On Strongly Regular Graphs of Order 3(2p + 1)and 4(2p + 1) where 2p + 1 is a Prime Number

Mirko Lepović

Received: 12 December 2013 / Accepted: 12 May 2014 / Published online: 19 November 2014 © Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2014

Abstract We say that a regular graph *G* of order *n* and degree $r \ge 1$ (which is not the complete graph) is strongly regular if any two distinct vertices have τ common neighbors if they are adjacent and have θ common neighbors if they are not adjacent. We here describe the parameters *n*, *r*, τ , and θ for strongly regular graphs of order 3(2p + 1) and 4(2p + 1), where 2p + 1 is a prime number.

Keywords Strongly regular graph · Conference graph · Integral graph

Mathematics Subject Classification (2010) 05C50

1 Introduction

Let *G* be a simple graph of order *n*. The spectrum of *G* consists of the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ of its (0,1) adjacency matrix *A* and is denoted by $\sigma(G)$. We say that a regular graph *G* of order *n* and degree $r \geq 1$ (which is not the complete graph K_n) is strongly regular if any two distinct vertices have τ common neighbors if they are adjacent and have θ common neighbors if they are not adjacent. Besides, we say that a regular connected graph *G* is strongly regular if and only if it has exactly three distinct eigenvalues [1]. Let $\lambda_1 = r, \lambda_2$ and λ_3 denote the distinct eigenvalues of *G*. Let $m_1 = 1, m_2$ and m_3 denote the multiplicity of r, λ_2 , and λ_3 , respectively. The results obtained in this work are based on the following assertion [2, 3].

Theorem 1 Let G be a connected strongly regular graph of order n and degree r. Then $m_2m_3\delta^2 = nr\bar{r}$ where $\delta = \lambda_2 - \lambda_3$ and $\bar{r} = (n-1) - r$.

M. Lepović (🖂)

Tihomira Vuksanovića 32, Kragujevac 34000, Serbia e-mail: lepovic@kg.ac.rs Further, let $\overline{r} = (n-1) - r$, $\overline{\lambda}_2 = -\lambda_3 - 1$, and $\overline{\lambda}_3 = -\lambda_2 - 1$ denote the distinct eigenvalues of the strongly regular graph \overline{G} , where \overline{G} denotes the complement of G. It is known that $\overline{\tau} = n - 2r - 2 + \theta$ and $\overline{\theta} = n - 2r + \tau$ where $\overline{\tau} = \tau(\overline{G})$ and $\overline{\theta} = \theta(\overline{G})$.

Remark 1 (i) A strongly regular graph G of order 4n + 1 and degree r = 2n with $\tau = n - 1$ and $\theta = n$ is called the conference graph; (ii) a strongly regular graph is the conference graph if and only if $m_2 = m_3$; and (iii) if $m_2 \neq m_3$, then G is an integral¹ graph.

Remark 2 If *G* is a disconnected strongly regular graph of degree *r*, then $G = mK_{r+1}$, where *mH* denotes the *m*-fold union of the graph *H*. We know that *G* is a disconnected strongly regular graph if and only if $\theta = 0$.

Due to Theorem 1, we have recently obtained the following results [3]: (i) there is no strongly regular graph of order 4p+3 if 4p+3 is a prime number, and (ii) the only strongly regular graphs of order 4p+1 are conference graphs if 4p+1 is a prime number. Besides, in the same work, we have described the parameters n, r, τ , and θ for strongly regular graphs of order 2(2p + 1), where 2p + 1 is a prime number. We now proceed to establish the parameters of strongly regular graphs of order 3(2p + 1) and 4(2p + 1) where 2p + 1 is a prime number, as follows. First,

Proposition 1 (Elzinga [1]) Let G be a connected or disconnected strongly regular graph of order n and degree r. Then,

$$r^{2} - (\tau - \theta + 1)r - (n - 1)\theta = 0.$$
⁽¹⁾

Proposition 2 (Elzinga [1]) Let G be a connected strongly regular graph of order n and degree r. Then,

$$2r + (\tau - \theta)(m_2 + m_3) + \delta(m_2 - m_3) = 0,$$
(2)

where $\delta = \lambda_2 - \lambda_3$.

Second, in what follows, (x, y) denotes the greatest common divisor of integers $x, y \in \mathbb{N}$ while $x \mid y$ means that x divides y.

2 Main Results

Remark 3 In the following two Theorems 2 and 3, the complements of strongly regular graphs appear in pairs in (k^0) and (\overline{k}^0) classes, where k denotes the corresponding number of a class.

Proposition 3 Let G be a connected strongly regular graph of order 3(2p + 1) and degree r, where² 2p + 1 is a prime number. If $p \ge 2$, then G is a conference graph if and only if $\delta^2 = 3(2p + 1)$.

¹We say that a connected or disconnected graph G is integral if its spectrum $\sigma(G)$ consists of integral values.

²The connected strongly regular graphs of order 9 are (i) the conference graph of degree r = 4 with $\tau = 1$ and $\theta = 2$. Its eigenvalues are $\lambda_2 = 1$ and $\lambda_3 = -2$ with $m_2 = 4$ and $m_3 = 4$ and (ii) $\overline{3K_3}$ of degree r = 6 with $\tau = 3$ and $\theta = 6$. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -3$ with $m_2 = 6$ and $m_3 = 2$.

Proof We note first that if *G* is a conference graph, then $\delta^2 = 3(2p + 1)$. Conversely, let us assume that $\delta^2 = 3(2p + 1)$. Since $3 \nmid (2p + 1)$, it follows that δ^2 is not a perfect square. Since $\delta = \lambda_2 - \lambda_3 \notin \mathbb{N}$, it turns out that *G* is not integral, which proves the statement. \Box

Remark 4 Since the strongly regular graphs of order n = 9 are completely described, in the sequel, it will be assumed that $p \ge 2$.

Proposition 4 Let G be a connected strongly regular graph of order 3(2p+1) and degree r, where 2p + 1 is a prime number. If $\delta = 2p + 1$, then G belongs to the class (1^0) represented in Theorem 2.

Proof Using Theorem 1, we have $(2p+1)m_2m_3 = 3r \bar{r}$, which means that (2p+1) | r or $(2p+1) | \bar{r}$. Without loss of generality, we may consider only the case when (2p+1) | r.

Case 1 (r = 2p + 1). Then, $m_2m_3 = 3(4p + 1)$ and $m_2 + m_3 = 6p + 2$, which provides that m_2 and m_3 are the roots of the quadratic equation $m^2 - (6p + 2)m + 3(4p + 1) = 0$. So we find that $m_2, m_3 = \frac{6p+2\pm\Delta}{2}$ where $\Delta^2 = (6p - 2)^2 - 12$, a contradiction because Δ^2 is not a perfect square for $p \ge 2$.

Case 2 (r = 2(2p + 1)). Then $m_2m_3 = 12p$ which yields that $m_2 = 6p$ and $m_3 = 2$ or $m_2 = 2$ and $m_3 = 6p$. Consider first the case when $m_2 = 6p$ and $m_3 = 2$. Using (2), we obtain $\tau - \theta = -(2p + 1)$. Since $\lambda_{2,3} = \frac{\tau - \theta \pm \delta}{2}$, we get easily $\lambda_2 = 0$ and $\lambda_3 = -(2p + 1)$, which proves that *G* is the strongly regular graph $\overline{3K_{2p+1}}$ of degree r = 4p + 2 with $\tau = 2p + 1$ and $\theta = 4p + 2$. Consider the case when $m_2 = 2$ and $m_3 = 6p$. Using (2), we obtain $\tau - \theta = \frac{3(p-1)(2p+1)}{3p+1}$, a contradiction because $(3p + 1) \nmid 3(p - 1)$.

