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complete graph) is strongly regular if any two distinct vertices have T common neighbors if
they are adjacent and have & common neighbors if they are not adjacent. We here describe
the parameters n, r, T, and 0 for strongly regular graphs of order 3(2p 4+ 1) and 4(2p + 1),
where 2p + 1 is a prime number.

Abstract We say that a regular graph G of order n and degree r > 1 (which is not the
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1 Introduction

Let G be a simple graph of order n. The spectrum of G consists of the eigenvalues A1 >
Ay > --- > X, ofits (0,1) adjacency matrix A and is denoted by o (G). We say that a regular
graph G of order n and degree r > 1 (which is not the complete graph K,,) is strongly
regular if any two distinct vertices have T common neighbors if they are adjacent and have
6 common neighbors if they are not adjacent. Besides, we say that a regular connected
graph G is strongly regular if and only if it has exactly three distinct eigenvalues [1]. Let
A1 = r, Ay and A3 denote the distinct eigenvalues of G. Let m; = 1, m» and m3 denote the
multiplicity of r, Ap, and A3, respectively. The results obtained in this work are based on the
following assertion [2, 3].

Theorem 1 Let G be a connected strongly regular graph of order n and degree r. Then
mam38% = nrv where 8§ = Ao — Ay and7 = (n — 1) — r.

M. Lepovi¢ (0<)
Tihomira Vuksanovica 32, Kragujevac 34000, Serbia
e-mail: lepovic@kg.ac.rs

@ Springer


mailto:lepovic@kg.ac.rs

596 M. Lepovi¢

Further, let7 = (n — 1) — r, Ay = —A3 — 1, anﬁd A3 = —Xiy — 1 denote the distinct
eigenvalues of the strongly regular graph G, where G denotes the complement of G. It is
knownthat7 =n —2r —2+6 and = n — 2r + v where 7 = t(G) and 0 = 6(G).

Remark 1 (i) A strongly regular graph G of order 4n + 1 and degree r = 2n witht =n —1
and 6 = n is called the conference graph; (ii) a strongly regular graph is the conference
graph if and only if m> = m3; and (iii) if mo # m3, then G is an integral! graph.

Remark 2 If G is a disconnected strongly regular graph of degree r, then G = mK, 1,
where m H denotes the m-fold union of the graph H. We know that G is a disconnected
strongly regular graph if and only if 6 = 0.

Due to Theorem 1, we have recently obtained the following results [3]: (i) there is no
strongly regular graph of order 4p + 3 if 4 p 4 3 is a prime number, and (ii) the only strongly
regular graphs of order 4 p+ 1 are conference graphs if 4 p+ 1 is a prime number. Besides, in
the same work, we have described the parameters n, r, T, and 6 for strongly regular graphs
of order 2(2p + 1), where 2p + 1 is a prime number. We now proceed to establish the
parameters of strongly regular graphs of order 3(2p 4+ 1) and 4(2p + 1) where 2p + 1 is a
prime number, as follows. First,

Proposition 1 (Elzinga [1]) Let G be a connected or disconnected strongly regular graph
of order n and degree r. Then,

@@ —-0+Dr—m—10=0. D

Proposition 2 (Elzinga [1]) Let G be a connected strongly regular graph of order n and
degree r. Then,

2r + (v = 0)(ma +m3) + 8(ma —m3) =0, (2)
where § = Ay — A3.

Second, in what follows, (x, y) denotes the greatest common divisor of integers x, y € N
while x | y means that x divides y.

2 Main Results

Remark 3 In the following two Theorems 2 and 3, the complements of strongly regular

graphs appear in pairs in (k%) and (EO) classes, where k denotes the corresponding number
of a class.

Proposition 3 Let G be a connected strongly regular graph of order 3(2p + 1) and degree
r, where?* 2p + 1 is a prime number. If p > 2, then G is a conference graph if and only if
§2=3Q2p+1).

"'We say that a connected or disconnected graph G is integral if its spectrum o (G) consists of integral values.

2The connected strongly regular graphs of order 9 are (i) the conference graph of degree r = 4 with t = 1
and 6 = 2. Its eigenvalues are 1, = | and A3 = —2 with my = 4 and m3 = 4 and (ii) 3K3 of degree r = 6
with 7 = 3 and 6 = 6. Its eigenvalues are A, = 0 and A3 = —3 with my = 6 and m3 = 2.
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Proof We note first that if G is a conference graph, then 82 = 3(2p + 1). Conversely, let
us assume that §2 = 32p+1). Since 31 (2p + 1), it follows that 82isnota perfect square.
Since § = Ay — A3 ¢ N, it turns out that G is not integral, which proves the statement. [

Remark 4 Since the strongly regular graphs of order n = 9 are completely described, in the
sequel, it will be assumed that p > 2.

Proposition 4 Let G be a connected strongly regular graph of order 3(2p-+1) and degree r,
where 2p + 1 is a prime number. If § = 2p + 1, then G belongs to the class (1°) represented
in Theorem 2.

Proof Using Theorem 1, we have (2p + 1)mom3 = 3r r, which means that 2p + 1) | r or
2p + 1) | 7. Without loss of generality, we may consider only the case when 2p + 1) | r.

Case I (r =2p + 1). Then, mymsz = 3(4p + 1) and my + m3 = 6p + 2, which provides
that m, and m3 are the roots of the quadratic equation m2 — (6 p+2m+3@p+1)=0.
So we find that m,, m3 = w where A2 = (6p — 2)2 — 12, a contradiction because
A? is not a perfect square for p > 2.

Case 2 (r = 2(2p + 1)). Then mym3 = 12p which yields that m, = 6p and m3 = 2 or

my = 2 and m3z = 6p. Consider first the case when my = 6p and m3 = 2. Using (2), we

obtaint —6 = —(2p+1). Since A2 3 = Fgﬂ, we geteasily Ao =0and A3 = — 2p+1),

which proves that G is the strongly regular graph 3K;,. of degree r = 4p + 2 with
T =2p+ 1and 6 = 4p + 2. Consider the case when m, = 2 and m3 = 6p. Using (2), we
obtaint — 0 = W, a contradiction because 3p + 1) 1 3(p — 1). O
Proposition 5 There is no connected strongly regular graph G of order 32p + 1) and
degree r with§ = 2(2p + 1), where 2p + 1 is a prime number.

