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Abstract What can one say about maximal subgroups, or, more generally, the subgroup
structure of simple, finite, or algebraic groups? In this survey, we will discuss how group
representation theory helps us study this classical problem. These results have been applied
to various problems, particularly in group theory, number theory, and algebraic geometry.
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1 Introduction

1.1 Why the Subgroup Structure?

Why would one be interested in the subgroup structure of finite and algebraic groups? To
facilitate the discussion, let us begin with two examples, an elementary one and another one
more technical.

Example 1 Can we solve the equation f (x) = x5 − 6x + 3 = 0 by radicals?
This kind of questions was of great interest to mathematicians, at least until the

nineteenth century. Of course, nowadays, everybody knows that the question can be
answered by Galois theory, and the answer is “yes” if and only if the Galois group
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G := Gal(f ) := Gal(Q(f )/Q) is solvable. So, one needs to find what G is. An
elementary inspection reveals that

(i) f has three real roots α1, α2, and α3 and two non-real (complex-conjugate) roots α4
and α5, and furthermore,

(ii) f is irreducible over Q by Eisenstein’s criterion.

Now, (ii) implies that G is a transitive subgroup of the symmetric group
S5 = Sym({α1, . . . , α5}). On the one hand, by (i), the complex conjugation induces the
transposition (4, 5) as an element of G. At this point, the knowledge on subgroups of S5
allows us to conclude that G = S5, and so, it is not solvable. Hence, the answer to the stated
question is “no”!

Example 2 Let V = Cd and let G < GL(V ) be a finite subgroup. Let us consider the
quotient variety Y = V/G. Formally, one would consider homogeneous polynomials
f1, . . . , fm that generate the ring of all G-invariant polynomials in variables x1, . . . , xd :

C[x1, . . . , xd ]G = C[f1, . . . , fm].
Then V/G is defined to be ϕ(V ), where

ϕ : V → Cm, ϕ(x) = (f1(x), . . . , fm(x)).

UnlessG is generated by complex reflections, the variety V/G is singular. So, let us consider
a resolution f : X → Y (i.e., X is a non-singular variety, and the morphism f is birational).
Now one can relate the first Chern classes of X and Y via

KX = f ∗KY +
∑

i

aiEi,

where ai ∈ Q and the sum runs over irreducible exceptional divisors Ei . In this case, Y is
called canonical if ai ≥ 0 for all i, and terminal if ai > 0 for all i. Furthermore, the
resolution f is called crepant if ai = 0 for all i, cf. [52, 53].

Question 1 When does V/G admit a crepant resolution? When is V/G not terminal?

A partial answer to this question is given in [25], which relies on the subgroup structure
of GL(V ).

We have seen that the subgroup structure of certain finite and algebraic groups plays a
crucial role in Examples 1 and 2. These and other applications show that it is important to
understand the subgroup structure of G, where G is a (simple) group, finite or algebraic.
This subject has a rich history, dating back at least to Galois’ 1832 letter to Chevalier [17]. It
has become much more active since the classification of finite simple groupswas announced
to be completed in 1982 (indeed, by the Jordan–Hölder theorem, finite simple groups are
building blocks of any finite group).

1.2 Aschbacher’s Theorem

To understand the subgroup structure of a given group G, one could try to employ an
“inductive” approach and go along a descending chain

G = G0
max
> G1

max
> G2

max
> . . . ,
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where each Gi is a maximal subgroup of Gi−1. Certainly, if G is not finite, then such
a chain may not terminate. On the other hand, the importance of maximal subgroups of
G can also be seen from the viewpoint of the primitive permutation group theory: if G

acts transitively on a set Ω , then the action is primitive if and only if the point stabilizer
Gα for α ∈ Ω is maximal in G. If G is an algebraic group, then, in many of the sit-
uations under consideration, one may restrict oneself to Zariski closed subgroups and so
the maximality of Gi is interpreted as maximal among the Zariski closed subgroups of
Gi−1.

