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Abstract A ring R is called left G-morphic if l(a) is a principal left ideal for each a ∈ R. A
ring R is called left G-regular if R is left G-morphic and left P-injective. Several properties
of the two classes of rings are investigated, conditions under which left G-regular rings are
regular rings as well as semisimple artinian rings are given, respectively.
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1 Introduction

Throughout this paper, R denotes an associative ring with identity and all modules
considered are unitary, m, n are positive integers unless otherwise specified. We call a ring
regular if it is von Neumann regular. For any module M, M∗ denotes HomR(M,R), and
M+ denotes HomZ(M,Q/Z), where Q is the set of rational numbers, and Z is the set of
integers. For an element a of the ring R, the right and left annihilators of a are denoted by
l(a) and r(a), respectively.

First, we recall some concepts.

(1) R is called left coherent if every finitely generated left ideal ofR is finitely presented.
(2) R is called left n-coherent [9] if every n-generated left ideal ofR is finitely presented.

Clearly, R is left 1-coherent if and only if l(a) is finite generated for each a ∈ R. Left
1-coherent rings are also called left (1, 1)-coherent in [11].

(3) An element a in R is called left morphic if l(a) ∼= R/Ra; the ring R is called a left
morphic ring if every element in R is left morphic [6].
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(4) An element a in R is called left generalized morphic if l(a) ∼= R/Rb for some
b ∈ R; the ring R is called a left generalized morphic ring if every element in R is
left generalized morphic [12]. By [12, Corollary 2.3], a ring R is a left generalized
morphic ring if and only if l(a) is a principal left ideal for each a ∈ R.

(5) A ring R is called left PP [5] if every principal left ideal of R is projective. Clearly,
left PP rings are left generalized morphic, but left generalized morphic rings need not
be left PP. For example, the ring R = Z4 is a commutative generalized morphic ring,
but it is not PP (see Example 2).

(6) A left R-module M is called P-injective [7] if every R-homomorphism from a prin-
cipal left ideal of R to M extends to a homomorphism of R to M; the ring R is
called left P-injective if RR is P-injective. The P -injective dimension P -id(RM) of a
module RM is defined to be the smallest integer n ≥ 0 such that
Extn+1

R (R/Ra, M) = 0 for all a ∈ R. If no such n exists, set P -id(RM) = ∞. l.P -i
dim(R) is defined as sup{P -id(M) | M ∈ R-Mod} [12].

(7) A right R-module M is called n-flat [3] if the canonical map MR ⊗ I → M is
monic for every n-generated left ideal I of R. 1-flat modules are also called P-flat
in some literatures such as [12]. It is easy to see that MR is P-flat if and only if
TorR1 (M,R/Ra) = 0 for all a ∈ R. The P -flat dimension P -f d(MR) of a module
MR is defined to be the smallest integer n ≥ 0 such that TorRn+1(M, R/Ra) = 0 for
all a ∈ R. If no such n exists, set P -f d(RM)=∞. r.P -f dim(R) is defined to be
sup{P -f d(M) | M ∈ Mod-R} [12].

(8) A left R-module M is called (m, n)-presented [11, 13] if there exists an exact
sequence of left R-modules 0 → K → Rm → M → 0, where K is n-generated.

(9) A left R-module M is called (m, n)-injective [2] if every R-homomorphism from an
n-generated submodule of Rm to M extends to the one from Rm to M . Clearly, a
module is P-injective if and only if it is (1, 1)-injective.

(10) A left R-module M is called (m, n)-flat [11, 13] if the canonical map I ⊗R M →
Rm ⊗R M is monic for every n-generated submodule I of the right R-module Rm.
Clearly, a module is P-flat if and only if it is (1, 1)-flat.

(11) If U is a right R-module and U ′ is a submodule of U , then U ′ is called an (m, n)-
pure submodule of U if the canonical map U ′ ⊗R V → U ⊗R V is monic for every
(m, n)-presented left R-module V . In this case, the exact sequence 0 → U ′ → U →
U/U ′ → 0 is called (m, n)-pure [13].

