € (co(p), Cuo) < (13) and (37).
[Apply Corollary 1(i) and Proposition 5(c).]
45) A e (c(p), Cuo) < (13), (37), and (38), where

Z a| =

[Apply Corollary 1(i) and Proposition 6(c).]
46) Let0 < py < 1. Then A € (£(p), Cuo) <= (15) and (37).
[Apply Corollary 1(i) and Proposition 8(c).]
47) Let1 < py. Then A € (£(p), Cuo) <= (16) and (37).
[Apply Corollary 1(i) and Proposition 7(c).]
48) Let0 < py < 1. Then A € (bv(p), Cyuy) <= (17) and (39), where

lim sup (38)

" n>rveN

. m|_
VkeN: lim sup Za =0. (39)

n>r,veN =k

[Apply Corollary 1(i) and Proposition 10(c).]
49) Let1 < py. Then A € (bv(p), Cuo) < (10), (18), and (39).

[Apply Corollary 1(i) and Proposition 9(c).]
50) Ae (Loo(p), F) < (19), (33), and (34). [Cf. 15) and 36).]
51) A€ (co(p), F) < (20) and (34). [Cf. 16) and 37).]
52) A€ (c(p), F) < (20), (34), and (35). [Cf. 17) and 38).]
53) Let0 < py < 1. Then A € ({(p), F) < (22) and (34). [Cf. 18) and 39).]
54) Let1 < pi. Then A € (£(p), F) <= (23) and (34). [Cf. 19) and 40).]
55) Let0 < py < 1. Then A € (bv(p), F) <= (24) and (36). [Cf. 20) and 41).]
56) Let1 < pi. Then A € (bv(p), F) < (10), (25), and (36). [Cf. 21) and 42).]
57) A€ (Le(p)s Fo) < (19), (33), and (37). [Cf. 15) and 43).]
58) A€ (co(p), Fo) < (20) and (37). [Cf. 16) and 44).]
59) A e (c(p), Fo) < (20), (37), and (38). [Cf. 17) and 45).]
60) Let0 < py < 1. Then A € ((p), Fo) <= (22) and (37). [Cf. 18) and 46).]
61) Letl < py. Then A € (£(p), Fo) <= (23) and (37). [Cf. 19) and 47).]
62) Let0 < py < 1. Then A € (bv(p), Fo) <= (24) and (39). [Cf. 20) and 48).]
63) Let1 < pi. Then A € (bv(p), Fo) <= (10), (25), and (39). [Cf. 21) and 49).]

Remark4 (a) Let A = (A™)bea sequence of infinite matrices A" and let X and Yy,
v € N, be arbitrary sequence spaces. If ) is the cartesian product of ¥ (v € N), that is
Y =[], Y™, then obviously

Ae(X,)) < WweN: AW e (x,vW).

For instance, we may apply this equivalence to sequence spaces X and ¥ ") under consid-
eration in [6, 11, 16, 19]. In particular, we may consider the space C of all double sequences
with all columns being convergent. Obviously, C = [], Y™ with Y := ¢ (v e N)is a
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simple application example. Considering ) = C' for A = (A")) with A®) = (a,), we get
obviously

Ae(X,C) <= VneN: B™ e (X, o) with B™ := @)y, n € N.

(b) Let A = (A™) be a sequence of infinite matrices AW = (ay(lll?) and let X be an
arbitrary sequence space. If Y = ();; )i, where {); | i € I} is afamily of double sequence
spaces, then we obviously have

X, V) =X, ), thusAe(X,)) = Viel: AcX, ).
iel
For instance, we may apply this observation to the double sequence space C, of all
regularly convergent double sequences where C, = C, NCNC'.
Now, if A = (A™) is a sequence of infinite matrices A") = (a,(q‘;()), then

Ae(X,.C) & AeX,CpH)nAe (X.C)AAe(X,C.

Here, we should note that A € (X, C") if and only if B € (X, C) where B = (B™) is the
sequence of the matrices B := (a,(l‘,?)vk, n € N. Thus, in both cases, we may apply Part
(a) of these remarks.

