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Abstract In the paper, we introduce a new class of m-subharmonic functions with finite
weighted complex m-Hessian. We prove that this class has local property.
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1 Introduction

Let � be a hyperconvex domain in C
n. By PSH(�) (resp. PSH−(�)), we denote the

cone of plurisubharmonic functions (resp. negative plurisubharmonic functions) on �. In
[15], the authors introduced and investigated the notion of local class as follows. A class
J (�) ⊂ PSH−(�) is said to be a local class if ϕ ∈ J (�) then ϕ ∈ J (D) for all hyper-
convex domains D � � and if ϕ ∈ PSH−(�), ϕ|�i

∈ J (�i) ∀i ∈ I with � = ⋃
i∈I �i

then ϕ ∈ J (�). As is well known, Błocki (see [8]) proved the class E(�) introduced
and investigated by Cegrell in [10], is a local class. Moreover, in [10], Cegrell has proved
this class is the biggest on which the complex Monge–Ampère operator (ddc.)n is well
defined as a Radon measure, and it is continuous under decreasing sequences. On the other
hand, another weighted energy class Eχ (�) which extends the classes Ep(�) and F(�)
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in [9] and [10] introduced and investigated recently by Benelkourchi et al. [4] is as follows.
Let χ : R− −→ R

+ be a decreasing function. Then, as in [4], we define

Eχ (�) =
{

ϕ ∈ PSH−(�) : ∃E0(�) � ϕj ↘ ϕ, sup
j≥1

∫

�

χ(ϕj )(ddcϕj )
n < +∞

}

,

where E0(�) is the cone of bounded plurisubharmonic functions ϕ defined on � with
finite total Monge–Ampère mass and limz→ξ ϕ(z) = 0 for all ξ ∈ ∂�. Note that from
Corollary 4.4 in [3], it follows that if ϕ ∈ Eχ (�) then limz→ξ ϕ(z) = 0 for all ξ ∈ ∂�.
Hence, if ϕ ∈ Eχ (�), then ϕ /∈ Eχ (D) with D a relatively compact hyperconvex domain
in �. Thus, the class Eχ (�) is not a “local” one. In this paper, by relying on ideas from the
paper of Benelkourchi et al. [4] and on Cegrell classes of m-subharmonic functions intro-
duced and studied recently in [12], we introduce weighted energy classes of m-subharmonic
functions Fm,χ (�) and Em,χ (�). Under slight hypotheses for weights χ , we achieve that
the class Fm,χ (�) is a convex cone (see Proposition 2 below). We also show that the com-
plex Hessian operator Hm(u) = (ddcu)m ∧ βn−m is well defined on the class Em,χ (�)

where β = ddc‖z‖2 denotes the canonical Kähler form of Cn. Furthermore, we prove that
the class Em,χ (�) is a local class (see Theorem 1 in Section 4 below). In this article, we
prove the following main result.

Theorem 1 Let � be a hyperconvex domain in C
n and m be an integer with 1 ≤ m ≤ n.

Assume that u ∈ SH−
m (�) and χ ∈ K such that χ ′′(t) ≥ 0 ∀t < 0. Then the following

statements are equivalent.

a) u ∈ Em,χ (�).
b) For all K � �, there exists a sequence {uj } ⊂ E0

m(�) ∩ C(�), uj ↘ u on K such that

sup
j

∫

K

χ(uj )|uj |p(ddcuj )
m−p ∧ βn−m+p < ∞

for every p = 0, . . . , m.
c) For every W � � such that W is a hyperconvex domain, we have u|W ∈ Em,χ (W).
d) For every z ∈ �, there exists a hyperconvex domain Vz � � such that z ∈ Vz and

u|Vz ∈ Em,χ (Vz).

Finally, using the main results above, we prove an interesting corollary. Namely, we have

Corollary 1 Assume that � is a bounded hyperconvex domain, and χ ∈ K satisfies all
hypotheses of Theorem 1. Then Em,χ (�) ⊂ Em−1,χ (�).

The paper is organized as follows. Beside the introduction, the paper has three sections.
In Section 2, we recall the definitions and results concerning to m-subharmonic functions
which were introduced and investigated intensively in recent years by many authors, see
[5, 13, 21]. We also recall the Cegrell classes of m-subharmonic functions Fm(�) and
Em(�) introduced and studied in [12]. In Section 3, we introduce two new weighted energy
classes of m-subharmonic functions Fm,χ (�) and Em,χ (�). Section 4 is devoted to the
proof of the local property of the class Em,χ (�) under some extra assumptions on weights
χ . To show this property of the class Em,χ (�), we need a result about subextension for the
class Fm,χ (�) (see Lemma 5 below) which is of independent interest. Finally, by relying on
the local property of the class Em,χ (�), we prove a corollary for this class.
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2 Preliminaries

Some elements of pluripotential theory that will be used throughout the paper can be found
in [1, 17, 18, 20], while elements of the theory of m-subharmonic functions and the com-
plex Hessian operator can be found in [5, 13, 21]. Now, we recall the definition of some
Cegrell classes of plurisubharmonic functions (see [9] and [10]), as well as the class of
m-subharmonic functions introduced by Błocki in [5] and the classes E0

m(�) and Fm(�)

introduced and investigated by Chinh in [12] recently. Let � be an open subset in C
n.

By β = ddc‖z‖2, we denote the canonical Kähler form of Cn with the volume element

dVn = 1
n!β

n where d = ∂ + ∂ and dc = ∂−∂
4i

, hence ddc = i
2∂∂ .

2.1 The Cegrell Classes

As in [9, 10], we define the classes E0(�) and F(�) as follows. Let � be a bounded hyper-
convex domain. That means that � is a connected, bounded open subset, and there exists a
negative plurisubharmonic function � such that for all c < 0 the set �c = {z ∈ � : �(z) <

c} � �. Set

E0 = E0(�) =
{

ϕ ∈ PSH−(�) ∩ L∞(�) : lim
z→ξ

ϕ(z) = 0 ∀ξ ∈ ∂�,

∫

�

(ddcϕ)n < ∞
}

and

F = F(�) =
{

ϕ ∈ PSH−(�) : ∃E0 � ϕj ↘ ϕ, sup
j

∫

�

(ddcϕj )
n < ∞

}

.

2.2 m-Subharmonic Functions

We recall the class of m-subharmonic functions introduced and investigated in [5] recently.
For 1 ≤ m ≤ n, we define

	̂m =
{
η ∈ C(1,1) : η ∧ βn−1 ≥ 0, . . . , ηm ∧ βn−m ≥ 0

}
,

where C(1,1) denotes the space of (1, 1)-forms with constant coefficients.