Proof Contrary to the statement, assume that G is a strongly regular graph with
8 = 2(2p + 1). Using Theorem 2, we have 4(2p + 1)mym3 = 3r7 which means that
2p+ 1) | ror 2p + 1) | r. Consider the case when r = 2p + 1 and ¥ = 4p + 1.
Then ,4mym3 = 3(4p + 1), a contradiction because 4 1 (4p + 1). Consider the case when
r =22p+1)andr = 2p. Then, mr + m3 = 6 p+2 and mpyms = 3 p, a contradiction. [

Proposition 6 Let G be a connected strongly regular graph of order 3(2p + 1) and degree
r, where 2p + 1 is a prime number. [f my = 2p + 1 and m3 = 4p + 1, then G belongs to

the class (6°) or (?)) represented in Theorem 2.

Proof Using (2), we obtain p§ = r+(t—6)(3p+1). Since § = Ay—Az and 1 —60 = Ay +A3,
we arrive at 2p(2|A3| —A2) =t —60 +r.Sincer < 6p+ 1,0 <randt < r, it follows
that 0 < t — 0 +r < 12p. Let 2|]A\3] — Ap = ¢t wheret = 0,1,...,6. Let A3 = —k
where k is a positive integer. Then (i) A = 2k —¢; (i) 1 — 0 = k —¢; (i) § = 3k — ¢;
and (iv) r = 2p + 1)t — k. Since 82 = (r — 0)2 + 4(r — ) (see [1]), we obtain (V)
0=Q2p+ Dt — (2k% — (t — Dk). Using (ii), (iv), and (v), it is not difficult to see that (1)
is transformed into

2(p + Dr? —=3Q2p + D1t + 6k*> — 3kt — 1) = 0. 3)
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Case 1 (t = 0). Using (i), (ii), (iii), and (iv), we find that A\ = 2k and A3 = —k, 7 —6 =k,
8 = 3k, and r = — k, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that A, = 2k — 1 and A3 = —k,
t—0=k—-1,=3k—-1,r=02p+1)—k,and 6 = (2p+1)—2k2.Using(3),we
find that 4p 4+ 1 = 3k(2k — 1). Replacing k with 4k — 1, we arrive at p = 24k% — 15k +2,
where k is a positive integer. So we obtain that G is a strongly regular graph of order
3(48k% — 30k + 5) and degree r = 2(3k — 1)(8k — 3) with t = 2k — 1)(8k — 1) and
0 = 2k — 1)(8k — 3).

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that A = 2(k — 1) and A3 = —k,
T—0=k—-2,6=3k—-2,r=2Q2p+1)—k,and 6 =2Q2p+ D — Qk2—k). Using (3), we
find that4p+1 = 3(k—1)(2k—1). Replacing k with 4k+2, we arrive at p = 24k2415k+-2,
where k is a non-negative integer. So we obtain that G is a strongly regular graph of order
3(48k% + 30k + 5) and degree r = 8(3k + 1)(4k + 1) with T = 4(4k + 1)> + 4k and
0 = 4(4k + 1)2.

Case 4 (t = 3). Using (i), (ii), (iii), (iv), and (v), we find that A, = 2k — 3 and A3 = —k,
T—0=k—=3,8=3k—-1),r =3Qp+1)—k,and0 = 32p+1) — (2k? — 2k). Using (3),
we find that (k —1)(2k —3) = 0. So we obtain that G is the complete graph, a contradiction.

Case 5 (t =4, 5, 6). Using (3), we find that (x) 8p + 6k — 21k 420 = 0; (y) 20p + 6k> —
27k +35=0and (z) 12p + 2k —11k+18=0fort =4, =5and t = 6, respectively,
a contradiction. O

Proposition 7 Let G be a connected strongly regular graph of order 3(2p + 1) and degree
r, where 2p + 1 is a prime number. If mo = 2(2p + 1) and m3z = 2p, then G belongs to the

class (2°) or (4%) or (54)) represented in Theorem 2.

Proof Using (2), we obtain 2p(|A3z| —2A3) = (t —6)+ 38+ r. Since (t —0) 4+ 85 = 2X1, and
a2 < |95 |1 (see [3]), it follows that 0 < (t—6)+8+r < 12p.Let |h3]|—242 =  where
t=1,2,...,6.Let Ay = k where k is a non-negative integer. Then (i) A3 = — (2k 4 1); (ii)
T—0=—(k+1); (i) =3k+1t;(iv)r =2(pt —k);and (v) 0 = 2pt — k% + (1 +2)k).
Using (ii), (iv), and (v), we can easily see that (1) is transformed into

t(t —3)p+3kk+1) =0. (€

Case 1 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that A, = k and A3 = — 2k + 1),
T—-0=—(k+1),6§=3k+1,r=2(p—k),and 6 =2p — (2k? + 3k). Using (4), we find
that 2p = 3k(k+1). So we obtain that G is a strongly regular graph of order 3(3k>+3k+1)
and degree r = k(3k 4+ 1) with t = k> — k — 1 and = k2, where k > 2.

Case 2 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that A = k and A3 = —2(k + 1),
T—0=—(k+2),5§=3k+2,r =2Q2p—k),and0 =4p— (2k2 +4k). Using (4), we find
that 2p = 3k(k+1). So we obtain that G is a strongly regular graph of order 3(3k% 43k +1)
and degree r = 2k(3k + 2) witht = 4k +k —2and 6 = 2k(2k + 1).

Case 3 (t = 3). Using (i), (ii), (iii), (iv), and (v), we find that A = k and A3 = — (2k + 3),
T—0=—(k+3),8=3k+1),r =2C3p —k),and 0 = 6p — (2k? + 5k). Using (4),
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we find that k(k + 1) = 0. So we obtain that G is a strongly regular graph (2p + 1)K3 of
degree r = 6p witht = 6p —3 and 6 = 6p.

Case4 (t = 4,5, 6). Using (4), we find that (x) 4p +3k> 43k = 0; (y) 10p +3k*>+3k = 0
and (z) 6p + k> +k =0forr =4,t = 5and t = 6, respectively, a contradiction. O

Proposition 8 Let G be a connected strongly regular graph of order 3(2p + 1) and degree
r, where 2p + 1 is a prime number. If m3 = 2p + 1 and my = 4p + 1, then G belongs to

the class (60) or (19 represented in Theorem 2.