Thus, one would like to focus on understanding maximal subgroups of finite or alge-
braic groups. In fact, in most problems involving a finite primitive permutation group G,
the Aschbacher–O’Nan–Scott theorem [2] allows one to concentrate on the case where G is
almost quasi-simple, i.e., S �G/Z(G) ≤ Aut(S) for a non-abelian simple group S. Ignor-
ing technicalities, in this survey, we will refer to any almost quasi-simple group as a simple
group. The results of Liebeck–Praeger–Saxl [42] and Liebeck–Seitz [43] then allow one to
assume furthermore that G is a finite classical group. By a classical group Cl(V ) over a
field F we usually mean

– the group GL(V ) of all invertible linear transformations of a vector space V = Fd over
F,

– the subgroup Sp(V ), respectively O(V ), of all f ∈ GL(V ) that preserve a non-
degenerate alternating, respectively quadratic, form on V ,

– the subgroup U(V ) of all f ∈ GL(V ) that preserve a non-degenerate Hermitian form
on V , as well as

– the commutator subgroup [G, G], where G is one of the above groups.

We will use the notation Cl(V ) to denote one of the classical groups GL(V ), Sp(V ), O(V ),
and U(V ). Taking F = C, we see that classical groups account for most of complex
simple Lie groups, whereas the classical groups over finite fields F = Fq , together with
their exceptional and twisted analogs, form the main source of finite simple groups.

Theorem 1 (Classification of finite simple groups) Any finite non-abelian simple group is
either

(i) an alternating group An, n ≥ 5;
(ii) a simple group of Lie type (like PSLn(Fq)); or
(iii) one of the 26 sporadic finite simple groups.

A fundamental theorem concerning maximal subgroups of classical groups was proved
by M. Aschbacher in [1]. For the exposition’s purposes, we will state Aschbacher’s theorem
in a very simplified version, referring the interested reader to [1] for its full version:

Theorem 2 (Aschbacher [1]) Let G = Cl(V ) be a classical group over an algebraically
closed field F, and let M < G be a maximal Zariski closed subgroup of G. Then

M ∈
4⋃

i=1

Ci ∪ S,

where Ci , 1 ≤ i ≤ 4, are collections of certain “natural” subgroups of G, and S consists
of the subgroups of the form M = NG(S) for some simple closed subgroup S < G such that
the restriction V ↓S is irreducible.
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Here,

– C1 consists of stabilizers StabG(U) of nonzero proper subspaces U of V (in particular,
it includes the parabolic subgroups of G);

– C2 consists of stabilizers of direct sum decompositions V = V1 ⊕ V2 ⊕ · · · ⊕ Vm,
where V1 ∼= V2 ∼= · · · ∼= Vm;

– C3 consists of normalizers NG(P ) of “special” finite p-subgroups P < G; and
– C4 consists of stabilizers of tensor decompositions V = V1 ⊗ V2, or V = V1 ⊗ V2 ⊗

· · · ⊗ Vm with V1 ∼= V2 ∼= · · · ∼= Vm.

Example 3 Let us describe the classes Ci for G = GLn(F). First, C1 consists of parabolic
subgroups, which are G-conjugate of the upper block-triangular subgroups

{( ∗m ∗
0 ∗n−m

)}
, 1 ≤ m ≤ n − 1.

Next, the members of C2 are G-conjugate to block-monomial subgroups

GLd(F) � Sn/d = 〈{diag(∗d , ∗m, . . . , ∗d)}, Sn/d〉,
where Sn/d permutes V1, . . . , Vn/d , and d|n.

The class C3 is non-empty only when n = ps for some prime p, in which case
NG(P ) = Z(G)P · Sp2n(p) belongs to C3 (if we assume F = F), where P = p1+2n is
an extraspecial p-group of order p1+2n.

Finally, the members of C4 are G-conjugate to GLa(F) ⊗ GLb(F) with ab = n, and
GLa(F) � Sb with n = ab.

The proof of Aschbacher’s Theorem 2 can be outlined as follows. Consider the M-
module V ↓M . If V ↓M is reducible, then M ∈ C1. So we assume V ↓M is irreducible. If
V ↓M is imprimitive then M ∈ C2, and if V ↓M is tensor decomposable or tensor induced
then M ∈ C4. Otherwise one can show that M ∈ C3 ∪ S .

As mentioned above, more precise versions of Aschbacher’s Theorem 2 are given for
finite classical groups in [1] (for which the union ∪4

i=1Ci is replaced by ∪8
i=1Ci), as well as

for the symmetric group Sn (which might be viewed as “GLn(F1)”).

1.3 The Converse?

Given the hypothesis of Aschbacher’s Theorem 2 (so that G is a classical group over F, and
F is either algebraically closed or finite), assume now that M ∈ ∪4

i=1Ci ∪ S . When can one
say that M is indeed a maximal subgroup of G?

