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Abstract We study the equilibrium problems with strongly pseudomonotone bifunctions in
real Hilbert spaces. We show the existence of a unique solution. We then propose a strongly
convergent generalized projection method for equilibrium problems with strongly pseu-
domonotone bifunctions. The proposed method uses only one projection without requiring
Lipschitz continuity. Application to variational inequalities is discussed.

Keywords Strongly pseudomonotone equilibria · Solution existence · Generalized
projection method

Mathematics Subject Classification (2010) 47J20 · 47H09 · 90C25

1 Introduction

Throughout the paper, we suppose that H is a real Hilbert space endowed with weak topol-
ogy defined by the inner product 〈·, ·〉 and its reduced norm ‖·‖. Let C ⊆ H be a nonempty
closed convex subset and f : C × C → R be a bifunction satisfying f (x, x) = 0 for
every x ∈ C. As usual, we call such a bifunction an equilibrium bifunction. We consider the
following equilibrium problem:

Find x∗ ∈ C : f (x∗, x) ≥ 0 ∀x ∈ C. (EP)
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This problem is also often called Ky Fan’s inequality due to his contribution to the subject.
Equilibrium problem (EP) gives a unified formulation for some problems such as opti-

mization problems, saddle point, variational inequalities, fixed point, and Nash equilibria,
in the sense that it includes these problems as particular cases (see for instance [4, 6, 22]).

An important approach for solving equilibrium problem (EP) is the subgradient projec-
tion method which can be regarded as an extension of the steepest descent projection method
in smooth optimization. It is well known that when the bifunction f is convex subdifferen-
tiable with respect to the second argument and Lipschitz, strongly monotone on C, one can
choose regularization parameters so that this method linearly convergent (see, e.g., [23]).
However, when f is monotone, the method may not be convergent (see Example 12.1.3
in [9] for monotone variational inequality). In recent years, the extragradient (or double
projection) method developed by Korpelevich in [17] has been extended to obtain conver-
gent algorithms for pseudomonotone equilibrium problems [26]. The extragradient method
requires two projections onto the strategy set C, which in some cases is computational cost.
Recently, in [8, 28], inexact subgradient algorithms using only one projection have been pro-
posed for solving equilibrium problems with paramonotone equilibrium bifunctions. Other
methods such as auxiliary problem principle [18, 24], penalization technique [5, 22], gap
and merit functions [19, 25], and the Tikhonov and proximal point regularization meth-
ods [12–14, 16, 20] are commonly used for equilibrium problems. Solution existence for
equilibrium problems can be found in some papers (see, e.g., [2–4, 6]).

In this paper, we study equilibrium problem (EP) with strongly pseudomonotone bifunc-
tions. We show the existence of a unique solution of the problem. We then propose a
generalized projection method for strongly pseudomonotone equilibrium problems. Three
main features of the proposed method are:

– It uses only one projection without requiring Lischitz continuity allowing strong
convergence;

– It allows that moving directions can be chosen in such a general way taking both the
cost bifunction and the feasible set into account;

– It does not require that the bifunction is subdifferentiable with respect to the second
argument everywhere.

2 Solution Existence

As usual, by PC , we denote the projection operator onto the closed convex set C with the
norm ‖ · ‖, that is,

PC(x) ∈ C : ‖x − PC(x)‖ ≤ ‖x − y‖ ∀y ∈ C.

The following well-known results on the projection operator will be used in the sequel.

Lemma 1 ([1]) Suppose that C is a nonempty closed convex set in H . Then,

(i) PC(x) is singleton and well defined for every x;
(ii) π = PC(x) if and only if 〈x − π, y − π〉 ≤ 0 ∀y ∈ C;
(iii) ‖PC(x) − PC(y)‖2 ≤ ‖x − y‖2 − ‖PC(x) − x + y − PC(y)‖2 ∀x, y ∈ C.

We recall some well-known definitions on monotonicity (see, e.g., [2, 3, 6]).

Definition 1 A bifunction φ : C × C → R is said to be
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(a) strongly monotone on C with modulus β > 0 (shortly β-strongly monotone) if

φ(x, y) + φ(y, x) ≤ −β‖x − y‖2 ∀x, y ∈ C;
(b) monotone on C, if

φ(x, y) + φ(y, x) ≤ 0 ∀x, y ∈ C;
(c) strongly pseudomonotone on C with modulus β > 0 (shortly β-strongly pseudomono-

tone), if

φ(x, y) ≥ 0 =⇒ φ(y, x) ≤ −β‖x − y‖2 ∀x, y ∈ C;
(d) pseudomonotone on C, if

φ(x, y) ≥ 0 =⇒ φ(y, x) ≤ 0 ∀x, y ∈ C.

