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Abstract We propose an algorithm which can be considered as a combination between
the subgradient and Halpern methods for strongly monotone bilevel variational inequal-
ities where the lower problem is a pseudomonotone variational inequality. The strong
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1 Introduction

Let H be a real Hilbert space with an inner product (-, -) and its induced norm denoted by
| - |I, and let C be a nonempty closed convex subset of H. The bilevel variational inequality
under consideration in this paper can be formulated as

Find x* € Sol(C, G) such that (F (x*),y —x*) >0 Vy € Sol(C, G), 1)
where F : H — H is a given mapping and

Sol(C,G) ={y* € C: (G(y"),z—y") = 0Vz e C},
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318 T.V. Anh

i.e., Sol(C, G) is the solution-set of the variational inequality V I (C, G) defined as
Find y* € C such that (G(y"),z —y*) >0 VzeC 2)

with G : H — H. Some additional conditions on F and G will be detailed later.

The bilevel problem (1) is a special class of mathematical programs with equilibrium
constraints [23, 25]. However, it covers some bilevel problems considered in the literature
(see, e.g., [11, 13, 17-20, 23, 29]). In the special case when F(x) = x — xOforallx € H
with x© being a fixed element in H, the bilevel variational inequality (1) is reduced to the
problem of finding the projection of x° onto Sol(C, G). The latter problem where G is
monotone or pseudomonotone arises in the Tikhonov regularization method [15, 16] and
recently has been solved in some papers [3, 4, 6, 10, 12, 31] by using the projection tech-
nique. It is well-known (see, e.g., [12, p. 1110]) that the projection method for monotone
variational inequality may fail to converge. To overcome this difficulty, the extragradient
method (or double projection), first proposed by Korpelevich [21] for saddle problem and
Antipin [1], can be applied to pseudomonotone variational inequalities ensuring conver-
gence. However, since the extragradient method requires two projections, it may effect the
efficiency of the method. Motivated by this fact, Censor et al. [7] have modified the extra-
gradient method for solving the variational inequality V I (C, G) defined by (2) by replacing
the second projection onto the constrained set by the one onto the half-space containing C.
This method is called subgradient projection method, that can be described as follows.

Starting from a given point x% € H, forall k > 0, the next iterate is defined as

W= Pe(xf —1G@h)),
T ={w e H: (xk —tGG") —y* 0 — ") <0},
A = Pr(xF = 1G (M.

It was proved that if G is monotone, L-Lipschitz on C and the stepsize 7 € (0, %) then
both sequences {x*} and {yk} converge weakly to a solution u* of VI(C, G).

This method has been further modified and extended to obtain strong convergence results
for monotone variational inequalities and generalized problems [8, 9, 22].

Inspired of the works by Censor et al. [7-9], in this paper, we propose a subgradient
algorithm combining with the Halpern method to obtain a strongly convergent algorithm
for solving the bilevel variational inequality (1) where F is strongly monotone but G may
be pseudomonotone. It is worth mentioning that, since G may not be monotone, the bilevel
problem (1) cannot be formulated as a variational inequality over the fixed-points of a
nonexpansive mapping.

The paper is organized as follows. After some preliminary results in Section 2, a general
scheme is proposed in Section 3; this scheme is strongly convergent. In particular, when F'
is defined for all x € H by F(x) = x — x° where x is a fixed element in H, we prove
that the sequence {x¥} generated by our algorithm converges strongly to the projection of x°
onto the solution set of the variational inequality VI (C, G). This is particularly interesting
when x° = 0 (the minimum-norm problem).

2 Preliminaries

In what follows, we write x¥ — x to indicate that the sequence {x¥} converges weakly to
x while x¥ — x to indicate that the sequence {x*} converges strongly to x. Recall that the

@ Springer



A Strongly Convergent Subgradient Extragradient-Halpern Method 319

(nearest point or metric) projection from H onto C, denoted by Pc, is defined in such a way
that, for each x € H, Pc(x) is the unique point in C with the property

lx = Pc()|l = minf|lx — y[| : y € C}.
Some important properties of the projection operator Pc are gathered in the following
lemma.
Lemma 1 [14] For givenx € Handy € C:
(i) y=Pcx)ifandonlyif{(x —y,z—y) <0Vz e C.
(i) [IPc(x) —zlI* < llx — zlI* — [lx — Pc(x)|* Vz € C.