In this paper, we shall further investigate left generalized morphic rings; several of
properties of this class of rings will be given. Especially, left generalized morphic left
P-injective rings will be studied; relations between this class of rings and regular rings,
strongly regular rings, as well as semisimple artinian rings will be given.

Using the standard techniques, one can prove the following propositions.

Proposition 1 [13, Theorem 1.5] Let U ′ be a submodule of the right R-module U , then the
following statements are equivalent:

(1) U ′ is (m, n)-pure in U .
(2) For every (n, m)-presented left R-module V , the canonical map HomR(V,U) →

HomR(V,U/U ′) is epic.
(3) (U ′)m ∩ UnC = (U ′)nC for all C ∈ Rn×m.

Proposition 2 [13, Theorem 2.4] Suppose that AR ≤ BR and BR is (m, n)-injective, then
A is (m, n)-injective if and only if A is (n, m)-pure in B.
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Proposition 3 [13, Theorem 3.6] Let U ′
R ≤ UR . Then,

(1) If U/U ′ is (m, n)-flat, then U ′ is (m, n)-pure in U .
(2) If U ′ is (m, n)-pure in U and U is (m, n)-flat, then also U/U ′ is (m, n)-flat.

Proposition 4 Let M be a left R-module. Then, the following statements are equivalent:

(1) M is P-injective.
(2) Ext1R(R/Ra,M) = 0 for all a ∈ R.
(3) Every exact sequence of left R-modules 0 → M → M ′ → M ′′ → 0 is (1, 1)-pure.
(4) There exists a (1, 1)-pure exact sequence of left R-modules 0 → M → M ′ → M ′′ →

0, where M ′ is P-injective.
(5) rM l(a) = aM for all a ∈ R.

Proof (1) ⇒ (3) by [13, Theorem 2.2]. (3) ⇒ (4) is clear. (4) ⇒ (1) by Proposition 2.
The other implications are easy.

2 G-Morphic Rings

In order to facilitate, we call a ringR left G-morphic if it is left generalized morphic. Clearly,
left G-morphic rings are left 1-coherent. However, the converse is false. For example, Zhu
and Ding give a left and right artinian ring which is not right G-morphic [12, Example 2.7].
In fact, even if R is a commutative artinian local ring, it need not be G-morphic.

Example 1 Let F be a field, and let

R =
⎧
⎨

⎩

⎡

⎣
a b c

a 0
a

⎤

⎦

∣
∣
∣
∣
∣
∣

a, b, c ∈ F

⎫
⎬

⎭
.

Then, R is a commutative artinian local ring, but R is not G-morphic.

Proof It is obvious that R is a commutative local ring with unit element

1R =
⎡

⎣
1F 0 0

1F 0
1F

⎤

⎦ ,

the set of zero divisors of R is

D =
⎧
⎨

⎩

⎡

⎣
0 b c

0 0
0

⎤

⎦

∣
∣
∣
∣
∣
∣

b, c ∈ F

⎫
⎬

⎭
, D2 = 0,

D is the unique maximal ideal of R. Noting that

RD = R

⎡

⎣
0 1F 0
0 0

0

⎤

⎦ ⊕ R

⎡

⎣
0 0 1F

0 0
0

⎤

⎦
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and thatR

⎡

⎣
0 1F 0
0 0

0

⎤

⎦ andR

⎡

⎣
0 0 1F

0 0
0

⎤

⎦ are simpleR-modules, we have thatR is artinian.

We assert that

l

⎡

⎣
0 1F 1F

0 0
0

⎤

⎦ = D �= Rd for all d ∈ D.