Proposition 5 *There is no connected strongly regular graph G of order* 3(2p + 1) *and degree r with* $\delta = 2(2p + 1)$ *, where* 2p + 1 *is a prime number.*

Proof Contrary to the statement, assume that *G* is a strongly regular graph with $\delta = 2(2p + 1)$. Using Theorem 2, we have $4(2p + 1)m_2m_3 = 3r \bar{r}$ which means that (2p + 1) | r or $(2p + 1) | \bar{r}$. Consider the case when r = 2p + 1 and $\bar{r} = 4p + 1$. Then $4m_2m_3 = 3(4p + 1)$, a contradiction because $4 \nmid (4p + 1)$. Consider the case when r = 2(2p + 1) and $\bar{r} = 2p$. Then, $m_2 + m_3 = 6p + 2$ and $m_2m_3 = 3p$, a contradiction. \Box

Proposition 6 Let G be a connected strongly regular graph of order 3(2p + 1) and degree r, where 2p + 1 is a prime number. If $m_2 = 2p + 1$ and $m_3 = 4p + 1$, then G belongs to the class (6⁰) or ($\overline{7}^0$) represented in Theorem 2.

Proof Using (2), we obtain $p\delta = r + (\tau - \theta)(3p+1)$. Since $\delta = \lambda_2 - \lambda_3$ and $\tau - \theta = \lambda_2 + \lambda_3$, we arrive at $2p(2|\lambda_3| - \lambda_2) = \tau - \theta + r$. Since $r \le 6p + 1$, $\theta \le r$ and $\tau < r$, it follows that $0 \le \tau - \theta + r \le 12p$. Let $2|\lambda_3| - \lambda_2 = t$ where t = 0, 1, ..., 6. Let $\lambda_3 = -k$ where k is a positive integer. Then (i) $\lambda_2 = 2k - t$; (ii) $\tau - \theta = k - t$; (iii) $\delta = 3k - t$; and (iv) r = (2p + 1)t - k. Since $\delta^2 = (\tau - \theta)^2 + 4(r - \theta)$ (see [1]), we obtain (v) $\theta = (2p + 1)t - (2k^2 - (t - 1)k)$. Using (ii), (iv), and (v), it is not difficult to see that (1) is transformed into

$$2(p+1)t^{2} - 3(2p+1)t + 6k^{2} - 3k(2t-1) = 0.$$
(3)

Case 1 (t = 0). Using (i), (ii), (iii), and (iv), we find that $\lambda_2 = 2k$ and $\lambda_3 = -k$, $\tau - \theta = k$, $\delta = 3k$, and r = -k, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 2k - 1$ and $\lambda_3 = -k$, $\tau - \theta = k - 1$, $\delta = 3k - 1$, r = (2p + 1) - k, and $\theta = (2p + 1) - 2k^2$. Using (3), we find that 4p + 1 = 3k(2k - 1). Replacing k with 4k - 1, we arrive at $p = 24k^2 - 15k + 2$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $3(48k^2 - 30k + 5)$ and degree r = 2(3k - 1)(8k - 3) with $\tau = (2k - 1)(8k - 1)$ and $\theta = (2k - 1)(8k - 3)$.

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 2(k-1)$ and $\lambda_3 = -k$, $\tau - \theta = k - 2$, $\delta = 3k - 2$, r = 2(2p+1) - k, and $\theta = 2(2p+1) - (2k^2 - k)$. Using (3), we find that 4p+1 = 3(k-1)(2k-1). Replacing k with 4k+2, we arrive at $p = 24k^2 + 15k+2$, where k is a non-negative integer. So we obtain that G is a strongly regular graph of order $3(48k^2 + 30k + 5)$ and degree r = 8(3k + 1)(4k + 1) with $\tau = 4(4k + 1)^2 + 4k$ and $\theta = 4(4k + 1)^2$.

Case 4 (t = 3). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 2k - 3$ and $\lambda_3 = -k$, $\tau - \theta = k - 3$, $\delta = 3(k - 1)$, r = 3(2p + 1) - k, and $\theta = 3(2p + 1) - (2k^2 - 2k)$. Using (3), we find that (k - 1)(2k - 3) = 0. So we obtain that *G* is the complete graph, a contradiction.

Case 5 (t = 4, 5, 6). Using (3), we find that (x) $8p + 6k^2 - 21k + 20 = 0$; (y) $20p + 6k^2 - 27k + 35 = 0$ and (z) $12p + 2k^2 - 11k + 18 = 0$ for t = 4, t = 5 and t = 6, respectively, a contradiction.

Proposition 7 Let G be a connected strongly regular graph of order 3(2p + 1) and degree r, where 2p + 1 is a prime number. If $m_2 = 2(2p + 1)$ and $m_3 = 2p$, then G belongs to the class (2^0) or $(\overline{5}^0)$ represented in Theorem 2.

Proof Using (2), we obtain $2p(|\lambda_3| - 2\lambda_2) = (\tau - \theta) + \delta + r$. Since $(\tau - \theta) + \delta = 2\lambda_2$ and $\lambda_2 \le \lfloor \frac{6p+3}{2} \rfloor - 1$ (see [3]), it follows that $0 < (\tau - \theta) + \delta + r \le 12p$. Let $|\lambda_3| - 2\lambda_2 = t$ where t = 1, 2, ..., 6. Let $\lambda_2 = k$ where k is a non-negative integer. Then (i) $\lambda_3 = -(2k+t)$; (ii) $\tau - \theta = -(k+t)$; (iii) $\delta = 3k + t$; (iv) r = 2(pt - k); and (v) $\theta = 2pt - (2k^2 + (t+2)k)$. Using (ii), (iv), and (v), we can easily see that (1) is transformed into

$$t(t-3)p + 3k(k+1) = 0.$$
(4)

Case 1 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(2k + 1)$, $\tau - \theta = -(k + 1)$, $\delta = 3k + 1$, r = 2(p - k), and $\theta = 2p - (2k^2 + 3k)$. Using (4), we find that 2p = 3k(k+1). So we obtain that *G* is a strongly regular graph of order $3(3k^2 + 3k + 1)$ and degree r = k(3k + 1) with $\tau = k^2 - k - 1$ and $\theta = k^2$, where $k \ge 2$.

Case 2 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -2(k + 1)$, $\tau - \theta = -(k+2)$, $\delta = 3k+2$, r = 2(2p-k), and $\theta = 4p - (2k^2 + 4k)$. Using (4), we find that 2p = 3k(k+1). So we obtain that *G* is a strongly regular graph of order $3(3k^2 + 3k + 1)$ and degree r = 2k(3k + 2) with $\tau = 4k^2 + k - 2$ and $\theta = 2k(2k + 1)$.