From the definitions, it follows that (a) ⇒ (b) ⇒ (d) and (a) ⇒ (c) ⇒ (d), but there
is no relationship between (b) and (c). Furthermore, if f is strongly monotone (respec-
tively pseudomonotone) with modulus β > 0, then it is strongly monotone (respectively
pseudomonotone) with modulus β ′ for every 0 < β ′ ≤ β.

The following example, for strongly pseudomonotone, bifunction is a generalization of
that for strongly pseudomonotone operator in [15]. Let

f (x, y) := (R − ‖x‖)g(x, y), Br := {x :∈ H : ‖x‖ ≤ r},
where g is strongly monotone on Br with modulus β > 0, for instance g(x, y) = 〈x, y−x〉,
and R > r > 0. We see that f is strongly pseudomonotone on Br . Indeed, suppose that
f (x, y) ≥ 0. Since x ∈ Br , we have g(x, y) ≥ 0. Then, by β-strong monotonicity of g on
Br , g(y, x) ≤ −β‖x − y‖2 for every x, y ∈ Br . From the definition of f and y ∈ Br , it
follows that

f (y, x) = (R − ‖y‖)g(y, x) ≤ −β(R − ‖y‖)‖x − y‖2 ≤ −β(R − r)‖x − y‖2.
Thus, f is strongly pseudomonotone on Br with modulus β(R − r).

The following lemma, that will be used to prove Proposition 1 below, is a direct
consequence of Theorem 3.2 in [3].

Lemma 2 Let φ : C×C → R be an equilibrium bifunction such that φ(·, y) is hemicontin-
uous for each y ∈ C and φ(x, ·) is lower semicontinuous convex for each x ∈ C. Suppose
that the following coercivity condition holds

∃ compact set W : (∀x ∈ C \ W, ∃y ∈ C : φ(x, y) < 0).

Then, the equilibrium problem (EP) has a solution.

In what follows, we need the following blanket assumptions on the bifunction f :

(A1) For each x ∈ C, the function f (x, ·) is lower semicontinuous, convex (not neces-
sarily subdifferentiable everywhere), and for each y ∈ C, the function f (·, y) is
hemicontinuous on C;

(A2) f is β-strongly pseudomonotone on C.

It is well known that if f is strongly monotone on C, then under assumption (A1),
equilibrium problem (EP) has a unique solution. The following lemma extends this result to
(EP) with strongly pseudomonotone bifunctions.
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Proposition 1 Suppose that f is β-strongly pseudomonotone on C, then under assumption
(A1), Problem (EP) has a unique solution.

Proof First, suppose that C is unbounded. Then, by Lemma 2, it is sufficient to prove the
following coercivity condition:

∃ closed ball B : (∀x ∈ C \ B, ∃y ∈ C ∩ B : f (x, y) < 0). (C0)

Indeed, otherwise, for every closed ball Br around 0 with radius r , there is xr ∈ C \Br such
that f (x, y) ≥ 0 ∀y ∈ C ∩ Br .

Fix r0 > 0, then for every r > r0, there exists xr ∈ C \ Br such that f (xr , y0) ≥ 0 with
y0 ∈ C ∩ Br0 . Thus, since f is β-strongly pseudomonotone, we have

f (y0, xr ) + β‖xr − y0‖2 ≤ 0 ∀r. (1)

On the other hand, since C is convex and f (y0, ·) is convex on C, it is well known from
convex analysis that there exists x0 ∈ C such that ∂2f (y0, x0) �= ∅, where ∂2f (y0, x0)

stands for the subdifferential of the convex function f (y0, ·) at x0. Take w∗ ∈ ∂2f (y0, x0),
by the definition of subgradient one has

〈w∗, x − x0〉 + f (y0, x0) ≤ f (y0, x) ∀x.

With x = xr it yields

f (y0, xr ) + β‖xr − y0‖2 ≥ f (y0, x0) + 〈w∗, xr − x0〉 + β‖xr − y0‖2
≥ f (y0, x0) − ‖w∗‖‖xr − x0‖ + β‖xr − y0‖2.

Letting r → ∞, since ‖xr‖ → ∞, we obtain f (y0, xr ) + β‖xr − y0‖2 → ∞ which
contradicts (1). Thus, the coercivity condition (C0) must hold true, then by virtue of Lemma
2, equilibrium problem (EP) admits a solution.