Otherwise, if D = Rd for some d =
⎡

⎣
0 b c

0 0
0

⎤

⎦, let

⎡

⎣
0 1F 1F

0 0
0

⎤

⎦ =
⎡

⎣
a1 b1 c1

a1 0
a1

⎤

⎦

⎡

⎣
0 b c

0 0
0

⎤

⎦ ,

then b = c. Observing that ⎡

⎣
0 0 1F

0 0
0

⎤

⎦ ∈ D = Rd,

we have 0 = 1F , a contradiction. Therefore, R is not G-morphic.

Theorem 1 Let R be a left G-morphic ring, and let M be a (1, 1)-presented left R-module.
Then, f d(M) = pd(M).

Proof Clearly, f d(M) ≤ pd(M). Conversely, suppose that f d(M) = n < ∞. Since M

is (1, 1)-presented, there exists an exact sequence 0 → Ra1 → R → M → 0. But R

is left G-morphic, we have an exact sequence 0 → Ra2 → R → Ra1 → 0. Continue
in this way, we obtain an exact sequence 0 → Ran → R → · · · → R → M → 0.
Since f d(M) = n, Ran is flat. Note that Ran is finite presented, it is projective. Therefore,
pd(M) ≤ n.

Theorem 2 Let R be a left G-morphic ring, a ∈ R, n ≥ 0. Then, pd(R/Ra) ≤ n if and
only if Extn+1

R (R/Ra, R/Rb) = 0 for all b ∈ R.

Proof “⇒” It is clear.
“⇐” We use induction on n. If n = 0, by the exact sequence

0 → Ra → R → R/Ra → 0 (1)

we have an exact sequence HomR(R,Ra) → HomR(Ra,Ra) → Ext1R(R/Ra, Ra). Since
R is left G-morphic, Ra is (1, 1)-presented, and then Ext1R(R/Ra, Ra) = 0 by hypothesis.
Hence, the homomorphism HomR(R,Ra) → HomR(Ra, Ra) is epic. Thus, the exact
sequence (1) is split, this follows that R/Ra is projective, that is, pd(R/Ra) = 0. If
n ≥ 1, for every (1, 1)-presented left R-module B, we have an exact sequence 0 =
ExtnR(R,B) → ExtnR(Ra, B) → Extn+1

R (R/Ra, B) → Extn+1
R (R,B) = 0, this follows

that ExtnR(Ra, B) ∼= Extn+1
R (R/Ra, B) = 0. Since R is left G-morphic, Ra is (1, 1)-

presented, hence pd(Ra) ≤ n − 1 by induction hypothesis, and whence pd(R/Ra) ≤
n.

Corollary 1 Let R be a left G-morphic ring, a ∈ R, n ≥ 0. If pd(R/Ra) = n, then
ExtnR(R/Ra, R) �= 0.
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Proof Since pd(R/Ra) = n, by Theorem 2, there exists b ∈ R such that ExtnR(R/Ra,

R/Rb) �= 0. But Rb is (1, 1)-presented because R is left G-morphic, Extn+1
R (R/Ra, Rb)

= 0 again by Theorem 2. Then, we get an exact sequence

ExtnR(R/Ra,R) → ExtnR(R/Ra,R/Rb) → 0,

it shows that ExtnR(R/Ra,R) �= 0.

Lemma 1 Every (m, n)-presented (n,m)-flat left R-module is projective.

Proof Let A be an (m, n)-presented (n,m)-flat left R-module. Since A is (m, n)-presen-
ted, there exists an exact sequence of left R-modules 0 → K → Rm → A → 0, where
K is n-generated. But A is (n,m)-flat, by Proposition 3(1), K is (n,m)-pure in Rm. So by
Proposition 1, the canonical map HomR(A,Rm) → HomR(A, A) is epic, which implies
that A is isomorphic to a direct summand of Rm, and hence A is projective.

Corollary 2 [8, Corollary 3.58] Every finitely presented flat module is projective.

Theorem 3 The following statements are equivalent for a ring R.

(1) R is left PP.
(2) R is left G-morphic and every principal left ideal of R is P-flat.

