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Abstract The concepts of order continuous norm, σ -order continuous norm, and Fatou
norm defined on ordinary normed Riesz spaces are very important in the study of Riesz
spaces. In this paper, we introduce the probabilistic analogues of such norms on a topologi-
cal probabilistic normed Riesz (TPNR) space, and investigate their basic properties. In this
context, some well-known theorems of the classical theory of topological Riesz spaces are
proved in the setting of TPNR spaces, but now using the tools of probabilistic normed (PN)
spaces. However, an interesting and different point here is that, although the classical order
continuous Riesz norms are order preserving, the probabilistic Riesz norms considered in
this work are order reversing mappings due to the nature of probabilistic distances.

Keywords Topological probabilistic normed Riesz space · Order continuous probabilistic
Riesz norm · σ -order continuous probabilistic Riesz norm · Probabilistic Fatou norm
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1 Introduction

The concept of Riesz space, also called vector lattice or K-lineal, was first introduced
by Riesz in [18]. The first contributions to the theory came from Freudenthal [6] and
Kantorovich [10]. Since then, many others have developed the subject. Most of the spaces
considered in mathematical analysis are Riesz spaces, and they have many applications in
measure theory and operator theory.
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A probabilistic normed (PN) space is a generalization of an ordinary normed linear space.
In a PN space, the norms of the vectors are uncertain due to randomness, therefore such
norms are represented by probability distribution functions instead of nonnegative real num-
bers. Such a generalization of normed spaces may well be adapted to the setting of physical
quantities (see [15]), and it has an important role in probabilistic analysis. PN spaces were
first introduced by Šerstnev in [22]. Since then, some of the most deepest advances in this
theory were obtained in [7, 17, 23, 24]. In 1993, Alsina et al. [3] presented a new definition
of a PN space which includes Šerstnev’s definition in [22] as a special case. Here, we will
adopt this new definition. Following [3], many papers investigating the properties of PN
spaces have appeared (see, for instance, [12, 14]). A detailed history and the development
of the subject up to 2006 can be found in [20].

Starting out from the importance of the theories of Riesz spaces and PN spaces in func-
tional analysis, we introduced the concepts of probabilistic normed Riesz (PNR) space and
probabilistic Banach lattice (PBL), and studied their certain properties in [21]. Our aim
was to integrate the theories of PN spaces and Riesz spaces, and thus to obtain a PN space
endowed with the lattice structure. A more general treatment which does not consider a
Riesz space structure explicitly, but is related to partial orders on probabilistic metric (PM)
spaces can be found in [11].

In the current work, we continue the investigation of PNR spaces and PBLs. We discuss
the connections between the topological and order structures of a PNR space. In this context,
the probabilistic analogues of the concepts of order continuous norm, σ -order continuous
norm, and Fatou norm of classical normed Riesz spaces are introduced in a topological
probabilistic normed Riesz (TPNR) space, and their certain properties are examined. In this
context, some well-known theorems of the classical theory of topological Riesz spaces (see,
for instance, [1, 2, 5, 16, 25]) are proved in this special probabilistic setting, that is, in the
setting of TPNR spaces, but here the tools of PN spaces are used to prove these theorems.
We should also point out that, although the classical order continuous Riesz norms are
order preserving, the probabilistic Riesz norms considered in this work are order reversing
mappings due to the nature of probabilistic distances.

2 Preliminaries

In this section, to make the paper self-contained, we recall some of the basic concepts related
to the theory of PN spaces, Riesz spaces, and PNR spaces, which will be used throughout
the rest of the paper. First, we cast a glance at the theory of PN spaces and we refer to
[3, 19, 20] for more details.