Case 3 (*t* = 3). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(2k+3)$, $\tau - \theta = -(k+3)$, $\delta = 3(k+1)$, r = 2(3p-k), and $\theta = 6p - (2k^2 + 5k)$. Using (4),

we find that k(k + 1) = 0. So we obtain that *G* is a strongly regular graph $\overline{(2p + 1)K_3}$ of degree r = 6p with $\tau = 6p - 3$ and $\theta = 6p$.

Case 4 (t = 4, 5, 6). Using (4), we find that (x) $4p + 3k^2 + 3k = 0$; (y) $10p + 3k^2 + 3k = 0$ and (z) $6p + k^2 + k = 0$ for t = 4, t = 5 and t = 6, respectively, a contradiction.

Proposition 8 Let G be a connected strongly regular graph of order 3(2p + 1) and degree r, where 2p + 1 is a prime number. If $m_3 = 2p + 1$ and $m_2 = 4p + 1$, then G belongs to the class $(\overline{6}^0)$ or (7^0) represented in Theorem 2.

Proof Using (2), we obtain $2p(|\lambda_3| - 2\lambda_2) = \tau - \theta + r$. Let $|\lambda_3| - 2\lambda_2 = t$ where t = 0, 1, ..., 6. Let $\lambda_2 = k$ where k is a non-negative integer. Then, (i) $\lambda_3 = -(2k + t)$; (ii) $\tau - \theta = -(k + t)$; (iii) $\delta = 3k + t$; (iv) r = (2p + 1)t + k; and (v) $\theta = (2p + 1)t - (2k^2 + (t - 1)k)$. Using (ii), (iv), and (v), we can easily see that (1) is reduced to

$$2(p+1)t^{2} - 3(2p+1)t + 6k^{2} + 3k(2t-1) = 0.$$
 (5)

Case 1 (t = 0). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -2k$, $\tau - \theta = -k$, $\delta = 3k$, r = k and $\theta = -k(2k - 1)$, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(2k + 1)$, $\tau - \theta = -(k + 1)$, $\delta = 3k + 1$, r = (2p + 1) + k, and $\theta = (2p + 1) - 2k^2$. Using (5), we find that 4p + 1 = 3k(2k + 1). Replacing k with 4k + 1, we arrive at $p = 24k^2 + 15k + 2$, where k is a non-negative integer. So we obtain that G is a strongly regular graph of order $3(48k^2 + 30k + 5)$ and degree r = 2(3k + 1)(8k + 3) with $\tau = (2k + 1)(8k + 1)$ and $\theta = (2k + 1)(8k + 3)$.

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -2(k + 1)$, $\tau - \theta = -(k + 2)$, $\delta = 3k + 2$, r = 2(2p + 1) + k, and $\theta = 2(2p + 1) - (2k^2 + k)$. Using (5), we find that 4p + 1 = 3(k + 1)(2k + 1). Replacing k with 4k - 2, we arrive at $p = 24k^2 - 15k + 2$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $3(48k^2 - 30k + 5)$ and degree r = 8(3k - 1)(4k - 1) with $\tau = 4(4k - 1)^2 - 4k$ and $\theta = 4(4k - 1)^2$.

Case 4 (t = 3, 4, 5, 6). Using (5), we find that (x) $2k^2 + 5k + 3 = 0$; (y) $8p + 6k^2 + 21k + 20 = 0$; (z) $20p + 6k^2 + 27k + 35 = 0$ and (w) $12p + 2k^2 + 11k + 18 = 0$ for t = 3, 4, 5, 6, respectively, a contradiction.

Proposition 9 Let G be a connected strongly regular graph of order 3(2p + 1) and degree r, where 2p + 1 is a prime number. If $m_3 = 2(2p + 1)$ and $m_2 = 2p$, then G belongs to the class $(\overline{4}^0)$ or (5^0) represented in Theorem 2.

Proof Using (2), we obtain $2p(2|\lambda_3| - \lambda_2) = (\tau - \theta) - \delta + r$. Since $(\tau - \theta) - \delta = 2\lambda_3$ and $|\lambda_3| \le \lfloor \frac{6p+3}{2} \rfloor$ (see [3]), it follows that $-6p \le (\tau - \theta) - \delta + r \le 6p$. Let $2|\lambda_3| - \lambda_2 = t$ where $t = 0, \pm 1, \pm 2, \pm 3$. Let $\lambda_3 = -k$ where k is a positive integer. Then (i) $\lambda_2 = 2k - t$; (ii) $\tau - \theta = k - t$; (iii) $\delta = 3k - t$; (iv) r = 2(pt + k); and (v) $\theta = 2pt - (2k^2 - (t + 2)k)$. Using (ii), (iv), and (v), we can easily see that (1) is reduced to

$$t(t-3)p + 3k(k-1) = 0.$$
 (6)

Case 1 (t = 0). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 2k$ and $\lambda_3 = -k$, $\tau - \theta = k$, $\delta = 3k$, r = 2k, and $\theta = -2k^2 + 2k$. Using (6), we find that k(k - 1) = 0. So we obtain that *G* is disconnected, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 2k - 1$ and $\lambda_3 = -k$, $\tau - \theta = k - 1$, $\delta = 3k - 1$, r = 2(p + k), and $\theta = 2p - (2k^2 - 3k)$. Using (6), we find that 2p = 3k(k-1). Replacing k with k+1, we obtain that G is a strongly regular graph of order $3(3k^2 + 3k + 1)$ and degree r = (k + 1)(3k + 2) with $\tau = (k + 1)^2 + k$ and $\theta = (k + 1)^2$.

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 2(k - 1)$ and $\lambda_3 = -k$, $\tau - \theta = k - 2$, $\delta = 3k - 2$, r = 2(2p + k), and $\theta = 4p - (2k^2 - 4k)$. Using (6), we find that 2p = 3k(k - 1). Replacing k with k + 1, we obtain that G is a strongly regular graph of order $3(3k^2 + 3k + 1)$ and degree r = 2(k + 1)(3k + 1) with $\tau = 4k^2 + 7k + 1$ and $\theta = 2(k + 1)(2k + 1)$, where ${}^3k \ge 2$.

Case 4 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 2k - 3$ and $\lambda_3 = -k$, $\tau - \theta = k - 3$, $\delta = 3(k - 1)$, r = 2(3p + k), and $\theta = 6p - (2k^2 - 5k)$. Using (6) we find that k(k - 1) = 0. So we obtain that *G* is the complete graph, a contradiction.

Case 5 (t = -1, -2, -3). Using (v), we find that (x) $\theta = -2p - 2k^2 + k$; (y) $\theta = -4p - 2k^2$; and (z) $\theta = -6p - 2k^2 - k$ for t = -1, t = -2, and t = -3, respectively, a contradiction.

