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Abstract We consider a stochastic, continuous state and time opinion model where each
agent’s opinion locally interacts with other agents’ opinions in the system, and there is
also exogenous randomness. The interaction tends to create clusters of common opinion.
By using linear stability analysis of the associated nonlinear Fokker–Planck equation that
governs the empirical density of opinions in the limit of infinitely many agents, we can
estimate the number of clusters, the time to cluster formation, and the critical strength of
randomness so as to have cluster formation. We also discuss the cluster dynamics after
their formation, the width and the effective diffusivity of the clusters. Finally, the long-term
behavior of clusters is explored numerically. Extensive numerical simulations confirm our
analytical findings.
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1 Introduction

Opinion dynamics models have attracted a lot of attention, and there are many analytical
and numerical studies that consider different models arising from many different fields. In
much of the literature, an opinion dynamics model is a system with a large number of opin-
ion variables, xi(t), i = 1, . . . , N , taking values in R

n. The time evolution of the opinion
variables is governed by an attractive interaction between any two opinion variables, often
taken to be a nonnegative function of the Euclidean distance of the two opinion variables
and may also be time dependent. The most interesting feature of such a model is that opin-
ions only interact locally and the influence function is compactly supported, interpreted as
bounded confidence. In this case, it is of interest to know whether the system will exhibit
consensus convergence, which means that all the opinion variables converge to the same
point as time tends to infinity. Except for some specific consensus models, a broad suffi-
cient condition to have consensus convergence for a general class of models is not known.
However, several studies have shown that for a variety of different types of consensus build-
ing interactions, and without external forces or randomness, the opinions will converge to
possibly several clusters. In this case, the distance between distinct clusters should be larger
than the support of the influence region. But it is not known, in general, how to determine
the number of clusters.

A more realistic way to model opinion dynamics is to add external randomness to the
system. In this case, the model becomes a system of N stochastic processes and usually the
randomness in the model is independent from one opinion holder or agent to another. Many
deterministic techniques can also be used in the stochastic case, but some methods, such as
the use of master equations, are particularly useful in stochastic models. When the external
noise is large in the stochastic models then the tendency to cluster is effectively eliminated
as the system is dominated by the noise. This is a phenomenon seen elsewhere in statistical
physics as well. The strength of the noise or randomness must be below a critical value in
order for cluster formation to emerge and evolve.

The literature in opinion dynamics is very extensive so we mention only a few papers that
have guided our own work. Hegselmann and Krause [13] consider a discrete-time evolution
model, in which the opinions in the next step are the average of the current opinions within
a specified range of the influence region. Pineda et al. [25] add noise to the Hegselmann–
Krause model and determine the critical strength of the noise so as to have cluster formation,
using a master equation approach and linear stability analysis. The same method is also used
in [23, 24] on the Deffuant–Weisbuch model [9]. In [4], the authors take the limit as the num-
ber of opinions goes to infinity and consider the distribution of the opinions (the Eulerian
approach), instead of tracking every single opinion in the Hegselmann–Krause model (the
Lagrangian approach), and [21] further discuss the case with external forces. The long time
behavior and a sufficient condition for consensus convergence of the Hegselmann–Krause
model are considered in [2, 3, 26]. The long time behavior of the Hegselmann–Krause model
with a general influence function is discussed in [16, 22]. The Hegselmann–Krause model
involving different types of agents is considered in [14]. Some recent development of the
study of opinion dynamics are in [19, 22]. Other, related relevant works are [1, 5–7, 10, 12,
15, 18, 20].

Our contributions in this paper are the following. We consider a stochastic opinion model
where every opinion is influenced by an independent Brownian motion. By the mean field
limit theory, the empirical probability measure of the opinions converges, as the size of
the population goes to infinity, to a solution of a nonlinear Fokker–Planck equation. Using
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a linear stability analysis, we estimate the number of clusters, the time to cluster forma-
tion, and the critical strength of the Brownian motions to have cluster formation. The linear
stability analysis can be applied to both deterministic and stochastic models. We also dis-
cuss the behavior of the system after the initial cluster formation but before further cluster
consolidation, where the centers of the clusters are expected to behave like independent
Brownian motions. Finally, we consider the long time behavior of the system. Once clusters
are formed, their centers behave like Brownian motions until further merging. After con-
sensus convergence, where there is only one cluster, there is a small probability that all the
opinions inside the limit cluster will spread out and the system will become an independent
agent evolution. Extensive numerical simulations are carried out to support our analysis and
remarks about cluster formation and evolution.

The paper is organized as follows. The interacting agent model is presented in Section 2.
The mean field limit is presented briefly in Section 3. The linearized stability analysis of
the governing nonlinear Fokker–Planck equation is presented in Section 4 when there is
no external noise. The results of numerical simulations are also presented in this section.
In Section 5, we extend the analysis of the previous section to the stochastic case when
there are external noise influences. We also present the results of numerical simulations in
the stochastic case. In Section 6, we comment briefly about the long time behavior in the
stochastic case when there is clustering. We end with a brief summary and conclusions in
Section 7.

2 The Interacting Agent Model

The opinion model we consider in this paper is (see [22, Eq. (1.2a)])

dxi = − 1

N

N∑

j=1

aij (xi − xj )dt + σdWi(t), (1)

where xi(t) is the agent i’s opinion modeled as real valued process, where t is time and
i = 1, . . . , N . The coefficients aij denote the strength of the interaction between xi and xj

and they are a function of the distance between xi and xj

aij = φ(|xi − xj |).
The interesting case is when the influence function φ is non-negative and compactly sup-
ported. In other words, the interactions are attractive and the agent i affects only the other
agents that have similar opinions. Here, we assume that φ is compactly supported in [0, R0]

φ(r) = φ0

(
r

R0

)
, (2)

where supp(φ0) = [0, 1].
The Wi(t), i = 1, . . . , N are independent standard Brownian motions that model the

uncertainties of the agents’ opinions, and σ is a non-negative constant quantifying the
strength of the uncertainties. If σ = 0, then there is no randomness in this model and (1) is
a deterministic system, while if σ > 0, the system becomes stochastic.