Proof Using (2), we obtain 2p(|A3] — 2A2) = © — 6 + r. Let |A3] — 24, = t where
t =0,1,...,6. Let A, = k where k is a non-negative integer. Then, (i) A3 = — (2k + ¢);
()t —0=—(k+1); ()5 =3k+t;(iv)r=Q2p+ Dt +k;and (v) 0 = 2p + 1)t —
k% + (r — Dk). Using (ii), (iv), and (v), we can easily see that (1) is reduced to

20p+ D2 =3Q2p + Dt + 6k> +3k(2t — 1) = 0. 5)

Case 1 (t = 0). Using (i), (ii), (iii), (iv), and (v), we find that ., = kand A3 = — 2k, 1—0 =
—k,8 =3k,r =kand & = — k(2k — 1), a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that ., = k and A3 = — 2k + 1),
T—0=—(k+1),§=3k+1,r=02p+1)+k,andd = (2p+1) —2k2.Using(5),we
find that 4p 4+ 1 = 3k(2k + 1). Replacing k with 4k + 1, we arrive at p = 24k% + 15k + 2,
where k is a non-negative integer. So we obtain that G is a strongly regular graph of order
3(48k> + 30k + 5) and degree r = 2(3k + 1)(8k + 3) with T = (2k + 1)(8k + 1) and
0 = (2k + 1)(8k + 3).

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that A, = k and A3 = —2(k + 1),
T—0=—-—k+2),=3k+2,r=2Q2p+1)+k,and 6 =2Q2p+ 1) — (k> + k).
Using (5), we find that 4p + 1 = 3(k + 1)(2k + 1). Replacing k with 4k — 2, we arrive at
p = 24k* — 15k + 2, where k is a positive integer. So we obtain that G is a strongly regular
graph of order 3(48k%—30k+5) and degree r = 8(3k—1)(4k—1) with t = 4(4k — 1)2—4k
and 6 = 4(4k — 1),

Case4 (t =3,4,5,6). Using (5), we find that (x) 2k%+5k+3=0; (y)8p+ 6k% + 21k +
20 = 0; () 20p + 6k> 427k +35 = 0 and (W) 12p+2k> +11k+18 = O fort = 3,4, 5, 6,
respectively, a contradiction. O

Proposition 9 Let G be a connected strongly regular graph of order 3(2p + 1) and degree
r, where 2p + 1 is a prime number. If m3 = 2(2p + 1) and my = 2p, then G belongs to the

class (ZO) or (59 represented in Theorem 2.

Proof Using (2), we obtain 2p(2|A3] —X2) = (t —0) — 6 +r. Since (r —60) —§ = 213 and
I3l < L%E | (see [3]), it follows that —6p < (t —6) — 8 +r < 6p. Let 2[A3| — Ar =1
where t = 0, £1, £2, 3. Let A3 = — k where £ is a positive integer. Then (i) A, = 2k —¢;
(i)t —0 =k—1;(iii) 8 = 3k —1; (iv) r = 2(pt +k); and (v) 0 = 2pt — (2k? — (t + 2)k).
Using (ii), (iv), and (v), we can easily see that (1) is reduced to

t(t—=3)p+3k(k—1)=0. (6)
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Case 1 (t = 0). Using (i), (ii), (iii), (iv), and (v), we find that A = 2k and A3 = —k,
T—0 =k §=23kr =2k and @ = — 2k* + 2k. Using (6), we find that k(k — 1) = 0. So
we obtain that G is disconnected, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that A, = 2k — 1 and A3 = —k,
T—0=k—1,8=3k—1,r=2(p+k),and 0 =2p — (2k* — 3k). Using (6), we find that
2p = 3k(k—1). Replacing k with k41, we obtain that G is a strongly regular graph of order
3(3k? 4 3k + 1) and degree r = (k + 1)(3k +2) witht = (k + 1)> + kand 6 = (k + 1)%.

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that A = 2(k — 1) and A3 = —k,
T—0=k—2,8=3k—2,r=2Q2p+k),and 0 = 4p — (2k?> — 4k). Using (6), we find
that 2p = 3k(k — 1). Replacing k with k 4 1, we obtain that G is a strongly regular graph
of order 3(3k% + 3k + 1) and degree r = 2(k + 1)(3k + 1) with T = 4k* + 7k + 1 and
6 =2(k + 1)(2k + 1), where 3 k > 2.

Case 4 (t+ = 3). Using (i), (ii), (iii), (iv) and (v) we find that A, = 2k — 3 and X3 = —k,
T—0=k—3,8=3(k—1),r=23p+k),and 0 = 6p — (2k* — 5k). Using (6) we find
that k(k — 1) = 0. So we obtain that G is the complete graph, a contradiction.

Case 5 (t = —1,—-2,-3). Using (v), we find that (x) 6 = —2p — 2k% + k; (y) 6 =
—4p —2k%;and (z) 0 = —6p — 2k®> —k fort = —1,¢t = —2, and t = —3, respectively, a
contradiction. O

Theorem 2 Let G be a connected strongly regular graph of order 3(2p + 1) and degree r,
where 2p + 1 is a prime number. Then G is one of the following strongly regular graphs:

(1%) G is the strongly regular graph 3K3pt1 0f ordern = 3(2p+1) and degreer = 4p+2
witht =2p+ 1and 0 = 4p + 2, where p € N and 2p + 1 is a prime number. Its
eigenvalues are . = 0and A3 = —(2p + 1) withmy = 6p and m3z = 2;

(2% G is the strongly regular graph (2p + 1)K3 of order n = 3(2p + 1) and degree
r=6pwitht =6p —3and0 = 6p, where p € Nand2p + 1 is a prime number.
Its eigenvalues are Ay = 0 and A3 = =3 withmy =22p + 1) and m3z = 2p;

(3% G is the conference graph of order n = 3(4k — 1) and degree r = 6k — 2 with
T =3k—2and 0 = 3k—1, where k € N and 4k —1 is a prime number. Its eigenvalues
are Ay = —HV/36Ek=D) ”32(4k_l) and M3 = bl BVAICL IV} V32(4k_1) with mo, = 6k — 2 and m3z = 6k — 2;