IfM ∈ ∪4
i=1Ci , then the maximality ofM has been determined by Kleidman and Liebeck

[31].
So we may assume that M = NG(S) ∈ S . Suppose in addition that M is not maxi-

mal. Then M < N < G, where N is a maximal subgroup of G, and we can again apply
Aschbacher’s Theorem 2 to N : N ∈ ∪4

i=1Ci ∪S . Note that V ↓M is irreducible (as M ∈ S),
whence N /∈ C1. Hence, we arrive at one of the following cases.

Case I. N ∈ C2. This case is being analyzed by Hiss, Husen, and Magaard [27].
Case II. N ∈ C3. This case is handled by Magaard and Tiep [48].
Case III. N ∈ C4. Since the tensor-induced subcase is treated in [48], we may assume for

the simple subgroup S < GL(V ) that the S-module V ↓S = A ⊗ B is irreducible
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and tensor decomposable. Henceforth we will use the convention that all representations
of algebraic groups in question are assumed to be rational.

Theorem 3 (Steinberg, Seitz) Suppose S is a simple, finite or algebraic group over Fq

with q a power of p = char(F ). Suppose that a FS-module V is irreducible and tensor
decomposable. Then either

(i) V is described by Steinberg’s tensor product theorem, or
(ii) p = 2 and S is of type Cn or F4, or
(iii) p = 3 and S is of type G2.

Moreover, in cases (ii) and (iii), the module V is known explicitly.

Aside from the situation considered in Theorem 3, we have three more possible scenarios,
according to Theorem 1:

– S is one of the 26 sporadic simple groups—this case is the subject of ongoing work of
the GAP-team [18];

– S is a (covering group) of Sn or An. This case is mostly resolved by work of Bessenrodt–
Kleshchev [4–6] and Kleshchev–Tiep [37].

– S is a finite simple group of Lie type defined over a field of characteristic different from
char(F). This case is the subject of the following theorem:

Theorem 4 (Magaard–Tiep [47]) Suppose S is a finite simple group defined over Fq with
q coprime to p = char(F ), and suppose that the FS module V is irreducible and tensor
decomposable. Then, modulo a few open cases, V is a Weil module of S = Sp2n(3) or
SUn(2).

Example 4 [47] The symplectic group S = Sp2n(3) (with n ≥ 2) admits two complex Weil
modules, A of dimension (3n − 1)/2, and B of dimension (3n + 1)/2, such that A ⊗ B

is irreducible.

2 The Irreducible Restriction Problem

2.1 The Setup

The analysis of the maximality of M ∈ ∪4
i=1Ci ∪ S in Section 1.3 still leaves out the case

N ∈ S . In this, arguably the most challenging case, we have that

G = Cl(V ) > N = NG(R) > M = NG(S),

where R, S < G are simple and V ↓R , V ↓S are irreducible. The Schreier hypothesis
(which is a consequence of Theorem 1) implies that in fact S embeds in R. Relabeling R

and S by G and H , we thus arrive at the following problem:

Problem 1 (Irreducible restriction problem) Let G be a simple, finite, or algebraic, group,
and let F = F. Classify pairs (V ,H), where V is an FG-module and H is a proper simple
subgroup of G such that V ↓H is irreducible.
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Problem 1 turns out to be a deep problem encompassing many important questions in the
representation theory of finite and algebraic groups.

2.2 Problem 1 for Simple Algebraic Groups

Let us first consider the situation where both G and H in Problem 1 “arise” from simple
algebraic groups defined over F.

• Connected case, i.e., G and H are both simple algebraic groups. Thus we have a ratio-
nal FG-module V (labeled by its highest weight) that is irreducible overH . In this case,
Problem 1 is solved by Dynkin when char(F) = 0 [14], and Seitz [56] and Testerman
[60] when char(F) > 0.

• Disconnected case. Here, we assume only that the connected components (of the iden-
tity) G◦ and H ◦ are simple. This case is still incomplete by now, but significant results
on it have been obtained by Ford [15, 16] and more recently by Testerman and her
collaborators [9, 10].

2.3 Problem 1 for Symmetric and Alternating Groups

Now, we turn our attention to the case G is a finite simple group, and consider various cases
according to Theorem 1.

Example 5 Let us consider Problem 1 for G = Sn, H = Sn−1.
Suppose first that we are in the complex case, i.e., F = C. Then the irreducible Sn

module V = Sλ is labeled by a partition λ � n. The classical branching rule tells us
that

V ↓Sn−1=
⊕

Xany removable node

Sλ\X.

It follows that V ↓H is irreducible if and only if the Young diagram Y (λ) has only one
removable node, i.e., λ = (a, a, . . . , a) with n = ab.