Theorem 2 Let G be a connected strongly regular graph of order 3(2p + 1) and degree r, where 2p + 1 is a prime number. Then G is one of the following strongly regular graphs:

- (1⁰) *G* is the strongly regular graph $\overline{3K_{2p+1}}$ of order n = 3(2p+1) and degree r = 4p+2with $\tau = 2p + 1$ and $\theta = 4p + 2$, where $p \in \mathbb{N}$ and 2p + 1 is a prime number. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -(2p+1)$ with $m_2 = 6p$ and $m_3 = 2$;
- (2⁰) *G* is the strongly regular graph $\overline{(2p+1)K_3}$ of order n = 3(2p+1) and degree r = 6p with $\tau = 6p 3$ and $\theta = 6p$, where $p \in \mathbb{N}$ and 2p + 1 is a prime number. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -3$ with $m_2 = 2(2p+1)$ and $m_3 = 2p$;
- (3⁰) *G* is the conference graph of order n = 3(4k 1) and degree r = 6k 2 with $\tau = 3k 2$ and $\theta = 3k 1$, where $k \in \mathbb{N}$ and 4k 1 is a prime number. Its eigenvalues are $\lambda_2 = \frac{-1 + \sqrt{3(4k 1)}}{2}$ and $\lambda_3 = \frac{-1 \sqrt{3(4k 1)}}{2}$ with $m_2 = 6k 2$ and $m_3 = 6k 2$;
- (4⁰) *G* is the strongly regular graph of order $n = 3(3k^2+3k+1)$ and degree r = k(3k+1)with $\tau = k^2 - k - 1$ and $\theta = k^2$, where $k \ge 2$ and $3k^2 + 3k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = k$ and $\lambda_3 = -(2k+1)$ with $m_2 = 2(3k^2+3k+1)$ and $m_3 = 3k(k+1)$;
- $(\overline{4}^0)$ *G* is the strongly regular graph of order $n = 3(3k^2 + 3k + 1)$ and degree r = 2(k+1)(3k+1) with $\tau = 4k^2 + 7k + 1$ and $\theta = 2(k+1)(2k+1)$, where $k \ge 2$ and $3k^2 + 3k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 2k$ and $\lambda_3 = -(k+1)$ with $m_2 = 3k(k+1)$ and $m_3 = 2(3k^2 + 3k + 1)$;

³The case when k = 1 is impossible. Indeed, in this case, we have n = 21, r = 16 and $\theta = 12$, which yields that $\overline{\tau} = -1$, a contradiction.

- (5⁰) *G* is the strongly regular graph of order $n = 3(3k^2 + 3k + 1)$ and degree r = (k + 1)(3k + 2) with $\tau = (k + 1)^2 + k$ and $\theta = (k + 1)^2$, where $k \in \mathbb{N}$ and $3k^2 + 3k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 2k + 1$ and $\lambda_3 = -(k + 1)$ with $m_2 = 3k(k + 1)$ and $m_3 = 2(3k^2 + 3k + 1)$;
- $(\overline{5}^0)$ *G* is the strongly regular graph of order $n = 3(3k^2 + 3k + 1)$ and degree r = 2k(3k + 2) with $\tau = 4k^2 + k 2$ and $\theta = 2k(2k + 1)$, where $k \in \mathbb{N}$ and $3k^2 + 3k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = k$ and $\lambda_3 = -2(k + 1)$ with $m_2 = 2(3k^2 + 3k + 1)$ and $m_3 = 3k(k + 1)$;
- (6⁰) *G* is the strongly regular graph of order $n = 3(48k^2 30k + 5)$ and degree r = 2(3k 1)(8k 3) with $\tau = (2k 1)(8k 1)$ and $\theta = (2k 1)(8k 3)$, where $k \in \mathbb{N}$ and $48k^2 30k + 5$ is a prime number. Its eigenvalues are $\lambda_2 = 8k 3$ and $\lambda_3 = -(4k 1)$ with $m_2 = 48k^2 30k + 5$ and $m_3 = 3(4k 1)(8k 3)$;
- $(\overline{6}^0)$ *G* is the strongly regular graph of order $n = 3(48k^2 30k + 5)$ and degree r = 8(3k 1)(4k 1) with $\tau = 4(4k 1)^2 4k$ and $\theta = 4(4k 1)^2$, where $k \in \mathbb{N}$ and $48k^2 30k + 5$ is a prime number. Its eigenvalues are $\lambda_2 = 4k 2$ and $\lambda_3 = -2(4k 1)$ with $m_2 = 3(4k 1)(8k 3)$ and $m_3 = 48k^2 30k + 5$;
- (7⁰) *G* is the strongly regular graph of order $n = 3(48k^2 + 30k + 5)$ and degree r = 2(3k + 1)(8k + 3) with $\tau = (2k + 1)(8k + 1)$ and $\theta = (2k + 1)(8k + 3)$, where $k \ge 0$ and $48k^2 + 30k + 5$ is a prime number. Its eigenvalues are $\lambda_2 = 4k + 1$ and $\lambda_3 = -(8k + 3)$ with $m_2 = 3(4k + 1)(8k + 3)$ and $m_3 = 48k^2 + 30k + 5$;
- $(\overline{7}^0)$ *G* is the strongly regular graph of order $n = 3(48k^2 + 30k + 5)$ and degree r = 8(3k+1)(4k+1) with $\tau = 4(4k+1)^2 + 4k$ and $\theta = 4(4k+1)^2$, where $k \ge 0$ and $48k^2 + 30k + 5$ is a prime number. Its eigenvalues are $\lambda_2 = 2(4k+1)$ and $\lambda_3 = -(4k+2)$ with $m_2 = 48k^2 + 30k + 5$ and $m_3 = 3(4k+1)(8k+3)$.

Proof We note first that if G is a strongly regular graph with $\delta^2 = 3(2p + 1)$, according to Proposition 3, it belongs to the class (3⁰). Consequently, assume that G is an integral (non-conference) strongly regular graph. Using Theorem 1, we have $m_2m_3\delta^2 = 3(2p + 1)r \bar{r}$. We shall now consider the following three cases.

Case 1 ((2*p* + 1) | δ^2). In this case, (2*p* + 1) | δ because *G* is an integral graph. Since $\delta = \lambda_2 + |\lambda_3| < 6p + 3$ (see [3]), it follows that $\delta = 2p + 1$ or $\delta = 2(2p + 1)$. Using Propositions 4 and 5, it turns out that *G* belongs to the class (1⁰).

Case 2 $((2p + 1) | m_2)$. Since $m_2 + m_3 = 6p + 2$, it follows that $m_2 = 2p + 1$ and $m_3 = 4p + 1$ or $m_2 = 2(2p + 1)$ and $m_3 = 2p$. Using Propositions 6 and 7, it turns out that *G* belongs to the class (2^0) or (4^0) or $(\overline{5}^0)$ or (6^0) or $(\overline{7}^0)$.

Case 3 $((2p + 1) | m_3)$. Since $m_3 + m_2 = 6p + 2$, it follows that $m_3 = 2p + 1$ and $m_2 = 4p + 1$ or $m_3 = 2(2p + 1)$ and $m_2 = 2p$. Using Propositions 8 and 9, it turns out that *G* belongs to the class $(\overline{4}^0)$ or (5^0) or $(\overline{6}^0)$ or (7^0) .

Proposition 10 Let G be a connected strongly regular graph of order 4(2p+1) and degree r, where 2p + 1 is a prime number. If $\delta = 2p + 1$, then G belongs to the class (2⁰) represented in Theorem 3.

Proof Using Theorem 1, we have $(2p+1)m_2m_3 = 4r \overline{r}$, which means that (2p+1) | r or $(2p+1) | \overline{r}$. It is sufficient to consider only the case when (2p+1) | r.

Case 1 (r = 2p + 1). Then, $m_2m_3 = 8(3p + 1)$ and $m_2 + m_3 = 8p + 3$. So we find that $m_2, m_3 = \frac{8p+3\pm\Delta}{2}$ where $\Delta^2 = (8p-3)^2 - 32$, a contradiction because Δ^2 is not a perfect square.