For the purposes of the analysis below, we consider the model (1) on the torus [0, L]
instead of the real line R, i.e., we consider the model in the bounded space [0, L] with
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periodic boundary conditions. The assumption of periodic boundary conditions is mostly
for simplifying the analysis. Although this assumption may not be appropriate in some
applications, we found that the results obtained using it are numerically consistent with the
same model in full space or in a finite interval with reflecting boundary conditions. The later
two are in general more realistic for many applications. We note that the same periodicity
assumption for the analysis of the opinion dynamics is also used in [23–25].

3 The Mean Field Limit

At time t , we consider the empirical probability measure ρN(t, dx) of the opinions of all
the agents

ρN(t, dx) = 1

N

N∑

j=1

δxj (t)(dx).

Here, δx(dx) is the Dirac measure with the point mass at x. The empirical probability
measure ρN(t, dx) is a measure valued stochastic process. We assume that as N → ∞,
ρN(0, dx) converges weakly, in probability to ρ0(dx)which is a deterministic measure with
density ρ0(x). By using the well-known mean field asymptotic theory (see, for example, [8,
11, 17]), it can be shown that as N → ∞, ρN(t, dx) converges weakly, in probability to
ρ(t, dx), for 0 ≤ t ≤ T < ∞, a deterministic probability measure. Under suitable condi-
tions, the limit measure has a density ρ(t, x) which satisfies (in a weak sense) the nonlinear
Fokker–Plank equation

∂ρ

∂t
(t, x) = ∂

∂x

{[∫
ρ(t, x − y)yφ(|y|)dy

]
ρ(t, x)

}
+ σ 2

2

∂2ρ

∂x2
(t, x), (3)

with given initial density ρ0(x). In particular, if x1(0), . . . , xN(0) are sampled indepen-
dently and identically according to the uniform measure over [0, L], then the result holds
true and the initial measure has constant density ρ0(x) = 1/L.

In this paper, we assume that N is large and view the mean field limit as the defin-
ing problem. Therefore, we will analyze the overall behavior of the opinion dynamics,
x1(t), . . . , xN(t), by analyzing instead the nonlinear Fokker–Planck (3).

4 Deterministic Consensus Convergence: σ = 0

We will follow a modulational instability approach to study the mean field limit when (σ =
0), also analyzed in [16, 22]. We look for conditions so as to have consensus convergence
where all the opinions converge to a cluster as t → ∞. We also analyze the number of
clusters if there is no consensus convergence and the time to cluster formation, that is, the
onset of cluster formation.

4.1 Linear Stability Analysis

We first linearize the Fokker–Planck equation (3) with σ = 0 by assuming that ρ(t, x) =
ρ0 + ρ1(t, x) = 1/L + ρ1(t, x). Substituting ρ(t, x) = ρ0 + ρ1(t, x) into (3) and assuming
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that ρ1 is a small perturbation of ρ so that the O(ρ2
1 ) term is negligible, we find that ρ1(t, x)

satisfies

∂ρ1

∂t
(t, x) = ∂

∂x

[∫
ρ0yφ(|y|)dyρ1(t, x)

]
+ ∂

∂x

[∫
ρ1(t, x − y)yφ(|y|)dyρ0

]

= ρ0

∫
∂ρ1

∂x
(t, x − y)yφ(|y|)dy. (4)

The last equality in (4) holds because φ(|y|) is an even function and therefore∫ yφ(|y|)dy =
0.

By taking the Fourier transform in x, ρ̂1(t, k) = ∫ L

0 ρ1(t, x)e−ikxdx, with the discrete
set of frequencies k in

K = {2πn/L, n ∈ Z},
we find from (4) that

∂ρ̂1

∂t
(t, k) =

[
iρ0k

∫
e−ikyyφ(|y|)dy

]
ρ̂1(t, k), (5)

which gives the growth rates of the modes

γk = Re

[
iρ0k

∫
e−ikyyφ(|y|)dy

]
= ρ0k

∫
sin(ky)yφ(|y|)dy. (6)

We can see that for each k, |ρ̂1(t, k)| = |ρ̂1(0, k)| exp(γkt). By replacing φ with φ0 (see
(2)), we can rewrite γk as

γk = ρ0R0ψ(kR0), ψ(q) = 2q
∫ 1

0
φ0(s)s sin(qs)ds. (7)

The growth rate γk is maximal for k = ±kmax with kmax := qmax/R0, more exactly, for
k equal to plus or minus the discrete frequency kmax in the set K that maximizes ψ(kR0),
which is close to qmax/R0. Here

qmax = argmax
q>0

[ψ(q)] = argmax
q>0

[
2q

∫ 1

0
φ0(s)s sin(qs)ds

]
. (8)

The optimal (continuous) frequency qmax is positive and finite under general conditions
since ψ(q) � 2q2

∫ 1
0 s2φ0(s)ds for 0 ≤ q � 1 and ψ(q) is bounded or decays to zero at

infinity depending on the regularity of φ0.

4.2 Fluctuation Theory

By the central limit theorem, if we assume that the initial opinions x1(0), . . . , xN(0) are
sampled identically according to the uniform distribution over the domain [0, L], then

ρN
1 (t = 0, dx) := √

N
(
ρN(t = 0, dx) − ρ0(dx)

)
= √

N

(
1

N

N∑

i=1

δxi (0)(dx) − dx

L

)
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converges in distribution as N → ∞ to the measure ρ1(t = 0, dx), whose frequency
components, for k ∈ K\{0},

ρ̂1(t = 0, k) = lim
N→∞

∫ L

0

√
Ne−ikx

⎛

⎝ 1

N

N∑

j=1

δxj (0)(dx) − dx

L

⎞

⎠

= lim
N→∞

√
N

⎛

⎝ 1

N

N∑

j=1

e−ikxj (0) −
∫ L

0

1

L
e−ikxdx

⎞

⎠

= lim
N→∞

√
N

⎛

⎝ 1

N

N∑

j=1

e−ikxj (0)

⎞

⎠

are independent and identically distributed with complex circular Gaussian random vari-
ables with mean zero and variance 1

E
[
ρ̂1(t = 0, k)

] = 0, E

[
ρ̂1(t = 0, k)ρ̂1(t = 0, k′)

]
= δkk′ , k, k′ ∈ K\{0},

ρ̂1(t = 0, −k) = ρ̂1(t = 0, k), while ρ̂1(t = 0, k = 0) = 0.
For any T , the measure-valued process

