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Abstract We propose a splitting algorithm for solving a system of composite monotone
inclusions formulated in the form of the extended set of solutions in real Hilbert spaces. The
resulting algorithm is an extension of the algorithm in Becker and Combettes (J. Convex
Nonlinear Anal. 15, 137-159, 2014). The weak convergence of the algorithm proposed is
proved. Applications to minimization problems is demonstrated.
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1 Introduction

Let H be a real Hilbert space, let A : % — 2 be a set-valued operator. The domain and
the graph of A are, respectively, defined by domA = {x € H | Ax # &} and graA =
{(x,u) € H x H |u € Ax}. We denote by zerA = {x € H | 0 € Ax} the set of zeros
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of A,andbyranA = {u € H | (3 x € H) u € Ax} the range of A. The inverse of A is
AV H > 2" u s {x € H | u € Ax}. Moreover, A is monotone if

Vx,y) e HxH) V(u,v) € Ax x Ay) (x —y|lu—v)=>0,

and maximally monotone if it is monotone and there exists no monotone operator B: H —
2™ such that gra B properly contains gra A.

A basis problem in monotone operator theory is to find a zero point of the sum of two
maximally monotone operators A and B acting on a real Hilbert space 7, that is, find x € H
such that

0 € Ax + BXx. €))
Suppose that the problem (1) has at least one solution x. Then, there exists v € BXx such
that —v € AX. The set of all such pairs (x, v) defines the extended set of solutions to the
problem (1) [20],
E(A,B)={(x,v)|ve Bx, —v e Ax}.
Conversely, if E(A, B) is non-empty and (¥, v) € E(A, B), then the set of solutions to the
problem (1) is also nonempty since x solves (1) and v solves its dual problem [2], i.e,

0eB 'v—A"'(~v).
It is remarkable that three fundamental methods such as Douglas—Rachford split-
ting method, forward-backward splitting method, and forward-backward-forward splitting
method converge weakly to points in E(A, B) [22, Theorem 1], [14, 23]. We next consider

a more general problem where one of the operators has a linearly composite structure. In
this case, the problem (1) becomes [11, (1.2)],

0e€ AXx + (L* o Bo L)X, 2)

where B acts on a real Hilbert space G and L is a bounded linear operator from H to G.
Then, it is shown in [11, Proposition 2.8(iii)(iv)] that whenever the set of solutions to (2) is
non-empty, the extended set of solutions

E(A,B,L)={(X,v) | - L*U € AX, LY € B~'1}
is non-empty and, for every (x,v) € E(A, B, L), v is a solution to the dual problem of (2)
[11, Eq.(1.3)],
0eB'o—LoA™ o (-L"W. 3)
Algorithm proposed in [11, Eq. (3.1)] to solve the pair (2) and (3) converges weakly to a
pointin E(A, B, L) [11, Theorem 3.1]. Let us consider the case when monotone inclusions

involve the parallel-sum monotone operators. This typical inclusion is firstly introduced in
[18, Problem 1.1] and then studied in [24] and [6]. A simple case is

0e Ax+L*o(BUOD)oLx + Cx, @)

where B, D act on G and C acts on H, and the sign [J denotes the parallel sum operation
defined by
BOD=B'+DH L
Then, under the assumption that the set of solutions to (4) is non-empty, so is its extended
set of solutions defined by
E(A,B,C,D,L) = {(f, T —L'Te(A+O)F, L¥ e (B~ + D’I)U} .

Furthermore, if there exists (x,v) € E(A, B, C, D, L), then x solves (4) and v solves its
dual problem defined by

0eB '9—Lo(A+C) ' o(=L"v+ D 7.

@ Springer



A Splitting Algorithm for System of Composite Monotone Inclusions 325

Under suitable conditions on operators, the algorithms in [6, 18, 24] converge weakly to a
point in E(A, B, C, D, L). We also note that even in the more complex situation when B
and D in (4) admit linearly composite structures introduced firstly [4] and then in [7], in
this case (4) becomes

06Af+L*o((M*oBoM)D(N*oDoN))oLf+Cf, 5)

where M and N are, respectively, bounded linear operators from G to real Hilbert spaces )
and X, B and D acton Y and X, respectively. Then, under suitable conditions on operators,
simple calculations show that the algorithm proposed in [4] and [7] converge weakly to the
points in the extended set of solutions,

E(A,B,C,D,L, M, N)
:{(f, )| — LT € (A+O)T, LX € ((M* oBoM) '+ (N*oDo N)’l> U} (6)

Furthermore, for each (x,v) € E(A, B,C, D, L, M, N), then v solves the dual problem of
(%),
0e(M*oBoM) ' 5—Lo(A+C) " o(=L*) U+ (N*oDoN) 1.

To sum up, the above analysis shows that each primal problem formulation mentioned has
a dual problem which admits an explicit formulation and the corresponding algorithm con-
verges weakly to a point in the extended set of solutions. However, there is a class of
inclusions in which their dual problems are no longer available, for instance, when A is uni-
variate and C is multivariate, as in [1, Problem 1.1]. Therefore, it is necessary to find a new
way to overcome this limitation. Observe that the problem in the form of (6) can recover
both the primal problem and dual problem. Hence, it will be more convenient to formulate
the problem in the form of (6) to overcome this limitation. This approach is firstly used in
[25]. In this paper, we extend it to the following problem to unify some recent primal-dual
frameworks in the literature.