Let us also recall some well-known definitions which will be used in this paper.

Definition 1 A mapping ¢ : H — H is said to be

(i) pB-strongly monotone on H if there exists 8 > O such that

(B(x) — (), x —y) = Blx — yII> Vx,y € H;

(i) L-Lipschitz continuous on H if

lo(x) —¢WIl < Llx —yll Vx,ye H;

(iii) monotone on H if

(p(x) —@p(y),x —y) >0 Vx,yeH;
(iv) pseudomonotone on H if

(@), y=x)z0 = (p(O).y—x)=0 Vx,yeH.

Itis well known thatif ¥ : H — H is -strongly monotone, L-Lipschitz continuous on
H and if Sol(C, G) is a nonempty, closed and convex subset of H, then the bilevel problem
(1) has a unique solution (see, e.g., [27]).

The next lemmas will be used for proving the convergence of the proposed algorithm
described below.

Lemma 2 Suppose ¢ : H —> H is B-strongly monotone, L-Lipschitz continuous on H,

and0<a<1,0§r)§1—a,0<u<i—’g.Then

I =mx —augx) = [0 =n)y —aupWMIl = (1 =n—-a)llx =yl Vx,yeH,

T=1—/1-p@p—puL? e (0,1].

where

Proof 1t is clear that
I —=mx —auep(x) —[A =n)y —augWII
=[A-=m& —y) —au@x) — s
=[d-n—-a)x —y) +alx —y) —n@E) —dONII
= =n—a)lx =yl +alx—y) —u@x) —dO)I. 3)
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320 T.V. Anh

By the strong monotonicity and the Lipschitz continuity of ¢, we have
e = y) = (@) —pODI* = Ix — ylI* = 21{x — y, d(x) — ()
+12llp(x) — dpI?
< lx = yI? = 2uBllx — ylI* + p?L?||x — y|?
= (1 =2uB + p*LHllx — y|*.

(= y) = @) — Il =/ 1 — @B — pL)|x — yl. “4)

Combining (3) with (4) gives

(A —mx —apdx) —[(1 =0y —aup]I
sU=n=a)lx =yl +all(x =y) = n@x) —oM)

<U=n=a)lx =yl +ay/1—pn2p—puL?)lx -yl

= =n—a)x—yl,

T=1—41—u@p—pulL? e(0,1].

This completes the proof. O

Hence,

where

Lemma 3 ([24]) Let {a,,} be a sequence of nonnegative real numbers. Suppose that for any
integer m, there exists an integer p such that p > m and ap < apy1. Let ng be an integer
such that ay, < any+1 and define, for all integer n > ny,

t(n) =max{k e N: ng <k <n,ar < aps+1}-

Then {t(n)}p>n, is a nondecreasing sequence satisfying lim,_ o, T(n) = oo and the
following inequalities hold true:

Ar(n) < Gr()+1, Gn < dey+1 YR > ng.

Lemma 4 ([30]) Assume {a,} is a sequence of nonnegative real numbers satisfying the
condition

a1 < (1 —ap)ay +ayé, Vn >0,
where {a,} is a sequence in (0, 1) and {&,} is a sequence in R such that
() YZoom =00
(i) limsup, , & <O.

Then lim,, o0 a, = 0.

3 The Algorithm and Its Strong Convergence

The algorithm we are going to describe can be considered as a combination of the one in
[7] with the Halpern method for solving the bilevel variational inequality (1). Furthermore,
we impose the following assumptions on the mappings F, G : H — H associated with
the bilevel problem (1).

(A1) F is B-strongly monotone and L-Lipschitz continuous on H.
(A2) G is pseudomonotone and y -Lipschitz continuous on H.

@ Springer



A Strongly Convergent Subgradient Extragradient-Halpern Method 321

(A3) limsup;_, o (G(xF),y — y*) < (G®),y — V) for every sequence {x¥}, {y¥}
converging weakly to X and y, respectively.