4% G is the strongly regular graph of order n = 3(3k>+3k+1) and degree r = k(3k+1)
witht = k* —k — 1 and 0 = k?, where k > 2 and 3k + 3k + 1 is a prime number.
Its eigenvalues are Ay = k and A3 = —(2k + 1) with mp = 2(3k2 +3k+ 1) and
m3 = 3k(k + 1);

(4) G is the strongly regular graph of order n = 3(3k* + 3k + 1) and degree
r=2k+DGk+ 1) witht =4k + 7k +1and 6 = 2(k + 1)(2k + 1), where k > 2
and 3k* 4 3k + 1 is a prime number. Its eigenvalues are 1y = 2k and A3 = —(k + 1)
with my = 3k(k + 1) and m3 = 2(3k? + 3k + 1);

3The case when k = 1 is impossible. Indeed, in this case, we have n = 21, r = 16 and 0 = 12, which yields
that T = — 1, a contradiction.
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(5% G is the strongly regular graph of order n = 3(3k* + 3k + 1) and degree
r=(k+1D)Gk+2) witht = (k+ 1)>+kand 6 = (k + 1)%, where k € N and
3kZ+3k+1is a prime number. Its eigenvalues are Ay =2k + 1 and »3 = —(k+ 1)
with my = 3k(k + 1) and m3 = 2(3k> 4 3k + 1);

(5) G is the strongly regular graph of order n = 3(3k* + 3k + 1) and degree
r = 2kGBk +2) witht = 4k*> + k — 2 and 0 = 2kQk + 1), where k € N and
3k% 4 3k + 1 is a prime number. Its eigenvalues are Ay = k and A3 = —2(k + 1) with
mo = 2(3k% + 3k + 1) and m3 = 3k(k + 1);

(6%) G is the strongly regular graph of order n = 3(48k* — 30k + 5) and degree
r=20Bk—1)8k —3)witht = Rk — 1)(8k — 1) and 6 = 2k — 1)(8k — 3), where
k € N and 48k? — 30k + 5 is a prime number. Its eigenvalues are 1, = 8k — 3 and
A3 = —(4k — 1) with my = 48k?> — 30k + 5 and m3 = 3(4k — 1)(8k — 3);

(6) G is the strongly regular graph of order n = 3(48k* — 30k + 5) and degree
r = 8@k — 1)(4k — 1) with T = 4(4k — 1)> — 4k and 6 = 4(4k — 1)%, where
k € N and 48k? — 30k + 5 is a prime number. Its eigenvalues are A, = 4k — 2 and
A3 = —2(4k — 1) with my = 3(4k — 1)(8k — 3) and m3 = 48k> — 30k + 5;

(7% G is the strongly regular graph of order n = 3(48k* + 30k + 5) and degree
r=203k+1)(8k +3) witht = 2k + 1)(8k + 1) and 6 = (2k + 1)(8k + 3), where
k > 0 and 48k* + 30k + 5 is a prime number. Its eigenvalues are Ay = 4k + 1 and
A3 = —(8k + 3) with ma = 3(4k + 1)(8k + 3) and m3 = 48k> + 30k + 5;

(7)) G is the strongly regular graph of order n = 3(48k* + 30k + 5) and degree
r =83k + 1)(4k + 1) with T = 4(4k + 1)> + 4k and 6 = 4(4k + 1)%, where k > 0
and 48k + 30k + 5 is a prime number. Its eigenvalues are Ay = 2(4k + 1) and
A3 = —(4k + 2) with my = 48k? + 30k + 5 and m3 = 3(4k 4 1)(8k + 3).

Proof We note first that if G is a strongly regular graph with > = 3(2p + 1), according to
Proposition 3, it belongs to the class (3°). Consequently, assume that G is an integral (non-
conference) strongly regular graph. Using Theorem 1, we have mym38> = 3(2p + 1)rr.
We shall now consider the following three cases.

Case I (Cp+ 1) | 82). In this case, (2p 4+ 1) | § because G is an integral graph. Since
8 = Ay + |A3] < 6p + 3 (see [3]), it follows that § = 2p + 1 or § = 2(2p + 1). Using
Propositions 4 and 5, it turns out that G belongs to the class (1°).

Case 2 (2p + 1) | mp). Since my + m3 = 6p + 2, it follows that my = 2p 4+ 1 and
m3 =4p+ 1ormy = 2(2p + 1) and m3z = 2p. Using Propositions 6 and 7, it turns out

that G belongs to the class (2°) or (4°) or (?)) or (6°) or (?)).

Case 3 (2p + 1) | m3). Since m3z + my = 6p + 2, it follows that m3 = 2p 4+ 1 and
my =4p+1ormsz = 22p + 1) and mp = 2p. Using Propositions 8 and 9, it turns out

that G belongs to the class (ZO) or (3% or (g)) or (79). O
Proposition 10 Let G be a connected strongly regular graph of order 4(2p + 1) and degree
r, where 2p + 1 is a prime number. If § = 2p + 1, then G belongs to the class (2°)

represented in Theorem 3.

Proof Using Theorem 1, we have (2p 4 1)mom3 = 4r 7, which means that 2p + 1) | r or
(2p + 1) | 7. It is sufficient to consider only the case when 2p + 1) | r.
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Case 1 (r =2p +1). Then, mym3 = 83p + 1) and my + m3 = 8p + 3. So we find that
my, m3 = w where A% = @Bp— 3)2 — 32, a contradiction because AZ is not a perfect
square.

Case 2 (r = 2(2p + 1)). Then mom3 = 8(4p + 1) which yields that ma, my = 3234
where A2 = (8p —3)2 —32(p + 1) and A? = (8p — 6)> + 16p — 59. We can easily verify
that A2 = —39, 73,313 for p = 1, 2, 3, respectively. Since A? is not a perfect square for
p = 1,2,3, we can assume p > 4. So we obtain 8p — 6) < A < (8p — 3) for p > 4,
which provides that A = 8p — 5. Using this fact, we find that my = 8p — 1 and m3 = 4 or
my = 4 and m3 = 8p — 1. Thus, we have 4(8p — 1) = 8(4p + 1), a contradiction.