Proof (1) ⇒ (2) is trivial.
(2) ⇒ (1). Assume (2). Then, for each a ∈ R, Ra is (1, 1)-presented and P-flat, so Ra

is projective by Lemma 1.

Corollary 3 If R is a domain, then R is left PP if and only if every principal left ideal of R
is P-flat.

Proposition 5 Let R be a left G-morphic ring. If N1 is a P-injective submodule of a P-
injective left R-module N , then N/N1 is P-injective.

Proof Let a ∈ A. Since R is left G-morphic, Ra ∼= R/Rb for some b ∈ R,
and so Ext1R(Ra, N1) = 0. Noting that Ext1R(Ra, N1) ∼= Ext2R(R/Ra,N1), we have
Ext2R(R/Ra, N1) = 0. Thus, from the exact sequence

0 = Ext1R(R/Ra, N) → Ext1R(R/Ra,N/N1) → Ext2R(R/Ra, N1) = 0,

we get that Ext1R(R/Ra, N/N1) = 0. Hence, N/N1 is P-injective.

3 G-Regular Rings

In this section, we study left G-morphic left P-injective rings. Let M be a right R-module.
The group M∗ = HomR(M,R) becomes a left R-module which we call the dual of M . If
we do it again to get M∗∗ = HomR(M∗, R), which is a right R-module. There is a natural
homomorphism of M to M∗∗, M

σ→ M∗∗ caused by considering the elements of M as
homomorphisms of M∗ into R. Following the terminology of Bass [1], M is said to be
torsionless if σ is a monomorphism, reflexive if σ is an isomorphism.
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Theorem 4 Let R be a left G-morphic ring. Then, the following statements are equivalent:

(1) R is left P-injective.
(2) Ext1R(R/Ra,R) = 0 for all a ∈ R.
(3) Every injective right R-module is P-flat.
(4) Every P-flat left R-module is P-injective.
(5) Every projective left R-module is P-injective.
(6) Every right R-module is a submodule of a P-flat right R-module.
(7) The right R-module R/aR is reflexive for each a ∈ R.
(8) The right R-module R/aR is torsionless for each a ∈ R.

Proof (1) ⇒ (2); (4) ⇒ (5) ⇒ (1); (3) ⇒ (6); and (7) ⇒ (8) are obvious.
(2) ⇒ (3). Let E be an injective right R-module. Then, for any a ∈ R, since R is left

G-morphic, R/Ra has a projective resolution each of whose terms is R, by a remark of
[8, Theorem 9.51], we have

TorR1 (E,R/Ra) ∼= TorR1 (HomR(R,E), R/Ra) ∼= HomR(Ext1R(R/Ra,R), E).

By (2), Ext1R(R/Ra,R) = 0, so TorR1 (E,R/Ra) = 0, i.e., E is P-flat.
(3) ⇒ (1). Let CR be an injective cogenerator and a ∈ R. Since R is left G-morphic, by

a remark of [8, Theorem 9.51] again, we have

TorR1 (C,R/Ra) ∼= TorR1 (HomR(R,C), R/Ra) ∼= HomR(Ext1R(R/Ra, R), C).

By (3), TorR1 (C,R/Ra) = 0. Thus, Ext1R(R/Ra, R) = 0, and then R is left P-injective.
(1) ⇒ (4). Let U be a P-flat left R-module. Take an exact sequence of left R-modules

0 → K → F → U → 0, where F is a free module. Since RR is P-injective, F is also
P-injective. But U is P-flat, by Proposition 3(1), K is (1, 1)-pure in F . And hence K is also
P-injective by Proposition 2. Since R is left G-morphic, by Proposition 5, U is P-injective.

(6) ⇒ (3). Let E be an injective right R-module. By (6), we have an exact sequence of
right R-modules 0 → E → U → U/E → 0 with U P-flat. Hence, U ∼= E ⊕ U/E, and
then E is P-flat.