In the case, C is bounded, the proposition is a consequence of Ky Fan’s theorem [10].
The uniqueness of the solution is immediate from the strong pseudomonotonicity of

f .

We recall [11] that an operator F : C → H is said to be strongly pseudomonotone on
C with modulus β > 0, shortly β-strongly pseudomonotone, if

〈F(x), y − x〉 ≥ 0 =⇒ 〈F(y), y − x〉 ≥ β‖y − x‖2 ∀x, y ∈ C.

In order to apply the above proposition to the variational inequality problem

Find x∗ ∈ C : 〈F(x∗), y − x∗〉 ≥ 0 ∀y ∈ C, (VI)

where F is a strongly pseudomonotone operator onC, we define the bifunction f by taking

f (x, y) := 〈F(x), y − x〉. (2)

It is obvious that x∗ is a solution of (VI) if and only if it is a solution of equilibrium problem
(EP) with f defined by (2). Moreover, it is easy to see that F is β-strongly pseudomonotone
and hemicontinuous on C if and only if so is f . The following solution existence result,
which is an immediate consequence of Proposition 1, seems to have not appeared in the
literature.

Corollary 1 Suppose that F is hemicontinuous and strongly pseudomonotone on C. Then,
the variational inequality problem (VI) has a unique solution.
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3 A Generalized Projection Method for Strongly Pseudomonotone EPs

For ε ≥ 0, we call a point xε ∈ C an ε-solution to Problem (EP), if f (xε, y) ≥ −ε for
every y ∈ C. The following well-known lemma will be used in the proof of the convergence
theorem below.

Lemma 3 [21] Suppose that {αk}∞0 is an infinite sequence of positive numbers satisfying

αk+1 ≤ αk + ξk ∀k

with
∑∞

k=0 ξk < ∞. Then, the sequence {αk} is convergent.

Theorem 1 Suppose that assumptions (A1) and (A2) are satisfied. Then,

(i) if the algorithm terminates at iteration k, then xk is an ε-solution;
(ii) it holds that

‖xk+1 − x∗‖2 ≤ (1 − 2βρk)‖xk − x∗‖2 + 2ρ2
k + ρ2

k‖gk‖2 ∀k, (5)

where x∗ is the unique solution of (EP). Furthermore, if the algorithm does not ter-
minate, then the sequence {xk} strongly converges to the solution x∗ whenever the
sequence {gk} is bounded.

Proof (i) If the algorithm terminates at Step 2, then gk = 0 and ρk ≤ ε. Then, by (4),
f (xk, y) ≥ −ρk ≥ −ε for every y ∈ C. Hence, xk is an ε-solution. If the algorithm
terminates at Step 3, then xk is an ε-solution because of Lemma 1 (ii) and (4).

(ii) Since xk+1 = PC(xk − ρkg
k), one has

‖xk+1 − x∗‖2 ≤ ‖xk − ρkg
k − x∗‖2

= ‖xk − x∗‖2 − 2ρk〈gk, xk − x∗〉 + ρ2
k‖gk‖2. (6)
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Applying (4) with y = x∗, we obtain
f (xk, x∗) + 〈gk, xk − x∗〉 ≥ −ρk,

which implies
− 〈gk, xk − x∗〉 ≤ f (xk, x∗) + ρk. (7)

Then, it follows from (4) that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2ρk

(
f (xk, x∗) + ρk

)
+ ρ2

k‖gk‖2. (8)

Since x∗ is a solution, f (x∗, xk) ≥ 0, it follows from β-strong pseudomonotonicity of f

that
f (xk, x∗) ≤ −β‖xk − x∗‖2.

Combining the last inequality with (8), we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2βρk‖xk − x∗‖2 + 2ρ2
k + ρ2

k‖gk‖2
= (1 − 2βρk)‖xk − x∗‖2 + 2ρ2

k + ρ2
k‖gk‖2. (9)

Now suppose that the algorithm does not terminate, and that ‖gk‖ ≤ C for every k. Then,
it follows from (9) that

‖xk+1 − x∗‖2 ≤ (1 − 2βρk)‖xk − x∗‖2 + (2 + C2)ρ2
k

= ‖xk − x∗‖2 − λk‖xk − x∗‖2 + (2 + C2)ρ2
k , (10)

where λk := 2βρk . Since
∑∞

k=1 ρ2
k < ∞, in virtue of Lemma 3, we can conclude that the

sequence {‖xk − x∗‖2} is convergent. In order to prove that the limit of this sequence is 0,
we sum up inequality (10) from 1 to k + 1 to obtain