Definition 1 Let u be a subharmonic function on an open subset � ⊂ C
n. u is said to be a

m-subharmonic function on � if for every η1, . . . , ηm−1 in 	̂m the inequality

ddcu ∧ η1 ∧ · · · ∧ ηm−1 ∧ βn−m ≥ 0

holds in the sense of currents.

By SHm(�) (resp. SH−
m (�)), we denote the cone of m-subharmonic functions (resp.

negative m-subharmonic functions) on �. Before formulating the basic properties of m-
subharmonic functions, we recall the following (see [5]).

For λ = (λ1, . . . , λn) ∈ R
n and 1 ≤ m ≤ n, define

Sm(λ) =
∑

1≤j1<···<jm≤n

λj1 · · · λjm.

Set
	m = {S1 ≥ 0} ∩ {S2 ≥ 0} ∩ · · · ∩ {Sm ≥ 0}.
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By H, we denote the vector space of complex hermitian n × n matrices over R. For A ∈
H, let λ(A) = (λ1, . . . , λn) ∈ R

n be the eigenvalues of A. Set

S̃m(A) = Sm(λ(A)).

As in [14], we define

	̃m = {A ∈ H : λ(A) ∈ 	m} = {
S̃1 ≥ 0

} ∩ · · · ∩ {
S̃m ≥ 0

}
.

Now, we list the basic properties of m-subharmonic functions whose proofs repeat
analogous reasonings for plurisubharmonic functions, hence we omit them.

Proposition 1 Let � be an open set in C
n. Then we have

a) PSH(�)= SHn(�) ⊂ SHn−1(�) ⊂ · · · ⊂ SH1(�)= SH(�). Hence, u∈ SHm(�),
1 ≤ m ≤ n, then u ∈ SHr(�) for every 1 ≤ r ≤ m.

b) If u is C2 smooth then it is m-subharmonic if and only if the form ddcu is pointwise
in 	̂m.

c) If u, v ∈ SHm(�) and α, β > 0 then αu + βv ∈ SHm(�).
d) If u, v ∈ SHm(�) then so is max{u, v}.
e) If {uj }∞j=1 is a family of m-subharmonic functions, u = supj uj < +∞ and u is upper

semicontinuous then u is a m-subharmonic function.
f) If {uj }∞j=1 is a decreasing sequence of m-subharmonic functions then so is u =

limj→+∞ uj .
g) Let ρ ≥ 0 be a smooth radial function in C

n vanishing outside the unit ball and satis-
fying

∫
Cn ρdVn = 1, where dVn denotes the Lebesgue measure ofCn. For u∈SHm(�),

we define

uε(z) := (u ∗ ρε)(z) =
∫

B(0,ε)

u(z − ξ)ρε(ξ)dVn(ξ) ∀z ∈ �ε,

where ρε(z) := 1
ε2n ρ(z/ε) and �ε = {z ∈ � : d(z, ∂�) > ε}. Then uε ∈ SHm(�ε) ∩

C∞(�ε) and uε ↓ u as ε ↓ 0.
h) Let u1, . . . , up ∈ SHm(�) and χ : Rp → R be a convex function which is non decrea-

sing in each variable. If χ is extended by continuity to a function [−∞, +∞)p →
[−∞, ∞), then χ(u1, . . . , up) ∈ SHm(�).

Example 1 Let u(z1, z2, z3) = 5|z1|2 + 4|z2|2 − |z3|2. By using (b) of Proposition 1, it is
easy to see that u ∈ SH2(C

3). However, u is not a plurisubharmonic function in C
3 because

the restriction of u on the line (0, 0, z3) is not subharmonic.

Now, as in [5, 13], we define the complex Hessian operator of locally bounded m-subhar-
monic functions as follows.

Definition 2 Assume that u1, . . . , up ∈ SHm(�) ∩ L∞
loc(�). Then the complex Hessian

operator Hm(u1, . . . , up) is defined inductively by

ddcup ∧ · · · ∧ ddcu1 ∧ βn−m = ddc
(
upddcup−1 ∧ · · · ∧ ddcu1 ∧ βn−m

)
.

From the definition of m-subharmonic functions and using arguments as in the proof of
Theorem 2.1 in [1], we note that Hm(u1, . . . , up) is a closed positive current of bidegree
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(n − m + p, n − m + p), and this operator is continuous under decreasing sequences of
locally bounded m-subharmonic functions. Hence, for p = m, ddcu1 ∧· · ·∧ddcum ∧βn−m

is a nonnegative Borel measure. In particular, when u=u1 =· · ·=um ∈SHm(�)∩L∞
loc(�),

the Borel measure
Hm(u) = (ddcu)m ∧ βn−m

is well defined and is called the complex Hessian of u.

2.3 m-Maximal Functions

Similarly in pluripotential theory now we recall a class of m-maximal functions introduced
and investigated in [5] recently.

Definition 3 A m-subharmonic function u ∈ SHm(�) is called m-maximal if every v ∈
SHm(�), v ≤ u outside a compact subset of � implies that v ≤ u on �.

By MSHm(�) we denote the set of m-maximal functions on �. Theorem 3.6 in [5]
claims that a locally bounded m-subharmonic function u on a bounded domain � ⊂ C

n

belongs to MSHm(�) if and only if it solves the homogeneous Hessian equation Hm(u) =
(ddcu)m ∧ βn−m = 0.

2.4 The E0
m(�) and Fm(�) Classes

Next, we recall the classes E0
m(�) and Fm(�) introduced and investigated in [12]. First, we

give the following.
Let � be a bounded domain in C

n. � is said to be m-hyperconvex if there exists a
continuous m-subharmonic function u : � −→ R

− such that �c = {u < c} � � for
every c < 0. As above, every plurisubharmonic function is m-subharmonic with m ≥ 1
then every hyperconvex domain in C

n is m-hyperconvex. Let � ⊂ C
n be a m-hyperconvex

domain. Set

E0
m = E0

m(�) =
{

u ∈ SH−
m (�) ∩ L∞(�) : lim

z→∂�
u(z) = 0,

∫

�

Hm(u) < ∞
}

,

Fm = Fm(�) =
{

u ∈ SH−
m (�) : ∃E0

m � uj ↘ u, sup
j

∫

�

Hm(uj ) < ∞
}

,

and

Em = Em(�) =
{

u ∈ SH−
m (�) : ∀z0 ∈ �, ∃ a neighborhood ω � z0, and

E0
m � uj ↘ u on ω, sup

j

∫

�

Hm(uj ) < ∞
}

,

where Hm(u) = (ddcu)m ∧ βn−m denotes the Hessian measure of u ∈ SH−
m (�) ∩ L∞(�).