Case 2 (r = 2(2p + 1)). Then $m_2m_3 = 8(4p + 1)$ which yields that $m_2, m_3 = \frac{8p+3\pm\Delta}{2}$ where $\Delta^2 = (8p-3)^2 - 32(p+1)$ and $\Delta^2 = (8p-6)^2 + 16p - 59$. We can easily verify that $\Delta^2 = -39$, 73, 313 for p = 1, 2, 3, respectively. Since Δ^2 is not a perfect square for p = 1, 2, 3, we can assume $p \ge 4$. So we obtain $(8p-6) < \Delta < (8p-3)$ for $p \ge 4$, which provides that $\Delta = 8p - 5$. Using this fact, we find that $m_2 = 8p - 1$ and $m_3 = 4$ or $m_2 = 4$ and $m_3 = 8p - 1$. Thus, we have 4(8p - 1) = 8(4p + 1), a contradiction.

Case 3 (r = 3(2p + 1)). In this situation, $m_2m_3 = 24p$ and $m_2 + m_3 = 8p + 3$, which yields that $m_2 = 8p$ and $m_3 = 3$ or $m_2 = 3$ and $m_3 = 8p$. Consider first the case when $m_2 = 8p$ and $m_3 = 3$. Using (2), we obtain $\tau - \theta = -(2p + 1)$. Since $\lambda_{2,3} = \frac{(\tau - \theta) \pm \delta}{2}$, we get easily $\lambda_2 = 0$ and $\lambda_3 = -(2p + 1)$, which proves that *G* is the strongly regular graph $4\overline{K_{2p+1}}$ of degree r = 6p + 3 with $\tau = 4p + 2$ and $\theta = 6p + 3$. Consider the case when $m_2 = 3$ and $m_3 = 8p$. Using (2), we obtain $\tau - \theta = \frac{(2p+1)(8p-9)}{8p+3}$, a contradiction because $(8p + 3) \nmid (8p - 9)$.

Proposition 11 Let G be a connected strongly regular graph of order 4(2p+1) and degree r, where 2p + 1 is a prime number. If $\delta = 2(2p + 1)$, then G belongs to the class (1^0) represented in Theorem 3.

Proof Using Theorem 1, we have $(2p + 1)m_2m_3 = r \bar{r}$, which means that (2p + 1)|r or $(2p + 1)|\bar{r}$. We shall here consider only the case when (2p + 1)|r.

Case 1 (r = 2p + 1). In this situation, we have $m_2m_3 = 6p + 2$ and $m_2 + m_3 = 8p + 3$, a contradiction.

Case 2 (r = 2(2p + 1)). Then, $m_2m_3 = 8p + 2$ and $m_2 + m_3 = 8p + 3$, which means that $m_2 = 8p + 2$ and $m_3 = 1$ or $m_2 = 1$ and $m_3 = 8p + 2$. Consider first the case when $m_2 = 8p + 2$ and $m_3 = 1$. Using (2), we obtain easily $\tau - \theta = -2(2p + 1)$, which provides that $\lambda_2 = 0$ and $\lambda_3 = -2(2p + 1)$. So we obtain that *G* is the complete bipartite graph $K_{4p+2,4p+2}$ of degree r = 2(2p + 1) with $\tau = 0$ and $\theta = 2(2p + 1)$. Consider the case when $m_2 = 1$ and $m_3 = 8p + 2$. Using (2), we obtain $\tau - \theta = \frac{2(2p+1)(8p-1)}{8p+3}$, a contradiction because $(8p + 3) \nmid (8p - 1)$.

Case 3 (r = 3(2p + 1)). In this situation, we have $m_2m_3 = 6p$ and $m_2 + m_3 = 8p + 3$, a contradiction.

Proposition 12 *There is no connected strongly regular graph G of order* 4(2p + 1) *and degree r with* $\delta = 3(2p + 1)$ *, where* 2p + 1 *is a prime number.*

Proof Contrary to the statement, assume that *G* is a strongly regular graph with $\delta = 3(2p + 1)$. Using Theorem 2, we have $9(2p + 1)m_2m_3 = 4r \bar{r}$. Consider first the case when r = 2p + 1 and $\bar{r} = 6p + 2$. Then, $9m_2m_3 = 8(3p + 1)$ and $9(m_2 + m_3) = 9(8p + 3)$, a contradiction. Consider the case when r = 2(2p + 1) and $\bar{r} = 4p + 1$. Then $9m_2m_3 = 8(4p + 1)$ and $9(m_2 + m_3) = 9(8p + 3)$, a contradiction. Consider the

case when r = 3(2p + 1) and $\overline{r} = 2p$. Then $3m_2m_3 = 8p$ and $m_2 + m_3 = 8p + 3$, a contradiction.

Proposition 13 Let G be a connected strongly regular graph of order 4(2p+1) and degree r, where 2p + 1 is a prime number. If $m_2 = 2p + 1$ and $m_3 = 6p + 2$, then G belongs to the class (6^0) or $(\overline{7}^0)$ or (8^0) represented in Theorem 3.

Proof Using (2), we obtain $4p(3|\lambda_3| - \lambda_2) = 3(\tau - \theta) - \delta + 2r$. Since $3(\tau - \theta) - \delta = 2\lambda_2 + 4\lambda_3$, it follows that $-16p \le 3(\tau - \theta) - \delta + 2r \le 24p$. Let $3|\lambda_3| - \lambda_2 = t$ where $-4 \le t \le 6$. Let $\lambda_3 = -k$ where k is a positive integer. Then (i) $\lambda_2 = 3k - t$; (ii) $\tau - \theta = 2k - t$; (iii) $\delta = 4k - t$; (iv) r = (2p+1)t - k; and (v) $\theta = (2p+1)t - (3k^2 - (t-1)k)$. Using (ii), (iv), and (v), we can easily see that (1) is reduced to

$$(p+1)t^2 - 2(2p+1)t + 6k^2 - 2k(2t-1) = 0.$$
(7)

Case 1 (t = 0). Using (i), (ii), (iii), and (iv), we find that $\lambda_2 = 3k$ and $\lambda_3 = -k$, $\tau - \theta = k$, $\delta = 4k$, and r = -k, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 3k - 1$ and $\lambda_3 = -k$, $\tau - \theta = 2k - 1$, $\delta = 4k - 1$, r = (2p + 1) - k, and $\theta = (2p + 1) - 3k^2$. Using (7), we find that 3p + 1 = 2k(3k - 1). Replacing k with 3k + 1, we arrive at $p = 18k^2 + 10k + 1$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $4(36k^2 + 20k + 3)$ and degree r = (4k + 1)(9k + 2) with $\tau = 9k^2 + 8k + 1$ and $\theta = k(9k + 2)$.

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 3k - 2$ and $\lambda_3 = -k$, $\tau - \theta = 2(k-1)$, $\delta = 2(2k-1)$, r = 2(2p+1) - k, and $\theta = 2(2p+1) - (3k^2 - k)$. Using (7), we find that 2p = 3k(k-1). Replacing k with k + 1, we obtain that G is a strongly regular graph of order $4(3k^2 + 3k + 1)$ and degree r = (2k+1)(3k+1) with $\tau = 3k(k+1)$ and $\theta = k(3k+1)$.