Problem 1 Let m, s be strictly positive integers. For every i € {1, ..., m}, let (H;, {(-|-)) be
a real Hilbert space, let z; € H;, let A;: H; — 2Hi be maximally monotone, let C; : ‘H; X
- X Hm — H; be such that

@vo € [0, +00D) (Y(xi)1<izm € Hi X ==+ X Hp) (YOi)i<izm € Hi X -+ x Hp)

{ S NC(xs  xm) — Gt - ) P V30 e — il
Z:‘yl:](Ci(xl, o Xm) —Ci(1s e Ym) X — i) = 0.

Forevery k € {1,...,s},let (G, (- | -)), Dk, (- | -)), and (X, (- | -)) be real Hilbert spaces,

let ri € G, let Br: Vi — 2% be maximally monotone, let Dy : Xy — 2% be maximally

monotone, let My: G — Vi and Ni: Gr — A be bounded linear operators, and every

i €{l,...,m},let Ly ;: H; — Gi be a bounded linear operator. The problem is to find
x1€Hi,....,xm € Hpandv; € Gy, ..., 05 € G, such that

21— 2 L0k € AiXt + CI(31, -, X)),

@)

im — Z}\%:]Lz’mik € ApXm + Cp(X1, ..o, Xm)s

— _ _ 8
ZT:]Ll,ixi —r] € (Mi'< oBjo Ml)_lvl + (N;‘< o Dy ON])_lvl, ®)

S Lg% —rs € (M o By o My) ™10 + (N o Dy o Ny)~1;.
We denote by £2 the set of solutions to (8).
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Here are some connections to existing primal-dual problems in the literature.

(i) InProblem 1,setm =1, (Vk € {1, ...,s}) Ly,1 = Id, then by removing vy, ..., vy
from (8), we obtain the primal inclusion in [4, (1.7)]. Furthermore, by removing x
from (8), we obtain the dual inclusion.

(ii) In Problem 1, set m = 1, C) is restricted to be cocoercive (i.e., C; Uis strongly
monotone), then by removing vy, ..., Uy from (8), we obtain the primal inclusion in
[7, (1.1)]. Furthermore, by removing x| from (8), we obtain the dual inclusion which
is weaker than the dual inclusion in [7, (1.2)].

(iii) InProblem 1, set (Vk € {1,...,s}) Vi = Xk = Gy and My = N, =1d, (D,:l)lfkss
are single-valued, then we obtain an instance of the system of inclusions in [25, (1.3)]
where the coupling terms are restricted to be cocoercive in product space. Further-
more, if for every i € {l,...,m}, C; is restricted on H; and (D;l)]SkES are
Lipschitzian, then by removing, respectively vy, ..., vs and X1, ..., X, we obtain
respectively the primal inclusion in [16, (1.2)] and the dual inclusion in [16, (1.3)].

(iv) In Problem 1, set s = m, (Vi € {1,....,m}) z; = 0,A; = 0 and (Vk €
{1,...,s}) e =0, (k #1i) Lr,; = 0. Then, we obtain the dual inclusion in [5, (1.2)]
where (D,:l)lgkfs are single-valued and Lipschitzian. Moreover, by removing the
variables vy, ..., U5, we obtain the primal inclusion in [5, (1.2)].

In the present paper, we develop the splitting technique in [4], and base on the conver-
gence result of the algorithm proposed in [16], we propose a splitting algorithm for solving
Problem 1 and prove its convergence in Section 2. We provide some application examples
in the last section.

Notations (See [3]) The scalar products and the norms of all Hilbert spaces used in this
paper are denoted, respectively, by (- | -) and || - ||. We denote by B(H, G) the space of all
bounded linear operators from 7 to G. The symbols — and — denote, respectively, weak
and strong convergence. The resolvent of A is

Jy = 1d+A4)"",

where Id denotes the identity operator on 7. We say that A is uniformly monotone at x €
dom A if there exists an increasing function ¢ : [0, +0o[— [0, +oc] vanishing only at 0
such that

(Vu € Ax) (V(y,v) egraA) (x —ylu—v)=¢(lx—ylD.

The class of all lower semicontinuous convex functions f: H —] — 0o, 400] such that
dom f = {x € H | f(x) < +00} # @ is denoted by I'g(H). Now, let f € I'g(H). The
conjugate of f is the function f* € I'o(H) defined by f*: u — sup, .y ({(x | u) — f(x)),
and the subdifferential of f € I'g(#) is the maximally monotone operator

frH—-2" x> ueH | (VyeH) (y—xlu)+ f(x) < FO)}

with inverse given by

@n~t=ar*.
Moreover, the proximity operator of f is
. 1 >
proxf:Jafz’H—)’H:xn—)argmmf(y)+5||x—y|| . ©)]
yeH
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2 Algorithm and Convergence

The main result of the paper can be now stated in which we introduce our splitting algorithm,
prove its convergence and provide the connections to existing works.

Theorem 1 In Problem 1, suppose that §2 # & and that

m s

_ 12 2 2
B =+ ;;||NkLk,l|| +II£I?§Y(||Nk|| + [ Mg |12) > . (10)
1= =

Foreveryi € {1,...,m}, let (ai ) s (bi ) ,(ci ) be absolutely summa-
ry { } Lin), oy \PLin ), o \Clin ), y

. k k
ble sequences in H;, for every k € {1,...,s}, let (alyzyn)neN, (Cl’z’n)nEN be abso-

lutely summable sequences in Gy, let (ak ) s (bk ) , (ck ) be absolutel
Y 4 k 2,Ln neN 2,1,n neN 2.1n neN Y

summable sequences in Xy, (alz‘ 2 n) s b’z‘ n , (clz‘ 2 n) be absolutely summable
="/ neN =%/ neN "/ neN
sequences in Y. Foreveryi € {1,...,myandk € {1, ..., s}, let x; o € H;, x§0 € Gy and

v]f,o e Xy, UIZC’O € Vi, lete €10, 1/(B + DI, let (yy)nen be a sequence in [g, (1 —€)/B] and
set