A distance distribution function is a non-decreasing function F that is left-continuous
on (−∞,∞), equals to zero on [−∞, 0] and F(+∞) = 1. The set of all distance distribu-
tion functions is denoted by �+. The space �+ is partially ordered by the usual pointwise
ordering of functions, and has both a maximal element ε0 and a minimal element ε∞,
defined by

ε0(x) =
{

0, x ≤ 0,

1, x > 0
and ε∞(x) =

{
0, x < +∞,

1, x = ∞,

respectively. The subset D+ = {F ∈ �+ : limx→∞ F(x) = 1} is called the set of proper
distance distribution functions.
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Now let F,G ∈ �+ and h ∈ (0, 1]. If we denote the condition

G(x) ≤ F(x + h) + h for x ∈
(

0,
1

h

)

by [F,G; h], then the function dL defined on �+ × �+ by

dL(F,G) = inf {h : both [F, G; h] and [G,F ; h] hold}
is called the modified Lévy metric on �+. Convergence with respect to this metric is equiv-
alent to the weak convergence of distribution functions, i.e., for any sequence (Fn) in �+
and any F in �+, we have dL(Fn, F ) −→ 0 if and only if the sequence (Fn(x)) con-
verges to F(x) at each continuity point x of F . Moreover, the metric space (�+, dL) is
compact.

A triangle function is a binary operation τ on �+, τ : �+ × �+ → �+, that is associa-
tive, commutative, non-decreasing in each place, and has ε0 as identity. A triangle function
is said to be Archimedean provided that τ(F, F ) = F implies that F = ε0 or F = ε∞. If τ

is continuous on �+ × �+, then it is uniformly continuous.

Definition 1 [3, 12] A probabilistic normed space (briefly, a PN space) is a quadruple
(V , ν, τ, τ ∗) where V is a real linear space, τ and τ ∗ are continuous triangle functions with
τ ≤ τ ∗, and ν is a mapping (the probabilistic norm) from V into the space of distribution
functions �+ such that—writing νp for ν(p)—for all p, q in V , the following conditions
hold:

(N1) νp = ε0 if and only if p = θ , the null vector in V ,
(N2) ν−p = νp ,
(N3) νp+q ≥ τ(νp, νq),
(N4) νp ≤ τ ∗(ναp, ν(1−α)p) for all α ∈ [0, 1].

A Menger PN space under T is a PN space (V , ν, τ, τ ∗) in which τ = τT and τ ∗ = τT ∗
for some continuous t-norm T and its t-conorm T ∗; it is denoted by (V , ν, T ).

For p ∈ V and t > 0, the strong t-neighborhood of p is defined by the set

Np(t) = {
q ∈ V : dL(νp−q, ε0) < t

} = {
q ∈ V : νp−q(t) > 1 − t

}
.

Since τ is continuous, the system of neighborhoods {Np(t) : p ∈ V and t > 0} determines
a Hausdorff and first countable topology on V , called the strong topology.

A sequence (pn) in (V , ν, τ, τ ∗) is said to be strongly convergent (convergent with

respect to the probabilistic norm) to a point p in V , and we will write pn
PN−→ p, if for

any t > 0, there is a positive integer N such that pn is in Np(t) whenever n ≥ N . Thus,

pn
PN−→ p if and only if limn→∞ dL(νpn−p, ε0) = 0. We will call p the strong limit of (pn).

A sequence (pn) in (V , ν, τ, τ ∗) is said to be strong Cauchy, if for any t > 0, there is an
integer N such that pn is in Npm(t) whenever n, m ≥ N . If every strong Cauchy sequence
is strongly convergent to a point p in V , then we say that (V , ν, τ, τ ∗) is complete in the
strong topology.

In the sequel, when we consider a PN space (V , ν, τ, τ ∗), we will assume that it is
endowed with the strong topology.

Now, we list some of the basic concepts and notations related to the theory of Riesz
spaces, and we refer to [25] for more details.
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Definition 2 A real vector space E (with elements f, g, . . . ) with a partial order “≤” is
called an ordered vector space if E is partially ordered in such a manner that the vector
space structure and the order structure are compatible, that is to say,

(i) f ≤ g implies f + h ≤ g + h for every h ∈ E,
(ii) f ≥ θ implies αf ≥ θ for every α ≥ 0 in R, where θ is the null element with respect

to the vector addition. If, in addition, E is a lattice with respect to the partial ordering,
then E is called a Riesz space or also a vector lattice. We will denote a Riesz space E

by (E,≤).