‖xk+1 − x∗‖2 ≤ ‖x1 − x∗‖2 −
k∑

j=1

λj‖xj − x∗‖2 + (2 + C2)

k∑

j=2

ρ2
j ,

which implies

‖xk+1 − x∗‖2 +
k∑

j=1

λj‖xj − x∗‖2 ≤ ‖x1 − x∗‖2 + (2 + C2)

k∑

j=1

ρ2
j . (11)

Since λj := 2βρj , we have

∞∑

j=1

λj = 2β
∞∑

j=1

ρj = ∞. (12)

Note that {xk} is bounded and that
∑∞

j=0 ρ2
j < ∞, we can deduce from (11) and (12) that

‖xk − x∗‖2 → 0 as k → ∞.

The algorithm described above can be regarded as an extension of the one in [28] in a
Hilbert space setting. The main difference lies in the determination of gk given by formula
(4). This formula is motivated from the projection-descent method in optimization, where
a moving direction must be both descent and feasible. Such a direction thus involves both
the objective function and the feasible domain. In fact moving directions defined by (4) rely
not only upon the gradient or a subgradient as in [28] and other projection algorithms for
equilibrium problems, but also upon the feasible set. Points (i), (ii), and (iii) in Remark 1
below discuss more detail on formula (4).
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Remark 1 (i) A subproblem in this algorithm is to find a moving direction gk satisfying
(4). It is obvious that if gk is a ρk-subgradient of the convex function f (xk, ·) at xk ,
then gk satisfies (4).

When mk := infy∈C f (xk, y) > −∞, it is easy to see that if gk is any vector
satisfying

〈gk, y − xk〉 ≤ mk + ρk := tk ∀y ∈ C,

i.e., gk is a vector in tk-normal set Ntk
C (xk) of C at xk , then (4) holds true.

(ii) For variational inequality (VI) with f (x, y) defined by (2), formula (4) takes the form

〈F(xk), y − xk〉 + 〈gk, xk − y〉 ≥ −ρk ∀y ∈ C, (13)

which means that gk − F(xk) ∈ N
ρk

C (xk), where N
ρk

C (xk) denotes the ρk-normal set
of C at xk , that is,

N
ρk

C (xk) := {wk : 〈wk, y − xk〉 ≤ ρk ∀y ∈ C}.
In an usual case, when C is given by C := {x ∈ H : g(x) ≤ 0} with g being a subd-
ifferentiable continuous convex function, one can take gk = F(xk) when g(xk) < 0,
and gk may be any vector such that gk − F(xk) ∈ ∂g(xk) when g(xk) = 0. Since

NC(xk) = {0} if g(xk) < 0, and NC(xk) ⊇ ∂g(xk) if g(xk) = 0,

in both cases gk − F(xk) ∈ NC(xk) ⊂ N
ρk

C (xk) for any ρk ≥ 0.
(iii) The direction gk satisfying gk − F(xk) ∈ N

ρk

C (xk) takes not only the cost operator
F , but also the constrained set C into account. This is helpful in certain cases, for
example, it allows avoiding the projection onto C. Indeed, it may happen that−F(xk)

is not a feasible direction of C at xk , but −gk is it.
(iv) Note that since f (xk, ·) is convex, for every ρk > 0, a ρk-subgradient of the function

f (xk, ·) does always exist at every point in dom f (xk, ·), but it may fail to exist
if ρk = 0. Thus, the proposed algorithm does not require that the convex function
f (xk, ·) is subdifferentiable at every point in its domain.

(v) For implementing the algorithm, one suggests that we take ρk := ερ′
k , where ρ′

k is a
decreasingly monotone positive sequence satisfying (3).

Remark 2 If f is jointly continuous on an open set � × � containing C × C, then {gk}
is bounded whenever ρk → 0 (see, e.g., Proposition 3.4 in [29]). In the case of variational
inequality (VI) with f (x, y) defined by (2), if gk = F(xk) and F is continuous, then {gk}
is bounded because of boundedness of {xk}.