Let us also mention that conditions (A1)—(Az3) are classical assumptions for variational
inequalities. Furthermore, it is easy to see that if G satisfies the property (Az), then the
solution set Sol(C, G) of the variational inequality VI (C, G) is closed and convex (see,
e.g., [26]).

Algorithm 1

Initialization. Choose x° € H, 0 < n <
such that

L2’ the sequences {ax} C (0, 1), {nk}, and {Ax}

lim ar =0, Z o =
0<771<<1—a1<\7’k>0 lim gy =n <1,
k— 00

{Ar} C la, b] for some a, b € (0, %)

For each iteration k£ > 0, compute
yh = Po(xf = G (M), F = Pp(xF = G GY),

and define the next iterate by taking
= pexh + (1 = )2t — e F (2,

where
Ti = {we H: (xF =Gk — yk 0 —y5) <0).

Remark I In Algorithm 1, we can choose, for example, oy = ﬁ, Nk = 2(k+3)’ M = 5=
for all k € N. An elementary computation shows that {«a;} C (0, 1), limg o tx = 0 and
Y re gk = oo. Furthermore, 0 < nx < 1 — o for all k € N and limy_, o0 7 = % < 1.

The following theorem shows validity and convergence of the algorithm.

Theorem 1 Suppose that the assumptions (A1)—(A3) and Sol(C, G) # @ hold. Then, the
sequence {x*} in Algorithm I converges to the unique solution of the bilevel problem (1).

Proof The proof of the theorem is divided into several steps.
Step 1 Forall x* € Sol(C, G), we have

128 =12 < ¥ =2 )2 = (=2 I = Y112 = A =2 Iy =247 Yk e N. (5)
Indeed, let x* € Sol(C, G). From (i) of Lemma 1 and the definition of yk, we have

(K —MmGER) =y 2=y <0 vzec. 6)

Using (6) and the definition of Ty, we obtain C C T.
It follows from x* € Sol(C, G) and the pseudomonotonicity of G that

(GOM), Y —x*) >0 VkeN. )
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322 T.V. Anh

From (ii) of Lemma 1 and (7), we obtain

X = x*)1? = 1Py, (x* — MG (yF)) — x|
I = GOM) — x| = 5 = G5 — 212
[ = x* 12 = 22 (xF — x*, GGF) + AZNIGOM I = Ix* = 2K
+2he(x* = 2K GOM) = ANGHHI?
= [ = 2P = f = P+ 2t = 2E G GY)
= [xF = x* 2 = Ix* = ) = 20 (G OR), Y = x)
+20 (" =5 GOM)
<l =X =k = 2 20 O0F = 2K GOM)). (8)

IA

Using the Cauchy—Schwarz inequality, arithmetic and geometric means inequality and
observing that G is y-Lipschitz continuous on H, we obtain

2GR — GOM, F = yF) < 21665 — M - Yo

<
< 2y k= YRiZE — v
< vk = Y17 + 1k = 2. 9)

From the definition of T and z¥ € Ty, we have
(=GR —yE - <o,

It follows from the above inequality, (8), and (9) that

A

Ik =22 < ek =212 = ok = 2P 4 2 0F - 2R GOM)

I =12 4+ 204 = 25, GOP) = 165 = ) + F = HIP
Il — 1 4+ 204 (0 = 25, GOM) — Ik = yH P — vk =)
—2(yk — kXK - yk)

Ik = x* 12 = k= yE? = jiyk = 252

+20% = 2K G (OF) — xF 455

ok — 2512 — 1k =y — IyF — 2K

20K — G (k) — ¥k, 2F = yF)

20 (G () — G (YY), 25 — )

ek — x 12 = flxk — Y5 )% = Ik = 2K

ey (k= AP+ 1y = 2417

I = %12 = (1= )l = ¥ = (= ) lly* = 24012

IA

Step 2 The sequences {xK}, {F(x*)}, {y*}, and {z*} are bounded.
Since, forevery k > 0, 1 — Ay > 1 — by > 0, it follows from (5) that

k

Iz = x*| < |IxF = x*|| Vk e N. (10)
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A Strongly Convergent Subgradient Extragradient-Halpern Method 323