Now let E be a Riesz space. For any f ∈ E, we write f + = f ∨ θ , f − = (−f ) ∨ θ

and |f | = f ∨ (−f ). If f, g ∈ E satisfy the equality |f | ∧ |g| = θ , then they are said to
be disjoint. A subset A of a Riesz space E is said to be solid if |g| ≤ |f | and f ∈ A imply
g ∈ A. If A is a solid linear subspace of E, then A is called an ideal in E. An ideal A is
called a band if, whenever a subset of A possesses a supremum in E, this supremum is a
member of A.

The subset E+ = {f ∈ E : f ≥ θ} is called the positive cone of E. A Riesz space E

is said to be Archimedean provided that given f, g ∈ E+ such that θ ≤ nf ≤ g for every
n ∈ N, it follows that f = θ .

A sequence (fn) in E is said to be increasing if f1 ≤ f2 ≤ · · · , and decreasing if
f1 ≥ f2 ≥ · · · . This is denoted by fn ↑ or fn ↓, respectively. If fn ↑ and sup fn = f exists
in E, we write fn ↑ f . Similarly, if fn ↓ and inf fn = f exists, we write fn ↓ f . If fn ↑ f

or fn ↓ f , we say that (fn) converges monotonically to f as n → ∞.
A sequence (fn) in E is said to converge in order to f if there exists a sequence pn ↓ θ

such that |fn − f | ≤ pn holds for all n ∈ N. In this case, we will write fn
ord−→ f . Note that

monotone convergence is a particular case of convergence in order (order convergence).
A sequence (fn) in E is said to be order bounded if there exists an order interval [f, g]

such that f ≤ fn ≤ g for all n ∈ N.
A non-empty subset D of a Riesz space E is said to be upwards directed if for any

f, g ∈ D there exists an element h ∈ D such that h ≥ f ∨ g. In this case, we write D ↑. If
D ↑ and D has the supremum f0 ∈ E, then we write D ↑ f0. A downwards directed set is
defined similarly.

If E is a (real) Riesz space equipped with a norm ‖ · ‖ such that |f | ≤ |g| in E implies
‖f ‖ ≤ ‖g‖, then the norm on E is called a Riesz norm. Any Riesz space equipped with
a Riesz norm is called a normed Riesz space. We will denote a normed Riesz space E by
(E, ‖ · ‖,≤).

Finally, we recall from [21] some basic concepts related to PNR spaces.

Definition 3 [21] Let (E,≤) be a (real) Riesz space equipped with a probabilistic norm
ν, and continuous triangle functions τ and τ ∗ such that τ ≤ τ ∗. The probabilistic norm on
E is a probabilistic Riesz norm provided that |f | ≤ |g| in E implies νf ≥ νg . Any Riesz
space, equipped with a probabilistic Riesz norm is a probabilistic normed Riesz space (PNR
space, briefly). If a PNR space E is complete with respect to the strong topology, then E is
a probabilistic Banach lattice (PBL, in short). We will denote a PNR space by the quintuple
(E, ν, τ, τ ∗,≤) or just E, if the context is clear.

Example 1 Let (	, a, P ) be a probability measure space, (X,B) be a measurable space
where X is a separable Banach lattice (X, ‖ · ‖,≤), and B is the σ -algebra of all Borel
subsets of X. Let us consider the set L0(a, X) of all equivalance classes of X-valued random



Order Continuous Probabilistic Riesz Norms 299

variables f : 	 −→ X, where f −1(B) ∈ a for all B ∈ B (see [8, 21]). In this example,
given an element in L0(a, X), we will consider a refined measurement for its norm. For
instance, let us define a function ν : L0(a, X) −→ �+ by

νf (t) = P {ω ∈ 	 : ‖f (ω)‖ < t}
for any f ∈ L0(a, X) and t ∈ R. Here we can interpret the number νf (t) as the probability
that the norm of f is less than t . Then (L0(a, X), ν, τW , τM) is an E-normed space which
is a special type of PN space [23]. Here, the continuous triangle functions τW and τM are
defined by