Forn=0,1,...,
Fori=1,...,m,
i [ A . 1 m N * * 0.k i
Sian = %10 = Vn (Ct (xl,n’ S xl,n) + 2k LN, “1,1,n) :
i _ i ‘ i

Piin = Tna; (51,1,;1 + Vnzt) RSREY
For k=1,...,s,

k _ -k sk agxok k
Pion =%t ¥n (Nkvl,n kV2,n +“1,2,n) :

ko ok m i Nk k
$2,00 = Vi T ¥ (Zi:INkLkal,n Nixy , + az,m) g

K =sk — Nyry + J gk Ner) + 0K
Pain =52, 00 — Vo \NkTk wiog \Vn S2.1m kTk 2.1.n )
koo ok m i k k
q2,l,n - p2,l,n + Vu (NkZi=lLk'lpl,l,n - Nkpl,2,n + CZ,I,n ’
Kk k k
Vintl = Vin — 5210 +q2,1,n’

ko ok k k
$220 = Von T ¥n (ka2,n + “2,2,n) :

ko ko 1ok k
Pron =%20n —Vn (Jy,flgk (Vn 52,2,n) + b2,2,n) )

koo ok k k
9220 = P22 T Vn (Mkpl,z,n + Cz,z,n) ;

K ok k
Vol = V20 =520, 420,

k _ .k * ok _ Ak K k
9120 = Pion T Vn (Nk Poin— Mipyo, + cl,2,n> ;

P S %
L X2.04+1 = X2 — P12n T 91,200

Fori=1,...,m,
i i _ R 1 m s * * k i
91,10 = Plin = n (Cl (pl,l,n’ e pl,l,n) + 2k LN Py Cl,l,n) ’

i Y A i
L X1 = X0 — St T 9110

(1D
Then, the following hold for eachi € {1, ..., m}andk € {1,...,s}.
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) . . i
€y ZneN”xlI,n - pll,l,n”2 <400 and ZneN”xZn - plf,Z,n||2 < +oo.

. k K2 k k2
(i) ZneN”vl,n — Py ull” <400 and 2 onenllva, — Pl

(iii) xi.n - X1 xé‘n - Yo v’l‘n — Uik vlz‘” — Vo and for every (i,k) €
{1...,m} x{1...,s},

< —+o0.

Zi — Zi:lLZ,iNljﬁl,k e Aix1,; +Ci(X1,1, ..., X1,m) and M/fﬁzyk = Nljﬁl,k’
Nk(z:‘n:lLk,ifl,i — 1y — yk) € Dk_lﬁl,k and My, € Bk_lﬁz,k,
(Y]y],...,f]ﬁm, Nikﬂlql, ~-~»Ns*ﬁl,s) € S2.

(iv) Suppose that A; is uniformly monotone at X1 j for some j € {l,...,m}, then

x]l’n —> X1,

(v)  Suppose that the operator (x;)1<i<m > (Cj(Xi)1<i<m)1<j<m IS uniformly mono-
tone at (X11,...,X1,m), then (Vi € {1,...,m}) xi’n — X1,

(vi)  Suppose that there exist j € {1, ..., m} and an increasing function ¢; : [0, +-00o[—
[0, +00] vanishing only at O such that

(Yxi)izizm € Hi x -+ x Hp)

D ACIE, X)) = Ci(ELL, - BL) |6 =X 1) = ¢ (1xj — X1).(12)
i=1

J = .
then Xin = X1,j-

(vil) Suppose that Dj_1 is uniformly monotone at vy j for some j € {1,...,k}, then
J T1
Vi, = UL

(viii)  Suppose that Bj_1 is uniformly monotone at v ; for some j € {1,...,k}, then
J Do
vy, = V2.

Proof Let us introduce the Hilbert direct sums
H=Hi1® - OHnw, G=010 &G, Y=d -0, X=X AX,.

We use the boldsymbol to indicate the elements in these spaces. The scalar products and the
norms of these spaces are defined in the normal way. For example, in H,,

(19:Gy) > ) (xily) and -] x> (x]x).
i=1

Set

212—>51XHXT:1Aixi, B:Y—>2Y: 1 X3 _1 Brvk,
H—>H: x> (Cix)i<i<m, . X. s
LiH > Gixes (X0 Lorti) .. and D: X — 27%: v~ x{_,Diu,
Iskss M:G—Y: v (Mivg)<kss
N:G— X:v+> (Nevp)i<k<ss ==
2= Z1s e Zm)s r=(@p,...,rs).
(13)
Then, it follows from (7) that

(V) €M) Cx—Cyll <wlx —yl and (Cx —Cy|x—y) =0,
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which shows that C is vp-Lipschitzian and monotone hence they are maximally monotone
[3, Corollary 20.25]. Moreover, it follows from [3, Proposition 20.23] that A, B, and D are
maximally monotone. Furthermore,

L*:G—>H: v (Zi:lL;ivk>1<'< '
=i=m
M*:Y—>G: v (levk)lsksﬂ "

N* X —>G:v— (N;:vk)lskgs'