(¢) Quite similarly, we may handle the cases A € (X,Cp) and A € (X, Cpo) since
Cho = Cuo N Cly and C; = (&) @ Cpo where Cly = {x = (x1) € 2| (xyn) € Cyo} and €
denotes the double sequence with ‘1’ in each position.

5 Characterization of A € (X, Y 4) where Y € {M,,, M, Cyuc}

We start—similarly as in the previous sections—with some more general considerations:
We aim to characterize A € (X, ) 4) where A is any matrix, A is a sequence of row
finite matrices A®) = (a,(,‘,i)), X € {Uxo(p), co(p), c(p), £(p), bv(p)}, and Y is at first any
double sequence space and then, specially, M, M,, and C,, respectively. Under these

assumptions, we have
AW (Ax) = (A(")A) x  (x€wp,veN). (40)
Now, as an easy consequence of (40), we get

Proposition 12 (cf. [4, Proposition 7]) Let X be a sequence space, Y be a double sequence
space, and A" (v € N) be row-finite. Then for each matrix A with X C wa, we have
X C Qg and

Ae(X, V1) <= AAe (X)),
where AA 1= (A A).

For further considerations, we apply Proposition 12 to the special case X €
{tss(p), co(p), c(p), £(p), bu(p)} and, as three examples, Y € {May, My, Cuc}. Appli-

cations to other special spaces X and ) are also straightforward. Note, X C w4 implies
X C wgy,if A® is row-finite. So the results in Section 4 are applicable to AA here.
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We aim to obtain results like Corollary 8(a) in [4] where the space ¢ is replaced with
any one of the spaces bv(p), £(p), £xo(p), co(p), and c(p).

The same simple procedure is naturally also possible for all double sequence spaces )
considered in Section 4 and for all sequence spaces X with known characterizations of
A e (X,Y)whereY € {{, c, co}.

Let Y = M,,. The following Corollaries are immediate applications of Proposition 12
and Corollary 2, parts 8)—14).

Corollary 3 Let AM (v e N) be row-finite and let A be any matrix with £, (p) C wa, that
is (ani)k € Moo (p) for each n € N. Then the following statements are equivalent:

(a Aec (Zoo(p)a Mau.A)~
(b) B = AA € (Eoo(P), Mau)-
(¢) The condition (41) holds, where

1
VN e N\ {1}, 3Ky € N : sup Y Y aau| N <oo.  (41)

n>Ky,veN x °w

Proof The statements (a) and (b) are equivalent by Proposition 12 and (b) and (c) are
equivalent by part 8) of Corollary 2, applied to AA. O

Corollary 4 Let A™ (v e N) be row-finite and let A be any matrix with co(p) C wa,
that is (anx)x € Mo(p) for each n € N. Then the following statements are equivalent (by
application of Proposition 12 and Corollary 2, part 9)):

(@ A e (co(p), Maua)
(b) B=AAe (co(p), Mau).
(c) The condition (42) holds, where

—1
aM eN\ {1}, 3N e N: sup Y M7 <oco. (42

n>N,veN &

pBIHI

I

Corollary 5 Let AY) (v € N) be row-finite and let A be any matrix with ¢(p) C wa, that
is (anx)k € c¢s N Mo(p) for each n € N. Then the following statements are equivalent (by
application of Proposition 12 and Corollary 2, part 10)):

(@) A€ (c(p), Mauna).
(b) B=AA € (c(p), May).
(c) The conditions (42) and (43) hold, where

IN, e N: sup
n>N,,veN

< 00. (43)

YD aslau
Kk on

Corollary 6 Let 0 < pr < 1, AM (v € N) be row-finite matrices, and A be any matrix
with £(p) C wa, that is (ayk)r € M(p) for each n € N. Then the following statements are
equivalent (by application of Proposition 12 and Corollary 2, part 11)):

(@ Aep), Maua).
(b) B=AA € {p), Ma).
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(c) The condition (44) holds, where
Pk

AN e N: sup
n>N; k,veN

Z )

< 0. (44)

Corollary 7 Let 1 < pi, AY) (v € N) be row-finite matrices, and A be any matrix with
L(p) C wa, that is (ank)k € Loo(p) for each n € N. Then the following statements are
equivalent (by application of Proposition 12 and Corollary 2, part 12)):

(@) A e (lp), Maua).