(τW (F,G))(t) = sup {max{F(u) + G(v) − 1, 0} : u + v = t}
and

(τM(F,G))(t) = sup {min{F(u),G(v)} : u + v = t} ,

where F,G ∈ �+ and t ∈ R. If we define a partial order “≤” on L0(a, X) as

f ≤ g if and only if f 0(ω) ≤ g0(ω) a.s.,

where f 0 and g0 are arbitrarily chosen representatives of f and g, respectively, then
(L0(a, X), ν, τW , τM,≤) is a PBL.

Definition 4 [21] Let D be an upwards directed set in a PNR space E. Then D is strongly
convergent to some f0 ∈ E provided that for any t > 0 there is an ft ∈ D such that
f ∈ Nf0(t) for all f ∈ D satisfying f ≥ ft . The strong convergence of a downwards
directed set is defined similarly.

Definition 5 [21] Let D be an upwards directed set in a PNR space E. Then D is a proba-
bilistic norm Cauchy system provided that for any t > 0 there exists an element ft ∈ D such
that f1 ∈ Nf2(t) for all f1, f2 ∈ D satisfying f1, f2 ≥ ft . The definition for a downwards
directed set is analogous.

Remark 1 In classical Riesz space theory, it is known that every normed Riesz space is
Archimedean. In general, a PNR space E need not be Archimedean. Nevertheless, if the
condition that the triangle function τ ∗ of the PNR space E is Archimedean and νf 
= ε∞
for all f ∈ E is satisfied, then E is also Archimedean [21]. Also in this case, the PNR space
E becomes a topological vector (TV) space (see [4]), but the condition mentioned above is
not necessary for a PNR space to be a TV space [13]. If a PNR space is a TV space, then
we will call it a topological PNR space (TPNR space, briefly). On the other hand, since the
lattice operations on an arbitrary PNR space are uniformly continuous with respect to the
strong topology [21], the strong topology becomes locally solid on a TPNR space E, that is,
it has a base at θ consisting of solid neighborhoods. Hence E becomes a locally solid Riesz
space (topological Riesz space), which is also Hausdorff. Thus, we can say that a TPNR
space is always Archimedean. In this paper, we will particularly focus on TPNR spaces
because local solidness is a natural topological condition related to the vector ordering. For
more details about locally solid Riesz spaces, we refer to [1].

3 Main Results

In this section, we will treat the interplay between the probabilistic Riesz norm and the
order of a TPNR space. For this purpose, on a TPNR space, we introduce the probabilistic
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analogues of the classical notions of order continuous norm, σ -order continuous norm,
and Fatou norm. A common property of these analogous concepts that will be introduced
below is that, they play a role similar to that of order continuous norms of ordinary normed
Riesz spaces, but they are order-reversing mappings due to the nature of the probabilistic
distances.

Before starting, let us recall the concept of order continuous norm from classical Riesz
space theory. A normed Riesz space (E, ‖ · ‖,≤) is said to have order continuous norm
if for any subset D ↓ θ in E (that is, D is downwards directed and inf D = θ ), we have
inf{‖f ‖ : f ∈ D} = 0 (see [25]). Note also that a locally solid linear topology O on
a Riesz space E is order continuous if and only if xα ↓ θ (i.e., (xα) is decreasing and

infα xα = θ in E) implies xα
O−→ θ , where (xα) is a net in E (see [2]). Although upwards

(resp., downwards) directed sets and increasing (resp., decreasing) nets are equivalent for
all practical purposes, we will employ directed sets since they are more convenient than nets
in certain situations.

Now, in view of the foregoing concepts, we first introduce the following.

Definition 6 Let E be a TPNR space. We say that the probabilistic norm ν on E is order
continuous, provided that for any subset D ↓ θ in E, we have supf ∈D νf = ε0.

Note that if ν is an order continuous probabilistic norm, then it is an order-reversing
mapping from D ⊂ E+ into �+, and hence the set D is strongly convergent to θ .