Case 3 (r = 3(2p + 1)). In this situation, mom3 = 24p and my + m3 = 8p + 3, which
yields that my = 8p and m3 = 3 or my = 3 and m3 = 8p. Consider first the case when
my = 8p and m3 = 3. Using (2), we obtaint — 60 = — (2p +1). Since Ap 3 = %, we
get easily Ao = 0 and A3 = — (2p + 1), which proves that G is the strongly regular graph
4K of degree r = 6p + 3 witht = 4p + 2 and 6 = 6p + 3. Consider the case when

mo = 3 and m3 = 8p. Using (2), we obtain t — 0 = W, a contradiction because

Bp+3)1@Bp—-9. O

Proposition 11 Let G be a connected strongly regular graph of order 4(2p + 1) and degree
r, where 2p + 1 is a prime number. If § = 2(2p + 1), then G belongs to the class (1%)
represented in Theorem 3.

Proof Using Theorem 1, we have (2p + 1)mom3 = r 7, which means that 2p + 1)|r or
(2p + 1) | 7. We shall here consider only the case when 2p + 1) | r.

Case 1 (r = 2p + 1). In this situation, we have mom3 = 6p +2 and my +m3 = 8p + 3, a
contradiction.

Case 2 (r = 2(2p + 1)). Then, mym3 = 8p + 2 and my + m3 = 8p + 3, which means
that m, = 8p +2 and m3 = 1 ormy = 1 and m3 = 8p + 2. Consider first the case when
my = 8p+2and m3 = 1. Using (2), we obtain easily t —6 = — 2(2p + 1), which provides
that A, = 0 and A3 = —2(2p + 1). So we obtain that G is the complete bipartite graph

Kapio,4pyo of degree r = 2(2p + 1) with T = O and & = 2(2p + 1). Consider the case
22p+1)(8p—1)

$p13 , a contradiction

whenmy = 1 and m3 = 8p+2. Using (2), we obtain t —0 =
because (8p +3) 1 (8p — 1).

Case 3 (r =3(2p + 1)). In this situation, we have mom3 = 6p and my +m3 = 8p + 3, a
contradiction. O

Proposition 12 There is no connected strongly regular graph G of order 4(2p + 1) and
degree r with § = 3(2p + 1), where 2p + 1 is a prime number.

Proof Contrary to the statement, assume that G is a strongly regular graph with
8§ = 3(2p + 1). Using Theorem 2, we have 92p + 1)mom3 = 4r 7. Consider first the
case whenr = 2p + 1 and 7 = 6p + 2. Then, 9mom3 = 8 3p + 1) and Y(my + m3) =
9(8p + 3), a contradiction. Consider the case when r = 2(2p + 1) and ¥ = 4p + 1.
Then 9moms3 = 8(4p + 1) and 9(my + m3) = 9(8p + 3), a contradiction. Consider the
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case when r = 32p + 1) and ¥ = 2p. Then 3momsz = 8p and my +m3 = 8p + 3, a
contradiction. O

Proposition 13 Let G be a connected strongly regular graph of order 4(2p + 1) and degree
r, where 2p + 1 is a prime number. If my = 2p + 1 and m3z = 6p + 2, then G belongs to

the class (6°) or (?)) or (89) represented in Theorem 3.

Proof Using (2), we obtain 4p(3|A3] — X2) = 3(t —60) — § + 2r. Since 3(r — 0) — 4§ =
2X2 + 43, it follows that —16p < 3(t — 0) — § + 2r < 24p. Let 3|A3] — Ap = t where
—4 <t < 6. Let A3 = —k where k is a positive integer. Then (i) o = 3k — t; (ii)
T—0 = 2k—t; (i) § = 4k—1t; (iv) r = @p+1Di—k;and (v) 8 = Qp+1)t—Bk>—(t—1)k).
Using (ii), (iv), and (v), we can easily see that (1) is reduced to

(p+ D> =2@2p+ Dt + 6k> — 2k(2t — 1) = 0. (7

Case 1 (t = 0). Using (i), (ii), (iii), and (iv), we find that Ao, = 3k and A3 = —k, 71— 0 =k,
8 = 4k, and r = — k, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that A, = 3k — 1 and A3 = —k,
T—0=2k—1,8=4k—1,r =Qp+1)—k, and® = 2p + 1) — 3k>. Using (7),
we find that 3p + 1 = 2k(3k — 1). Replacing k with 3k + 1, we arrive at p = 18k% +
10k + 1, where k is a positive integer. So we obtain that G is a strongly regular graph of
order 4(36k% + 20k + 3) and degree r = (4k + 1)(9k + 2) with T = 9k2 + 8k + 1 and
0 = k(9% +2).

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that A, = 3k — 2 and A3 = —k,
1—0=2k—-1),8=22k—1),r =2Qp+1)—k,and9 =22p+ 1) — 3k* —k). Using
(7), we find that 2p = 3k(k — 1). Replacing k with k 4 1, we obtain that G is a strongly
regular graph of order 43k +3k+1) and degree r = (2k+1)(3k+ 1) witht = 3k(k+1)
and 0 = k(3k + 1).

Case 4 (t = 3). Using (i), (ii), (iii), (iv), and (v), we find that A = 3(k — 1) and A3 = —k,
T—0=2k—3,8=4k—3,r =3Q2p+1)—k,and 6 = 32p + 1) — (3k* — 2k). Using (7),
we find that 3p — 3 = 2k(3k — 5). Replacing k with 3k, we arrive at p = 18k — 10k + 1,
where k is a positive integer. So we obtain that G is a strongly regular graph of order
4(36k2 — 20k + 3) and degree r = 9(3k — 1)(4k — 1) with T = 9(3k — D243k —1) and
0 =93k — 2.

Case 5 (t = 4). Using (i), (ii), (iii), (iv), and (v), we find that A, = 3k — 4 and A3 = —k,
T—0=2k—-2),8 =4k —1),r =4Q2p+1) —k,and 0 = 4Q2p + 1) — (3k* — 3k).
Using (7), we find that (k — 1)(3k — 4) = 0. So we obtain that G is the complete graph, a
contradiction.

Case 6 (t = 5and t = 6). Using (7), we find that 5p + 6k*> — 18k + 15 = 0 and 6p + 3k> —
11k 4+ 12 =0 fort = 5 and ¢t = 6, respectively, a contradiction.