(b) B=AA e (p), Ma).

(c) The condition (45) holds, where
dk
IM e N\ {1}, AN e N : sup Y M™% < . (45)
n=N,veN

(v)
Z an;}. Ak

m

Corollary 8 Let0 < p < 1, AY) (v € N) be row-finite matrices, and let A be any matrix
with bv(p) C wa, that is, sup, | Z,fir ank|Pr < oo for each n € N. Then the following
statements are equivalent (by application of Proposition 12 and Corollary 2, part 13)):

(@) A€ (bv(p), Maua).
(b)y B=AA € (bv(p), Muy).
(¢) The condition (46) holds, where
Pk

o0
N e N: sup ZZa,(,”M)aW < 00. (46)
n>N; k,veN =k &

Corollary 9 Let 1 < pi, AY) (v € N) be row-finite matrices, and A be any matrix with
bv(p) C wa, that is,

VneN, IN e N\ {1}: Z N I <00 and supz N*q/'<oo.

j=1

Z Ank

k=r

Then the following statements are equivalent (by application of Proposition 12 and
Corollary 2, part 14)):

(@ A e bu(p), Maua)
(b) B=AA € (bv(p), Mu,).
(c) The condition (47) holds, where
4

o0
aM e N\ {1}, 3N e N sup Y ZZ Vaui| M™% < oo (47)
n>N,veN & —k 1

Let Y = M,,. The following corollaries are immediate applications of Proposition 12
and Corollary 2, parts 15)-21); for an example of a proof see the proof of Corollary 3.

Corollary 10 Let AY) (v € N) be row-finite and let A be any matrix with Lo (p) C w4,

that is (ank )k € Moo(p) for each n € N. Then the following statements are equivalent (by
application of Proposition 12 and Corollary 2, part 15)):
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(@ A€ lu(p), Mya).
by B=AAe (Loo(p), My).
(c) The condition (48) holds, where

VN eN\{1}: sup Y NP < oo, (48)

n,veN k

>l

m

Corollary 11 Let AY) (v € N) be row-finite and let A be any matrix with co(p) C wa,
that is (anx)x € Mo(p) for each n € N. Then the following statements are equivalent (by
application of Proposition 12 and Corollary 2, part 16)):

(@ A e (co(p), Mya).
(b) B=AA € (co(p), My).
(c) The condition (49) holds, where

IM eN\{1}: sup »_

n,veN "y

Za(wa '

m

M l’k < 00. (49)

Corollary 12 Let AY) (v € N) be row-finite and let A be any matrix with c¢(p) C wa, that
is (ank)ik € ¢s N Mo(p) for each n € N. Then the following statements are equivalent (by
application of Proposition 12 and Corollary 2, part 17)):

(@) A€ (c(p), Mya).
(b) B=AA e (c(p), My).
(c) The conditions (49) and (50) hold, where

DDl

ko n

sup < 0. (50)

n,veN

Corollary 13 Let 0 < p; < 1, AY) (v € N) be row-finite matrices, and A be any matrix
with £(p) C way, that is (anr)r € M(p) for each n € N. Then the following statements are
equivalent (by application of Proposition 12 and Corollary 2, part 18)):

(@) A e {p), Mya).
(b) B=AA € (t(p), My).
(c) The condition (51) holds, where

Dk

sup Zafl‘;zaﬂk < 00. (&28)

n,k,veN

Corollary 14 Let 1 < py, AY) (v € N) be row-finite matrices, and A be any matrix with
L(p) C wa, that is (anx)k € Loo(p) for each n € N. Then the following statements are
equivalent (by application of Proposition 12 and Corollary 2, part 19)):

(@) A e l(p), Mya).

(b) B=AA e (t(p), My).