Example 2 Let (L1, ‖ · ‖,≤) be the normed Riesz space with

‖f ‖ =
∫

X

|f (x)|dμ,

where f ∈ L1 and μ is a σ -finite measure in the point set X. Let us consider the simple
space (L1, ‖·‖, G, M), where G ∈ D+, G 
= ε0, and the probabilistic norm ν : L1 −→ �+
is defined by νθ = ε0 and

νf (x) = G

(
x

‖f ‖
)

(x > 0)

if f 
= θ , and M is the t-norm defined by M(x, y) = min{x, y}. Such a simple space is a
TV space since G ∈ D+ (see [14]), hence (L1, ‖ · ‖,G,M,≤) is a Menger TPNR space
under M and the probabilistic norm ν on L1 is order continuous.

To investigate the basic properties of a TPNR space having order continuous probabilistic
norm, let us first consider the following important lemmas.

Lemma 1 ([25]) If D is an upwards directed set in an Archimedean Riesz space (E,≤)

and D is bounded from above with G as the set of its upper bounds, then (G − D) ↓ θ .

Lemma 2 [21] If D is an upwards directed set in a PNR space E such that D is strongly
convergent to some f0 then sup D = f0.

Lemma 3 [21] Every probabilistic norm Cauchy system in a PBL is strongly convergent.
If the system is upwards directed, the strong limit is the supremum of the system. In other
words, if D ↑ and D is a probabilistic norm Cauchy system, then D is strongly convergent
to some f0, and D ↑ f0. Similarly, if D is downwards directed.
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Theorem 1 Let E be a TPNR space which has an order continuous probabilistic norm ν.
Then the strong convergence of an upwards (resp., downwards) directed set D in E to f0 is
equivalent to sup D = f0 (resp., inf D = f0).

Proof First note that E is Archimedean (see Remark 1). Now suppose that D ⊂ E is non-
empty, upwards directed and has a supremum f0. Then the set B = {f0 − f : f ∈ D} is
downwards directed and has infimum θ by Lemma 1. Since ν is order continuous, we have
supf ∈D νf0−f = ε0, which implies that supf ∈D νf0−f (t) = 1 for each t > 0. Hence, for
each t > 0, there exists an ft ∈ D such that νf0−ft (t) > 1 − t , namely, dL(νf0−ft , ε0) < t .
Now let f ∈ D be such that f ≥ ft . Hence we have νf0−f ≥ νf0−ft , which yields

dL(νf0−f , ε0) ≤ dL(νf0−ft , ε0) < t

for every f ≥ ft . This shows that, for each t > 0, there exists an ft ∈ D such that
dL(νf0−f , ε0) < t for every f ≥ ft . Hence, D is strongly convergent to f0 by Definition
4. Now let D ⊂ E be a non-empty downwards directed set with an infimum f0. Then the
set C = {f − f0 : f ∈ D} is downwards directed and has infimum θ . Since ν is order
continuous, we have

sup
f ∈D

νf −f0 = sup
f ∈D

νf0−f = ε0,

which shows that D is strongly convergent to f0.
Conversely, in any PNR space, if D ↑ (resp., D ↓) and D is strongly convergent to f0,

then sup D = f0 (resp., inf D = f0) by Lemma 2. Hence the proof is complete.

Now we will present a result regarding topological probabilistic Banach lattices (TPBL,
briefly) with order continuous probabilistic norms.

Theorem 2 Let E be a TPBL having order continuous probabilistic norm ν. Then E is
Dedekind complete, that is, every set which is bounded from above in E has a supremum.

Proof Let D be an upwards directed set in E such that D is bounded from above. Let us
denote the set of all upper bounds of D by G. Then by Lemma 1, we have

G − D = {g − f : g ∈ G, f ∈ D} ↓ θ.

Since ν is order continuous, we can write

sup
{
νg−f : g ∈ G, f ∈ D

} = ε0.