(1) ⇒ (7). Since R is left G-morphic and left P-injective, by [12, Lemma 3.6],

ExtnR(R/Ra, R) = 0 for all a ∈ R and all positive integers n. Let R
d1→ R

d0→ R/aR → 0
be exact, by [4, Lemma 2.2], we have an exact sequence

0 → Ext1R(N,R) → R/aR → (R/aR)∗∗ → Ext2R(N,R) → 0,

where N = R∗/im(d∗
1 ) is a (1, 1)-presented left R-module. Thus

Ext1R(N,R) = Ext2R(N,R) = 0,

and then R/Ra → (R/Ra)∗∗ is an isomorphism, as required.
(8) ⇒ (1). To prove (1), we need only to prove that if a, b ∈ R with l(a) ⊆ l(b) then

b = ac for some c ∈ R by [7, Lemma 1.1]. Indeed, if b /∈ aR, then 0 �= b + aR ∈ R/aR.
Since R/aR is torsionless, it embeds in a direct product of R and so there exists a right R-
homomorphism g : R/aR → R such that g(b + aR) �= 0. Then, g(1 + aR) /∈ l(b) but
g(1 + aR) ∈ l(a), a contradiction.

Recall that a ring R is regular if and only if R is left PP and left P-injective.

Definition 1 A ring R is called left G-regular, if R is left G-morphic and left P-injective.
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Clearly, regular rings are left G-regular, but the inverse implication is not true.

Example 2 The ring R = Z4 = {0, 1, 2, 3} is a commutative G-regular ring, but it is not
regular.

Proof It is obvious that R is a commutative G-regular ring. Since l(2) = {0, 2} contains no
nonzero idempotent elements, it is not a direct summand of RR, so that R2 is not projective,
and thus R is not PP. Therefore, R is not regular.

Example 3

(1) Let R be the ring of 2 × 2 upper triangular matrices over the field Z2. Then, R is left
G-morphic, but it is not left G-regular.

(2) The ring Z of integers is G-morphic but not G-regular.

Proof (1). Let eij be the 2 × 2 matrices over the field Z2 having a lone 1 as its (i, j)-entry
and all other entries 0, i, j = 1, 2. Then, by a routine computation, we get l(0) = R, l(e11+
e22) = l(e11 + e12 + e22) = 0, l(e11) = Re22, l(e12) = Re22, l(e22) = Re11, l(e11 + e12) =
Re22, l(e12 + e22) = R(e11 + e12); hence, R is left G-morphic. But since

rl(e12) =
[
Z2 Z2
0 0

]

�=
[
0 Z2
0 0

]

= e12R,

R is not left P-injective by Proposition 4, and so R is not left G-regular.
(2). It is obvious.

Theorem 5 For a ring R, the following statements are equivalent:

(1) R is left G-regular.
(2) For any a ∈ R, there exists b ∈ R such that l(a) = Rb and r(b) = aR.

Proof (1)⇒ (2). Let a ∈ R. Since R is left G-morphic, by [12, Corollary 2.3], there exists
b ∈ R such that l(a) = Rb, which implies that rl(a) = r(b). But R is left P-injective, by
Proposition 4, we have rl(a) = aR, and hence r(b) = aR.

(2)⇒ (1). Assume (2), then it is clear that R is left G-morphic. For any a ∈ R, by
hypothesis, there exists b ∈ R such that l(a) = Rb and r(b) = aR, so rl(a) = r(b) = aR,
and thus R is left P-injective by Proposition 4. Hence, R is left G-regular.

Theorem 6 For a left G-regular ring R, the following statements are equivalent:

(1) R is regular.
(2) M∗ is P-flat for every left R-module M .
(3) R is left PP.
(4) R is right PP.
(5) Every principal right ideal of R is P-flat.
(6) Every principal left ideal of R is P-flat.