It follows from (10) and Lemma 2 that

K+ — x| = [Ipex® 4+ (1= )" — e F (25 — x|

(1 = m)z* — e F (25 — [(1 — n)x™ — o F (x*)]

(k= x*) = o F (x|

(1 =m0z — e F (%) — [(1 = n)x* — e F (9]

il = x|+ ol F )|

< (1= — oD I2° = %) + mellx® — x* || + ol F ) |

< (1= — D) xF = X% + mellx® — x| + ol F ) |

= (1 — D) IxF = x*| + | FH)|

el
T

IA

= (1 — o) 2% = x*|| + et

; an

T=1—/1-p@p—puL? e (,1].

We obtain from (11) that

where

D — x| < max { ||x* — x
Il <

o M||F(X*)||}
) T .

So, by induction, we obtain, for every £ > 0, that

k | MIIF(x*)II}
[

¥ — x*|| < max {ux0 —x

Hence, the sequence {x*} is bounded and so are the sequences { F ML yk }, and {z¢}.

Step3 We prove that x* converges strongly to x*, where x* is the unique solution of (1).
Using Lemma 2, (10) and the inequality

Ix = yI* < x> = 2(y.x —y)  Vx,y€H,
we obtain successively
I — )12 = ex® + (1 = )2k — e F(F) — x*)1?
= (1 — n* —apF @) — [(1 = n)x™ — g F(x*)]
e (xF = x*) — o F (x) |12

< 1A = m)2* — o F (") — [ = n)x* — g F (x*)]
(K = X2 = 200 (F (), T — x%)
{1 = 00z = e F () = 11— n)x™ — agw F (9]
llak — ¥} = 2 (F (x%), A+ — x%)

IA

IA

2
[(1— e — D)5 — 2% + mellx® — x*)1]
—Dagpu(F (x*), x 1 — x%)
k * 12 k *12
(1 — e — axt) 25 — %1% 4 mellak — x|
—Dagp(F(x*), xF 1 — x%)
< (1 — e — o) [IxF — x* )2 4 nellx — x|
2o p(F (x*), x 1 — x%)
= (1 — o) Ix* = x*|12 + 2w (F (x*), x* — X1, (12)

IA

2
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324 T.V. Anh

Let us consider two cases.

Case 1 There exists ko such that {|x¥ — x*||} is decreasing for k > ko. In that case, the
limit of {|x* — x*||} exists. So, it follows from (10) and (12) that

o T 2
0 < Ixk — x* )2 = 12k — )2 = =25k — g2 = 2 ), k- )
11— 11—
1
o (X = = I . ad)

Since the limit of {||x* — x* ||} exists, limy_ 00 ax = 0, limg_00 7k = 1 < 1, {x¥} and
{z*} are two bounded sequences, it follows from (13) that
q

lim (|lx* — x*|12 = |Iz* — x*1?) = 0. (14)
k—o00
From (5) and {A} C [a, b] C (0, %), we get
(1 = by)llx* = y¥)1? < (1 = ) llx® = YF12 < ek = )12 — 125 —x*)2 (15)
Then, from (14) and (15), we obtain
lim [|x¥ — y¥| = 0.
k—o00

Now, we prove that
limsup(F (x*), x* — xk*1) < 0. (16)

k—> 00

Take a subsequence {x%i} of {x*} such that

lim sup(F (x*), x* — x**1) = lim (F(x*), x* — x%).
k—>00 =00
Since {x*} is bounded, we may assume that x¥ converges weakly to some X € H.
Therefore
limsup(F (x*), x* — x**1) = lim (F(x*), x* — x5) = (F(x*), x* = %).  (17)
k—>00 =00
Since limg_ o0 [|x* — yk | = 0and x% — X, it follows that y"f converges weakly to X.
Since C is closed and convex, it is also weakly closed, and thus x € C.
Next, we prove x € Sol(C, G).
Indeed, let x € C. From (6), we have (x¥ — 1, G(x%) — y*, x — y¥) < 0.
In particular, for all i € N

(ki — ag, GRy — Yk x — YRy < 0.