Then, using (13) and (14), we can rewrite the system of monotone inclusions (8) as
monotone inclusions in X =H & G,

z—L*v € (A+ O)x,

Lx—re((M*oBoM) '+ (N*oDoN)")v. as)

find (x, v) € KC such that {

It follows from (15) that there exists y € G such that

z—Lve (A+O)x, z—L*ve (A+ O)x,
ye(M*oBoM) v, < {veM*'oBoMy,
Lx—-y—re(N*oDoN) v veN*oDoN(LX—-y—r),

which implies that

2€(A+C)x+L*N*(D(NLx — Ny — Nr)),

0eM*oBoMy— N*(D(NLx — Ny — Nr)). (16)

Since 2 # O, the problem (16) possesses at least one solution. The problem (16) is a
special case of the primal problem in [16, (1.2)] with

m=2,K =2,

= = B :D’
Hi=HG =x, |[Lr1=NLA=4, »
Li>,=-—N, C]:C, l)1 =0,
Hr»=G,Gr=), ' and (17)
721=2,,22=0 Ly =0, Ay =0, B> =B,
1=2,,22=0, _ _ o
ri=Nr,ry=0, L22=M, €2=0, D, =0.

In view of [16, (1.4)], the dual problem of (16) is to find v; € X and v, € Y such that

~Nr € =NL(A + C)~'(z — L*N*%)) + N{0}~' (N*T) — M*T,) + D',
0 € —M{0)""(N*v; — M*v,) + B~ vy,

where {0}~! denotes the inverse of zero operator which maps each point to {0}. We next
show that the alogorithm (11) is an application of the algorithm in [16, (2.4)] to (16). It
follows from [3, Proposition 23.16] that

Vx e H)(y €10, +00]) Jypa,Xx = (Jya;Xi)1<i<m (18)

and

(Vv € X)(y €0, +00]) Jyp,v = (Jyp U)1<k<s and (Vv € V) J, B, v = (J, B, Vi) 1<k<s-
(19)
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Let us set
_ 1 m _ 1 s
ailn = (al,l,n’ ey al,l,n) , a 1.n = (aZ,l,n’ ey “2.1.;1) ,
1 1 S
b= (bl,l,n’ cees b?f]gn) > €2,1.n = (Cz,l,n’ cees C;,l,n> ’
1 1
VneN){ e11n= (cl’l’n, o, c’l’fl’n) and VneN){ axp, = Ay - '7“5,2,n ,
1 1
a2y, = (al 20 aiz’n) . b2,2,n = b2,2,n’ ey b;,z,n) ,
c =(c! s c =(c! s
L2n = \C2n %20 ) 220 =\C2n %20
(20)

Then, it follows from our assumptions that every sequence defined in (20) is absolutely
summable. Now set

1 m 1 s
xl,n=(xln,...,xln), vl,n=<v1n,...,vln),
(Vn € N) ’ ’ and ’ ’
s
2

1 r s
Xop = (xzyn, e X n) Vopn = (vz n ’vg,n ’
and set
s _ Sl 53
| 2,Ln=\%2 10> 2%2,1,n ) >
SLLn=\S11n 25110 ) (1 5
1 m Prin= PrinrosPoin)
Piia=\Piinw--Plin): 1 s
q921.n= Din -9 1n)
1 . 1 1,
1 €N qrin= (a1, af"y,), and (n e W) 1 )
g . s2,2,”=<s2,2,n’""s2,2,n ’
Pion=\Pion - Pion)> (.1 5
1 Pron= I’z,z,na ’p2,2,n ’
D 20=\912n -9 2n)>
_ 1 K
@22n=\D22n 920

Then, in view of (13), (14), (17), (18), and (19), algorithm (11) reduces to a special case
of the algorithm in [16, (2.4)]. Moreover, it follows from (10) and (17) that the condition
[16, (1.1)] is satisfied. Furthermore, the conditions on stepsize (;,),eN and, as shown above,
every specific conditions on operators and the error sequences are also satisfied. To sum up,
every specific conditions in [16, Problem 1.1] and [16, Theorem 2.4] are satisfied.

(i), (ii): These conclusions follow from [16, Theorem 2.4 (i)] and [16, Theorem 2.4(ii)],
respectively.

(iii): It follows from [16, Theorem 2.4(iii)(c)] and [16, Theorem 2.4(iii)(d)] that x1 , —
X1, x2, = yand vy, — v, v2, — V. We next derive from [16, Theorem 2.4(iii)(a)]
and [16, Theorem 2.4(iii)(b)] that, foreveryi € {1...,m}and k € {1..., s},

Zi = Dt L N{U1Lk € AiXni + Ci(R1 0, oo Xm)s o
M2 = N[V,
and
N (X0 LeiX1i — e — 3%) € Dy "o, )
My, € Bk_lfzyk.
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We have
22) & Uik € D (N (21 LiiXvi — e — Vi) » 23)
U2k € Br(Miyy)
o [ Vi e N (D (Ni (X7 Leai® i = 76 = ) »
Mok € M (Be(Miyy))
o | 2 Lei¥ = e =3y € (NF o Do No™H(NETL),
Vi € (M} o By o M)~ (M}v24)
m
= Y LiiX1i —rx € (Nf o Dy o Np) ™' (N1 ) + (M} o Bi o M)~ (Njv10).
i=1

Therefore, (21) and (23) show that (x1 1, ...,

Xtm, NfOLL, ...,

N}V ) is asolution to (8).