Proof (1)⇒ (2) through (6) are clear. (6)⇒ (3) by Theorem 3.
(2)⇒ (1). For any a ∈ R, since R is left G-regular, by Theorem 4, R/aR ∼= (R/aR)∗∗ =

((R/aR)∗)∗. But ((R/aR)∗)∗ is P-flat by hypothesis, soR/aR is P-flat and hence projective
by Lemma 1. It follows that aR is a direct summand of RR . Consequently, R is regular.
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(3)⇒ (1). By [10, Theorem 3], left P-injective left PP ring is regular.
(4)⇒ (3). Since R is right PP, every principal right ideal of R is projective and hence flat.

By [5, Theorem 2.2], every principal left ideal of R is flat. Note that R is left G-morphic ,
by Theorem 3, R is left PP.

(5)⇒ (1). For any a ∈ R, since R is left P-injective, we have rl(a) = aR. Since R is left
G-morphic, l(a) = Rb for some b ∈ R. Thus r(b) = aR, and hence R/aR = R/r(b) ∼= bR

is P-flat by hypothesis. By Lemma 1, R/aR is projective, so that aR is a direct summand
of RR and (1) follows.

Theorem 7 The following statements are equivalent for a ring R:

(1) R is a strongly regular ring.
(2) R is a reduced left G-regular ring.

Proof (1) ⇒ (2). It is obvious.
(2) ⇒ (1). Let a ∈ R. Since R is reduced, we have l(a2) = l(a). But R is left P-injective,

by Proposition 4, we have a2R = aR, and so a = a2b for some b ∈ R, as required.

Lemma 2 If R is a left G-regular ring with ACC on principal left ideals, then R is left
perfect.

Proof Suppose that a1R ⊇ a2R ⊇ · · · . Then, l(a1) ⊆ l(a2) ⊆ · · · . Since R is a left G-
regular ring with ACC on principal left ideals, by Theorem 5, there exists a positive integer
n such that l(an+1) = l(an+2) = · · · . Noting that R is left P-injective, by [7, Lemma 1.1],
we have an+1R = an+2R = · · · . Therefore, R is left perfect.

Lemma 3 If R is a left perfect semiprime ring, then any nonzero right ideal of R is not nil.

Proof Let I be any nonzero right ideal of R. We claim that there exists 0 �= b ∈ I such
that bR is simple. If not, let 0 �= a1 ∈ I , then there is a2 ∈ R such that a1a2 �= 0 and
a1R �= a1a2R. Since 0 �= a1a2 ∈ I , there exists a3 ∈ R such that a1a2a3 �= 0 and
a1a2R �= a1a2a3R. Continuing in this way, we get a strictly descending chain of right ideals
of R

a1R � a1a2R � a1a2a3R � · · · ,

a contradiction. This proves the claim.
Since R is semiprime, there exists c ∈ R such that bcb �= 0, and so bR = bcbR because

bR is simple. Since cb �= 0, c /∈ l(b) = l(bcb); hence, (cb)2 �= 0. Continuing this process,
we have that (cb)n �= 0 for every positive integer n. Therefore, I is not nil.

Theorem 8 The following statements are equivalent for a ring R:

(1) R is a semisimple artinian ring.
(2) R is a left G-regular semiprime ring with ACC on principal left ideals.

Proof (1) ⇒ (2). It is clear.
(2) ⇒ (1). Since R is a left G-regular ring with ACC on principal left ideals, by Lemma

2, R is left perfect. This follows that R is semilocal and J (R) is nil. But R is semiprime, by
Lemma 3, J (R) = 0. Therefore, R is semisimple artinian.
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Proposition 6 Let R be a left and right G-morphic ring. Then, the following statements are
equivalent:

(1) R is left P-injective.
(2) Every P-injective right R-module is P-flat.
(3) Every injective right R-module is P-flat.