ρN
1 (t, dx) := √

N
(
ρN(t, dx) − ρ0(dx)

)
, t ∈ [0, T ]

converges in distribution as N → ∞ to a measure-valued process ρ1(t, dx) whose density
ρ1(t, x) satisfies the deterministic PDE

∂ρ1

∂t
(t, x) = ρ0

∫
∂ρ1

∂x
(t, x − y)yφ(|y|)dy (9)

with the random initial condition described above.
Consequently, combining with (5) and (6), at any time t , the frequency components

ρ̂1(t, k), k ∈ K\{0}, are independent complex circular Gaussian random variables, with
mean zero and variance exp(2γkt)

E

[
ρ̂1(t, k)ρ̂1(t, k′)

]
= δkk′ exp(2γkt), k, k′ ∈ K\{0},

ρ̂1(t, −k) = ρ̂1(t, k), while ρ̂1(t, k = 0) = 0. Therefore,

E[ρ1(t, x)ρ1(t, x
′)] = E

[
∑

k

ρ̂1(t, k)
eikx

L

∑

k

ρ̂1(t, k)
eikx′

L

]

=
∑

k

E

[
ρ̂1(t, k)

eikx

L
ρ̂1(t, −k)

e−ikx′

L

]
= 1

L2

∑

k 
=0

e2γkt eik(x−x′).

For large times, the spectrum of ρ1(t, x) becomes concentrated around the optimal
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wavenumber kmax. We can expand γk = γmax + 1
2γ

′′
max(k − kmax)

2 for k around kmax and
use a continuum approximation for the discrete sum

E[ρ1(t, x)ρ1(t, x
′)] = 1

L2

∑

k 
=0

e2γkt eik(x−x′) � 1

L2

∫ ∞

−∞
e2γkt eik(x−x′) L

2π
dk

= 1

2πL

∫ ∞

−∞
e2γkt eik(x−x′)dk � 1

πL
Re

(∫ ∞

0
e2(γmax+ 1

2 γ ′′
max(k−kmax)

2)t eik(x−x′)dk

)

= 1

πL
Re

(
e2γmaxt

∫ ∞

0
eγ ′′

max(k−kmax)
2t eik(x−x′)dk

)

=
(
1

L
e2γmaxt cos(kmax(x − x′))

)(
1

√
π |γ ′′

max|t
e
− (x−x′)2

4|γ ′′
max|t

)
. (10)

A typical realization of ρ1(t, x) is a modulation with the carrier spatial frequency kmax
and a slowly varying envelope with stationary Gaussian statistics, mean zero, and Gaussian
covariance function. This is valid provided L2 � 4|γ ′′

max|t . If L2 � 4|γ ′′
max|t , then the

continuum approximation is not valid and we have

E[ρ1(t, x)ρ1(t, x
′)] = 1

L2

∑

k 
=0

e2γkt eik(x−x′) = 2

L2

∑

k>0

e2γkt cos(k(x − x′))

� 2

L2
e2γmaxt cos

(
kmax(x − x′)

)
. (11)

A typical realization of ρ1(t, x) is a modulation with the carrier spatial frequency kmax.
Because γmax > 0, the linear system (9) is unstable and therefore the central limit theo-

rem cannot be extended to arbitrarily large times. In fact, the theorem is limited to times t

such that ρ1(t, x)/
√

N is smaller than ρ0 = 1/L so that the linearization around ρ0 is valid.
Therefore, the time up to the onset of clustering is when the perturbation ρ1 becomes of the
same order as

√
Nρ0, that is to say when E

[
ρ1(tclu, x)2

] � NL−2, which is approximately
(up to terms smaller than lnN )

tclu � 1

2γmax
lnN � 1

2ρ0R0ψ(qmax)
lnN

when N � 1.
We note that the fact that a random initial distribution gives rise to a quasi-deterministic

subsequent evolution by spectral gain selection occurs in many fields, for instance in fluid
mechanics (hydrodynamic instabilities) or in nonlinear optics (beam filamentation).

4.3 Consensus Convergence

The linear stability analysis shows that the opinion dynamics, starting from a uniform distri-
bution of agents, gives clustering with a mean distance between clusters equal to 2π/kmax
(see (10) and (11)). Once clustering has occurred, two types of dynamical evolutions are
possible:

1. If 2π/kmax > R0, then the clusters do not interact with each other because they are
beyond the range of the influence function. Therefore, the situation is frozen and there
is no consensus convergence.
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2. If 2π/kmax < R0, then the clusters interact with each other. There may be consensus
convergence. However, consensus convergence is not guaranteed as clusters may merge
by packets, and the centers of the new clusters may be separated by a distance larger
than 2π/kmax, and then global consensus convergence does not happen. The number of
mega-clusters formed by this dynamic is not easy to predict.

If we neglect the rounding and consider kmax = qmax/R0, which is possible if qmaxL/R0 �
1, then the criterion 2π/kmax > or < R0 does not depend on R0, as it reads 2π/qmax > or
< 1, which depends only on the normalized influence function φ0 by (7) and (8).

These two dynamics can be observed in the examples of Figure 1.1 in [22]:

1. If φ(r) = 1[0,1](r), then qmax � 2.75 and the mean distance between clusters is about
2.3, that is beyond the range 1 of the influence function, and there is no consensus
convergence.

2. If φ(r) = 0.1 × 1[0,1/√2](r) + 1[1/√2,1](r), then qmax � 9.1 and the mean distance
between clusters is about 0.7, that is within the range of the influence function, and
there is consensus convergence.

These predictions are quantitatively in very good agreement with the numerical simulations
(distance between clusters and so on).

To summarize, the main result in the noiseless case σ = 0 is as follows. In the regime
N → ∞, there is no consensus convergence if qmax < 2π . There may be consensus con-
vergence if qmax > 2π . Of course this stability analysis and the result that follow can be
extended easily to the multi-dimensional case, and to other types of opinions or flocking
dynamics.

4.4 Numerical Simulations

We use the explicit Euler scheme to simulate the deterministic opinion dynamic (1) when
σ = 0

xn+1
i = xn

i − 1

N

N∑

j=1

φ(|xn
i − xn

j |)(xn
i − xn

j )
t, φ(s) = φ0(s/R0). (12)

Although our analysis is on the torus [0, L], we still simulate (12) on the full space. The
simulation results indicate, however, that the analysis under periodic conditions is still con-
sistent with the numerics with different boundary conditions. As it is shown in [16, 22], if
x1(0), . . . , xN(0) are in the interval [0, L], then x1(t), . . . , xN(t) ∈ [0, L] for any t ≥ 0.