Since Ay, > 0 for every i € N, it follows from the above inequality that

ki _ ki ki
(G(xki),x—yki)z (x yi,x =y >' (18)
Ak;
Applying the Cauchy—Schwarz inequality, and recalling that Ay, > a > Oforalli e N
e AT et 0 | DI (e ST e D | BN (Gl A B 0]
A Ak; - a

i i

% = YA fllx = yHl

a

19)
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Since ||x% — y*i || — O asi — oo and {y*} is bounded, it follows that the right-hand side
of the inequality (19) tends to zero. Then, it follows that lim;_, oo W = 0. So,
using (18), condition (A3) and the weak convergence of two sequences {lxki Lo yki} to X,
we get
0 < limsup(G(x%), x — y) < (G®), x — %),
I—> 00
i.e.,x € Sol(C, G).
Since x* is the solution to the bilevel problem (1) and X € Sol(C, G), we can conclude
that
(F(x™),x —x*) > 0.
Thus, it follows from (17) that lim sup;_, o (F (x*), x* — Xy <o.
The inequality (12) can be written as follows

k+1 2 k 2
[ — X* 17 < (1 — o) 12" — x*|1* + o té,

where

2 F(x*), x* — xkt1
& = . )

From (16), we have that limsup,_,, & < 0. By Lemma 4, we have
limg o0 [IX% — x*|12 = 0, that is, x* — x* as k — oo.
Case2 Suppose there exists a subsequence {x*/} of {x*} such that
e — o < IR = Ve,

From Lemma 3, there exists a nondecreasing sequence {r(k)} of N such that
limy_, o 7 (k) = 00 and the following inequalities hold for all (sufficiently large) k € N

[ e T e I e o PR 0
So, it follows from (11) and (20) that
[x™® —x* ) < IeTEF — X < (4= ey — @raDITE — x|

e Ix™® — x* | + g | F (). @21

Also, from (10) and (21), we have

Az (k)T O (k)

0 < [Ix™® —x*| = |1z7® —x*| < - 27® — x*| +
1 — 0 1 —nr

[F(x. (22)

Since limg— oo otk = 0, limg_, 00 1 = 1 < 1 and {z¥} is bounded, (22) ensures that
lim ([x™® —x*|| = 12*® — x*|) = 0. (23)
k—o0

Therefore, the boundedness of {x¥}, {z}, and (23) guarantee that
lim (Jx*® —x*)* = ]27® = x**) = 0. 24)
k— 00
From 1 — A;(x)y = 1 —by > 0, (5), and (24), it follows that
lim [x7® — y*® =0, lim [|y*® — z7®) = 0. (25)
k—o00 k—00

Note that
a7 ® — 27O < x™® — Oy TE B
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326 T.V. Anh

This together with (25) imply

lim [|x™® — z7®) = 0. (26)
k—o00

On the other hand, Lemma 2 guarantees that

e =T = g™ + (1= 0200)2" = o FETO) = xT O
= (1 = 9e@)z™® — @y F(z"®)

—[(1 = 0ra)x™® = @ F (0] — oy F (x

I = 722" ® — arguF %)

[0 = 02a)x™® = ar o F TN + oy | F(x™0) |

(1= 1oy — eI ® = X0 + argoull F™ )|

< 127 = x"O) + ol FTO)).

w®y)

IA

IA

Then, it follows from the above inequality, (26), lim_, oo @ = 0 and the boundedness
of {F(x™®)} that

kll)nolo”xt(k)+1 _ x'[(k)” =0.

As proved in the first case, we can conclude that

lim sup(F (x*), x* — xT®F!) = limsup(F (x*), x* — x*®) < 0. (27)

k—> 00 k—>00

It follows from (12) and (20) that

T O =P < (1 = ey DT = ) 4 2o (F (%), 1 = 27O

< (1= oyl OF — %2 4+ 207 oy (F (%), x* — x 70T,

Hence, by (20), we have
2
ek — %17 < O — 2 < e, xr — 2t (28)
T

Taking the limit in (28) as k —> o0, and using (27), we obtain

lim sup||x¥ — x*||> < 0.
k—> 00

k

Therefore, x* — x™ as k — o00. The proof is complete. O

Remark 2 From the continuity of G, condition (A3) is automatically satisfied in finite
dimensional spaces. In infinite dimensional spaces, the condition (A3) can be dropped if G

is monotone. This is because the condition (A3) is used to indicate x € Sol(C, G). Now, we
will prove X € Sol(C, G) by using the monotonicity of G.