(iv): Foreveryn € Nandeveryi € {1,...,m}and k € {1, ..., s}, set
~k .k m )
. . { SZ,l,n - vl,n + Vn (Z[:lNkLk,lxl’n
~i i _ . m
Sl,l,n_xl,n Vn (Cl(xl,n""’x],n) —kalzcn),
s * * ..k ~k ~k ’
+Zk—1L 'Nkvl n)’ and d P2.1n = 52,10 — (Nkri

p12n _x2n Yn (Nkvln _MkUZn)’
pl,l,n = JVrrAiG,l,n + ¥nZi)

Since (Vi € {1,...,

m)) aj, = 0,6, =0, (Vkefl,...,

+J le(yn 521n Nkrk)),
s]2(2n - UIZ(n + yanxgn’
P Vndy—1g, (V- S22n)
(24)
S}) aIZ{,l,n - O’ a]2<,2,n e

~
Pron =520~

0 and bé in = 0, b’2‘2n — 0 and since the resolvents of (A;)1<i<m. (Bk_l)lfkfs and

(D 1)15k5 s are nonexpansive, we obtain

{wmﬂw”m>mW Pii.—0,
Vke{l,....s) Pf,,—p,, =0,
and
rwahuﬂ>%m—$mea
~Vke{l,...,s}) Pyon — Pron = 0.
In turn, by (i) and (ii), we obtain
{MeuwWM)ﬁmfﬁﬂea P = T 05)
(Vke{l,...,s}) pl,z,n—xz,nﬁ(), p]gn Yk
and
2 vi, >0, Py, =ik
(Vke{l,...,s) {~%1n Ln 2 ln (26)
Pran = Von =0, p22n = U2k
Set
~ ~ ~ ~] ~g
(Vn € N) {pl = DL Pl g {f“v” = P2 Prand ()
Pion= (pl,z,nv <o Pl ) Pron = (Pz,z,nv cees Pz,z,n)-
Then, it follows from (26) that
{ Vn:l(xl,n - 21,1,;1) =0 4 { J/n:l(”l,n - 22,1,;1) -0, (28)
Yn (xZ,n - p1,2,n) -0 Yn (v2,n - p2,2,n) — 0.
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Furthermore, we derive from (24) that, forevery i € {1,...,m}and k € {1, ..., s}

i » s ' | i
Vi (xi,n - pll,l,n)_zkzlLZ,iNljvl,n_Ci(xl,n’ .. .,x’ffn) €—zi + Aipll,l,n’

1k ~k 1~k
(VneN) { ¥, (55, = Proy) € By Proas

P ~ 1k
Yo 21, = P21, € Netk + D py -

(29)
Since A; is uniformly monotone at X ;, using (29) and (21), there exists an increasing
function quj : [0, +00[— [0, +00] vanishing only at O such that, for every n € N,

~j —
¢Aj(||l71,1,n_x1,j”)
S
~j - —1,.J ~j k — —
< <p1,1,,1 =% Ly o], = P L) = D L i NEO, = 1) — (Cjxin — c,»x1>>

k=1
s

~j - N ~j - ko=
= <P1,1,n =Xy v Gy, — pl,l,n> _Z<P1,1,n — X1, | Li,,-N;i‘(vl,,, - vl,k)>—Xj,n,
k=1
where we denote (Vn € N) x;, = (i;{,l,n —Xx1,j | Cjx1n — CjXx1). Therefore,
¢Aj(||P1,1,,, x1,51D
~ — 71 ~ ~ —_ J—
= (pl,l,n —xq | Y (xl,n - pl,l,n) - (pl,l,n - x| L*N*(vl,n —vy) — Xn

= Pran %11V @i —Prin) = Prin—Xin | L'N* (w1, — 0)))
— (X1 —X1 | L*N* (01,0 — 1)) — Xn, (30)

where x, = Y7L xin = (P1,1,0 — %1 | Cx1, — CX1). Since (B )i<k<s and (D i<k
are monotone, we derive from (22) and (29) that for every k € {1, ..., s},

0< (55,1,,, — Ok Ly @, = P L) + i NeLii (), — %10) — Ni (xg,n — yk)) :
0< (P, —Vak | v (W5, — D5 ,,) + Mi(xs,, — Vi),

which implies that
0= (ﬁz,z,n —0 |y, (oo — iZ,Z,n)> + (Pron — 02 | M(x2,, — ) 31
and

0 = (Boin =91 17 @1 = Bag)) + (NLGe1a = F1) | Bay = 1)
(2,10 = V1 | N(x2n = 3))- 32)

We expand (x,)neN as

VneN) x, = <x1,n —-X1 | Cxl,n —Cxy)+ (51,1,n —XIn | Cxl,n —Cxy)
> (P1an — X1 | Cx1, — CXy), (33)
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where the last inequality follows from the monotonicity of C. Now, adding (30)—(33)
and using M*v, = N*v|, we obtain

P4, (||l7f,1,n —Xx1,;ID
< (Pran—%*1l Yo (i — Pian) — Pran—X1n | L*N*(v1, —v1))

P22 — 02 | Vo o — Pa2n) + (Poin— V1| Yo i — Do)
+<M*ﬁ2,2,n - N*’ﬁll,n [ X250 —¥) +H(NL(x1, —X1) | i2,l,n — Vi) — Xn- (34)

We next derive from (11) that
(Vk € {1’ s S}) M:pg,Z,n - Nljplg,l,n = ynil(pllc,Z,n - q{(,Z,n) + Cllc,Z,n’
which and (27), (28), and [11, Theorem 2.5(i)] imply that
M*ﬁé,ln - N*Fé,l,n — 0.