From Theorem 3.14 in [12], it follows that if u ∈ Em(�), the complex Hessian Hm(u) =
(ddcu)m ∧ βn−m is well defined and is a Radon measure on �. On the other hand, by
Remark 3.6 in [12], we may give the following description of the class Em(�):

Em = Em(�) = {
u ∈ SH−

m (�) : ∀ U � �, ∃v ∈ Fm(�), v = u on U
}
.
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2.5 m-Capacity

We recall the notion of m-capacity introduced in [12].

Definition 4 Let E ⊂ � be a Borel subset. The m-capacity of E with respect to � is de-
fined by

Cm(E) = Cm(E,�) = sup

{∫

E

(ddcu)m ∧ βn−m : u ∈ SHm(�),−1 ≤ u ≤ 0

}

.

Proposition 2.10 in [12] gives some elementary properties of the m-capacity similar as
the capacity presented in [1]. Namely, we have

a) Cm

(⋃∞
j=1 Ej

)
≤ ∑∞

j=1 Cm(Ej ).

b) If Ej ↗ E then Cm(Ej ) ↗ Cm(E).

We need the following lemma which is used in the proof for the convexity of the class
Em,χ (�).

Lemma 1 Assume that ϕ ∈ E0
m(�). Then

(ddcϕ)m ∧ βn−m({ϕ < −t}) ≤ tmCm({ϕ < −t})
and

tmCm({ϕ < −2t}) ≤ (ddcϕ) ∧ βn−m({ϕ < −t}).

Proof Let v ∈ SHm(�), −1 < v < 0. For all t > 0, we have the following inclusion:

{ϕ < −2t} ⊂
{ϕ

t
< v − 1

}
⊂ {ϕ < −t}.

By the comparison principle (Theorem 1.4 in [13]), we get
∫

{ϕ<−2t}
(ddcv)m ∧ βn−m ≤

∫

{ ϕ
t
<v−1}

(ddcv)m ∧ βn−m

≤
∫

{ ϕ
t
<v−1}

1

tm
(ddcϕ)m ∧ βn−m

≤ 1

tm

∫

{ϕ<−t}
(ddcϕ)m ∧ βn−m.

Hence, taking the supremum over all v, we obtain

tmCm({ϕ < −2t}) ≤ (ddcϕ)m ∧ βn−m({ϕ < −t}).
By similar arguments as in the proof of Proposition 3.4 in [11], it follows that

(ddcϕ)m ∧ βn−m({ϕ < −t}) =
∫

{ϕ<−t}
(ddcϕ)m ∧ βn−m ≤ tmCm({ϕ < −t}).

The proof is complete.
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3 The Classes Fm,χ(�), Em,χ(�)

In what follows, we assume that � is a bounded hyperconvex domain in C
n. Now, we

introduce two weighted pluricomplex energy classes of m-subharmonic functions defined
as follows.

Definition 5 Let χ : R− lgR+ be a decreasing function and 1 ≤ m ≤ n. We define

Fm,χ (�) =
{

u ∈ SH−
m (�) : ∃{uj } ⊂ E0

m(�), uj ↘ u on �

sup
j

∫

�

χ(uj )(ddcuj )
m ∧ βn−m < +∞

}

and Em,χ (�) = {u ∈ SH−
m (�) : ∀K � �, ∃v ∈ Fm,χ (�), v = u on K}.

Remark 1 (a) From the above definitions of the two classes Fm,χ (�) and Em,χ (�), we
note that in the case χ(t) ≡ 1 for all t < 0 we get the pluricomplex energy classes
Fm(�) and Em(�) introduced and investigated in [12].

(b) In the case m = n, the class Fn,χ (�) coincides with the class of plurisubhar-
monic functions with weak singularities E−χ (�) erase early introduced and investi-
gated in [4].

(c) In the case m=n and χ(t)≡1 for all t <0, the classes Fn,χ (�) and En,χ (�) coincide
with the classes F(�) and E(�) in [10].

We need the following lemma.

Lemma 2 Let χ : R− → R
+ be a decreasing function such that χ(2t) ≤ aχ(t) with some

a > 1. Assume that 1 ≤ m ≤ n and u, v ∈ E0
m(�). Then the following hold:

(a) If u ≤ v, then
∫

�

χ(v)(ddcv)m ∧ βn−m ≤ 2m max(a, 2)

∫

�

χ(u)(ddcu)m ∧ βn−m.

(b) For every 0 ≤ λ ≤ 1, we have

∫

�

χ(λu + (1 − λ)v)(ddc(λu + (1 − λ)v))m ∧ βn−m

≤ 2m max(a, 2)

(∫

�

χ(u)(ddcu)m ∧ βn−m +
∫

�

χ(v)(ddcv)m ∧ βn−m

)

.

Proof (a) First, we assume that χ(0) = 0. Set

χj (t) := χ(t) + (1 − et )

j
, t < 0.



610 V. V. Hung

Then χj is a strictly decreasing function, χ < χj <χ + 1
j

and χj (2t)≤max(a, 2) ·χj (t) for
every t <0. Moreover, since {v < −t} ⊂ {u < −t} for every t > 0 so by Lemma 1, we have

∫

�

χj (v)(ddcv)m ∧ βn−m = −
∫ +∞

0
χ ′

j (−t)(ddcv)m ∧ βn−m({v < −t})dt

≤ −
∫ +∞

0
tmχ ′

j (−t)Cm({v < −t})dt

≤ −
∫ +∞

0
tmχ ′

j (−t)Cm({u < −t})dt

≤ −2m

∫ +∞

0
χ ′

j (−t)(ddcu)m ∧ βn−m({u < −t/2})dt

=
∫

�

χj (2u)(ddc(2u))m ∧ βn−m

≤ 2m max(a, 2)

∫

�

χj (u)(ddcu)m ∧ βn−m

≤ 2m max(a, 2)

(∫

�

(

χ(u) + 1

j

)

(ddcu)m ∧ βn−m

)

.

Letting j → ∞, we get
∫

�

χ(v)(ddcv)m ∧ βn−m ≤ 2m max(a, 2)

∫

�

χ(u)(ddcu)m ∧ βn−m.

In the general case, we set �j(t) = min(χ(t);−j t). Then �j are decreasing functions such
that �j(0) = 0 and �j ↗ χ on (−∞, 0). By the first case, we have

∫

�

�j (v)(ddcv)m ∧ βn−m ≤ 2m max(a, 2)

∫

�

�j (u)(ddcu)m ∧ βn−m.

Letting j → ∞, we obtain
∫

�

χ(v)(ddcv)m ∧ βn−m ≤ 2m max(a, 2)

∫

�

χ(u)(ddcu)m ∧ βn−m.