The modular case, i.e., when 0 < char(F) = p ≤ n, turns out to be much
more complicated. The list of FSn-modules that are irreducible over Sn−1 was pre-
dicted by the Jantzen–Seitz conjecture, which was subsequently proved by Kleshchev
[33].

More generally, we describe the current status of Problem 1 for G a covering group of
Sn or An.

• G = Sn, An. Saxl [54] solved Problem 1 in the case char(F) = 0. In the case
char(F) > 3, the problem has been solved by Brundan and Kleshchev in [8] for
G = Sn, and by Kleshchev and Sheth in [34, 35] for G = An. The case char(F) = 2, 3
is still incomplete, but significant results have been obtained by Kleshchev and Sheth
[34], and more recently by Kleshchev, Sin, and Tiep [36].

• G = 2Sn, 2An. The complex case char(F) = 0 of Problem 1 is completely solved by
Kleidman and Wales in [32]. The modular case char(F) > 0 is mostly understood by
work of Kleshchev and Tiep [37]. The difficulty of the latter case is explained in part by
the complicated nature of the modular spin representations of G. Even the irreducible
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modular spin representations of low degree have only been recently determined by
Kleshchev and Tiep in [40].

2.4 Problem 1 for G a Sporadic Group

Here G is one of the 26 sporadic simple groups. The GAP-team [18] has been working over
the last 20 years (or so) with the goal to determine the irreducible FG modules, and further
progress on Problem 1, especially for the largest sporadic simple groups, will depend largely
on this.

2.5 The Defining Characteristic Case of Problem 1: G ∈ Lie(p), p = char(F)

Here, G is a simple group of Lie type, defined over a field Fq with q a power of the prime
p = char(F). We distinguish several cases according to Theorem 1 applied to H :

– H ∈ Lie(p). The situation here is well understood by work of Liebeck, Seitz, and
Testerman.

– H = An. Husen analyzed this situation in his 1997 Ph. D. Thesis.
– H is one of the 26 sporadic simple groups. Again, further progress in this case depends

heavily on the GAP-team [18].
– H ∈ Lie(�) with � �= p. Recent work of Magaard, Röhrle, and Testerman [46]

essentially reduce the problem in this case to

Problem 2 Let G be a Zariski closed subgroup of a simple classical group G = Cl(V )

and let W be the largest composition factor of the G-module V ⊗ V ∗, Symk(V ), or ∧k(V ),
for some “small” k > 1. When can W ↓G be irreducible?

A particular instance of problem 2 turns out to have important implications, particularly
on the holonomy groups of vector bundles on a smooth complex projective variety [3].

Problem 3 (Kollár–Larsen problem on symmetric powers) Let F = F and let V = Fd

with d ≥ 5. Which Zariski closed subgroups of G = GL(V ) act irreducibly on some
symmetric power Symk(V ) of V for some k ≥ 4?

Theorem 5 (Guralnick–Tiep [24]) Assume a Zariski closed subgroup H of G := GL(V )

acts irreducibly on Symk(V ) for some k ≥ 4. Then L � H ≤ NG(L), and one of the
following holds:

(i) L ∈ {SL(V ), Sp(V )};
(ii) char(F) = p, L = SLd(q), SUd(q), or Spd(q), q = pa and d = dim(V );
(iii) k = 4, 5, and (dim(V ), L) = (6, 2J2), (12, 2G2(4)), (12, 6Suz);
(iv) k = 4, 5, p = 5, 7, and L = Monster.

Balaji and Kollár have shown in [3] that Theorem 5 implies the following

Corollary 1 Let E be a stable vector bundle on a smooth complex projective variety X of
rank r different from 2, 6, 12. Then the following are equivalent:

(i) Symk(E) is stable for some k ≥ 4.
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(ii) Symk(E) is stable for every k ≥ 4.
(iii) The commutator subgroup of the holonomy group is either SL(Ex) or Sp(Ex).

Note that the condition r �= 2, 6, 12 in Corollary 1 arises from the exceptions listed
in Theorem 5. Guralnick and Tiep have been working on an analog of Theorem 5 for
alternating powers ∧k(V ).

The obvious question arises: what is going on with “smal” symmetric/alternating powers,
for instance with k = 3? We indicate one infinite series of examples:

Theorem 6 (Magaard–Tiep [48]) Let G = Sp2n(3) with n ≥ 3, and let A, B be complex
Weil representations of G of degree (3n − 1)/2, resp. (3n + 1)/2. Then

Sym3(A), ∧3(B), A ⊗ Sym2(B), B ⊗ ∧2(A)

are all irreducible.