Case 7 (t < —1). Using (7), we find that (p + 1)t2 4+2|¢|(2p + 1) +6k*> +2k(2|t| + 1) = 0,
a contradiction. O
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Proposition 14 Let G be a connected strongly regular graph of order 42p + 1) and degree
r, where 2p + 1 is a prime number. I[f my = 2(2p + 1) and m3 = 4p + 1, then G belongs
to the class (4°) represented in Theorem 3.

Proof Using (2), we obtain 8 p(|A3|—X2) = 3(t—0)+86+2r. Since 3(t—0)+5 = 4124243,
it follows that —8p < 3(t —0) +6 4+ 2r < 32p. Let |A3] — Xy =t where —1 <t < 4. Let
X2 = k where k is a non-negative integer. Then (i) Az = — (k +t); (i) T — 0 = —¢; (iii)
§=2k+1t;(iV)r=@p+ Dt —k;and (v) 0 = (4p + D)t — (k* + (t + 1)k). Using (ii),
(iv), and (v), we can easily see that (1) is reduced to

1(t=2)(4p+1)+2k(k +1) =0. ®

Case 1 (t = 0). Using (i), (ii), (iii), and (iv), we find that A, = kand A3 = —k, 7 — 6 =0,
8 = 2k, and r = — k, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that A, = k and A3 = — (k + 1),
T—0=—1,8=2k+1,r=0@p+1)—k, and0 = (4p + 1) — (k* + 2k). Using (8), we
find that 4p + 1 = 2k(k + 1), a contradiction because 2 { (4p + 1).

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that Ay = k and A3 = — (k + 2),
T—0=—-2,8=2(k+1),r =2(4p+1)—k,andf =2(4p + 1) — (k> + 3k). Using (8),
we find that k(k + 1) = 0. So we obtain that G is the cocktail-party graph (4p 4+ 2)K» of
degreer = 8p +2witht =8pand 6 = 8p + 2.

Case4 (t = 3,4 andt = —1). Using (8), we find that (x) 3(4p + 1) + 2k(k + 1) = 0; (y)
4@4p+ 1) +kk+1)=0and(z)34p+1)+2k(k+1)=0fort =3,t =4andr = —1
respectively, a contradiction. O

Proposition 15 Let G be a connected strongly regular graph of order 42p + 1) and degree
r, where 2p + 1 is a prime number. If mo = 3(2p + 1) and m3z = 2p, then G belongs to the
class (3%) or (59) represented in Theorem 3.

Proof Using (2), we obtain 4p(|A3| —3X2) = 3(t —0)+35+2r. Since 3(t —60)+35 = 64y,
it follows that 0 < 3(t —60)+36+2r < 40p. Let [A3] =31y =t wheret = 1,2, ..., 10. Let
A2 = k where k is a non-negative integer. Then (i) Az = — Bk +1); (i) T —0 = — 2k +1);
(ili) § = 4k + t; (iv) r = 2pt — 3k; and (v) 0 = 2pt — (Bk® + (t + 3)k). Using (ii), (iv),
and (v), we can easily see that (1) is reduced to

t(t—4)p+6k(k+1)=0. 9

Case 1 (¢t = 1). Using (i), (i), (iii), (iv), and (v), we find that A = k and A3 = — (3k +
D,t—0=—Qk+1),8=4k+1,r =2p—3k,and 0 = 2p — (3k> + 4k). Using (9), we
find that p = 2k(k + 1) which yields that2p + 1 = (2k + 1)2, a contradiction.

Case 2 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that Ay = k and A3 = — (3k + 2),
T—0=—-2k+1),8=2Q2k+1),r =4p —3k,and 0 = 4p — (3k* + 5k). Using (9),
we find that 2p = 3k(k + 1), where k is a positive integer. So we obtain that G is a strongly
regular graph of order 4(3k2 + 3k + 1) and degree r = 3k(2k + 1) with T = 3k% —k — 2
and 6 = k(3k + 1).
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Case 3 (t = 3). Using (i), (ii), (iii), (iv), and (v), we find that A = k and A3 = —3(k + 1),
T—0=—2k+3),5§=4k+3,r=32p—1),andf = 6p — (3k2 + 6k). Using (9), we
find that p = 2k(k + 1) which yields that 2p 4+ 1 = (2k + 1), a contradiction.

Case 4 (t = 4). Using (i), (ii), (iii), (iv), and (v), we find that A\, = k and A3 = — (3k + 4),
T—0=—20k+2),8 =4k +1),r = 8p — 3k, and 8 = 8p — (3k2 + 7k). Using (9),
we find that k(k 4+ 1) = 0. So we obtain that G is the strongly regular graph (2p + 1) K4 of
degree r = 8p witht =8p —4 and 6 = 8p.

Case 5 (t > 5). In this case, we find that 7(t — 4)p + 6k(k + 1) = 0, a contradiction
(see (9)). O

Proposition 16 Let G be a connected strongly regular graph of order 4(2p 4 1) and degree
r, where 2p + 1 is a prime number. If m3 = 2p + 1 and my = 6p + 2, then G belongs to

the class (60) or (7% or (go) represented in Theorem 3.

Proof Using (2) we obtain 4p(|A3] —3X2) = 3(t —6) + 8§ + 2r. Let |A3| — 31y = ¢ where
—2 <t < 8. Let A = k where k is a non-negative integer. Then (i) A3 = — (3k + 1); (ii)
T—0=—Qk+1); (i) § = 4k+1; (V) r = Qp+ Dt +kand (v) 0 = 2p+ D)t — 3k +
(t — Dk). Using (ii), (iv) and (v) we can easily see that (1) is reduced to

(p+ D> =2Q2p + Dt + 6k* +2k(2t — 1) = 0. (10)

Case 1 (t = 0). Using (i), (ii), (iii), (iv), and (v), we find that A, = k and A3 = — 3k,
T—60 =—-2k, 6§ =4k, r = k,and 8 = —k(3k — 1), which provides that & = 0. So we
obtain that G is disconnected, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that A\, = kand A3 = — 3k + 1),
T—0=—-2k+ 1, =4+ 1,r = Q2p+1)+k,and 0 = (2p+1)—3k2.Using
(10) we find that 3p + 1 = 2k(3k + 1). Replacing k with 3k — 1, we arrive at p = 18k —
10k + 1, where k is a positive integer. So we obtain that G is a strongly regular graph of
order 4(36k% — 20k + 3) and degree r = (4k — 1)(9%k — 2) with t = 9k2 — 8k + 1 and
0 = k(9% — 2).