(b) As in the proof of (a), we can assume that χ(0) = 0. Since {λu + (1 − λ)v < −t} ⊂
{u < −t} ∪ {v < −t}, so we have

∫

�

χ(λu + (1 − λ)v)(ddc(λu + (1 − λ)v))m ∧ βn−m

≤
∫

�

χj (λu + (1 − λ)v)(ddc(λu + (1 − λ)v))m ∧ βn−m

≤ −
∫ +∞

0
tmχ ′

j (−t)Cm({u < −t})dt −
∫ +∞

0
tmχ ′

j (−t)Cm({v < −t})dt

≤ 2m max(a, 2)

(∫

�

(

χ(u) + 1

j

)

(ddcu)m ∧ βn−m +
∫

�

(

χ(v) + 1

j

)

(ddcv)m ∧ βn−m

)

.

Letting j → ∞, we get
∫

�

χ(λu + (1 − λ)v)(ddc(λu + (1 − λ)v))m ∧ βn−m

≤ 2m max(a, 2)

(∫

�

χ(u)(ddcu)m ∧ βn−m +
∫

�

χ(v)(ddcv)m ∧ βn−m

)

.



Local Property of a Class of m-Subharmonic Functions 611

Proposition 2 Let χ : R− −→ R
+ be a decreasing function such that χ(2t) ≤ aχ(t) with

some a > 1. Then the following hold:

(a) If u ∈ Fm,χ (�) (resp. Em,χ (�)) and v ∈ SH−
m (�) with u ≤ v then v ∈ Fm,χ (�)

(resp. Em,χ (�)).
(b) If u, v ∈ Fm,χ (�) (resp. Em,χ (�)) and α, γ ≥ 0 then αu + γ v ∈ Fm,χ (�) (resp.

Em,χ (�)).

Proof (a) It suffices to prove that the conclusion holds for the class Fm,χ (�). Assume
that u ∈ Fm,χ (�) and u ≤ v, v ∈ SH−

m (�). From Definition 5, there exists a sequence
{uj } ⊂ E0

m(�), uj ↘ u on � with

sup
j

∫

�

χ(uj )(ddcuj )
m ∧ βn−m < ∞.

Set vj = max(uj , v) ∈ E0
m(�), vj ↘ v on � and uj ≤ vj . By Lemma 2, we have

sup
j

∫

�

χ(vj )(ddcvj )
m ∧βn−m ≤2m max(a, 2) sup

j

∫

�

χ(uj )(ddcuj )
m∧βn−m <+∞.

Hence, v ∈ Fm,χ (�).
(b) First, we prove that if u ∈ Fm,χ (�) then αu ∈ Fm,χ (�). Indeed, let k ∈ N

∗ with
2k > α and let {uj } ⊂ E0

m(�), uj ↘ u on � with

sup
j

∫

�

χ(uj )(ddcuj )
m ∧ βn−m < ∞.

It is clear that {αuj }⊂E0
m(�), αuj ↘ αu on �. Moreover, since χ(αuj ) ≤ χ(2kuj ) ≤

akχ(uj ) so

sup
j

∫

�

χ(αuj )(ddcαuj )
m ∧ βn−m ≤ akαm sup

j

∫

�

χ(uj )(ddcuj )
m ∧ βn−m < ∞.

Hence, αu ∈ Fm,χ (�). By the above proof, we can assume that α + γ = 1. Let {uj },
{vj }⊂ E0

m(�), uj ↘ u on �, vj ↘ u on �, supj

∫
�

χ(uj )(ddcuj )
m ∧βn−m <∞ and

supj

∫
�

χ(vj )(ddcuj )
m ∧ βn−m <∞. By Lemma 2, we have

sup
j

∫

�

χ(αuj + γ vj )(ddc(αuj + γ vj ))
m ∧ βn−m

≤ 2m max(a, 2)

(

sup
j

∫

�

χ(uj )(ddcuj )
m ∧ βn−m + sup

j

∫

�

χ(vj )(ddcuj )
m ∧ βn−m

)

< ∞.

Hence, the desired conclusion follows.

Proposition 3 Let χ : R− −→ R
+ be a decreasing function such that χ(2t) ≤ aχ(t) for

all t < 0 with some a > 1. Then for every u ∈ Fm,χ (�), there exists a sequence {uj } ⊂
E0

m(�) ∩ C(�) such that uj ↘ u and

sup
j

∫

�

χ(uj )(ddcuj )
m ∧ βn−m < ∞.
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Proof Let �j � �j+1 � � be such that � = ⋃∞
j=1 �j and let {vj } ⊂ E0

m(�) be such that
vj ↘ u and

sup
j

∫

�

χ(vj )(ddcuj )
m ∧ βn−m < ∞.

Theorem 3.1 in [12] implies that there exists a sequence {wj } ⊂ E0
m(�)∩C(�) such that

wj ↘ u. Set

uj = sup

{

ϕ ∈ SH−
m (�) : ϕ ≤ j − 1

j
wj on �j

}

.

It is easy to see that uj ↘ u on �. By Theorem 1.2.7 in [6] and Proposition 3.2 in [5], we
get uj ∈ C(�). Moreover, since wj ≤ uj so uj ∈ E0

m(�) ∩ C(�). Now, since vj ↘ u as
j → ∞ and u ≤ wk so there exists j0 such that vj0 ≤ k−1

k
wk on �k . Therefore, vj0 ≤ uk

on �. Lemma 2 implies that
∫

�

χ(uk)(ddcuk)
m ∧ βn−m ≤ 2m max(a, 2)

∫

�

χ(vj0)(ddcvj0)
m ∧ βn−m

≤ 2m max(a, 2) sup
j

∫

�

χ(vj )(ddcvj )
m ∧ βn−m.

Thus,

sup
k

∫

�

χ(uk)ddcuk)
m ∧ βn−m ≤ 2m max(a, 2) sup

j

∫

�

χ(vj )(ddcvj )
m ∧ βn−m < ∞.

The following proposition shows that the Hessian operator is well defined on the class
Em,χ (�).

Proposition 4 Let χ : R− −→ R
+ be a decreasing function such that χ �≡ 0 and χ(2t) ≤

aχ(t) for all t < 0 with some a > 1. Then Em,χ (�) ⊂ Em(�), and hence, the Hessian
Hm(u) = (ddcu)m ∧ βn−m is well defined as a positive Radon measure on �.

Proof Without loss of generality, we can assume that χ(t) > 0 for every t < 0. Let u ∈
Em,χ (�) and z0 ∈ �. Take a neighborhood ω � � of z0 and a sequence {uj } ⊂ E0

m(�)

such that supω u1 < 0, uj ↘ u on ω and

sup
j

∫

�

χ(uj )Hm(uj ) < ∞.