Case 4 (t = 3). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 3(k-1)$ and $\lambda_3 = -k$, $\tau - \theta = 2k - 3$, $\delta = 4k - 3$, r = 3(2p+1) - k, and $\theta = 3(2p+1) - (3k^2 - 2k)$. Using (7), we find that 3p - 3 = 2k(3k - 5). Replacing k with 3k, we arrive at $p = 18k^2 - 10k + 1$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $4(36k^2 - 20k + 3)$ and degree r = 9(3k - 1)(4k - 1) with $\tau = 9(3k - 1)^2 + 3(2k - 1)$ and $\theta = 9(3k - 1)^2$.

Case 5 (t = 4). Using (i), (ii), (ii), (iv), and (v), we find that $\lambda_2 = 3k - 4$ and $\lambda_3 = -k$, $\tau - \theta = 2(k - 2)$, $\delta = 4(k - 1)$, r = 4(2p + 1) - k, and $\theta = 4(2p + 1) - (3k^2 - 3k)$. Using (7), we find that (k - 1)(3k - 4) = 0. So we obtain that *G* is the complete graph, a contradiction.

Case 6 (t = 5 and t = 6). Using (7), we find that $5p + 6k^2 - 18k + 15 = 0$ and $6p + 3k^2 - 11k + 12 = 0$ for t = 5 and t = 6, respectively, a contradiction.

Case 7 $(t \le -1)$. Using (7), we find that $(p+1)t^2 + 2|t|(2p+1) + 6k^2 + 2k(2|t|+1) = 0$, a contradiction.

Proposition 14 Let G be a connected strongly regular graph of order 4(2p+1) and degree r, where 2p + 1 is a prime number. If $m_2 = 2(2p + 1)$ and $m_3 = 4p + 1$, then G belongs to the class (4⁰) represented in Theorem 3.

Proof Using (2), we obtain $8p(|\lambda_3|-\lambda_2) = 3(\tau-\theta)+\delta+2r$. Since $3(\tau-\theta)+\delta = 4\lambda_2+2\lambda_3$, it follows that $-8p \le 3(\tau-\theta)+\delta+2r \le 32p$. Let $|\lambda_3|-\lambda_2 = t$ where $-1 \le t \le 4$. Let $\lambda_2 = k$ where k is a non-negative integer. Then (i) $\lambda_3 = -(k+t)$; (ii) $\tau - \theta = -t$; (iii) $\delta = 2k + t$; (iv) r = (4p+1)t - k; and (v) $\theta = (4p+1)t - (k^2 + (t+1)k)$. Using (ii), (iv), and (v), we can easily see that (1) is reduced to

$$t(t-2)(4p+1) + 2k(k+1) = 0.$$
(8)

Case 1 (t = 0). Using (i), (ii), (iii), and (iv), we find that $\lambda_2 = k$ and $\lambda_3 = -k$, $\tau - \theta = 0$, $\delta = 2k$, and r = -k, a contradiction.

Case 2 (*t* = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(k + 1)$, $\tau - \theta = -1$, $\delta = 2k + 1$, r = (4p + 1) - k, and $\theta = (4p + 1) - (k^2 + 2k)$. Using (8), we find that 4p + 1 = 2k(k + 1), a contradiction because $2 \nmid (4p + 1)$.

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(k + 2)$, $\tau - \theta = -2$, $\delta = 2(k + 1)$, r = 2(4p + 1) - k, and $\theta = 2(4p + 1) - (k^2 + 3k)$. Using (8), we find that k(k + 1) = 0. So we obtain that *G* is the cocktail-party graph $\overline{(4p + 2)K_2}$ of degree r = 8p + 2 with $\tau = 8p$ and $\theta = 8p + 2$.

Case 4 (t = 3, 4 and t = -1). Using (8), we find that (x) 3(4p + 1) + 2k(k + 1) = 0; (y) 4(4p + 1) + k(k + 1) = 0 and (z) 3(4p + 1) + 2k(k + 1) = 0 for t = 3, t = 4 and t = -1 respectively, a contradiction.

Proposition 15 Let G be a connected strongly regular graph of order 4(2p+1) and degree r, where 2p + 1 is a prime number. If $m_2 = 3(2p + 1)$ and $m_3 = 2p$, then G belongs to the class (3^0) or (5^0) represented in Theorem 3.

Proof Using (2), we obtain $4p(|\lambda_3|-3\lambda_2) = 3(\tau-\theta)+3\delta+2r$. Since $3(\tau-\theta)+3\delta = 6\lambda_2$, it follows that $0 < 3(\tau-\theta)+3\delta+2r \le 40p$. Let $|\lambda_3|-3\lambda_2 = t$ where t = 1, 2, ..., 10. Let $\lambda_2 = k$ where k is a non-negative integer. Then (i) $\lambda_3 = -(3k+t)$; (ii) $\tau-\theta = -(2k+t)$; (iii) $\delta = 4k + t$; (iv) r = 2pt - 3k; and (v) $\theta = 2pt - (3k^2 + (t+3)k)$. Using (ii), (iv), and (v), we can easily see that (1) is reduced to

$$t(t-4)p + 6k(k+1) = 0.$$
(9)

Case 1 (*t* = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(3k + 1)$, $\tau - \theta = -(2k + 1)$, $\delta = 4k + 1$, r = 2p - 3k, and $\theta = 2p - (3k^2 + 4k)$. Using (9), we find that p = 2k(k + 1) which yields that $2p + 1 = (2k + 1)^2$, a contradiction.

Case 2 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(3k + 2)$, $\tau - \theta = -2(k + 1)$, $\delta = 2(2k + 1)$, r = 4p - 3k, and $\theta = 4p - (3k^2 + 5k)$. Using (9), we find that 2p = 3k(k + 1), where k is a positive integer. So we obtain that G is a strongly regular graph of order $4(3k^2 + 3k + 1)$ and degree r = 3k(2k + 1) with $\tau = 3k^2 - k - 2$ and $\theta = k(3k + 1)$.

Case 3 (t = 3). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -3(k+1)$, $\tau - \theta = -(2k+3)$, $\delta = 4k+3$, r = 3(2p-1), and $\theta = 6p - (3k^2 + 6k)$. Using (9), we find that p = 2k(k+1) which yields that $2p + 1 = (2k+1)^2$, a contradiction.

Case 4 (t = 4). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(3k + 4)$, $\tau - \theta = -2(k + 2)$, $\delta = 4(k + 1)$, r = 8p - 3k, and $\theta = 8p - (3k^2 + 7k)$. Using (9), we find that k(k + 1) = 0. So we obtain that *G* is the strongly regular graph $(2p + 1)K_4$ of degree r = 8p with $\tau = 8p - 4$ and $\theta = 8p$.

Case 5 $(t \ge 5)$. In this case, we find that t(t-4)p + 6k(k+1) = 0, a contradiction (see (9)).

Proposition 16 Let G be a connected strongly regular graph of order 4(2p+1) and degree r, where 2p + 1 is a prime number. If $m_3 = 2p + 1$ and $m_2 = 6p + 2$, then G belongs to the class $(\overline{6}^0)$ or (7^0) or $(\overline{8}^0)$ represented in Theorem 3.