Case 3 (¢t = 2). Using (i), (ii), (iii), (iv), and (v), we find that Ay = k and A3 = — (3k + 2),
T—0=—2k+1),8=2k+1),r =2Qp+1)+k,and 6 =2Q2p + 1) — (3k* + k).
Using (10), we find that 2p = 3k(k + 1), where k is a positive integer. So we obtain that G
is a strongly regular graph of order 4(3k> + 3k + 1) and degree r = (2k + 1)(3k + 2) with
T =3k(k+1)and 6 = (k + 1)(3k + 2).

Case 4 (t = 3). Using (i), (ii), (iii), (iv), and (v), we find that A, = k and A3 = —3(k + 1),
T—0=—2k+3),8 =4k+3,r =3Q2p+1)+k,and 0 = 32p+1) — (3k* +2k). Using
(10), we find that 3p—3 = 2k(3k+5). Replacing k with 3k, we arrive at p = 18k24+10k+1,
where k is a positive integer. So we obtain that G is a strongly regular graph of order
4(36k? + 20k + 3) and degree r = 9(3k + 1)(4k + 1) with T = 93k + 1)> —3(2k + 1) and
0 =93k + 1)2.

Case 5 (t > 4). Using (i), (ii), (iii), and (iv), we find that A, = k and A3 = — (3k + 4),
T—0=—-2(k+2),6=4k+1),andr =4(2p + 1) + k > 8p + 4, a contradiction.
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Case6 (t = —1, —2). Using (10), we obtain (p+1)12+2|t|2p+1)+6k*>—2k((2|t]+1) = 0,
a contradiction. O

Proposition 17 There is no connected strongly regular graph G of order 42p + 1) and
degree r withmsz = 2Q2p + 1) and my = 4p + 1, where 2p + 1 is a prime number.

Proof Contrary to the statement, assume that G is a strongly regular graph with m3 =
22p 4+ 1) and mp = 4p + 1. Using (2), we obtain 8p(|A3] — X2) = 3(zr — 0) — § +r.
Let |A3] — Ay =t where —2 <t < 3. Let A = k where k is a non-negative integer. Then
DAraz=—(k+1);, ()t —0=—1,@0i1)8 =2k+1;,(v)r =2tQ2p + 1) 4+ k; and (v)
0 =2t2p+1) — k% + (t — Dk). Using (ii), (iv), and (v), we can easily see that (1) is
reduced to

(4p+3)> —4Q2p+ D)t +2k> +2k(2t — 1) = 0. (11)

Case 1 (t+ = 0). Using (i), (ii), (iii), (iv), and (v), we find that A, = k and A3 = —k,
T—0=0,8=2k,r=k and 6 = — k% + k, a contradiction.

Case 2 (t = 1). Using (i), (i), (iii), (iv), and (v), we find that A\, = k and A3 = — (k + 1),
T—0=—-1,=2k+1,r=2Q2p+1)+k,andd =22p+1) — k2. Using (11), we find
that4p + 1 = 2k(k + 1), a contradiction because 2 t (4p + 1).

Case 3 (t = 2). Using (i), (i), (iii), (iv), and (v), we find that A, = k and A3 = — (k + 2),
T—0=-2,8=2(k+1),r =4Qp+ 1) +k,and0 =4Q2p + 1) — (k2 + k). Using (11),
we find that (k + 1)(k + 2) = 0, a contradiction.

Case4 (t =3 and ¢t = —1, —2). Using (11), we find that (x) 12p + 2k% + 10k +5 = 0; y)
12p 42k —6k+7=0;and (z) 16p + k> —5k+ 10 =0fort =3,f = —1,and t = —2,
respectively, a contradiction. O

Proposition 18 Let G be a connected strongly regular graph of order 42p + 1) and degree
r, where 2p + 1 is a prime number. If mz = 3(2p + 1) and my = 2p, then G belongs to the

class (50) represented in Theorem 3.

Proof Using (2), we obtain4p(3|A3]|—X2) = 3(t —60) —358+r. Since 3(t —0) — 38 = 613,
it follows that —16p < 3(t — 0) — 35 + 2r < 16p. Let 3|A3] — Ay =t where —4 <t < 4.
Let .3 = — k where £ is a positive integer. Then (i) > = 3k — ¢; (ii)) T — 0 = 2k — t; (iii)
8§ =4k —1t;(iv)r =2pt+3k;and (v) 0 =2pt — (3k2 — (t +3)k). Using (ii), (iv), and (v),
we can easily see that (1) is reduced to

tt—4)p+6k(k—1)=0. (12)
Case 1 (t = 0). Using (i), (i), (iii), (iv), and (v), we find that A\, = 3k and A3 = —k, 7—60 =

2k,8 = 4k, r = 3k, and § = — 3k? + 3k. Using (12), we find that k(k — 1) = 0, which
yields that & = 0. So we obtain that G is disconnected, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that A, = 3k + 1 and A3 = —k,

t—0=2k—1,6=4k—1,r =2p+3k,and 0 =2p — (3k2 — 4k). Using (12), we find
that p = 2k(k — 1), which yields that 2p 4+ 1 = (2k — 1), a contradiction.
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Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that A, = 3k — 2 and A3 = —k,
T—0=2k—1),8 =22k —1),r =4p+3k,and 6 = 4p — (3k*> — 5k). Using (12), we
find that 2p = 3k(k — 1). Replacing k with k + 1, we obtain that G is the strongly regular
graph of order 4(3k%> + 3k + 1) and degree r = 3(k+ 1)(2k + 1) witht = (k+2)(3k + 1)
and 0 = (k + 1)(3k + 2).

Case 4 (t = 3). Using (i), (ii), (iii), (iv), and (v), we find that A = 3(k — 1) and A3 = —k,
T—0=2k—3,8=4k—3,r =6p+3k,and 0 = 6p — (3k*> — 6k). Using (12), we find
that p = k(k — 1), which yields that 2p + 1 = (2k — 1)2, a contradiction.

Case 5 (t = 4). Using (i), (ii), (iii), (iv), and (v), we find that A, = 3k — 4 and A3 = —k,
T—0=2k—-2),8 =4k —1),r =8p + 3k, and § = 6p — (3k% — 7k). Using (12), we
find that k(k — 1) = 0, a contradiction.