For each j ≥ 1, set
ũj = sup{u ∈ SH−

m (�) : u|ω ≤ uj |ω}.
Then uj ≤ ũj on � and uj = ũj on ω and, by using arguments as in [7], we arrive at
ũj ∈ MSHm(� \ ω). This yields that ũj ∈ E0

m(�) and Hm(̃uj ) = 0 on � \ ω. More-
over, it is easy to see that ũj ↘ ũ on �. On the other hand, as in the proof of Lemma 2,
we have

sup
j

∫

�

χ(̃uj )Hm(̃uj ) < ∞.
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Moreover, we may assume that infω χ(̃u1) = c1 > 0. Then

c1 sup
j

∫

�

Hm(̃uj ) = c1 sup
j

∫

ω

Hm(̃uj )

≤ sup
j

∫

ω

χ(̃u1)Hm(̃uj ) ≤ sup
j

∫

�

χ(̃uj )Hm(̃uj ) < ∞.

Hence,

sup
j

∫

�

Hm(̃uj ) < ∞
and it follows that ũ ∈ Fm(�). It is easy to see that ũ = u on ω, and this yields that u ∈
Em(�). Theorem 3.14 in [12] implies that Hm(u) is a positive Radon measure on �. The
proof is complete.

Now we prove our main result about the local property of the class Em,χ (�).

4 The Local Property of the Class Em,χ(�)

First, we give the following definition which is similar as in [15] for plurisubharmonic
functions.

Definition 6 A class J (�) ⊂ SH−
m (�) is said to be a local class if ϕ ∈ J (�) then ϕ ∈

J (D) for all hyperconvex domains D � � and if ϕ ∈ SH−
m (�), ϕ|�j

∈ J (�j ) ∀j ∈ I

with � = ⋃
j∈I �j , then ϕ ∈ J (�).

In [15], the authors introduced the class Eχ,loc(�) and established the local property for
this class. This section is devoted to study the local property of the class Em,χ (�).

In the sequel of the paper, we will use the following notation. We will write “A � B” if
there exists a constant C such that A ≤ CB.

Proposition 5 Set

K = {χ : R− −→ R
+, χ is decreasing and − t2χ ′′(t) � tχ ′(t) � χ(t) ∀t < 0}.

Then the class K has the following properties.

(a) If χ1, χ2 ∈ K and a1, a2 ≥ 0 then a1χ1 + a2χ2 ∈ K.
(b) If χ1, χ2 ∈ K then χ1 · χ2 ∈ K.
(c) If χ ∈ K then χp ∈ K for all p > 0.
(d) If χ ∈ K, then (−t)χ(t) ∈ K. More generally |tk|χ(t) ∈ K for all k = 0, 1, 2, . . . .

Proof The proof is standard hence we omit it.

Remark 2 If χ ∈ K, then χ(2t) ≤ aχ(t) ∀t < 0 with some a > 1. Indeed, by hypothesis
tχ ′(t) ≤ Cχ(t), C = constant > 0. We set s(t) = χ(t)

(−t)C
. Then s′(t) ≥ 0 ∀t < 0, hence

s(t) is an increasing function. This implies that s(2t) ≤ s(t), and we have χ(2t) ≤ 2Cχ(t).

The following result is necessary for the proof of the local property of the class Em,χ (�).
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Lemma 3 Let u, v ∈ SH−
m(�) ∩ L∞(�) with u ≤ v on �, χ ∈K and T = ddcϕ1 ∧ · · ·∧

ddcϕm−1 ∧ βn−m with ϕj ∈ SH−
m (�) ∩ L∞(�), j =1 . . . , m−1. Then for every p≥0, we

have
∫

�′
χ(u)ddcv ∧ T ≤ c

∫

�′′
χ(u)(ddcu + |u|β) ∧ T ,

where �′ � �′′ � � and c is a constant only depending on �′, �′′, � and χ .

Proof Choose � ∈ C∞
0 (�), 0 ≤ � ≤ 1 and �|�′ = 1, supp � � �′′′ � �′′. Then, by inte-

gration by parts
∫

�′
χ(u)ddcv ∧T =

∫

�′
�χ(u)ddcv ∧T ≤

∫

�

�χ(u)ddcv ∧T =
∫

�

vddc(�χ(u))∧T .

On the other hand,

ddc(�χ(u)) = d(dc(�χ(u)))

= χ(u)ddc� + �(χ ′(u)ddcu + χ ′′(u)du ∧ dcu) + χ ′(u)(d� ∧ dcu + du ∧ dc�).

Since ∀t , d(u + t�) ∧ dc(u + t�) ∧ T ≥ 0, we have

±u(du ∧ dc� + d� ∧ dcu) ∧ T ≤ (du ∧ dcu + u2d� ∧ dc�) ∧ T

and

χ ′(u)(d� ∧ dcu + du ∧ �) ∧ T ≥ −χ ′(u)

(

ud� ∧ dc� + 1

u
du ∧ dcu

)

∧ T .

Now, we can choose A > 0 sufficiently large such that ddc� ≥ −Addc‖z‖2, d� ∧ dc� ≤
Addc‖z‖2. Thus, we have the following estimates

ddc(�χ(u)) ∧ T ≥ −Aχ(u)ddc‖z‖2 ∧ T + �χ ′(u)ddcu ∧ T + �χ ′′(u)du ∧ dcu∧ T

−χ ′(u)(ud� ∧ dc�+ 1

u
du∧ dcu)∧ T . (1)

In the case χ ′′(u) ≤ 0, we have the following

vddc(�χ(u)) ∧ T ≤ −Auχ(u)ddc‖z‖2 ∧ T + uχ ′(u)ddcu ∧ T

+u min{χ ′′(u), 0}du ∧ dcu ∧ T − u2χ ′(u)d� ∧ dc� ∧ T

−χ ′(u)du ∧ dcu ∧ T .

In the case χ ′′(u)≥0, from (1), we note that �vχ ′′(u)du ∧ dcu ∧ T ≤0, and it is easy to
obtain the above estimates. Now, we have the following estimates
∫

�′
χ(u)ddcv ∧ T ≤ A

∫

�′′′
−uχ(u)ddc‖z‖2 ∧ T +

∫

�′′′
uχ ′(u)ddcu ∧ T

+
∫

�′′′
u min{χ ′′(u), 0}du ∧ dcu ∧ T +

∫

�′′′
−u2χ ′(u)d�∧ dc�∧ T

+
∫

�′′′
−χ ′(u)du ∧ dcu ∧ T .
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On the other hand, by hypothesis about the class K, we have uχ ′(u) ≤ c1χ(u) and
(−u2)χ ′(u)≤c1(−u)χ(u), uχ ′′(u)≤c2(−χ ′(u)). Therefore,
∫

�′
χ(u)ddcv ∧ T ≤ A

∫

�′′′
−uχ(u)ddc‖z‖2 ∧ T + c1

∫

�′′′
χ(u)ddcu ∧ T

−(c2+1)

∫

�′′′
χ ′(u)du∧ dcu∧ T +Ac1

∫

�′′′
χ(u)d�∧ ddc‖z‖2∧ T

= A(c1 + 1)

∫

�′′′
|u|χ(u)ddc‖z‖2 ∧ T + c1

∫

�′′′
χ(u)ddcu ∧ T

−(c2 + 1)

∫

�′′′
χ ′(u)du ∧ dcu ∧ T .