Proof For all x € C, from (6), we have

(xk" —)Lk[.G(xk") —yk",x —yki) <0 VieN.

@ Springer



A Strongly Convergent Subgradient Extragradient-Halpern Method 327

This together with the monotonicity of G and the Cauchy—Schwarz inequality imply that
(G, ¥ —x) < (GG&*), x4 —x)

= (GG, 2 =y + 5 (i G, YN —x)

(GO, x — ) Lok — Rk — )

(= G =y =y

< (Gh), xb — yhy Lk — ki yh )
< NG I = yh) + g — Yyt — x|
< NGEMNIY =yl + S =5y —x 29

Taking the limit in (29) as i — oo, using the boundedness of {G (xX)}, {y*}, and recalling
that lim; _, oo || x5 — yki | = 0, xk — X, we obtain (G(x), X — x) < 0 and hence,

(G(x),x —x) >0 VxeC. (30)
Letx; ;= (1 —t)x +tx € C,t € [0, 1]. From (30), we have
0<(G(xp),xs —X)={(G(xs), 1 —)x +tx —x) =t{G(xs), x — X).
Then, forall0 <t <1
0 < (G(xp),x —X)
(G(x;) —G(x),x —Xx) + (G(X),x —X)
yllxe = X[llx — X[ +(Gx), x —X)
YIII—0)x +tx = X|l[lx = X[ + (G(X), x —X)
ytle =T +{G@). x — 7).

1A

Taking the limit as t — 0T, we have (G(X), x — X) > 0, i.e., X € Sol(C, G). O

4 Applications

We consider the special case when F(x) = x — x® with x® a given vector in H. This
mapping F is 1-Lipschitz continuous and 1-strongly monotone on H, and in this situation,
by choosing 1 = 1 and nx = O for all k € N, the bilevel variational inequality (1) becomes
the problem of finding the projection of x° onto the solution set of the variational inequality.
When x° = 0, this projection is the minimum-norm solution in Sol(C, G). Finding such a
solution is an interesting work because of its applications. A typical example is the least-
squares solution to the constrained linear inverse problem (see, for instance, [28]).

Corollary 1 Let G : H —> H be a pseudomonotone and L-Lipschitz continuous on H.
Suppose that Sol(C, G) # () and limsupkﬁoo(G(xk), y — yk) < {(G(X),y — V) for every
sequence {x*}, {yX} converging weakly to X and y, respectively. Let {x*} be the sequence
generated by

x0 e H,

vk = Pe(xb — G (xhy),

Ty = {we H: (x* = nGGh) — y*, 0 — yk) <0},
= agx® + (1 = o) Pp (xF — G (y5)) Yk > 0,

(3D
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328 T.V. Anh

where {ax} C (0,1) is a sequence, {A¢} C la,b] for some a,b € (0, %). Assume
limg— o0 o = 0 and ZZO:O ax = 0o. Then, the sequence {x*} generated by (31) converges
strongly to Psoi(c,G) (xo).

From Remark 2 and Corollary 1, we get the following corollary, which includes the
corresponding result of [22, Theorem 3.1] as a special case.

Corollary 2 Let G : H —> H be a monotone and L-Lipschitz continuous on H such that
Sol(C, G) is nonempty. Let {x*} be the sequence generated by

xeH,

& = Pe(x* — MG (xF)),

Ty = {we H: (x* =G5 — yk, w— yk) <0},
X =y x0 4 (1 — ag) Pr (6% — MG (%)) Vi = 0,

(32)

where {ar} C (0,1) is a sequence, (At} C [a,b] for some a,b € (0, %). Assume
limy_ o0 ¢ = 0 and thozo oy = 0o. Then, the sequence {xk} generated by (32) converges
strongly to Psoi(c,G) (xo).