When k = 2, there are many more examples, and they are classified by work of
Magaard, Malle, and Tiep [44, 45, 49].

2.6 The Cross Characteristic Case of Problem 1: G ∈ Lie(�), � �= p = char(F)

Recall that in this case, F = F is of characteristic p and G is a finite simple group of Lie
type defined over a field Fq with q a power of some prime � �= p.

Suppose in addition that G is an exceptional group of Lie type. Then the complex case
of Problem 1 was completed in an unpublished work of Saxl. In general, Problem 1 for
all smaller exceptional groups 2B2(q), 2G2(q), G2(q), 3D4(q), and 2F4(q), has been com-
pleted in [26, 50, 51]. The remaining, large exceptional groups are being analyzed by Saxl
and Tiep.

Now, let us turn our attention to the case where G is a classical group. In the impor-
tant paper [57], Seitz determined all possible simple subgroups H ∈ Lie(�) that could
arise in Problem 1 (but the module V was not known). One particular such a pair is
(G,H) = (Sp6(q),G2(q)) with 2|q, and the possible modules V for this pair have been
determined by Schaeffer Fry in [55]. In fact, Schaeffer Fry [55] completely classified all
pairs (V ,H), where H is a proper subgroup of G = Sp6(q) (still with 2|q) and V an
FG-module with char(F) �= 2 such that V ↓H is irreducible.

A major case where Problem 1 has been completely solved is where G = GLn(q),
cf. [39]. Let us briefly recall the Dipper–James classification of irreducible FG-modules
[12, 13]. Suppose we are given some positive integers m, ki , and di with 1 ≤ i ≤ m

such that
∑m

i=1 kidi = n. For 1 ≤ i ≤ m, to each p′ -element si ∈ Fq (with a minimal
polynomial) of degree di over Fq and a partition λi � ki , one can associate an irreducible
FLi-module Vi = L(si, λi), where Li

∼= GLkidi
(q). Moreover, since

∑m
i=1 kidi = n, G

contains a parabolic subgroup P = U � L with unipotent radical U and Levi subgroup
L ∼= L1 ×· · ·×Lm. Hence, one can view V1 ⊗ V2 ⊗ · · · ⊗ Vm as an FL module, inflate
it to an FP module, and then induce up to an FG module

V = L(s1, λ1) ◦ L(s2, λ2) ◦ · · · ◦ L(sm, λm),

(the so-called Harish–Chandra induction of V1 ⊗ · · · ⊗ Vm from L to G). Under the extra
assumption that si and sj have different minimal polynomials whenever i �= j , the resulting
module V is irreducible, and furthermore any irreducible FG module can be obtained in
this way.
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Example 6

(i) (Gelfand [19]) Taking F = C, m = 1, (d1, k1) = (n, 1), one obtains a cuspidal
CG module of G of dimension

(q − 1)(q2 − 1) · · · (qn−1 − 1),

which is irreducible over the stabilizer StabG(〈v〉Fq
) of any 1-dimensional subspace

of the natural G-module Fn
q .

(ii) (Seitz [57]) Assume 2|n and q > 3. Taking F = C, m = 1, (d1, k1) = (1, n),
s1 �= ± 1, one obtains a (Weil) CG-module of dimension (qn − 1)/(q − 1), which
is irreducible over Spn(q).

Now we can describe the main result of [39], which solves Problem 1 for all groups G

between SLn(q) and GLn(q):

Theorem 7 (Kleshchev–Tiep [39]) Let SLn(q) ≤ G ≤ GLn(q), H < G be a proper
subgroup not containing SLn(q), F = F be of characteristic p � q, and let V be an
irreducible FG-module of dimension greater than 1. Let W be an irreducible FGLn(q)-
module such that V is an irreducible constituent of W ↓G. Then, V ↓H is irreducible if and
only if one of the following holds:

(i) H ≤ P , where P = UL is the stabilizer in GLn(q) of a 1-space or an (n − 1)-
space in the natural GLn(q)-module Fn

q , W = L(s, (k)) for some s ∈ F̄×
q of degree

n/k > 1, and one of the following holds:

(a) H ≥ [P, P ]; furthermore, W has the same number of irreducible constituents
over SLn(q)H and over G.

(b) G = SLn(3), s2 = − 1 if p �= 2, and [L,L] ≤ H ≤ L.
(c) G = SLn(2), s �= 1 = s3 and H = L.