We test for the influence functions studied in [16, 22]:

φ1
0(s) = 1[0,1/√2](s) + 0.1 × 1

(1/
√
2,1](s),

φ2
0(s) = 1[0,1](s),

φ3
0(s) = 0.5 × 1[0,1/√2](s) + 1

(1/
√
2,1](s),

φ4
0(s) = 0.1 × 1[0,1/√2](s) + 1

(1/
√
2,1](s),

φ5
0(s) = (1 − s)3 × 1[0,1](s),

φ6
0(s) = (1 − s)6 × 1[0,1](s),

and their plots are shown in Fig. 1.
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Fig. 1 The plots of the influence functions φ0(s)

We compute the key quantity qmax by exploring all possible q in [0, 100]:

qmax = argmax
R0q∈K, 0<q≤100

[
2q

∫ 1

0
φ0(s)s sin(qs)ds

]
.

We find that for the cases of φ3
0 and φ4

0 , qmax are not unique and the non-uniqueness of
qmax will greatly affect the results of the consensus convergence. The parameters we use for
the simulation are 
t = 0.1, L = 10, R0 = 1, and N = 500. For each φ0, we also plot
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Fig. 2 Simulation for φ0(s) = φ1
0(s). Left: ψ(q) evaluated at R0q ∈ K. Right: Simulations of (12). The

vertical dashed line is at t = tclu

the function ψ(s) = 2q
∫ 1
0 φ0(s)s sin(qs)ds; the stars in the plots are the values of ψ(s) at

R0q ∈ K and the lines are the continuum approximation.
From Fig. 2, we can see that there is a unique qmax = 3.7699. From our analysis,

we do not expect to have consensus convergence because qmax = 3.7699 < 2π . The
distance between clusters is 2πR0/qmax = 1.67, and therefore we should have roughly
L/1.67 = 5.99 clusters, and indeed we have 6 clusters in our simulation. In addition,
tclu = lnN/(2ρ0R0ψ(qmax)) = 21 (the vertical blue dashed line) also correctly predicts the
time to cluster formation.

In Fig. 3, if φ0(s) = 1[0,1](s), then ψ(q) has a unique qmax = 2.51 but it also has
many suboptimal q where ψ(q) is very close to ψ(qmax). Note that qmax < 2π means
that there is no consensus convergence. The inter-cluster distance is 2.5, which is cor-
rect for the top and the bottom clusters. However, the central clusters are affected by the
suboptimal q and therefore their inter-cluster distances are different. We also note that

0 10 20 30 40 50 60 70 80 90 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 50 100 150
0

1

2

3

4

5

6

7

8

9

10

Fig. 3 Simulation for φ0(s) = φ2
0(s). Left: ψ(q) evaluated at R0q ∈ K. Right: Simulations of (12). The

vertical dashed line is at t = tclu
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Fig. 4 Simulation for φ0(s) = φ3
0(s). Left: ψ(q) evaluated at R0q ∈ K. Right: Simulations of (12). The

vertical dashed line is at t = tclu

tclu = lnN/(2ρ0R0ψ(qmax)) = 14.9 (the vertical blue dashed line) correctly estimates the
time to the formation of the top and bottom clusters.

We see an interesting result in Fig. 4 for φ0(s) = 0.5× 1[0,1/√2](s) + 1
(1/

√
2,1](s). From

the plot ofψ(q), we can see that qmax might not be unique and the first few local maximizers
are q = 2.5133, 9.4248, 15.7080, . . ., and the corresponding inter-cluster distances are 2.5,
0.6667, 0.4000, . . .. We can see from the simulation that there are two noticeable inter-
cluster distances: 2.5 and 0.6667. For R0q ∈ K, 0 ≤ q ≤ 100, qmax = 53.4071 so that the
necessary condition to have the consensus convergence qmax > 2π is satisfied. However,
we do not have consensus convergence in this case because qmax > 2π is not a sufficient
condition. We notice that although qmax might not be unique, tclu = 11.5 still predicts
the time to cluster formation because it is related to ψ(qmax) not qmax and thus the non-
uniqueness of qmax does not affect tclu.

In Figs. 5 and 6, we see consensus convergence. From the plot of ψ(q), we can see
that qmax might not be unique and the first few local maximizers are q = 2.5133, 9.4248,
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Fig. 5 Simulation for φ0(s) = φ4
0(s). Left: ψ(q) evaluated at R0q ∈ K. Right: Simulations of (12) for

t ≤ 150. The vertical dashed line is at t = tclu
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Fig. 6 Simulation for φ0(s) = φ4
0 (s). Simulations of (12) for t ≤ 1000

16.3363, . . ., and the corresponding inter-cluster distances are 2.5, 0.6667, 0.3846, . . .. In
this case, the only noticeable inter-cluster distance is 0.6667 and we do not observe the
inter-cluster distance of 2.5, because ψ(2.5133) � ψ(9.4248). For R0q ∈ K, 0 ≤ q ≤
100, qmax = 53.4071 so that the necessary condition to have the consensus convergence
qmax > 2π is satisfied and indeed we see from Fig. 6 that we have consensus convergence
in this case.

In Fig. 7, we choose φ0(s) so that ψ(s) has a unique local maximum and qmax = 5.0265.
In this case, qmax < 2π and therefore there is no consensus convergence. The inter-distance
is 1.25 and L/1.25 = 8 which is exactly the number of clusters in this case. Again, tclu
predicts the time to cluster formation very well.

Finally, Fig. 8 considers φ0(s) so thatψ(s) has a unique local maximum, but with a larger
exponent, qmax = 8.1681 > 2π . The inter-cluster distance corresponding to qmax = 8.1681
is 0.769, which is consistent with the actual inter-cluster distance. The quantity L/0.769 =
13 gives a good approximation for the actual number of clusters, which is 11. As in all the
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Fig. 7 Simulation for φ0(s) = φ5
0(s). Left: ψ(q) evaluated at R0q ∈ K. Right: Simulations of (12). The

vertical dashed line is at t = tclu
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Fig. 8 Simulation for φ0(s) = φ6
0(s). Left: ψ(q) evaluated at R0q ∈ K. Right: Simulations of (12). The

vertical dashed line is at t = tclu

previous cases, tclu = 185 predicts the time to cluster formation well. Here, qmax > 2π ,
so we could expect to observe consensus convergence. However, the inter-cluster distance
0.769 is such that φ(0.769) ∼ 10−4, so we cannot see cluster evolution for the time horizon
of the simulation.