Hence, for each t > 0, there exist g ∈ G and f1 ∈ D such that

dL

(
νg−f1 , ε0

)
< t.

Since θ ≤ f2−f1 ≤ g−f1 for all f2 ∈ D satisfying f2 ≥ f1, it follows that νf2−f1 ≥ νg−f1 ,
and hence we get dL(νf2−f1 , ε0) ≤ dL(νg−f1 , ε0) < t for all f2 ≥ f1 in D. This shows that
D is a probabilistic norm Cauchy system by Definition 5. Since E is a PBL, D is strongly
convergent to some f0 ∈ E and f0 = sup D by Lemma 3. Hence the proof is complete.

In what follows, we characterize order continuous probabilistic Riesz norms.

Theorem 3 Let E be a TPNR space with a probabilistic norm ν. Then ν is an order contin-
uous probabilistic norm if and only if every ideal closed with respect to the strong topology
in E is a band.
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Proof Let the probabilistic norm ν be order continuous, and A be a closed ideal in E. To
show that A is a band, assume that D is an upwards directed subset of A+ with supremum
f0, so D ↑ f0. We will show that f0 ∈ A. Since the probabilistic norm on E is order
continuous, D ↑ f0 implies that D is strongly convergent to f0 by Theorem 1. Now let (tn)

be a number sequence such that tn ↓ 0. Since D is strongly convergent to f0, there exists
an element f1 ∈ D such that dL(νf −f0 , ε0) < t1 for every f ≥ f1. Similarly, there exists
an f ∗

2 ∈ D such that dL(νf −f0 , ε0) < t2 for every f ≥ f ∗
2 . Now choose f2 ∈ D such that

f2 ≥ f1 ∨ f ∗
2 . Then f2 ≥ f1 and all f with f ≥ f2 in D satisfy dL(νf −f0 , ε0) < t2. Hence

we obtain an increasing sequence θ ≤ f1 ≤ f2 ≤ · · · in D such that dL(νfn−f0 , ε0) −→ 0

as n −→ ∞, i.e., fn
PN−→ f0. Since fn ∈ A for all n ∈ N and A is closed with respect to the

strong topology, we have f0 ∈ A. Hence A is a band.
Conversely, assume that every ideal closed with respect to the strong topology in E

is a band. It is sufficient to prove that D ↑ f0 in E+ implies that supf ∈D νf0−f = ε0.
To this end, we will use the uniform continuity of the triangle function τ . Note that τ :
�+×�+ −→ �+ is uniformly continuous if and only if for any t > 0 there is a λ > 0 such
that dL(τ(F,G), ε0) < t whenever dL(F, ε0) < λ and dL(G, ε0) < λ, where F,G ∈ �+.
Now let t > 0. Then we can find a λ > 0 and an α ∈ (0, 1) such that

dL

(
ν(1−α)f0 , ε0

)
< λ. (1)

On the other hand, we can write

θ ≤ f0 − f = (1 − α)f0 + αf0 − f ≤ (1 − α)f0 + (αf0 − f )+

for every f ∈ D. Thus we have νf0−f ≥ τ(ν(1−α)f0 , ν(αf0−f )+) and hence we get

dL

(
νf0−f , ε0

) ≤ dL

(
τ

(
ν(1−α)f0 , ν(αf0−f )+

)
, ε0

)
. (2)

Since the set {(αf0 −f )+ : f ∈ D} is downwards directed, now it is sufficient to prove that

dL

(
ν(αf0−f ∗)+ , ε0

)
< λ (3)

for some f ∗ ∈ D, since then the uniform continuity of τ will complete the proof via
inequality (2) which will result in dL(νf0−f , ε0) < t . Observe that

{f − αf0 : f ∈ D} ↑ (1 − α)f0,

so {(f − αf0)
+ : f ∈ D} ↑ (1 − α)f0. Therefore, denoting by A the ideal generated by

the set {(f − αf0)
+ : f ∈ D}, it is clear that f0 is an element of the band B generated

by A. By hypothesis, A is a band, so B ⊂ A (since B is the smallest band containing A).
Therefore, f0 ∈ B implies that f0 ∈ A. Hence, for the given λ > 0 there exists an element
g ∈ A such that dL(νf0−g, ε0) < λ. Then g+ ∈ A and |f0 − g+| = |f +