Furthermore, since ((x;n)neN)1<i<2 and (Py 1 )neNs (P21 n)neNs (P2,2,2)neN>(V1n)neN
converge weakly, they are bounded. Hence,

T = sup {Hxl,n =Xl lx2n =¥l max {[|p; , = Uil 1P1,1,, — X111} 010 — V) ||}
neN l=i<2

< +o00. (35)

Then, using Cauchy—Schwarz’s inequality, the Lipchitz continuity of C and (35), (28), it
follows from (34) that

¢a;, (1P 1, — X1 = T +HINLIDUP1 10 — X1all + 152,10 — v1al)
iy o = Poo )l +RIPL 1, — X1l
+HIM*BS 5, — N*P5 1D
=0, (36)

in turn, fi{,l’n — f'l,j an'd hence, by (25), x{yn —: X1, _ ‘ ‘ '
(v): Since C is uniformly monotone at X, there exists an increasing function
¢c: [0, +oo[— [0, +00] vanishing only at O such that

VneN) (x1, —%1|Cx1,, —Cx1) = ¢c(llx1,n — X1,
and hence, (33) becomes

(VneN) x» = (X1, —%X1 | Cx1, —CX1) + (P11, — X120 | Cx1, — CXy)
> (Pran—X1n | Cx1n — Cx1) + dc(x1,0 — X11).

Processing as in (iv), (36) becomes
pcivrn =% = (0 + INLDUB 10— F1all + 1210 = 010D
v W20 = Boo )l + WPy 1 — X1l

HIM B 5, — NP 1)
— 0, 37
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in turn, x1 , — X or equivalently (Vi € {1, ..., m}) xiyn — X1,i-

(vi): Using the same argument as in the proof of (v), we reach at (37) where ¢c (||x1,, —
x1|]) is replaced by ¢; (IIx]J’n —X1,j11), and hence we obtain the conclusion.

(vii) and (viii): Use the same argument as in the proof of (v). O

Remark 1 Here are some remarks.

(i) Inthe special case whenm =1 and (Vk € {1, ..., s}) Gk = H1, Lx,; = Id, algorithm
(11) is reduced to the recent algorithm proposed in [4, (3.15)] where the convergence
results are proved under the same conditions.

(i) In the special case when m = 1, an alternative algorithm proposed in [7] can be used
to solve Problem 1.

(iii) In the case when (Vk € {1...,sDH(Vi € {1,...,m}) Ly; = 0, algorithm (11) is sep-
arated into two different algorithms which solve, respectively, the first m inclusions
and the last k inclusions in (8) independently.

(iv) Inthe case when (Vk € {1,...,s}) X = Vi = Gk, Nx = M} = 1d, we obtain a new
splitting method for solving a coupled system of monotone inclusion. An alternative
method can be found in [25] for the case when C is restricted to be cocoercive and
(Di)1<k<s are strongly monotone.

(v) Condition (12) is satisfied, for example, when each C; is restricted to be univariate
and monotone, and C; is uniformly monotone.

3 Applications to Minimization Problems

The algorithm proposed has a structure of the forward-backward-forward splitting as in [4,
11, 16, 18, 23]. The applications of this type of algorithm to specific problems in applied
mathematics can be found in [3, 4, 10, 11, 16, 18, 19, 23] and the references therein. We
provide an application to the following minimization problem which extends [4, Problem
4.1] and [7, Problem 4.1]. We recall that the infimal convolution of the two functions f and
g from H to ] — oo, +0o0] is

fOg:x > inf (f(y)+gx —y).
yeH

Problem 2 Let m, s be strictly positive integers. For every i € {1,...,m}, let (H;, (- | -))
be areal Hilbert space, let z; € H;,let f; € To(H;), leto: Hix---xH, — Rbeaconvex
differentiable function with vg-Lipschitz continuous gradient Vo = (Vi¢, ..., V, @), for

some vy € [0, +-o0[. Forevery k € (1,...,s},let (Gi, (- | ), Yk, (- | -)) and (X, (- | -))
be real Hilbert spaces, let ry € Gy, let gx € To(Qk), let & € To(Xy), let My: Gy —

Vi and Ni: Gy — A be bounded linear operators. For every i € {1,...,m} and every
k e {1,...,s}, let Ly;: H; — Gi be a bounded linear operator. The primal problem
is to

minimize Y ((¢x o Nx) O (g o My)) (Z Liixi — rk)

xle’Hl ..... meHm k=1 i—1

+ Y fil) = (xi [ 2) + @(xr, o X)), (38)
i=1
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and the dual problem is to

m N
minimize * 0O f*)) ((zi — L;.N,fvl,k> . )
veX, 1nel, < (; ' kgl: ! 1<i<m
~Vke{l,...,s}) M/fvzyk =N:U1’k

A

Y (G L)+ w2p) +(Nfore | 7i)) (39)
k=1

Corollary 1 In Problem 2, suppose that (10) is satisfied and there exists x = (xi,...,
Xm) € Hi X -+ X Hy such that, foralli € {1, ..., m},

i€ 3fi) + Y L | ((VF o 060 o No) O (M} 0 3g1) o M) | Y L jxj—

k=1 Jj=1

+Vip(x). (40)
For everyi € {1,...,m}, let (ai,l,n)”EN’ (bli,l,n)"EN’ (Ci,l,n)”EN be absolutely summable
sequences in H;, for every k € {l,...,s}, let (alf,2,n)"€N’ (le,z,,,)neN be absolutely

summable sequences in Gy, let (alzc,l,n)nd\?’ (blz"l’n),,eN, (CIZC,I,n)VlgN be absolutely summable
sequences in X, (alz‘ 2, nneNs (17]2C 2, el (Cé,z,n)neN be absolutely summable sequences in
yk Foreveryi € {1,...,m}and k € {1,...,s}, let x{,o € H;, x§,0 € Gy and vlf,o e X,
UZ’O € Vi, let ¢ €]0, 1/(,3 + D, let (Vn)neN be a sequence in (g, (1 — ¢)/B] and set