5 Stochastic Consensus Convergence: σ > 0

In this section, we consider the case that σ > 0 in (1). In other words, the system is
stochastic and we are dealing with a nonlinear Fokker–Planck equation.

5.1 Linear Stability Analysis

As in the deterministic case, we linearize the Fokker–Planck equation (3) with σ > 0 by
assuming that ρ(t, x) = ρ0 + ρ1(t, x) = 1/L + ρ1(t, x). Substituting ρ(t, x) = ρ0 +
ρ1(t, x) into (3) and assuming that ρ1 is a small perturbation of ρ so that the O(ρ2

1 ) term is
negligible, we find that ρ1(t, x) satisfies

∂ρ1

∂t
(t, x) = ρ0

∫
∂ρ1

∂x
(t, x − y)yφ(|y|)dy + σ 2

2

∂2ρ1

∂x2
(t, x).

In the Fourier domain:

∂ρ̂1

∂t
(t, k) =

[
iρ0k

∫
e−ikyyφ(|y|)dy − σ 2k2

2

]
ρ̂1(t, k), (13)

which gives the growth rates of the modes

γk = Re

[
iρ0k

∫
e−ikyyφ(|y|)dy − σ 2k2

2

]
= ρ0k

∫
sin(ky)yφ(|y|)dy − σ 2k2

2
. (14)
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We can rewrite the growth rate γk = ρ0R0ψσ (kR0), where

ψσ (q) = 2q
∫ 1

0
φ0(s)s sin(qs)ds − σ 2q2

2ρ0R3
0

. (15)

The optimal positive frequency is kmax that is the element of K = {2πn/L, n ∈ N} that
maximizes ψσ (kR0), that is close to qmax/R0, where

qmax = argmax
q>0

[ψσ (q)] .

There is a critical value σc of σ such that the system has a completely different overall
behavior for σ < σc and for σ > σc. We can view σ as the magnitude of the noise energy
or temperature of the system. There are two types of forces in the system (1): the attractive
interaction−aij (xi −xj ) and the random force σdWi(t). If σ < σc, then the attractive inter-
action dominates the random force and thus the system is a perturbation of the deterministic
system. If σ > σc, then the random force dominates, the attractive interaction is negligible,
and therefore the overall system behaves like a system of N independent random processes.

The above observations can be articulated mathematically. Let

σ 2
c = max

q>0

[
4ρ0R3

0

q

∫ 1

0
φ0(s)s sin(qs)ds

]

= max
q>0

[
4ρ0R

3
0

∫ 1

0
φ0(s)s

2 sin(qs)

qs
ds

]
= 4ρ0R

3
0

∫ 1

0
s2φ0(s)ds.

If σ < σc, then from (15) we find that

max
q>0

ψσ (q) > 0,

and ρ̂(t, kmax) has positive growth rate γmax = ρ0R0ψσ (kmaxR0). The linear system (13) is
unstable, which is analogous to the deterministic case.

If σ > σc, then all of ρ̂(t, k) have negative growth rates. In other words, the constant
density is linearly stable and therefore the overall system is stable, since this is what linear
stability implies in this case.

We note that the same technique for computing σc, with linear stability analysis for
different noisy opinion models, is also used in [23–25].

5.2 Fluctuation Theory

Since our goal is to analyze the behavior of clusters, we suppose from now on that σ < σc.
The fluctuation analysis of the stochastic model is similar to that of the deterministic

case. If x1(0), . . . , xN(0) are independent, uniform random variables in [0, L], then

ρN
1 (t = 0, dx) := √

N
(
ρN(t = 0, dx) − ρ0(dx)

)
= √

N

⎛

⎝ 1

N

N∑

j=1

δxj (0)(dx) − dx

L

⎞

⎠



Consensus Convergence with Stochastic Effects 65

converges in distribution as N → ∞ to the measure ρ1(t = 0, dx), whose frequency
components

ρ̂1(t = 0, k) = lim
N→∞

√
N

⎛

⎝ 1

N

N∑

j=1

e−ikxj (0)

⎞

⎠

are independent complex circular Gaussian random variables, with mean zero and variance
1 for k ∈ K\{0}

E
[
ρ̂1(t = 0, k)

] = 0, E

[
ρ̂1(t = 0, k)ρ̂1(t = 0, k′)

]
= δkk′ , k, k′ ∈ K\{0},

ρ̂1(t = 0, −k) = ρ̂1(t = 0, k), while ρ̂1(t = 0, k = 0) = 0.
For any T < ∞, the measure-valued process

ρN
1 (t, dx) := √

N
(
ρN(t, dx) − ρ0(dx)

)
, t ∈ [0, T ]

converges in distribution as N → ∞ to a measure-valued process ρ1(t, dx) whose density
ρ1(t, x) satisfies a stochastic PDE (see [8])

dρ1(t, x) =
[
ρ0

∫
∂ρ1

∂x
(t, x − y)yφ(|y|)dy + σ 2

2

∂2ρ1

∂x2
(t, x)

]
dt + σdW(t, x) (16)

with the random initial condition described above. Here, W(t, x) is a space-time Gaussian
random noise with mean zero and covariance

Cov

(∫ L

0
W(s, x)f1(x)dx,

∫ L

0
W(t, x)f2(x)dx

)
= min{s, t}

L

∫ L

0
f ′
1(x)f ′

2(x)dx (17)

for any test functions f1(x) and f2(x). The Fourier transform of W(t, x) is Ŵ (t, k) =∫ L

0 W(t, x)e−ikxdx for k ∈ K. From (17), we see that {Ŵ (t, k), k ∈ K, k ≥ 0} are
independent, complex-valued Brownian motions with the variance

Cov
(
Ŵ (t, k), Ŵ (t, k)

)
= t

L

∫ L

0
(−ik)e−ikx(−ik)e−ikxdx = tk2,

and Ŵ (t, −k) = Ŵ (t, k). Taking the Fourier transform on (16), for each k ∈ K, ρ̂1(t, k) =∫ L

0 ρ1(t, x)e−ikxdx is a complex-valued Ornstein–Uhlenbeck (OU) process

dρ̂1(t, k) =
[
iρ0k

∫ L

0
e−ikyyφ(|y|)dy − σ 2k2

2

]
ρ̂1(t, k)dt + σk√

2
d(W(k)(t) + iW̃ (k)(t)).