0 − g+| ≤ |f0 − g|,
so dL(νf0−g+ , ε0) < λ. We may assume that θ ≤ g ∈ A. Similarly, g may be replaced by
g∧f0, so we may assume that θ ≤ g ≤ f0 holds. By the definition of the ideal generated by
a given set of elements, any element in the ideal is already contained in the ideal generated
by a finite number of elements of the given set. This implies in our case (since the set
{(f − αf0)

+ : f ∈ D} is upwards directed) that there exists an f ∗ ∈ D such that g is an
element of the principal ideal generated by (f ∗ − αf0)

+. Hence

g ⊥ (
f ∗ − αf0

)− = (
αf0 − f ∗)+

.

Each of the disjoint elements g and (αf0 − f ∗)+ is majorized by f0, so

g + (
αf0 − f ∗)+ ≤ f0.
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Thus dL(ν(αf0−f ∗)+ , ε0) ≤ dL(νf0−g, ε0) < λ. Now the uniform continuity of τ implies
that for every t > 0 there exists a λ > 0 and hence an

fλ = ft = f ∗ ∈ D

such that dL(νf0−f , ε0) < t for all f ≥ f ∗, which shows that

sup
f ∈D

νf0−f = ε0.

Hence the probabilistic norm ν is order continuous, which completes the proof.

In what follows, we introduce the probabilistic analogue of the σ -order continuous norm
of an ordinary normed Riesz space, namely, the concept of σ -order continuous probabilistic
norm on a TPNR space. Before this, let us recall that a normed Riesz space (E, ‖ · ‖,≤) is
said to have σ -order continuous norm if, for any sequence fn ↓ θ in E, we have ‖fn‖ ↓ 0
(see [25]). Based on this, we introduce the following.

Definition 7 Let E be a TPNR space. The probabilistic norm ν on E is σ -order continuous,
provided that for any sequence fn ↓ θ in E, we have that (νfn) is increasing and has
supremum ε0, that is, νfn ↑ ε0.

Note that such a probabilistic norm preserves order convergence. Observe that if the
probabilistic norm ν on E is σ -order continuous, then fn ↑ f0 (or fn ↓ f0) implies that

νfn−f0 ↑ ε0, which yields dL(νfn−f0 , ε0) −→ 0 as n −→ ∞, namely, fn
PN−→ f0. Con-

versely, in any PNR space, if fn ↑ (or fn ↓) and fn
PN−→ f0, then fn ↑ f0 (or fn ↓ f0)

([21]). Hence order convergence and strong convergence for monotone sequences in a
TPNR space E are equivalent if the probabilistic norm ν on E is σ -order continuous.

Theorem 4 Let E be a TPBL with a probabilistic norm ν. Then the following are
equivalent:

(i) The probabilistic norm ν is order continuous.
(ii) The probabilistic norm ν is σ -order continuous and E is Dedekind σ -complete.

(iii) Every monotone order bounded sequence in E is strongly convergent.

Proof (i)=⇒(ii). This part follows from Definitions 6, 7 and Theorem 2.
(ii)=⇒(iii). Let (fn) be an increasing sequence in E, which is bounded from above.

Since E is Dedekind σ -complete, the supremum of (fn) exists, say f0, thus fn ↑ f0. Hence
(f0 − fn) ↓ θ , and so νf0−fn ↑ ε0, since E has σ -order continuous probabilistic norm.
Hence (fn) is strongly convergent to f0.

(iii)=⇒(i). Suppose on the contrary that ν is not order continuous, that is, there exists a
downwards directed set D ⊂ E+ such that D ↓ θ and supf ∈D νf 
= ε0. This means that
there exists a t > 0 such that, for every f ∈ D there exists an f0 ≤ f with dL(νf0 , ε0) ≥ t .
Namely, D is not strongly convergent to θ . Since E is a PBL, it follows that D cannot be
a probabilistic norm Cauchy system, by Lemma 3. Thus there exists a decreasing sequence
(fn) in D, which fails to be strongly convergent. This contradicts (iii). Hence the proof is
complete.