For n=0,1,...,
For i=1,....,m

i . 1 m s * * .k i
San = xln_y’l< P9 s e X)) 2 L N, +“1,1,n>7

L i ln_prOXVn (5] Tz b,
For k_l

Plon =X, +Vn (Nkvl o= M3, +a Zn)’
_ o k
3 1n = Vi T Vo (ZilekLk,lxl,n Nexs,,, + az,l,n) ;
koo gk —1 gk k
Py =%, " Vn <Nkrk + pI‘OXVn—lek (yn AR Niri) + b2,1,n) ’
ko ok mop k k
D0 = Poin Tt Vn (NkZi=ILkalpl,l,n = Nepiant C2,1,n) ;

K _ ok ok k
vl,nJrl - Ul,n s2,1,n + q2,1,n’

Kk k k

5200 =V TVn (MkXZ,n + aZ,Z,n) ;
koo ok

Pron =S%20n (Proxyflgk(yn 52 o)t bz 2 n) )
ko ok

Don = Pront¥n (Mkpl,2,n + cZ,Z,n) ,

K _ kK k
V)it = V2, — 520, 42000

ko ok k
D125 = Pion T ¥n (Nljpl,],n Mkp22n+cl2n)’

£ _ ok &k X
L X201 = X250 — Pion T 4120
Fori=1,....m

. : L .
d11n = Pian = Vo (Vlﬁ"(Pl Lo PI) + 2t L NEPo g + Cll,l,n) g

1 — 1
LXLn+1 = X1n — 51 o T

(4D
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Then, the following hold for eachi € {1, ..., m}andk € {1,...,s},

. , , k k
(1) ZneN”xll,n - pll,l,n”2 < +00 and ZHGNHXZ,n - p1,2,n”2 < too.

(i) ZnGN”U]l(,n - p]2<,l,n ”2 <400 and ZnEN”vIZC,n - p12(,2,n”2 < oo
(iii) xi,n — X1, Ulf,n - Vi U]2<,n — Uk and (X1,1,...,X1,m) solves (38) and
1,15+, V1,5, V2,1, --.,V2,5) Solves (39).
(iv) Suppose that f; is uniformly convex at X1,j for some j € {1,...,m}, then x{ﬁ —
X1,j- )
(v) Suppose that ¢ is uniformly convex at (X1,1,...,X1,m), then (Vi € {1,...,m}) xi’n
— X1,
(vi) Suppose that E’]‘. is uniformly convex at vy j for some j € {1, ..., k}, then v{’n —
Ul,j- )
(vii)  Suppose that g;f is uniformly convex at vy j for some j € {1,..., k}, then vin —
v2,j-
Proof Set

{(Vie{l,...,m}) A; =0f;, Ci=Vp, 42)

(Vke{l,....s}) Bp=0agw Di= .

Then, it follows from [3, Theorem 20.40] that (A;)1<i<m, (Bk)1<k<s, and (Dk)1<k<s are
maximally monotone. Moreover, (Cy, ..., Cy) = Vg is vp-Lipschitzian. Therefore, every
conditions on the operators in Problem 1 are satisfied. Let H, G, X', and Y be defined as
in the proof of Theorem 1, and let L, M, N, z, and r be defined as in (13), and define

fiH —>1—o00,+oo[: x > DML, filxi),
g: Y —1—00,+oo: v Y gk (vk),
0: X —]—o00,+00[: v > Y 31 Lk(vk).

Observe that [3, Proposition 13.27],

m N S
frye Zfi*(yi), g v Zg,’f(vk), and £*:v> Zﬁi(vk).

i=1 k=1 k=1

We also have

(LoNYDO (g0 M): vi> Y ((€x o Np) O (gx 0 M) (vp).
k=1

Then, the primal problem becomes

mi)l:ér;{lize f@) —(x|z)+((LoN)U(goM)) (Lx —r)+ ¢(x), (43)
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and the dual problem becomes

minimize (0* O f*(z — L*N*vy) + £*(v)) + g*(v2) + (N*vy | r).
neYved,
M*vy, = N*v;

Using the same argument as in [7, page 15], we have

Jnf f(x) = {x [2)+ (Lo N) D (g0 M)) (Lx —1) + ¢(x)
= sup —(@" 0 f*)(z = L*N*vy) — £ (v1) — g"(v2) — (N*v1 | r).

ey v ek,
M*vy, = N*v;

(44)
Furthermore, the condition (40) implies that the set of solutions to (8) is non-empty. Further-
more, we derive from (9), (42), and [15, Lemma 2.10] that (41) reduces to a special case of

(11). Moreover, every specific condition in Theorem 1 is satisfied. Therefore, by Theorem
1(iii), we have

{ 2 = 2o LN € 3fi(R1i) + Vig(Fi1, ... X1m)  and MUk = N1
Ni (372 LeiXi —rk — ¥i) € 96 (W1x)  and My € dgj (V2.0),

which is equivalent to

z— L*N*v) € 9f(x1) + Vo(x;) and M*vy; = N*vy;
N(LX  —r—7) € d*®) and My € dg* (D).