(18)
Here, {W(k)(t), k ∈ K, k > 0} and {W̃ (k)(t), k ∈ K, k > 0} are independent real Brownian
motions, W(0)(t) = W̃ (0)(t) = 0, W(−k)(t) = −W(k)(t), and W̃ (−k)(t) = W̃ (k)(t). The
equation (18) is solvable and we have, for any k ∈ K\{0},

ρ̂1(t, k) = eαkt ρ̂1(0, k) + σk√
2

∫ t

0
eαk(t−s)d(W(k)(s) + iW̃ (k)(s)),

αk = iρ0k

∫ L

0
e−ikyyφ(|y|)dy − σ 2k2

2
.
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In particular, ρ̂1(t, k = 0) = 0. Because {ρ̂1(0, k),W(k)(t), W̃ (k)(t), k ∈ K, k > 0} are
independent, {ρ̂1(t, k), k ∈ K, k > 0} are independent OU processes with mean zero and
variance

E

[
ρ̂1(t, k)ρ̂1(t, k)

]
= e2γkt + σ 2k2

∫ t

0
e2γk(t−s)ds = e2γkt

[
1 + σ 2k2

2γk

]

for k ∈ K, k > 0, where γk is the real part of αk . In addition, because α−k = αk and
W(−k)(t) = −W(k)(t), we have ρ̂1(t, −k) = ρ̂1(t, k) for k ∈ K\{0}. Finally, ρ̂1(t, 0) = 0.
Therefore,

E
[
ρ1(t, x)ρ1(t, x

′)
] = E

[
∑

k

ρ̂1(t, k)
eikx

L

∑

k

ρ̂1(t, k)
eikx′

L

]

=
∑

k

E

[
ρ̂1(t, k)

eikx

L
ρ̂1(t, −k)

e−ikx′

L

]
= 1

L2

∑

k 
=0

e2γkt eik(x−x′)
[
1 + σ 2k2

2γk

]
.

As t increases, the spectrum of ρ1(t, x) becomes concentrated around the optimal waven-
umber kmax. In addition, we note that k2/γk is bounded and the term σ 2k2/γk is negligible
if σ is sufficiently small. We can assume σ is small because we need σ < σc for cluster
formation. If σ 2k2/γk is negligible and L2 � 4|γ ′′

max|t , we can expand γk = γmax +
1
2γ

′′
max(k − kmax)

2 for k around kmax, and use a continuum approximation for the discrete
sum as we do in the deterministic case

E
[
ρ1(t, x)ρ1(t, x

′)
] �

(
1

L
e2γmaxt cos(kmax(x − x′))

)(
1

√
π |γ ′′

max|t
e
− (x−x′)2

4|γ ′′
max |t

)
.

If L2 � 4|γ ′′
max|t , then the continuum approximation is not valid and in this case

E
[
ρ1(t, x)ρ1(t, x

′)
] � 2

L2
e2γmaxt cos

(
kmax(x − x′)

)
[
1 + σ 2k2max

2γmax

]
.

Because σ < σc we have that γmax > 0 and then the linear system (16) is unstable and
therefore the central limit theorem breaks down when ρ1(t, x)/

√
N is no longer smaller than

ρ0 = 1/L. More precisely, the time tclu for the onset of clustering is when E
[
ρ1(tclu, x)2

] �
NL−2, which is approximately

tclu � 1

2γmax
lnN � 1

2ρ0R0ψσ (qmax)
lnN

when N � 1.

5.3 Consensus Convergence

We assume σ < σc so that there are unstable modes for the linearized evolution, which
means that there is clustering. The number of and the distance between clusters can be
estimated with qmax. We find that the first term of the right-hand side of (15) is bounded
while the second term of (15) is quadratic with negative leading coefficient. Therefore,
increasing σ tends to reduce qmax, that is to say, to increase the mean distance between
clusters.

Let us consider the case that qmax < 2π . From the analysis of the deterministic case,
the system initially has no consensus convergence and there are several clusters. After clus-
tering, the clusters do not interact with each other, but their centers move like independent
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Brownian motions. When two clusters come close to each other, within a distance R0, they
interact and merge. Therefore, we will eventually have consensus convergence, because two
Brownian motions always collide in R. This can be extended to the multi-dimensional case,
but then the conclusion can be different: in high dimension two Brownian motions may not
collide. However, with periodic boundary conditions, two Brownian motions will always
come close to each other, within a distance R0.

When qmax < 2π and σ is small then there are several clusters, after the cluster formation
time. The fraction of agents in a cluster is the agent density times the inter-distance of the
clusters

mc = ρ0
2πR0

qmax
= ρ0

2π

kmax
.

Then the j th cluster consists of about Nmc agents. We assume that σ is small enough so
that σ 2kmax � 2πρ0φ0(0)R2

0. By using the fact that the agents in a cluster stay close to
each other, we can replace φ(xi − xj ) by φ(0), and the agents in the j th cluster have the
approximate dynamics

dx
(j)
i = −φ0(0)

N

Nmc∑

l=1

(
x

(j)
i − x

(j)
l

)
dt + σdW(j,i)(t).