Proof (2) ⇒ (3) is obvious. (3) ⇒ (1) by Theorem 4.
(1) ⇒ (2). Let M be a P-injective right R-module. Since R is right G-morphic and Q/Z

is an injective Z-module, by a remark of [8, Theorem 9.51], we have

TorR1 (HomZ(M,Q/Z), R/aR) ∼= HomZ

(
Ext1R(R/aR, M),Q/Z

)
.

Since M is P-injective, Ext1R(R/aR,M) = 0, so TorR1 (HomZ(M,Q/Z), R/aR) = 0, and
hence M+ = HomZ(M,Q/Z) is a P-flat left R-module. But R is left G-morphic and left
P-injective, by Theorem 4, M+ is P-injective. Thus, for any b ∈ R, we have

0 = Ext1R(R/Rb,HomZ(M,Q/Z)) ∼= HomZ

(
TorR1 (M,R/Rb),Q/Z

)
.

Hence, TorR1 (M,R/Rb) = 0 because Q/Z is a cogenerator, i.e., M is P-flat.

Proposition 7 Let 0 → A → B → C → 0 be an exact sequence of left R-modules. Then,

(1) If A, C are P-flat, then B is also P-flat.
(2) If R is right G-morphic and B, C are P-flat, then A is also P-flat.
(3) If R is left G-regular and A, B are P-flat, then C is also P-flat.

Proof (1). It is easy to prove by using the exact sequence

TorR1 (R/aR,A) → TorR1 (R/aR,B) → TorR1 (R/aR,C),

where a ∈ R.
(2). For any a ∈ R, the exact sequence

0 = TorR2 (R,C) → TorR2 (R/aR,C) → TorR1 (aR,C) → TorR1 (R,C) = 0

implies that TorR2 (R/aR,C) ∼= TorR1 (aR,C). Since R is right G-morphic, aR is (1, 1)-
presented. Note that C is P-flat, we have TorR1 (aR, C) = 0, and then TorR2 (R/aR, C) = 0.
This shows that TorR1 (R/aR,A) = 0 from the exact sequence 0 = TorR2 (R/aR,C) →
TorR1 (R/aR,A) → TorR1 (R/aR,B) = 0. Therefore, A is P-flat.

(3). Since R is left G-regular and A is a P-flat left R-module, by Theorem 4, A is P-
injective, and so A is a (1, 1)-pure submodule of B by Proposition 4. But B is P-flat, by
Proposition 3(2), C is P-flat.

Proposition 8 Let R be a right G-regular left G-morphic ring, and let M be a right R-
module. Then, P -f d(MR) = 0 or ∞.

Proof If P -f d(MR) ≤ 1, since R is left G-morphic, by [12, Lemma 3.8], there exists an
exact sequence of right R-modules 0 → F1 → F0 → M → 0, where F1, F0 are P-flat.
Since R is right G-regular, by Proposition 7(3), M is P-flat, i.e., P -f d(MR) = 0. Assume
that 1 < P -f d(MR) = n, then by [12, Lemma 3.8], there exists a P-flat resolution of

M 0 → Fn
dn→ Fn−1

dn−1→ · · · → F0
d0→ M → 0. The exact sequence 0 → Fn

dn→
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Fn−1
dn−1→ im(dn−1) → 0 implies that im(dn−1) is P-flat by Proposition 7(3). Note that

the sequence 0 → im(dn−1) → Fn−2
dn−2→ · · · → F0

d0→ M → 0 is exact, we have that
P -f d(MR) ≤ n − 1 by [12, Lemma 3.8] because R is left G-morphic, a contradiction. So
P -f d(MR) = 0 or ∞.

Clearly, R is a regular ring if and only if r.P -f dim(R) = 0. By [12, Lemma 3.8], for
a left G-morphic ring R, r.P -f dim(R) ≤ n if and only if TorRn+1(M,R/Ra) = 0 for all
right R-modules M and all a ∈ R.

Corollary 4 Let R be a right G-regular left G-morphic ring. Then, r.P -f dim(R) = 0 or
∞.
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