Finally, we introduce the notion of probabilistic Fatou norm which plays a role similar
to the order continuous probabilistic norm. But before this, we recall two concepts, that is,
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the Fatou norm on a Riesz space and the probabilistic radius of a set in a PN space. We will
define the probabilistic Fatou norm via the notion of probabilistic radius.

A Fatou norm on a Riesz space (E,≤) is a Riesz norm such that whenever D ⊂ E+ is
non-empty, upwards directed, and has a supremum in E, then ‖ sup D‖ = supf ∈D ‖f ‖ (see
[9]).

Given a non-empty set D in a PN space (V , ν, τ, τ∗), the probabilistic radius RD of D

is defined by

RD(x) =
{

l−φD(x) if x ∈ [0, +∞),

1 if x = +∞,

where l−φD(x) denotes the left-hand limit of the function φ at the point x, and φD(x) =
inf{νf (x) : f ∈ D} (see [12]).

Definition 8 Let E be a TPNR space and D ⊂ E+ be a non-empty, upwards directed set
with a supremum in E. Then the probabilistic norm ν on E is a probabilistic Fatou norm,
provided that νsup D = RD .

Theorem 5 Let E be a TPNR space with an order continuous probabilistic norm ν. Then ν

is a probabilistic Fatou norm.

Proof Let D ⊂ E+ be a non-empty, upwards directed set with sup D = f0 in E. Since ν

is a probabilistic Riesz norm, we have νf ≥ νf0 for all f ∈ D. Hence we get RD ≥ νf0 .
Now let us show that νf0 ≥ RD . Since ν is order continuous, we have supf ∈D νf0−f = ε0.
Hence the inequality νf0 ≥ τ(νf0−f , νf ) for each f ∈ D implies that

νf0 ≥ sup
f ∈D

τ
(
νf0−f , νf

) ≥ RD,

which completes the proof.

The converse implication in Theorem 5 does not hold in general. To see this, let us
consider the following example.

Example 3 Let (E, ‖ · ‖,≤) be the normed Riesz space of the real continuous functions f

defined on [0, 1], where ‖ · ‖ is the supremum norm and “≤” is the pointwise ordering. Let
us consider the quintuple (E, ν, τ,M,≤) where τ(εc, εd) ≤ εc+d for every c, d > 0,M is
the maximal triangle function defined by

[M(F, G)] (x) = min{F(x),G(x)} (F,G ∈ �+, x ∈ R)

and ν is the mapping defined by

ν : E −→ �+

ν(f ) = νf = ε ‖f ‖
1+‖f ‖

.

Then the quadruple (E, ν, τ,M) is a PN space which is also a TV space (see [13]), although
the triangle function M is not Archimedean. Hence the quintuple (E, ν, τ,M, ≤) is a TPNR
space. Now let D ⊂ E+ be a non-empty, upwards directed set with supremum f0 in E.
Then we have (see [1]) ‖f0‖ = supf ∈D ‖f ‖, and hence we can write

RD = l− inf
f ∈D

νf = l− inf ε ‖f ‖
1+‖f ‖

= ε ‖f0‖
1+‖f0‖

= νsup D,

which shows that ν is a probabilistic Fatou norm. Now let us consider the sequence (fn) ⊂
E defined by fn(x) = xn for all x ∈ [0, 1] and n ∈ N. Then we have fn ↓ θ as n −→ ∞,
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but νfn = ε 1
2

for every n ∈ N. Thus ν is not σ -order continuous, and therefore, not order

continuous.

4 Conclusion

This work is a brief introduction to the probabilistic analogues of order continuous norms
and Fatou norms. Thus, many of the classical results of topological Riesz spaces can
be investigated in this probabilistic setting to constitute a probabilistic lattice theory for
probabilistic normed spaces.
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