Set χ1(t) = −∫ t

0 χ(x)dx then

χ ′
1(t)=−χ(t); χ ′′

1 (t)=−χ ′(t); χ(t)|t |≥χ1(t)≥χ

(
t

2

) |t |
2

.

Now, we choose ψ ∈ C∞
0 , ψ |�′′′ = 1, supp ψ � �′′, then we have

−
∫

�′′′
χ ′(u)du ∧ dcu ∧ T = −

∫

�′′′
dχ(u) ∧ du ∧ dcu ∧ T ≤

∫

�

ψdχ(u) ∧ dcu ∧ T

=
∫

�

χ(u)dψ ∧ dcu ∧ T +
∫

�

ψχ(u)ddcu ∧ T

=
∫

�

χ(u)dψ ∧ dcu ∧ T +
∫

�′′
ψχ(u)ddcu ∧ T

= −
∫

�

dψdcχ1(u) ∧ T +
∫

�′′
ψχ(u)ddcu ∧ T

=
∫

�

χ1(u)ddcψ ∧ T +
∫

�′′
ψχ(u)ddcu ∧ T

≤ B

∫

�′′
χ(u)|u|ddc‖z‖2 ∧ T +

∫

�′′
ψχ(u)ddcu ∧ T

with B > 0 sufficiently large.
Finally, we have

∫

�′
χ(u)ddcv ∧ T ≤ A(c1 + 1)

∫

�′′′
|u|χ(u)ddc‖z‖2 ∧ T + c1

∫

�′′′
χ(u)ddcu ∧ T

+(c2+1)B

∫

�′′′
χ(u)|u|ddc‖z‖2 ∧ T +(c2+1)

∫

�′′′
χ(u)ddcu∧ T

≤ c

[∫

�′′′
χ(u)ddcu ∧ T +

∫

�′′′
χ(u)|u|ddc‖z‖2 ∧ T

]

.

The next lemma is a crucial tool for the proof of the local property of the class Em,χ (�).

Lemma 4 Let � be a hyperconvex domain in C
n and 1 ≤ m ≤ n. Assume that u ∈ E0

m(�)

and χ ∈ K such that χ ′′(t) ≥ 0 ∀t < 0. Then for �′ � �, there exists a constant C =C(�′)
such that the following holds:

∫

�′
χ(u)|u|p(ddcu)m−p ∧ βn−m+p ≤ C

∫

�

χ(u)(ddcu)m ∧ βn−m < +∞. (2)
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Furthermore, if u ∈ Fm,χ (�) then

∫

�′
χ(u)|u|p(ddcu)m−p ∧ βn−m+p < +∞

for all p = 1, . . . , m.

Proof Set χ0(t)=χ(t) and for each k ≥ 1, let χk(t)= −∫ t

0 χk−1(x)dx. From the hypothesis
χ ∈ K, then χ(2t) ≤ aχ(t) and it is easy to check that χk ∈ K and χ(t)(−t)k � χk(t) �
χ(t)(−t)k .

Now, choose R > 0 large enough such that ‖z‖2 ≤ R2 on �. Let ϕ ∈ E0
m(�) and

A > 0 such that ‖z‖2 − R2 ≥ Aϕ on �′. Set h = max(‖z‖2 − R2; Aϕ) then h ∈ E0
m(�)

and ddch = ddc‖z‖2 = β on �′. First, we claim that (2) holds for u ∈ E0
m(�). Indeed,

we have
∫

�′
χ(u)|u|p(ddcu)m−p ∧ (ddch)p ∧ βn−m �

∫

�

χ(u)|u|p(ddcu)m−p∧ (ddch)p∧ βn−m

≈

∫

�

χp(u)(ddcu)m−p ∧ (ddch)p ∧ βn−m.

Integrating by parts, we have

∫

�

χp(u)(ddcu)m−p ∧ (ddch)p ∧ βn−m =
∫

�

h(ddcu)m−pddcχp(u) ∧ (ddch)p−1 ∧ βn−m

=
∫

�

h(ddcu)m−p
[
χ ′′

p(u)du ∧ dcu + χ ′
p(u)ddcu

]

∧(ddch)p−1 ∧ βn−m

≤
∫

�

hχ ′
p(u)(ddcu)m−p+1 ∧ (ddch)p−1 ∧ βn−m

≤ ‖h‖L∞(�)

∫

�

χp−1(ddcu)m−p+1 ∧ (ddch)p−1∧ βn−m

≤ · · ·
≤ ‖h‖p

L∞(�)

∫

�

χ(u)(ddcu)m ∧ βn−m < +∞.

Hence, if we set C = C(�′) = p!‖h‖p

L∞(�) then

+∞ > C

∫

�

χ(u)(ddcu)m ∧ βn−m ≥
∫

�

χ(u)|u|p(ddcu)m−p ∧ (ddch)p ∧ βn−m

≥
∫

�′
χ(u)|u|p(ddcu)m−p ∧ (ddch)p ∧ βn−m

=
∫

�′
χ(u)|u|p(ddcu)m−p ∧ (ddc‖z‖2)p ∧ βn−m.

Finally, we prove (2) holds for u ∈ Fm,χ (�). Indeed, we take uj ∈ E0
m(�), uj ↘ u on

� such that

sup
j≥1

∫

�

χ(uj )(ddcuj )
m ∧ βn−m < +∞.
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By dominated convergence theorem and (ddcuj )
m−p ∧ (ddc‖z‖2)n−m+p is weakly conver-

gent to (ddcu)m−p ∧ (ddc‖z‖2)n−m+p in the sense of currents
∫

�′
χ(u)|u|p (

ddcu
)m−p ∧

(
ddc‖z‖2

)n−m+p

≤ lim inf
j

∫

�′
χ(uj )|uj |p

(
ddcuj

)m−p ∧
(
ddc‖z‖2

)n−m+p

≤ lim inf
j

∫

�

χ(uj )|uj |p
(
ddcuj

)m−p ∧ (
ddch

)p ∧
(
ddc‖z‖2

)n−m

≤ C sup
j

∫

�

χ(uj )
(
ddcuj

)m ∧
(
ddc‖z‖2

)n−m

< +∞.