4 A Numerical Example

We consider an oligopolistic equilibrium model of the electricity markets (see, e.g., [7, 27]).
In this model, there are nc companies, each company i may possess Ii generating units. Let
x denote the vector whose entry xi stands for the power generating by unit i. Following [7],
we suppose that the price p is a decreasing affine function of σ with σ = ∑ng

i=1 xi where
ng is the number of all generating units, that is,

p(x) = a0 − 2
ng
∑

i=1

xi = p(σ),
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Table 1 The lower and upper
bounds for the power generation
and companies

Companies Generation x
g

min x
g
max xc

min xc
max

1 1 0 80 0 80

2 2 0 80 0 130

2 3 0 50 0 130

3 4 0 55 0 125

3 5 0 30 0 125

3 6 0 40 0 125

where a0 > 0 is a constant (in general is large). Then, the profit made by company i is given
by

fi(x) = p(σ)
∑

j∈Ii

xj −
∑

j∈Ii

cj (xj ),

where cj (xj ) is the cost for generating xj . Unlike [7], we do not suppose that the cost cj (xj )

is differentiable, but

cj (xj ) := max{c0j (xj ), c
1
j (xj )}

with

c0j (xj ) := α0
j

2
x2
j + β0

j xj + γ 0
j , c1j (xj ) := α1

j xj + β1
j

β1
j + 1

γ
−1/β1

j

j (xj )
(β1

j +1)/β1
j ,

where αk
j , β

k
j , γ k

j (k = 0, 1) are given parameters.

Let xmin
j and xmax

j be the lower and upper bounds for the power generating by the unit j .
Then, the strategy set of the model takes the form

C := {x = (x1, . . . , xng )T : xmin
j ≤ xj ≤ xmax

j ∀j}.
Define the matrices A, B by taking

A := 2
nc

∑

i=1

(1 − qi)(qi)T , B := 2
nc

∑

i=1

qi(qi)T , (14)

where qi := (qi
1, . . . , q

i
nq )

T with

qi
j :=

{
1 if j ∈ Ii,

0 otherwise,
(15)

Table 2 The parameters of the
generating unit cost functions Gen. α0

j β0
j γ 0

j α1
j β1

j γ 1
j

1 0.04 2.00 0.00 2.00 1.00 25.00

2 0.04 1.75 0.00 1.75 1.00 28.57

3 0.12 1.00 0.00 1.00 1.00 8.00

4 0.02 3.25 0.00 3.25 1.00 86.21

5 0.05 3.00 0.00 3.00 1.00 20.00

6 0.05 3.00 0.00 3.00 1.00 20.00
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Table 3 The power made by three companies

x1 x2 x3 x4 x5 x6 Cpu(s)

46.543 31.947 15.019 20.989 12.581 12.612 19.991

and let

a := −a0

nc
∑

i=1

qi, c(x) :=
ng
∑

j=1

cj (xj ). (16)

Then, by Lemma 7 in [27], the equilibrium problem being solved can be formulated as

x ∈ C : f (x, y) :=
((

A + 3

2
B

)

x + 1

2
By + a

)T

(y − x) + c(y) − c(x) ≥ 0 ∀y ∈ C.

(EP)
Note that f (x, y)+f (y, x) = −(y−x)T (A+B)(y−x)T . Thus, since A+B is not positive
semidefinite, f may not be monotone on C. However, if we replace f by f1 defined as

f1(x, y) := f (x, y) − 1

2
(y − x)T B(y − x),

then f1 is strongly pseudomonotone on C. In fact, one has

f1(x, y) + f1(y, x) = −(y − x)T (A + 2B)(y − x).

Thus, if f1(x, y) ≥ 0, then

f1(y, x) ≤ −(y − x)T (A + 2B)(y − x) ≤ −λ‖y − x‖2
for some λ > 0. The following lemma is an immediate consequence of the auxiliary
principle (see, e.g., [23, 24]).

Lemma 4 The problem

Find x∗ ∈ C : f1(x
∗, y) ≥ 0 ∀y ∈ C

is equivalent to the one

Find x∗ ∈ C : f1(x
∗, y) + 1

2
(y − x∗)T B(y − x∗) ≥ 0 ∀y ∈ C (EP1)

in the sense that their solution sets coincide.

In virtue of this lemma, we can apply the proposed algorithm to the model by solving the
equilibrium problem (EP1), which in turns, is just equilibrium problem (EP).

We test the proposed algorithm for this problem which corresponds to the first model in
[7] where three companies (nc = 3) are considered with a0 := 387 and the parameters are
given in Tables 1 and 2.

We implement Algorithm 1 in Matlab R2008a running on a Laptop with Intel(R)
Core(TM) i3CPU M330 2.13 GHz with 2 GB Ram. We choose ε = 103 and ρk := ε

k
for

every k. The computational results are reported in Table 3 with the starting point x1 = 0.
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