Proof Using (2) we obtain $4p(|\lambda_3| - 3\lambda_2) = 3(\tau - \theta) + \delta + 2r$. Let $|\lambda_3| - 3\lambda_2 = t$ where $-2 \le t \le 8$. Let $\lambda_2 = k$ where k is a non-negative integer. Then (i) $\lambda_3 = -(3k + t)$; (ii) $\tau - \theta = -(2k + t)$; (iii) $\delta = 4k + t$; (iv) r = (2p + 1)t + k and (v) $\theta = (2p + 1)t - (3k^2 + (t - 1)k)$. Using (ii), (iv) and (v) we can easily see that (1) is reduced to

$$(p+1)t^2 - 2(2p+1)t + 6k^2 + 2k(2t-1) = 0.$$
 (10)

Case 1 (t = 0). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -3k$, $\tau - \theta = -2k$, $\delta = 4k$, r = k, and $\theta = -k(3k - 1)$, which provides that $\theta = 0$. So we obtain that *G* is disconnected, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(3k + 1)$, $\tau - \theta = -(2k + 1)$, $\delta = 4k + 1$, r = (2p + 1) + k, and $\theta = (2p + 1) - 3k^2$. Using (10) we find that 3p + 1 = 2k(3k + 1). Replacing k with 3k - 1, we arrive at $p = 18k^2 - 10k + 1$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $4(36k^2 - 20k + 3)$ and degree r = (4k - 1)(9k - 2) with $\tau = 9k^2 - 8k + 1$ and $\theta = k(9k - 2)$.

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(3k + 2)$, $\tau - \theta = -2(k + 1)$, $\delta = 2(2k + 1)$, r = 2(2p + 1) + k, and $\theta = 2(2p + 1) - (3k^2 + k)$. Using (10), we find that 2p = 3k(k + 1), where k is a positive integer. So we obtain that G is a strongly regular graph of order $4(3k^2 + 3k + 1)$ and degree r = (2k + 1)(3k + 2) with $\tau = 3k(k + 1)$ and $\theta = (k + 1)(3k + 2)$.

Case 4 (*t* = 3). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -3(k + 1)$, $\tau - \theta = -(2k+3)$, $\delta = 4k+3$, r = 3(2p+1) + k, and $\theta = 3(2p+1) - (3k^2+2k)$. Using (10), we find that 3p-3 = 2k(3k+5). Replacing *k* with 3*k*, we arrive at $p = 18k^2 + 10k+1$, where *k* is a positive integer. So we obtain that *G* is a strongly regular graph of order $4(36k^2 + 20k + 3)$ and degree r = 9(3k+1)(4k+1) with $\tau = 9(3k+1)^2 - 3(2k+1)$ and $\theta = 9(3k+1)^2$.

Case 5 ($t \ge 4$). Using (i), (ii), (iii), and (iv), we find that $\lambda_2 = k$ and $\lambda_3 = -(3k + 4)$, $\tau - \theta = -2(k + 2)$, $\delta = 4(k + 1)$, and $r = 4(2p + 1) + k \ge 8p + 4$, a contradiction.

Case 6 (t = -1, -2). Using (10), we obtain $(p+1)t^2+2|t|(2p+1)+6k^2-2k(2|t|+1) = 0$, a contradiction.

Proposition 17 *There is no connected strongly regular graph G of order* 4(2p + 1) *and degree r with* $m_3 = 2(2p + 1)$ *and* $m_2 = 4p + 1$ *, where* 2p + 1 *is a prime number.*

Proof Contrary to the statement, assume that *G* is a strongly regular graph with $m_3 = 2(2p + 1)$ and $m_2 = 4p + 1$. Using (2), we obtain $8p(|\lambda_3| - \lambda_2) = 3(\tau - \theta) - \delta + r$. Let $|\lambda_3| - \lambda_2 = t$ where $-2 \le t \le 3$. Let $\lambda_2 = k$ where *k* is a non-negative integer. Then (i) $\lambda_3 = -(k + t)$; (ii) $\tau - \theta = -t$; (iii) $\delta = 2k + t$; (iv) r = 2t(2p + 1) + k; and (v) $\theta = 2t(2p + 1) - (k^2 + (t - 1)k)$. Using (ii), (iv), and (v), we can easily see that (1) is reduced to

$$(4p+3)t^2 - 4(2p+1)t + 2k^2 + 2k(2t-1) = 0.$$
(11)

Case 1 (t = 0). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -k$, $\tau - \theta = 0$, $\delta = 2k$, r = k, and $\theta = -k^2 + k$, a contradiction.

Case 2 (*t* = 1). Using (i), (ii), (ii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(k + 1)$, $\tau - \theta = -1$, $\delta = 2k + 1$, r = 2(2p + 1) + k, and $\theta = 2(2p + 1) - k^2$. Using (11), we find that 4p + 1 = 2k(k + 1), a contradiction because $2 \nmid (4p + 1)$.

Case 3 (t = 2). Using (i), (ii), (ii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(k + 2)$, $\tau - \theta = -2$, $\delta = 2(k + 1)$, r = 4(2p + 1) + k, and $\theta = 4(2p + 1) - (k^2 + k)$. Using (11), we find that (k + 1)(k + 2) = 0, a contradiction.

Case 4 (t = 3 and t = -1, -2). Using (11), we find that (x) $12p + 2k^2 + 10k + 5 = 0$; (y) $12p + 2k^2 - 6k + 7 = 0$; and (z) $16p + k^2 - 5k + 10 = 0$ for t = 3, t = -1, and t = -2, respectively, a contradiction.

Proposition 18 Let G be a connected strongly regular graph of order 4(2p+1) and degree r, where 2p + 1 is a prime number. If $m_3 = 3(2p+1)$ and $m_2 = 2p$, then G belongs to the class $(\overline{5}^0)$ represented in Theorem 3.

Proof Using (2), we obtain $4p(3|\lambda_3| - \lambda_2) = 3(\tau - \theta) - 3\delta + r$. Since $3(\tau - \theta) - 3\delta = 6\lambda_3$, it follows that $-16p \le 3(\tau - \theta) - 3\delta + 2r \le 16p$. Let $3|\lambda_3| - \lambda_2 = t$ where $-4 \le t \le 4$. Let $\lambda_3 = -k$ where k is a positive integer. Then (i) $\lambda_2 = 3k - t$; (ii) $\tau - \theta = 2k - t$; (iii) $\delta = 4k - t$; (iv) r = 2pt + 3k; and (v) $\theta = 2pt - (3k^2 - (t + 3)k)$. Using (ii), (iv), and (v), we can easily see that (1) is reduced to

$$t(t-4)p + 6k(k-1) = 0.$$
(12)

Case 1 (t = 0). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 3k$ and $\lambda_3 = -k$, $\tau - \theta = 2k$, $\delta = 4k$, r = 3k, and $\theta = -3k^2 + 3k$. Using (12), we find that k(k - 1) = 0, which yields that $\theta = 0$. So we obtain that *G* is disconnected, a contradiction.

Case 2 (*t* = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 3k + 1$ and $\lambda_3 = -k$, $\tau - \theta = 2k - 1$, $\delta = 4k - 1$, r = 2p + 3k, and $\theta = 2p - (3k^2 - 4k)$. Using (12), we find that p = 2k(k - 1), which yields that $2p + 1 = (2k - 1)^2$, a contradiction.