We also need the following result on subextension for the class Fm,χ (�).

Lemma 5 Assume that � � �̃ and u ∈ Fm,χ (�). Then there exists ũ ∈ Fm,χ (�̃) such
that ũ ≤ u on �.

Proof We split the proof into three steps.

Step 1. We prove that if v ∈ C(�̃), v ≤ 0, supp v � �̃ then ṽ := sup{w ∈ SH−
m (�̃) : w ≤

v on �̃} ∈ E0
m(�̃) ∩ C(�̃) and (ddcṽ)m ∧ βn−m = 0 on {̃v < v}. Indeed, let

ϕ ∈ E0
m(�̃)∩C(�̃) be such that ϕ ≤ inf�̃ v on supp v. Since ϕ ≤ ṽ so ṽ ∈ E0

m(�̃).
Moreover, by Proposition 3.2 in [5], we have ṽ ∈ C(�̃). Let w ∈ SHm({̃v < v})
be such that w ≤ ṽ outside a compact subset K of {̃v < v}. Set

w1 =
{

max(w, ṽ) on {̃v < v},
ṽ on �̃\({̃v < v}).

Since ṽ and v are continuous so ε=− supK(̃v−v)>0. Choose δ ∈ (0, 1) such that
−δ inf�̃ ṽ < ε. We have (1− δ)̃v ≤ ṽ+ε ≤v on K . Hence, (1−δ)̃v + δw1 ≤v on
�̃ and we get (1−δ)̃v+δw1 = ṽ. Thus, w ≤ ṽ on {̃v <v}. Hence, ṽ is m-maximal
in {̃v<v}. By [5], we get (ddcṽ)m ∧ βn−m =0 on {̃v<v}.

Step 2. Next, we prove that if u ∈ E0
m(�)∩C(�) then there exists ũ ∈ E0

m(�̃), (ddcũ)m ∧
βn−m = 0 on (�̃\�) ∪ ({̃u < u} ∩ �) and (ddcũ)m ∧ βn−m ≤ (ddcu)m ∧ βn−m

on {̃u = u} ∩ �. Indeed, set

v =
{

u on �,

0 on �̃\�.

It is easy to see that v ∈ C(�̃) and supp v ⊂ � � �̃. Hence, we have ũ = ṽ ∈
E0

m(�̃)∩C(�̃) and (ddcũ)m∧βn−m = 0 on {̃v < v}∩�̃ = (�̃\�)∪({̃u < u}∩�).
Let K be a compact set in {̃u = u} ∩ �. Then for ε > 0, we have K � {̃u + ε >

u} ∩ � so we have
∫

K

(ddcũ)m ∧ βn−m =
∫

K

1{̃u+ε>u}(ddcũ)m ∧ βn−m

=
∫

K

1{̃u+ε>u}(ddc max(̃u + ε, u))m ∧ βn−m

≤
∫

K

(ddc max(̃u + ε, u))m ∧ βn−m,
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where the equality in the second line follows by using the same arguments as in [2]
(also see the proof of Theorem 3.23 in [12]). However, max(̃u+ε, u) ↘ u on � as
ε → 0 so by [21] it follows that (ddc max(̃u+ε, u))m∧βn−m is weakly convergent
to (ddcu)m ∧ βn−m as ε → 0. On the other hand, 1K is upper semicontinuous on
� so we can approximate 1K with a decreasing sequence of continuous functions
ϕj . Hence, we infer that

lim sup
ε→0

∫

�

1K(ddc max(̃u + ε, u))m ∧ βn−m

= lim sup
ε→0

[

lim
j

∫

�

ϕj (ddc max(̃u + ε, u))m ∧ βn−m

]

≤ lim sup
ε→0

(∫

�

ϕj (ddc max(̃u + ε, u))m ∧ βn−m

)

≤
∫

�

ϕj (ddcu)m ∧ βn−m ↘
∫

K

(ddcu)m ∧ βn−m.

as j → ∞. This yields that (ddcũ)m ∧βn−m ≤ (ddcu)m ∧βn−m on {̃u = u} ∩�.
Step 3. Now, let uj ∈ E0

m(�) ∩ C(�) be such that uj ↘ u and

sup
j

∫

�

χ(uj )
(
ddcuj

)m ∧ βn−m < ∞.

By Step 2, we have
∫

�̃

χ (̃uj )
(
ddcũj

)m ∧ βn−m =
∫

{̃uj =uj }∩�

χ(̃uj )(ddcũj )
m ∧ βn−m

≤
∫

{̃uj =uj }∩�

χ(uj )(ddcuj )
m ∧ βn−m

≤
∫

�

χ(uj )(ddcuj )
m ∧ βn−m.

Hence,

sup
j

∫

�̃

χ (̃uj )(ddcũj )
m ∧ βn−m ≤ sup

j

∫

�

χ(uj )(ddcuj )
m ∧ βn−m < ∞.

Thus, ũ := limj→∞ ũj ∈ Fm,χ (�̃) and ũ ≤ u on �.

The following result deals with the local property of the class Em,χ (�). Namely, we have
the following.

Theorem 1 Let � be a hyperconvex domain in C
n and m be an integer with 1 ≤ m ≤ n.

Assume that u ∈ SH−
m (�) and χ ∈ K such that χ ′′(t) ≥ 0 ∀t < 0. Then the following

statements are equivalent.

a) u ∈ Em,χ (�).
b) For all K � �, there exists a sequence {uj } ⊂ E0

m(�) ∩ C(�), uj ↘ u on K such that

sup
j

∫

K

χ(uj )|uj |p(ddcuj )
m−p ∧ βn−m+p < ∞

for every p = 0, . . . , m.
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c) For every W � � such that W is a hyperconvex domain, we have u|W ∈ Em,χ (W).
d) For every z ∈ �, there exists a hyperconvex domain Vz � � such that z ∈ Vz and

u|Vz ∈ Em,χ (Vz).