(c) The condition (52) holds, where

qk

(v) M™% < oco. (52)

nu Ak

IM e N\ {1} : sup. Z

n,veN
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Corollary 15 Let0 < py < 1, A® (v € N) be row-finite matrices, and let A be any matrix
with bv(p) C wa, that is, sup, | Z,fir ank|Pr < oo for each n € N. Then the following
statements are equivalent (by application of Proposition 12 and Corollary 2, part 20)):

(@) A e (bv(p), Mya).
(b) B=AA € (bv(p), M,).
(c) The condition (53) holds, where

Pk

sup Z Za,(,‘:jaw < 00. (53)

nkUENj —k I

Corollary 16 Let 1 < py, AY (v € N) be row-finite matrices, and A be any matrix with
bv(p) C wa, that is

qr
N~ <00 and supz
j=l1

qj
N9 < oo.

VneN, AN e N\{1}: )

r

>au

k=r

>an

k=r

Then the following statements are equivalent (by application of Proposition 12 and
Corollary 2, part 21)):

(@) A e (bv(p), Mya).
(b)y B=AA € (bv(p), M,).
(¢) The condition (54) holds, where

qk

IMeN\{1}: sup Y ZZanﬂaW M™% < co. (54)

n,veN k |ji=k u

Let Y = Cy.. The following corollaries are immediate applications of Proposition 12
and Corollary 2, parts 36)—42); for an example of a proof see the proof of Corollary 3.

Corollary 17 Let A™ (v € N) be row-finite and let A be any matrix with {x(p) C w4,
that is (ank)k € Moo(p) for each n € N. Then the following statements are equivalent (by
application of Proposition 12 and Corollary 2, part 36)):

(a) A€ (l(p), Cucn).
by B=AA€ (Loo(p), Cuc).
(c¢) The conditions (55) and (56) hold, where

v)
Z Ay Auk
“w

converges uniformly inn > Ky and v € N,

Z @)k

VN e N\(1},3Ky eN: N7 (55)

Vke N,3p;r e K: hm sup

n>r,veN

=0. (56)

Corollary 18 Let A™ (v € N) be row-finite and let A be any matrix with co(p) C wa,
that is (ank)x € Mo(p) for each n € N. Then the following statements are equivalent (by
application of Proposition 12 and Corollary 2, part 37)):
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(@) A€ (co(p), Cuca)
(b) B=AA¢€ (co(p), Cuc)-
(c) The conditions (56) and (42) hold.

Corollary 19 Let AY) (v € N) be row-finite and let A be any matrix with c¢(p) C wa, that
is (ank)ik € ¢s N Mo(p) for each n € N. Then the following statements are equivalent (by
application of Proposition 12 and Corollary 2, part 38)):

(@ A€ (c(p),Cuca).
(b) B=AA € (c(p),Cuc)
(c) The conditions (56), (42), and (57) hold, where

D alau — B ‘ 0. (57)

koow

3 e K: lim sup

" n>rveN

Corollary 20 Let 0 < p; < 1, AY) (v € N) be row-finite matrices, and A be any matrix
with £(p) C way, that is (anr)r € M(p) for each n € N. Then the following statements are
equivalent (by application of Proposition 12 and Corollary 2, part 39)):

(@ A€ lp),Cuca)
(b) B=AA € (t(p),Cuc).
(c) The conditions (56) and (44) hold.

Corollary 21 Let 1 < p;, AY) (v € N) be row-finite matrices, and A be any matrix with
L(p) C wa, that is (an)k € Loo(p) for each n € N. Then the following statements are
equivalent (by application of Proposition 12 and Corollary 2, part 40)):

@ AeWp),Cua).
(b) B=AA € (t(p),Cuc).
(c) The conditions (56) and (45) hold.

Corollary 22 Let0 < p; < 1, A" (v € N) be row-finite matrices, and let A be any matrix
with bv(p) C wa, that is, sup, | > pe., ank|Pr < oo for each n € N. Then the following
statements are equivalent (by application of Proposition 12 and Corollary 2, part 41)):

(@ A€ (bv(p), Cuca)-
(b)y B=AA € (bv(p),Cuc).
(c) The conditions (46) and (58) hold, where

VkeN, 3B, €e K: lim sup ZZanﬂaM—Bk =0. (58)
" n>ryveN =k W

Corollary 23 Let 1 < py, A" (v € N) be row-finite matrices, and A be any matrix with
bv(p) C wa, that is,

qj

VneN, AN e N\(1}: Y N~9 < oo.

r

Zank

Then the following statements are equivalent (by application of Proposition 12 and
Corollary 2, part 42)):

qu<oo and supZ
j=1

>an

k=r
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(@ A e bv(p),Cuca).
(b) B=AAe (bU(P), Cuc)-
(c) The conditions (58) and (47) hold.