Case 6 (t < —1). In this case, we find that |¢|(|f] + 4)p + 6k(k — 1) = 0, a contradiction
(see (12)). O

Theorem 3 Let G be a connected strongly regular graph of order 42p + 1) and degree r,
where 2p + 1 is a prime number. Then G is one of the following strongly regular graphs:

(1% G is the complete bipartite graph Ky4pi2,apy2 of order n = 4(2p + 1) and degree
r=4p+2witht =0and 0 = 4p+ 2, where p € Nand 2p + 1 is a prime number.
Its eigenvalues are .y = 0 and A3 = —(4p + 2) withmr = 8p + 2 and m3 = 1;

(2°) G is the strongly regular graph 4K>p11 of ordern = 4(2p+1) and degreer = 6p+3
witht =4p+2and 0 = 6p + 3, where p € N and 2p + 1 is a prime number. Its
eigenvalues are A = 0and A3 = —(2p + 1) withmy = 8p and m3 = 3;

(3% G is the strongly regular graph 2p + 1)K4 of order n = 4Q2p + 1) and degree
r=8pwitht =8p —4 and 6 = 8p, where p € Nand 2p + 1 is a prime number.
Its eigenvalues are Ay = 0 and A3 = —4 withmy =32p + 1) and m3z = 2p;

4% G is the cocktail-party graph (4p +2)K» of order n = 4Q2p + 1) and degree
r=8p+2witht =8pand @ = 8p+2, where p € Nand2p+1 is a prime number.
Its eigenvalues are Ay = 0 and A3 = =2 withmy =2Q2p + 1) and mz =4p + 1;

(5%) G is the strongly regular graph of order n = 4(3k> + 3k + 1) and degree
r = 3kQk+ 1) witht = 3k* —k —2and 0 = k(3k + 1), where k € N and
3k + 3k + 1 is a prime number. Its eigenvalues are Ay = k and A3 = —(3k +2) with
mo = 3(3k% + 3k + 1) and m3 = 3k(k + 1);

(5) G is the strongly regular graph of order n = 4(3k> + 3k + 1) and degree
r=3k+1)Q2k+ 1) witht = (k+2)Bk+ 1) and 0 = (k + 1)(3k + 2), where
k € N and 3k* + 3k + 1 is a prime number. Its eigenvalues are Ay = 3k + 1 and
A3 = —(k + 1) withmy = 3k(k + 1) and m3 = 3(3k* + 3k + 1);

(6°) G is the strongly regular graph of order n = 4(3k> + 3k + 1) and degree
r=QRk+1)Bk+1)witht = 3k(k+ 1) and 6 = k(3k + 1), where k € N and
3kT+3k+1is a prime number. Its eigenvalues are Ay = 3k + 1 and Az = —(k+ 1)
with my = 3k> + 3k + 1 and m3 = (3k + 1)(3k +2);

(6) G is the strongly regular graph of order n = 4(3k* + 3k + 1) and degree
r=QRk+1)Bk+2)witht =3k(k+ 1) and 0 = (k + 1)(3k + 2), where k ¢ N
and 3k* + 3k + 1 is a prime number. Its eigenvalues are L, = k and .3 = —(3k 4 2)
withmy = (3k + 1)(3k +2) and m3 = 3k* + 3k + 1;
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(7% G is the strongly regular graph of order n = 4(36k* — 20k + 3) and degree
r = (4k — 1)(9% — 2) with v = 9%2 — 8k + 1 and 0 = k(9% — 2), where k € N and
36k%—20k+3 is a prime number. Its eigenvalues are Mo = 3k—1 and A3 = —(9k—2)
with my = 43k — 1)(9% — 2) and m3 = 36k*> — 20k + 3;

(7)) G is the strongly regular graph of order n = 4(36k* — 20k + 3) and degree
r =93k — 1)(4k — 1) with t = 93k — 1)> + 32k — 1) and 6 = 9(3k — 1)?, where
k € N and 36k*> — 20k + 3 is a prime number. Its eigenvalues are Ay = 3(3k — 1)
and A3 = —3k with my = 36k — 20k + 3 and m3 = 4(3k — 1)(% — 2);

(8%) G is the strongly regular graph of order n = 4(36k> + 20k + 3) and degree
r = (4k + 1)(9% + 2) with T = 9> + 8k + 1 and 6 = k(9% + 2), where k € N and
36k%4+20k+3 is a prime number. Its eigenvalues are Ay = 9k+2 and A3 = —(3k+1)
with my = 36k? + 20k + 3 and m3 = 43k + 1)(9% + 2);

(8) G is the strongly regular graph of order n = 4(36k%* + 20k + 3) and degree
r =93k + )4k + 1) with T = 93k + 1)> — 32k + 1) and 6 = 93k + 1),
where k € N and 36k* 4 20k + 3 is a prime number. Its eigenvalues are )y = 3k and
23 = =33k + 1) with my = 43k + 1)(9% + 2) and m3 = 36k> + 20k + 3.

Proof Using Theorem 1, we have mym38> = 4(2p + 1)r 7. We shall now consider the
following three cases.

Case 1 (2p+ 1) | 82). In this case, (2p 4+ 1) | é because G is an integral graph. Since
8§ = M+|A3] < 8p+4 (see [3]), it followsthat§ = 2p+1ord =2(2p+1)ord =32p+1).
Using Propositions 10, 11, and 12, it turns out that G belongs to the class (19 or (29).

Case 2 (2p + 1) | mp). Since my + m3 = 8p + 3, it follows that my = 2p 4+ 1 and
m3=6p+2ormy=2Q2p+1)andmz =4p+1ormy; =32p—+1)and m3z = 2p. Using
Propositions 13, 14, and 15, it turns out that G belongs to the class (39 or (4% or (5% or
(6°) or (7°) or (8°).

Case 3 (2p + 1) | m3). Since m3 + my = 8p + 3, it follows that m3 = 2p 4+ 1 and

my =6p+2ormz =22p+1)andmy =4p+1orm3z =32p+ 1) and my = 2p.

Using Propositions 16, 17, and 18, it turns out that G belongs to the class (?) or (60) or
0 40

(7Y) or (8). O
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