The center X(j)(t) = 1
Nmc

∑Nmc

i=1 x
(j)
i (t) satisfies

X(j)(t) = X(j)(0) + σ√
Nmc

W(j)(t), (19)

where {W(j)(t)} are independent standard Brownian motions.
WhenN is large, the empirical density 1

Nmc

∑Nmc

i=1 δ
x

(j)
i

(dx) is approximately a Gaussian

density

ρ(j)(t, dx) = 1
√

π(σ (j))2
exp

(
− (x − X(j)(t))2

(σ (j))2

)
dx, σ (j) = σ√

mcφ0(0)
. (20)

For this argument to be valid, we must have that σ (j), the width of ρ(j), is much smaller
than R0, which is equivalent to our assumption σ 2kmax � 2πρ0φ0(0)R2

0.
This cluster dynamics is valid as long as the centers {X(j)(t)} stay away from each

other by a distance larger than R0. The clusters move, according to independent Brownian

motions with quadratic variation σ 2t
Nmc

. When two clusters come close to each other within a
distance R0, they merge. Indeed, once the two centers are within distance R0, they obey the
following differential equations to leading order in N

dX(k)(t)

dt
= −mc

(
X(k)(t) − X(l)(t)

)
φ

(
X(k)(t) − X(l)(t)

)
,

dX(l)(t)

dt
= −mc

(
X(l)(t) − X(k)(t)

)
φ

(
X(k)(t) − X(l)(t)

)
,

which shows that the inter-cluster distance converges exponentially fast to zero and the
center converges to the average of the centers just before collision. The number of agents
or mass of the new cluster is the sum of the masses of the two clusters, the inverse square
width of its empirical density is the sum of the inverse squares of the two widths, its center
is at the weighted average (weighted by the masses) of the two centers just before collision
and it moves as a Brownian motion whose diffusion constant is defined in terms of its new
mass. Then, the cluster centers move according to Brownian motions until two of them get
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within the distance R0 from each other and a new merge event occurs. This eventually forms
a Markovian dynamics described in the next section.

5.4 Markovian Dynamics of the Clusters

After the initial clusters are formed, we can use an iterative argument to mathematically
describe how all the opinions converge eventually. In the initial configuration, at time τ0,
there are M(τ0) = Lkmax/2π clusters with centers X(j)(τ0) = j2π/kmax (up to a global
shift), widths σ (j)(τ0) = σ/

√
mcφ0(0), and masses m(j)(τ0) = mc for j = 1, . . . , M(τ0).

For t ≥ τn−1, there are M(τn−1) clusters moving as

X(j)(t) = X(j)(τn−1) + σ (j)(τn−1)

√
φ0(0)√

N

(
W(j)(t) − W(j)(τn−1)

)

until the stopping time

τn = inf
{
t > τn−1 : |X(k)(t) − X(l)(t)| = R0 for some k 
= l

}
.

Then the two colliding clusters (with indices k and l) merge with the new center

X̃(τ+
n ) = m(k)(τn−1)X

(k)(τ−
n ) + m(l)(τn−1)X

(l)(τ−
n )

m(k)(τn−1) + m(l)(τn−1)
,

the new mass
m̃(τn) = m(k)(τn−1) + m(l)(τn−1)

and the new width
σ̃ (τn) = σ

√
m̃(τn)φ0(0)

.

The clusters are relabeled to take into account this merging so that there are M(τn) =
M(τn−1) − 1 clusters. The above process is repeated until n = (Lkmax/2π) − 1, when we
have only one cluster, and hence consensus convergence.

Note that the time scale at which collisions and merges occur is of the order of N , as the
Brownian motions are scaled by 1/

√
N .

5.5 Numerical Simulations

We use the explicit Euler scheme to simulate the stochastic opinion dynamics (1) when
σ > 0:

xn+1
i = xn

i − 1

N

N∑

j=1

φ(|xn
i − xn

j |)(xn
i − xn

j )
t + σ
Wn+1
i , φ(s) = φ0(s/R0), (21)

where {Wn+1
i } are independent Gaussian random variables with mean zero and variance
t .

Our analysis is on the torus [0, L], but we simulate (21) on [0, L] with reflecting bound-
ary conditions. As we will see, the simulation results agree with the analysis under periodic
assumption. Because here, we focus on the effects of the randomness, for simplicity we will
work only on the case that φ0(s) = 1[0,1](s).

We compute the key quantity qmax by exploring all possible q in [0, 100]

qmax = argmax
R0q∈K, 0<q≤100

[
2q

∫ 1

0
φ0(s)s sin(qs)ds − σ 2q2

2ρ0R3
0

]
.
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Fig. 9 Simulations for σ = 0.1. Left: ψσ (q) evaluated at R0q ∈ K. Right: Simulations of (21). The vertical
dashed line is at t = tclu

We see from the plots of ψσ (s) that the randomness reduces the possibility of the non-
uniqueness of qmax because it adds a negative quadratic term in ψσ (s). With randomness,
all of our test cases have a clear, unique qmax.

The parameters we use for the simulation are 
t = 0.1, L = 10, R0 = 1, and N = 500.
For each σ , we also plot the function ψσ (s) in (15); the stars in the plots are the values of
ψ(s) evaluated at R0q ∈ K and the lines are the continuum approximation.

We first to test for the effect of σc, the critical value for σ , which makes the system
stable or unstable. In our setting, σc = 4ρ0R3

0

∫ 1
0 s2φ0(s)ds = 0.365 and we simulate (21)

for σ = 0.1, 0.2, 0.365, 0.5 that are values below, equal to and above σc, respectively.
From Fig. 9, we see that ψσ (q) decreases quadratically and has the unique maximum at

q = 2.5133. However, maxR0q∈K ψσ (q) is still positive so the linearized system (13) is still
unstable. Therefore, the overall system behavior is similar to the deterministic case and can
be viewed as a perturbed non-random opinion dynamics.
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Fig. 10 Simulations for σ = 0.2. Left: ψσ (q) evaluated at R0q ∈ K. Right: Simulations of (21)
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Fig. 11 Simulations for σ = σc . Left: ψσ (q) evaluated at R0q ∈ K. Right: Simulations of (21)

We increase σ by setting σ = 0.2 and the result is in Fig. 10. We see that as σ increases,
the random noise starts to affect the overall system, and the width and the inter-cluster
distances become larger so we observe fewer clusters. Since maxR0q∈K ψσ (q) is positive,
we still observe cluster formation.

We note that in Figs. 11 and 12, if σ ≥ σc, ψσ (q) < 0 for all q > 0 and ψσ (0) = 0. In
other words, the linearized system is stable and thus the full system is stable. In this case, we
do not see cluster formation and the system behaves like an N -independent agent system.

We see from the simulations that to model opinion dynamic with consensus convergence
it is appropriate to assume that σ < σc. Therefore, we will assume that σ = 0.1 in our
simulations of the stochastic system.