(ii) n is even, W = L(s, (1)) ◦ L(t, (n − 1)) for some p′-elements s, t ∈ F×
q with s �= t

(in particular, V = W ↓G is a Weil representation of dimension (qn − 1)/(q − 1)),
and one of the following holds:

(a) Spn(q)Z(H) < H ≤ CSpn(q).
(b) H = Spn(q)Z(H) and t �= ± s.
(c) 2|q, n = 6, and G2(q)′ � H ≤ GLn(q).

(iii) Small cases with (n, q) = (4, 2), (3, 4), (3, 2), or with n = 2, occur.

Some of the main tools of the proof of Theorem 7 are quantum group methods of [7],
and the main result of [38] which gives a branching rule from GLn(Fq) to SLn(Fq). In
particular, one has

Theorem 8 (Kleshchev–Tiep [38]) Let F = F be of characteristic p � q and let V =
L(s1, λ1)◦· · ·◦L(sm, λm) be an irreducible FGLn(q)-module, where the si are p′-elements.
Then V is reducible over SLn(q) if and only if at least one of the following holds.

(i) There is some p′-element 1 �= t ∈ F×
q such that, for all i = 1, . . . , m, the set {sj | 1 ≤

j ≤ m, λj = λi} is stable under the multiplication by t .
(ii) p| gcd(n, q−1), and for each i all parts of the partition λ′

i conjugate to λi are divisible
by p.
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More generally, [38, Theorem 1.1] determines the number of irreducible constituents of
each irreducible FGLn(q)-module over SLn(q). It also allows us to

– get a parametrization of irreducible FSLn(q)-modules [38, Corollary 1.2];
– classify in [38, Theorem 1.3] the complex representations of SLn(q) whose reductions

modulo p = char(F) are irreducible, relying on a similar result for GLn(q) of [28];
and to

– exhibit an explicit subset of complex irreducible characters of SLn(q) and a par-
tial order on the set of irreducible p-Brauer characters of SLn(q) such that the
corresponding decomposition submatrix is lower unitriangular [38, Theorem 1.4].

It remains a big challenge to resolve the various problems in representation theory, posed
by Problem 1 for the remaining simple groups of Lie type.

3 Applications

The aforementioned results have led to significant progress in several recent applications
in group theory, number theory, and algebraic geometry. One such application, the Kollár–
Larsen problem 3 on symmetric powers, has been described in Section 2.5. We refer the
reader to Section 3 of [64] for a discussion of some other applications, including

(i) the Katz–Larsen conjecture on moments [23, 29, 30];
(ii) the Kollár–Larsen problem on finite linear groups and crepant resolutions [25, 41]

(see also Example 2); and
(iii) adequate subgroups and automorphy lifting [20–22, 59, 62].

We conclude the survey with another open problem. For a Kähler manifold X and a
compact subgroup G ≤ Aut(X), Tian [63] defined an invariant αG(X). In particular, Tian
showed that a Fano variety X admits a G-invariant Kähler–Einstein metric if

αG(X) >
dim(X)

dim(X) + 1
.

Consider the case a finite group G < GLn+1(C) acts on the projective space Pn. Then
Tian’s invariant αG(Pn) is just the log-canonical threshold lct(Pn, G). Moreover, as shown
in [11, Theorem 1.17], Cn+1/G is exceptional if αG(Pn) > 1, and not exceptional if
αG(P)n < 1, provided that G contains no complex reflection.

Recall that G < GL(V ) is said to have a semi-invariant of degree k on V if Symk(V )

contains a one-dimensional G-submodule. Now the connection between αG(Pn) and semi-
invariants of G < GLn+1(C) can be seen as follows

αG(Pn) ≤ min{k | G has a semi-invariant of degree k on Cn+1}
n + 1

.

It turns out that a strong upper bound on αG(Pn) was proved by J. G. Thompson some years
before the invariant was formally defined:

Theorem 9 (Thompson [61]) Suppose that G < GLn+1(C) is any finite group. If p � |G|
is any prime then αG(Pn) ≤ p − 1. In particular, αG(Pn) ≤ 4(n + 1).

In fact, a much stronger bound should hold asymptotically:
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Conjecture 1 (Thompson [61]) There exists a constant C > 0 such that αG(Pn) ≤ C for
all finite subgroups G < GLn+1(C).

Very recent progress on Conjecture 1 will be discussed in a forthcoming paper.
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