We next prove that X; = (X1.1,...,x1.m) € H is a solution to the primal problem and
(v1,v2) = @1.1,.--, V1.5, V2,1, ..., V25) € X XY is asolution to the dual problem. Now,
we have

fGD)+o@x) +(f+9)*(z—L*N*v)) = (x| | z — L*N*vy),
UN(Lx1 —r—=Y)) +0*(v) = (N(Lx1 —r —=Yy) | v1),
g(My) + g*(v2) = (MY | v2),

which implies that

S =& 1z2) +((oN)D(goM)) (Lxy —r) +¢x1)

J@e) = z2) +gMy) + E(N(Lxy —r —y)) + ¢(x1)
—(f + 9" (@ — L*N*v) — (1) — g"(2) — (r | N*oy)
= —(f"0¢")(z — L*"N*v1) — £*(01) — g"(02) — (r | N*vy).

IA

IA

Combining this inequality and (44), we get

S =& 1z2) +((oN)T(goM)) (Lxy —r) +¢(x1)
=xié17f_tf(x) —(x|2)+((LoN)U(goM)) (Lx —r)+ ¢(x)
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and
(f*0¢™)(z — L*N*vy) + £* (1) + g*(02) + (r | N*vy)

m s
- minimize p* 0 ( f'*> (Zi - LZ;N:va) :
el vel, ( ; ' Z ! I<ism

k=1
(Vk e {l,...,s}) M{va = Njvi

S
+ Z (€ i) + gf (ak) + (Nfvik | k).
=1

Therefore, the conclusions follow from Theorem 1 and the fact that the uniform convexity
of a function in ['g(H) at a point in the domain of its subdifferential implies the uniform
monotonicity of its subdifferential at that point. O

Remark 2 Here are some remarks.

(i) In the special case when m = 1 and (Vk € {1, ..., s}) Gx = H1, Lx,; = 1d, algorithm
(41) is reduced to [4, (4.20)]. In the case when m > 1, one can apply algorithm (41) to
multicomponent signal decomposition and recovery problems [8, 9] where the smooth
multivariate function ¢ models the smooth couplings and the first term in (38) models
non-smooth couplings.

(i) Some sufficient conditions, which ensure that (40) is satisfied, are in [7, Proposition
4.2].

In the remainder of this section, we provide some concrete examples in image
restoration [8, 9, 12, 21], which can be formulated as special cases of the problem
(38).

Example I (Image decomposition) Let us consider the case where the noisy image r €
RX*K js decomposed into three parts,

r=Xx1+x2+w,

where w is noise. To find the ideal image X = X| 4+ X, = “the piecewise constant part” +
“the piecewise smooth part”, we propose to solve the following variational problem

1
.. 2 2
minimize —|r —x; —x2[° +e[[Vxilli2 + BIVix2lli 4, (45)
x1€Cy,x6Cy 2

where V and V? are respectively the first and the second order discrete gradient (see
[21, Section 2.1] for their closed form expressions), C and C; are non-empty closed con-
vex subsets of RX*X and model the prior information on the ideal solutions x| and X7,
respectively. The norms || - ||1,2 and || - ||1,4 are, respectively, defined by

I lha: REE S REK 5 ey s ST e D2+ 1vG, )2
1<i,j<K
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and

ez R s xyu ) > > \/|x(i, DI+ 16 DP+lul, DI+ 06, DI
I<i,j<K

The problem (45) is a special case of (38) with

m=2=s, Ny=1Id, N, =1d, M| =1d, M, =1d,

L1’1 =V, L]ﬁz :Lg’l =0, Lz,z = Vz, rr =0, n=0,
gr=1"l2, &=1"l4 €1 =4£2= 0,

fi=tc,, =10, 21=0, 22=0,¢: (x1,x2) > 5llr —x; — x2|%.

We note that in the case when C; = C; = RX*K| the problem (45) was proposed in
[12, (30)].

The next example will be an application to the problem of recovery of an ideal image
from multi-observation [17, (3.4)].

Example 2 Let p, K, (g;)1<i<) be strictly positive integers, let H = RE*K and for every
ief{l,...,p}llet G; = R% and T;: H — G; be a linear mapping. Consider the problem
of recovery of an ideal image X from

~vie{l,...,p}H) ti=Tx+w,

where each w; is a noise component. Let («, 8) € [0, +o0l[?, (wi)1<i<p €10, +oo[?, let Cy
and C> be nonempty, closed convex subsets of 7, model the prior information of the ideal
image. We propose the following variational problem to recover ¥,

P
S Wk
minimize ) ==l — Tex|? + @]l - h2 0 V) O (Bl - ll1.4 0 VZ)(x). (46)
k=1

The problem (46) is a special case of the primal problem (38) with

m=1,s=2, L) =1d, L1, =1d,

fi=wc,, Ni =V, &4 =811z g =l -4 M =V?,

N2y =1d, & = yo), g2 = tc,, Ma=1d, ¢ = 337 ol — Tic - I,
vo = Y el Tl IVII* < 8.

Using the same argument as in [4, Section 5.3], we can check that (40) is satisfied. In the
following experiment, we use p = 2, C» = [0, 11¥*K and C; is defined by [13]

C = {x e REK | (v, jyell, ..., K/8Y 2G,j) =%, j))} ,

where x is the discrete Fourier transform of x. The operators 77 and 7> are convolution
operators with uniform kernel of sizes 15 x 15 and 17 x 17, respectively. Further-
more, w; = wy = 0.5, « = B = 0.001, and w;, wy are white noises with mean
Zero.

The results are presented in the following Table 1 ! and Fig. 1.

'SNR between an image y and the original image ¥ is defined as 20 log,o (| ¥[l/Ily — Y-
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Table 1 Signal-to-noise ratio of the observations and deblurring

n = 300 iterations Observation 1 Observation 2 Result

SNR 21.870 22.850 27.714

Original Observer 1

Observer 2 Restoration

Fig. 1 Deblurring by algorithm (41)
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