We revisit Fig. 9 to check our analysis. First of all, qmax = 2.5133 is clearly a unique
maximizer and the corresponding inter-cluster distance is 2.51, which agrees with the
numerical inter-cluster distance we see in Fig. 9. In addition, L/2.51 = 3.9841 also predicts
well the actual number of the clusters, 4. Finally, the blue dashed line t = tclu indicates the
time to the cluster formation, even though Fig. 9 is just one realization.
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Fig. 12 Simulations for σ = 0.5. Left: ψσ (q) evaluated at R0q ∈ K. Right: Simulations of (21)
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Fig. 13 Left: Average of 1000 realizations of σ̂ (j)(t), j = 1, . . . , 4 for σ = 0.1. The vertical dashed line is
at t = tclu. Right: N(j), the number of agents in the j th clusters in Fig. 9

We test tclu and the width of clusters in a more statistical way by examining 1000 real-
izations. If φ0(s) = 1[0,1](s) and σ = 0.1, then we can expect that we will have 4 clusters
at T = 150 in most of the realizations. For each realization, we numerically compute the
widths of the clusters, σ̂ (j)(t), j = 1, . . . , 4 by using the empirical standard deviations of
{x(j)

i (t)}4j=1 (see (20))

(σ̂ (j)(t))2 = 2

N(j) − 1

N(j)∑

i=1

(
x

(j)
i (t) − x̄(j)(t)

)2
, x̄(j)(t) = 1

N(j)

N(j)∑

i=1

x
(j)
i (t), (22)

where for each j = 1, . . . , 4, {x(j)
i (t)} belong to the j th cluster and N(j) is the number

of agents in the j th clusters. Of course, σ̂ (j)(t) in (22) is just one realization and so we
compute σ̂ (j)(t) for 1000 realizations and consider the average.

The averages σ̂ (j)(t) are shown in the left part of Fig. 13, in different colors. First, we
can see that tclu, as expected, is the halfway from the time to maximum with to the time
to the minimum width. Second, from (20), the width of each cluster is analytically σ (j) =
σ/

√
mcφ0(0) = 0.1/

√
0.25 × 1 = 0.2, which agrees with the numerical values σ̂ (j)(t)

when t is large.
We also analyze the behavior of the centers of the clusters. The centers {X(j)(t)}4j=1 of

the clusters in Fig. 9 are plotted in Fig. 14. From the previous analysis (19), the centers of
the clusters are independent Brownian motions σW(j)(t)/

√
Nmc. For one realization, the

opinions {xi(t)}Ni=1 will not be evenly distributed in the clusters. For example, the actual
numbers {N(j)}Nj=1 of agents of the clusters in Fig. 9 are plotted in Fig. 13. So for one

realization, X(j)(t) is a Brownian motion σW(j)(t)/
√

N(j). On the right part of Fig. 14, we
compare the quadratic variations of X(j)(t) and σW(j)(t)/

√
N(j) for 75 ≤ t ≤ 150 (after

the time to the cluster formation.) Indeed, from the figure, we can see that their quadratic
variations are very similar and that means X(j)(t) are very close to Brownian motions.
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Fig. 14 Left: Centers of the clusters, X(j)(t), in Fig. 9, in different colors. Right: Quadratic variations of the
cluster centers from t = 75 to t = 150. Solid lines: Numerical quadratic variations of X(j)(t). Dashed lines:
Quadratic variations of σW(j)(t)/

√
N(j), where {W(j)(t)}4j=1 are independent standard Brownian motions

and {N(j)}4j=1 are the numbers of agents in the clusters

6 Long Time Behavior of Simulations

We have also simulated numerically the long time behavior of the system defined on the
full real line R, especially the behavior after the onset of consensus convergence. As we
discuss in the previous section, when there is randomness the center of the unique cluster
behaves like a diffusion process σW(t)/

√
N , where W(t) is a standard Brownian motion.

In Figs. 15 and 16, we observe that the centers indeed behave like Brownian motions. The
dashed lines are the parabolas with equation x = ±2σ

√
t/N so that for any fixed t , the

centers are within the parabolas with 95 % probability.
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Fig. 15 Long time behavior of the opinions for σ = 0.1 and for N = 100, 200. The blue dashed curve is
the equation x = ±2σ

√
t/N . σ is small and the overall behavior is like a single Brownian motion
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Fig. 16 Long time behavior of the opinions for σ = 0.2 and for N = 100, 200. The blue dashed curve is
the equation x = ±2σ

√
t/N . σ is small and the overall behavior is like a single Brownian motion

However, when σ is sufficiently large, the long time behavior is different. On the right
part of Fig. 17, when σ = 0.4 > σc, the system behaves like N -independent diffusions. A
more interesting case is when σ = 0.3 < σc on the left part of Fig. 17. In this case, for
0 ≤ t ≤ 5.5 × 105, there is still consensus convergence, but for t > 5.5 × 105, all xi(t)

spread out from the unique cluster and the system becomes an independent agent evolution.
A detailed mathematical analysis using large deviations theory for such a phenomenon is
being considered at present.
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Fig. 17 Long time behavior of the opinions for σ = 0.3, 0.4 and for N = 100. The blue dashed curve is the
equation x = ±2σ

√
t . For σ = 0.3, there is a single cluster for t ≤ 5.5 × 105. However, for t > 5.5 × 105,

xi(t) disintegrate and the system behaves like anN -independent Brownian motions. For σ = 0.4, the random
perturbations are large enough so that the system is an N -independent Brownian motions at the beginning
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7 Conclusion

We have analyzed a stochastic, continuous time opinion dynamics model and we have
carried out extensive numerical simulations. We use the mean-field theory and obtain a non-
linear Fokker–Planck equation as the number of opinions tends to infinity. Then, we use
a linear stability analysis to estimate the critical value of the noise strength so as to have
cluster formation, estimate the number of clusters and the time to cluster formation. These
quantities are closely related to the frequency that maximizes the growth rate of the lin-
earized modes (14). After the initial cluster formation, we expect, and numerically confirm,
that the centers of the clusters behave like Brownian motions before further consolidation.
Finally, the long time behavior of the system is explored numerically and we observe that
after a unique cluster is formed, there is a small probability that the opinions will spread out
from the unique cluster and the system will become an independent agent evolution.
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