Proof Let χk be as in Lemma 4.
“a) =⇒ b)” Let K � � be given. Since u ∈ Em,χ (�), then there exists v ∈ Fm,χ (�)

with v = u on K . By the definition of the class Fm,χ (�), there exists a sequence {uj } ⊂
E0

m(�) ∩ C(�), uj ↘ v on � with

sup
j

∫

�

χ(uj )(ddcuj )
m ∧ βn−m < ∞. (3)

Then uj ↘ u on K . We have to prove

sup
j

∫

K

χ(uj )|uj |p(ddcuj )
m−p ∧ βn−m+p < ∞

for p = 0, 1, . . . , m. It is obvious that the conclusion holds for p = 0. Assume that 1 ≤
p ≤ m. Then, by Lemma 4, we get that

sup
j

∫

K

χ(uj )|uj |p(ddcuj )
m−p ∧ βn−m+p ≤ C sup

j

∫

�

χ(uj )(ddcuj )
m ∧ βn−m < ∞

and the desired conclusion follows.
“b) =⇒ c)” Let W � � be a hyperconvex domain. Take U � W � � and a sequence

E0
m(�) � uj ↘ u on W such that

sup
j

∫

W

χ(uj )|uj |p(ddcuj )
m−p ∧ βn−m+p < ∞

for p = 0, 1, . . . , m. Set ũj = sup{ϕ ∈ SH−
m (W) : ϕ ≤ uj on U} ∈ E0

m(W). Next, choose
U � �1 � . . . � �m � W . Since uj ≤ ũj on W and (ddcũj )

m ∧ βn−m =0 on W\U so by
applying Lemma 3 many times, we arrive at

∫

W

χ(̃uj )
(
ddcũj

)m ∧ βn−m =
∫

U

χ(̃uj )
(
ddcũj

)m ∧ βn−m

�
∫

�1

χ(uj )
(
ddcuj + |uj |β

) ∧ (
ddcũj

)m−1 ∧ βn−m

�
∫

�1

χ(uj )ddcũj ∧ (
ddcũj

)m−2 ∧ ddcuj ∧ βn−m

+
∫

�1

χ1(uj )|uj |ddcũj ∧ (
ddcũj

)m−2 ∧ βn−m+1

�
∫

�2

χ(uj )
(
ddcuj + |uj |β

) ∧ (
ddcũj

)m−2 ∧ ddcuj ∧ βn−m

+
∫

�2

χ1(uj )|uj |
(
ddcuj + |uj |β

) ∧ (
ddcũj

)m−2 ∧ βn−m+1

�
∫

�2

χ(uj )
[
|uj |2β2 + |uj |β ∧ ddcuj + (

ddcuj

)2
]

∧ (
ddcũj

)m−2 ∧ βn−m

� · · ·
�

∫

�m

χ(uj )
[
|uj |mβm + |uj |m−1ddcuj ∧ βm−1 + · · · + (

ddcuj

)m
]

∧ βn−m.
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Hence,

sup
j

∫

W

χ(uj )
(
ddcũj

)m ∧ βn−m

� sup
j

χ(uj )

∫

�m

[
|uj |mβm + |uj |m−1ddcuj ∧ βm−1 + · · · + (

ddcuj

)m
]

∧ βn−m

�sup
j

∫

W

χ(uj )
[
|uj |mβm+|uj |m−1ddcuj ∧ βm−1+· · ·+(

ddcuj

)m
]

∧ βn−m <∞.

Thus, uU,W := lim ũj∈Fm,χ (W). Since U�W is arbitrary and uU,W =u on U so u∈Em(W).
“c) =⇒ d)” It is obvious.
“d) =⇒ a)” Assume that �′��. Choose zj ∈�, j =1, 2, . . . , s such that �′�

⋃s
j=1 Vzj

,
where Vzj

are hyperconvex domains. Let Wzj
� Vzj

be such that �′ �
⋃s

j=1 Wzj
. Since

u|Vzj
∈ Em,χ (Vzj

) so there exists vj ∈ Fm,χ (Vzj
) such that vj = u on Wzj

. By Lemma
5, there exists ṽj ∈ Fm,χ (�) such that ṽj ≤ vj on Vzj

. Then by Proposition 2, we have
ṽ := ṽ1 +· · ·+ ṽs ∈ Fm,χ (�) and, hence, max(̃v, u) ∈ Fm,χ (�). However, max(̃v, u) = u

on �′, then u ∈ Em,χ (�). The proof is complete.

From the above theorem, we get the following property of the class Em,χ (�).

Corollary 1 Assume that � is a bounded hyperconvex domain, and χ ∈ K satisfies all
hypotheses of Theorem 1. Then Em,χ (�)⊂Em−1,χ (�).

Proof Assume that u ∈ Em,χ (�). Let K��. Take a domain �′ with �′��. By Theorem
1, there exists a sequence {uj } ⊂ E0

m(�) ∩ C(�) such that uj ↘ u on �′ and

sup
j

∫

�′
χ(uj )

[
|uj |mβm + |uj |m−1ddcuj ∧ βm−1 + · · · + (

ddcuj

)m
]

∧ βn−m < ∞.

Let h ∈ E0
m−1(�) be chosen. For each j >0, take mj >0 such that uj ≥ mjh on �′.

Set vj = max(uj ,mjh) ∈ E0
m−1(�) and vj = uj on �′. Note that vj ↘ u on �′ and

(ddcvj )
p ∧ βq = (ddcuj )

p ∧ βq on �′ for 1 ≤ p ≤ m − 1 and 1 ≤ q ≤ n − m + 1. We
may assume that u|�′ ≤ −1. By Hartogs’ lemma (see Theorem 3.2.13 in [16]), we conclude
that vj |�′ ≤ −1 for j ≥ j0 with some j0. Without loss of generality, we may assume that
vj |�′ ≤ −1 for j ≥ 1. Hence, |vj |m ≥ |vj |m−1 on �′ for all j ≥ 1. Now, we have

∫

�′
χ(uj )

[
|uj |mβm+|uj |m−1ddcuj ∧ βm−1+· · ·+|uj |

(
ddcuj

)m−1 ∧ β + (
ddcuj

)m
]

∧ βn−m

≥
∫

�′
χ(uj )

[
|uj |mβm + |uj |m−1ddcuj ∧ βm−1 + · · · + |uj |

(
ddcuj

)m−1 ∧ β
]

∧ βn−m

=
∫

�′
χ(vj )

[
|vj |mβm + |vj |m−1ddcvj ∧ βm−1 + · · · + |vj |

(
ddcvj

)m−1 ∧ β
]

∧ βn−m

=
∫

�′
χ(vj )

[
|vj |mβm−1 + |vj |m−1ddcvj ∧ βm−2 + · · · + |vj |

(
ddcvj

)m−1
]

∧ βn−m+1

≥
∫

�′
χ(vj )

[
|vj |m−1βm−1 + |vj |m−2ddcvj ∧ βm−2 + · · · + (

ddcvj

)m−1
]

∧ βn−m+1.
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Note that vj ↘ u on �′ and

sup
j

∫

�′
χ(vj )

[
|vj |m−1βm−1+|vj |m−2ddcvj ∧ βm−2+· · ·+(

ddcvj

)m−1
]
∧βn−m+1 <∞.

Moreover, by Theorem 1, we get u ∈ Em−1,χ (�).
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