5 Numerical Illustrations
1
Example 1 Let H = R" with the norm || x| = (ZZ:] x,%)7 and the inner product (x, y) =

S F_y Xkyk, where x = (x1, x2, ..., x)T € R y = (y1, y2, ..., yn)T € R™.
Consider the affine mapping G : R" — R"

G(x)=Mx+q,
where M is an n x n positive semidefinite matrix. Then G is pseudomonotone and || M| -

Lipschitz continuous on R”.
Indeed, for every x, y € R", since M is positive semidefinite, we have

(GX) =G, x —y) =(Mx —y),x —y) 0.

Hence, G is monotone and consequently pseudomonotone on R”.
To see the Lipschitz continuity on R" of G, we observe that for every x, y € R”

IGx) =G =IIM&x = = IM][llx — yll,
where ||M || denotes the spectral norm of the matrix M, i.e., the square root of the largest
eigenvalue of the positive-semidefinite matrix M7 M. It then follows that G is |M|-
Lipschitz continuous on R”.

First, we can see that for any real matrix A, the product AT A is a positive semidefinite
matrix. Now, to illustrate Algorithm 1, the mapping G : R® —> R3 is defined by

G(x)=Mx+gq,
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where M = AT A and the matrices A, ¢ (randomly generated) are

0 01 1 -10 —-1-=-2 500 2 5 01 =2
0 0-11 0 0 1 O 022 1 1 230
0O -1-11 -2-1-11 026 4 0 6 5 —1
0 0 -1-20 -2-220 214 16 =37 11 2
=M= )
-20 0 0 -20 0 1 510 =3111 2 =3
0 0 -1-10 -2-2-1 026 7 1 1011 2
-10 0 -2-10 -120 1 35 11 2 1116 5
0O -1-1-21 —-1-2-1 -20-12 -32 5 8

g=(3,3-2,31-2-1,D".

Then G is pseudomonotone and Lipschitz continuous on R8 with y = ||M| = 37.5747.
Let F : R® — R3 be defined by

for all x = (x1, x2, ..

F(x) = (2x1, 4x3, 3x3, 2x4, 6x5, 4x6, 5x7, 3x3)

L xg)T e RS,

It is easy to see that F is strongly monotone with 8 = 2 and Lipschitz continuous with
L =6onRS.

Table 1 Numerical results for Example 1

k

k

k

Iter.(k) x’l‘ X5 X3 Xy X5 Xg X3 Xg

0 6.00000 10.00000  4.00000 —8.00000 7.00000 9.00000 —6.00000 5.00000

1 1.46282 2.20038 1.01601 —2.34567 2.07209 2.00811 —1.15925 0.86874

2 0.77877 1.11390 0.53513 —1.29370 1.05687 1.02330 —0.57909  0.42668

3 0.62810 0.87965 0.44017 —1.05278 0.76210 0.83102 —0.46005 0.36476
4 0.57086 0.78785 0.41272 —0.96394 0.61260 0.77247 —0.41653 0.35679
5 0.52341 0.71209 0.39078 —0.89204 0.49851 0.72594 —0.38191 0.34781
2662 —0.44955 —1.53672 0.50317 —0.55588 —0.13461 —0.14707 0.78948 —0.45707
2663 —0.44954 —1.53672 0.50317 —0.55588 —0.13461 —0.14707 0.78948 —0.45707
2664 —0.44954 —1.53672 0.50317 —0.55588 —0.13462 —0.14707 0.78948 —0.45707
2665 —0.44954 —1.53672 0.50317 —0.55588 —0.13462 —0.14707 0.78948 —0.45707
2666 —0.44954 —1.53672 0.50317 —0.55588 —0.13462 —0.14707 0.78948 —0.45707
2667 —0.44954 —1.53672 0.50317 —0.55588 —0.13462 —0.14707 0.78948 —0.45707
2668 —0.44954 —1.53672 0.50317 —0.55588 —0.13462 —0.14708 0.78948 —0.45707
2669 —0.44954 —1.53672 0.50317 —0.55588 —0.13462 —0.14708 0.78948 —0.45707
2670 —0.44954 —1.53672 0.50317 —0.55588 —0.13462 —0.14708 0.78948 —0.45707
2671 —0.44954 —1.53672 0.50317 —0.55588 —0.13462 —0.14708 0.78948 —0.45707
2672 —0.44954 —1.53672 0.50317 —0.55588 —0.13462 —0.14708 0.78948 —0.45707
2673 —0.44954 —1.53672 0.50317 —0.55589 —0.13462 —0.14708 0.78948 —0.45707
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Let C = {x € R®: ||x|| < 2}. Fix x* = (6,10, 4, -8,7,9, —6,57 € R? (randomly