Remark 5 For the case ) := Cyo consider Corollary 2, part 43)-49) and replace in
Corollaries 17-23 the space C,. by Cy as well as B, Bi(k € N) and 8 by 0.

6 Characterization of A € (X, Y) where Y € {acs, ac, acy)

Now we are ready to deduce the characterizations of A € (X,Y) where X €
{€oo(p), co(p), c(p), £(p), bv(p)}and Y € {ac, ac, aco} from the results in Section 4; in
particular, we get the correct versions of the claims by Ganie and Sheikh in [5].

The following results are simple applications of the corresponding results in Section 5 in
the case of Ay (cf- Example 2) and also in Section 3. So we state the results without proofs.

First of all, let Y = aco, that is, ¥ = acx = wacs = £~ by Proposition 3. Thus
we may characterize A € (X,Y) where X is a fixed member of {€(p), co(p), c(p),
£(p), bv(p)}. Through this, we get three equivalent statements characterizing A €
(X, acxo); in the cases, acoo and wacs, we deduce the characterization from our results in
Section 5 and in the case £, from the results of Jarrah and Malkowsky in [7] (which we pre-
sented in Section 3). Without doubt, in any case of X € {£-,(p), co(p), c(p), £(p), bv(p)},
the third characterization is much easier to handle than the others.

Applications 1 As above we assume in any case that X C wp where X is a fixed member
of {€ea(p), co(p), c(p), £(p), bu(p)}.

(@) A€ (loo(p),aceo) <= (59) holds (by (48)), where

v+n—1

1 1
VN eN\{1}: sup Y |~ Y au|N% <oo (59)
n,veN & n w=v
<= (60) holds (by (41)), where
1 v+n—1 .
VN e N\ {1}, 3Ky € N: sup D = D au| N < oo (60)
n=Ky,veN n =v
<= (61) holds (by Proposition 4(a)), where
1
VN e N\{1}: sup ) lan|N7% < oc. 61)
n

k
() A e (co(p),acs) <= (62) holds (by (49)), where

v+n—1

1 =1
IMeN\{1}: sup > |= > au| M7 <oo (62)
nveN | =
<= (63) holds (by (42)), where
1 v4+n—1 .
IM eN\ {1}, INeN: sup Y |- Y au|M% <oo  (63)
n>N,veN 7~ |11 =
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<= (64) holds (by Proposition 5(a)), where

-1
IM eN\{1}: sup ) |au|M? < oo. (64)
n
k
(c) A€ (c(p),ace) < (62) and (65) holds (by Corollary 12(c)), where
v4+n—1
sup Z Z au| < o0 (65)
n,veN |1

<= (63) and (66) hold (by Corollary 5(c)), where

v+n—1

;Z Z Quk

&= (64) and (67) hold (by Proposition 6(a)), where

AN, e N: sup

n>N,,veN

< 00 (66)

(an)k €cs (meN) and sup Zank < 00. 67)
n
k
(d) Let0 < pr <1.Then A € (£(p), acso) <= (68) holds (by (51)), where
v4+n—1 Pk
sup auk| <00 (68)
n,k,veN |1 Z .
<= (69) holds (by (44)), where
v+n 1 Pk
dN e N: sup a,k < 00 (69)
n>N.k,veN |l Z .
<= (70) holds (by Proposition 8(a)), where
sup |ank|P* < oo. (70)
n,keN
(e) Letl < pg. Then A € (U(p), acoo) <= (71) holds (by (52)), where
1 vn—1 Ik
IMeN\{1}: sup = > | Y au| M % <oo (71)
n,veN 1t & u=v
<= (72) holds (by (45)), where
v+n—1 9k
IM eN\ {1}, INeN: sup 72 Z au| M™% < oo (72)
n>N,veN 71