chosen) as a starting point for the Algorithm 1. With o = ﬁ, Nk =

© = 0.1, we obtain the iteratives (see Table 1) and an approximate solution

X273 = (—0.44954, —1.53672, 0.50317, —0.55589, —0.13462, —0.14708,

0.78948, —0.45707)T

with the tolerance € = 107°.

Example 2 Let

C={(x1,x2,...,x6)" € RO :2x| +3xy — 4x3 + x4 + 2x5 — x6 > —12}

k+1
2(k+3)°

M = 0.01,

and G : R® — RO be defined by G(x) = (sin ||x|| + 2)b for all x € RS, where b =

(2,3, -4,1,2, —1)T € R®. It is easy to verify that G is pseudomonotone on RS.

Furthermore, for all x, y € RO, we have

IG(x) =GO = [Ibll]sin [lx]| — sin [[y]|]

= /35| sin [|lx[| — sin [[y]]

< V35[llx]l = lix |

< V35)x =yl
Table 2 Numerical results for Example 2
Iter.(k) x{‘ xlz‘ xé‘ xi‘ xé‘ xlg
0 3.00000 —1.00000 4.00000 —3.00000 0.00000 2.00000
1 3.17143 —0.74286 3.65714 —2.91429 0.17143 1.91429
2 3.22857 —0.65714 3.54286 —2.88571 0.22857 1.88571
3 3.25714 —0.61429 3.48571 —2.87143 0.25714 1.87143
4 3.27429 —0.58857 3.45143 —2.86286 0.27429 1.86286
5 3.28571 —0.57143 3.42857 —2.85714 0.28571 1.85714
20 3.32653 —0.51020 3.34694 —2.83673 0.32653 1.83673
100 3.33946 —0.49081 3.32107 —2.83027 0.33946 1.83027
500 3.34217 —0.48674 3.31565 —2.82891 0.34217 1.82891
2500 3.34272 —0.48592 3.31456 —2.82864 0.34272 1.82864
12500 3.34283 —0.48576 3.31434 —2.82859 0.34283 1.82859
28233 3.34284 —0.48573 3.31431 —2.82858 0.34284 1.82858
28234 3.34284 —0.48573 3.31431 —2.82858 0.34284 1.82858
28235 3.34285 —0.48573 3.31431 —2.82858 0.34285 1.82858
28236 3.34285 —0.48573 3.31431 —2.82858 0.34285 1.82858
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So G is +/35-Lipschitz continuous on RO.
It is easy to see that the solution set Sol(C, G) of VI(C, G) is given by

Sol(C, G) = {x = (.X],xz,...,XG)T eRS: 2x1 4 3x0 —4x3 4+ x4 + 2x5 — x6 = —12}
={x=(x2....,x¢) €RO: (b, x)+12=0}.

Select a random starting point x0 = 3,—1,4,-3,0,2)T € RO for the algorithm in
Corollary 1. We take Ay = %, a = ﬁ then {ax} C (0, 1), limg_ o = O,

) _ 11 1 . — 10-9 : arativac |
D oreo ok = 00, {Ar} C [115> 701 C (O, ﬁ). With ¢ = 1077, we obtain the iteratives in
Table 2 and an approximate solution obtained after 28236 iterations is

x28236 — (334285, —0.48573, 3.31431, —2.82858, 0.34285, 1.82858)7,
which is a good approximation to the projection of x° on Sol(C, G)

o (b x%) 412 (117 17 116 99 12 64)

P 0 = a0 = P (i me e aer 2
Sol(.6) (x7) = DE 35° 35 35" 35°35 35

We perform the iterative schemes in MATLAB R2012a running on a laptop with Intel(R)
Core(TM) i3-3217U CPU @ 1.80GHz, 2 GB RAM.
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