<= (73) holds (by Proposition 7(a)), where

IM eN\{1}): sup ) |aul®M % < oco. (73)
"ok
() LetO < pr < 1.Then A € (bv(p), aceo) <= (74) holds (by (53)), where
oo v+n—1 Pk
sup Z Z auj| < oo (74)
n,k,veN 7t —k p=v
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<= (75) holds (by (46)), where

oo v+n—1 Pk
dN e N: sup Z Z ayj| < oo (75)
n>N,k,veN It =k p=v
&= (76) holds (by Proposition 10(a)), where
P
sup Za,,j < 0. (76)

"kjk

(g) Letl < px. Then A € (bv(p), acso) <= (77) holds (by Corollary 16(c)), where
qk

oo v+n—1
aM e N\ {1} : supfzz > ay| M™% <oo (7
n,veN 1 K |j=k w=v
<= (78) holds (by Corollary 9(c)), where
oo v+n—1 el
IM eN\ {1}, INeN: sup *ZZ > ay| M% <oco  (18)
n>N,veN 1 j=k p=v

<= (79) holds (by Proposition 9(a)), where
9k

IM eN\{1}: sup) |> an| M % <oo. (79)

Now, let Y = acorY = acy.

Applications 2 As above we assume in any case that X C wa, where X is a fixed member
of {los(p), co(p), c(p), £(p), bu(p)}.

(@) A€ (lx(p),ac) < (80)and (81) hold (by Corollary 17(c)), where

v+n 1
VN e N\{1}, 3Ky € N: Z Z au| N
k
converges umformly inn>Kyandv e N, (80)
v+n 1

Z auk — B

®) A € (co(p),ac) <= (81)and (63) hold (by Corollary 18(c)).
() A€ (c(p),ac) < (81), (63) and (82) hold (by Corollary 19(c)), where

v+n—1
3 eK: lim sup ZZauk—
" n>rveN |7
(d) Let0 < px <1.Then A € (£(p),ac) <= (81) and (69) hold (by Corollary 20(c)).
() Letl < px.Then A € (£(p), ac) <= (81) and (83) hold (by Corollary 21(c)), where
9k
M™% < co. (83)

VkeN, 38 e K: lim sup

" n>rveN

=0. (81)

=0. (82)

v4+n—1
aM e N\ {1}, AN e N : sup 72 Zauk
n>N,veN
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(f) LetO < pr < 1.Then A € (bv(p), ac) <= (84) and (85) hold (by Corollary 22(c)),

where
oo v+n—1 Pk
AN e N: sup Z Z auj| < oo, (84)
n>N,; kvENn =k p=v
oo v+n—1
VkeN, 3By eK: lim sup — Z > auj— B =0. (85)
" p>rveNn =k p=v
(g) Letl < pr. Then A € (bv(p),ac) <= (85) and (86) hold (by Corollary 23(c)),
where
oo v+n—1 9k
aM e N\ {1}, 3N e N: sup 722 > auy| M <oo.  (86)
n>N,veN 7t j=k p=v

Remark 6 For the case Y = acy replace in Applications 2 (a)—(g), the space ac by acp as
well as Bk, B (k € N) and 8 by 0.

Remark 7 (Claims by Ganie and Sheikh)

(a) The first equivalence in Applications 1(g) corresponds to Theorem 1 in [5], where
the (wrong) characterizing condition in [5, Theorem 1] has been replaced by (77).
The further equivalences in this application may be considered as an extension of [5,
Theorem 1].

(b) Application 2(g) corresponds to Theorem 2 in [5], where the (wrong) characterizing
conditions in [5, Theorem 2] have been replaced by (85) and (86).

(c) Following Remark 6, we get a corresponding theorem to [5, Theorem 3] if we replace
in Applications 2(g) the space ac by acg as well as B, By (k € N) and 8 by 0.

(d) Ganie and Sheikh assumed in [5, Theorems 1-3] that p € £ and 1 < p (k € N).
Analogously to (a), (b), and (c), we get the corresponding results in the case 0 < p; <
1 (k € N) by Applications 1(f) and 2(f) as well as Remark 6, respectively.

Remark 8 Differently than in Section 3, we did not consider the special case 0 <
liminfy py < limsup, pr < oo in Sections 4-6. The interested reader should note Remarks
1 and 3 and may consult [4] for the corresponding results.
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