Case 3 (t = 2). Using (i), (ii), (ii), (iv), and (v), we find that $\lambda_2 = 3k - 2$ and $\lambda_3 = -k$, $\tau - \theta = 2(k - 1)$, $\delta = 2(2k - 1)$, r = 4p + 3k, and $\theta = 4p - (3k^2 - 5k)$. Using (12), we find that 2p = 3k(k - 1). Replacing k with k + 1, we obtain that G is the strongly regular graph of order $4(3k^2 + 3k + 1)$ and degree r = 3(k + 1)(2k + 1) with $\tau = (k + 2)(3k + 1)$ and $\theta = (k + 1)(3k + 2)$.

Case 4 (t = 3). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 3(k-1)$ and $\lambda_3 = -k$, $\tau - \theta = 2k - 3$, $\delta = 4k - 3$, r = 6p + 3k, and $\theta = 6p - (3k^2 - 6k)$. Using (12), we find that p = k(k-1), which yields that $2p + 1 = (2k - 1)^2$, a contradiction.

Case 5 (*t* = 4). Using (i), (ii), (ii), (iv), and (v), we find that $\lambda_2 = 3k - 4$ and $\lambda_3 = -k$, $\tau - \theta = 2(k - 2)$, $\delta = 4(k - 1)$, r = 8p + 3k, and $\theta = 6p - (3k^2 - 7k)$. Using (12), we find that k(k - 1) = 0, a contradiction.

Case 6 $(t \le -1)$. In this case, we find that |t|(|t|+4)p + 6k(k-1) = 0, a contradiction (see (12)).

Theorem 3 Let G be a connected strongly regular graph of order 4(2p + 1) and degree r, where 2p + 1 is a prime number. Then G is one of the following strongly regular graphs:

- (1⁰) *G* is the complete bipartite graph $K_{4p+2,4p+2}$ of order n = 4(2p + 1) and degree r = 4p + 2 with $\tau = 0$ and $\theta = 4p + 2$, where $p \in \mathbb{N}$ and 2p + 1 is a prime number. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -(4p + 2)$ with $m_2 = 8p + 2$ and $m_3 = 1$;
- (2⁰) *G* is the strongly regular graph $\overline{4K_{2p+1}}$ of order n = 4(2p+1) and degree r = 6p+3with $\tau = 4p + 2$ and $\theta = 6p + 3$, where $p \in \mathbb{N}$ and 2p + 1 is a prime number. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -(2p+1)$ with $m_2 = 8p$ and $m_3 = 3$;
- (3⁰) *G* is the strongly regular graph $\overline{(2p+1)K_4}$ of order n = 4(2p+1) and degree r = 8p with $\tau = 8p 4$ and $\theta = 8p$, where $p \in \mathbb{N}$ and 2p + 1 is a prime number. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -4$ with $m_2 = 3(2p+1)$ and $m_3 = 2p$;
- (4⁰) *G* is the cocktail-party graph $\overline{(4p+2)K_2}$ of order n = 4(2p+1) and degree r = 8p+2 with $\tau = 8p$ and $\theta = 8p+2$, where $p \in \mathbb{N}$ and 2p+1 is a prime number. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -2$ with $m_2 = 2(2p+1)$ and $m_3 = 4p+1$;
- (5⁰) *G* is the strongly regular graph of order $n = 4(3k^2 + 3k + 1)$ and degree r = 3k(2k + 1) with $\tau = 3k^2 k 2$ and $\theta = k(3k + 1)$, where $k \in \mathbb{N}$ and $3k^2 + 3k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = k$ and $\lambda_3 = -(3k + 2)$ with $m_2 = 3(3k^2 + 3k + 1)$ and $m_3 = 3k(k + 1)$;
- $(\overline{5}^0)$ *G* is the strongly regular graph of order $n = 4(3k^2 + 3k + 1)$ and degree r = 3(k+1)(2k+1) with $\tau = (k+2)(3k+1)$ and $\theta = (k+1)(3k+2)$, where $k \in \mathbb{N}$ and $3k^2 + 3k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 3k + 1$ and $\lambda_3 = -(k+1)$ with $m_2 = 3k(k+1)$ and $m_3 = 3(3k^2 + 3k + 1)$;
- (6⁰) *G* is the strongly regular graph of order $n = 4(3k^2 + 3k + 1)$ and degree r = (2k + 1)(3k + 1) with $\tau = 3k(k + 1)$ and $\theta = k(3k + 1)$, where $k \in \mathbb{N}$ and $3k^2 + 3k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = 3k + 1$ and $\lambda_3 = -(k + 1)$ with $m_2 = 3k^2 + 3k + 1$ and $m_3 = (3k + 1)(3k + 2)$;
- $(\overline{6}^0)$ *G* is the strongly regular graph of order $n = 4(3k^2 + 3k + 1)$ and degree r = (2k + 1)(3k + 2) with $\tau = 3k(k + 1)$ and $\theta = (k + 1)(3k + 2)$, where $k \in \mathbb{N}$ and $3k^2 + 3k + 1$ is a prime number. Its eigenvalues are $\lambda_2 = k$ and $\lambda_3 = -(3k + 2)$ with $m_2 = (3k + 1)(3k + 2)$ and $m_3 = 3k^2 + 3k + 1$;

- (7⁰) *G* is the strongly regular graph of order $n = 4(36k^2 20k + 3)$ and degree r = (4k 1)(9k 2) with $\tau = 9k^2 8k + 1$ and $\theta = k(9k 2)$, where $k \in \mathbb{N}$ and $36k^2 20k + 3$ is a prime number. Its eigenvalues are $\lambda_2 = 3k 1$ and $\lambda_3 = -(9k 2)$ with $m_2 = 4(3k 1)(9k 2)$ and $m_3 = 36k^2 20k + 3$;
- $(\overline{7}^0)$ *G* is the strongly regular graph of order $n = 4(36k^2 20k + 3)$ and degree r = 9(3k 1)(4k 1) with $\tau = 9(3k 1)^2 + 3(2k 1)$ and $\theta = 9(3k 1)^2$, where $k \in \mathbb{N}$ and $36k^2 20k + 3$ is a prime number. Its eigenvalues are $\lambda_2 = 3(3k 1)$ and $\lambda_3 = -3k$ with $m_2 = 36k^2 20k + 3$ and $m_3 = 4(3k 1)(9k 2)$;
- (8⁰) *G* is the strongly regular graph of order $n = 4(36k^2 + 20k + 3)$ and degree r = (4k + 1)(9k + 2) with $\tau = 9k^2 + 8k + 1$ and $\theta = k(9k + 2)$, where $k \in \mathbb{N}$ and $36k^2 + 20k + 3$ is a prime number. Its eigenvalues are $\lambda_2 = 9k + 2$ and $\lambda_3 = -(3k+1)$ with $m_2 = 36k^2 + 20k + 3$ and $m_3 = 4(3k + 1)(9k + 2)$;
- $(\overline{8}^0)$ G is the strongly regular graph of order $n = 4(36k^2 + 20k + 3)$ and degree r = 9(3k + 1)(4k + 1) with $\tau = 9(3k + 1)^2 3(2k + 1)$ and $\theta = 9(3k + 1)^2$, where $k \in \mathbb{N}$ and $36k^2 + 20k + 3$ is a prime number. Its eigenvalues are $\lambda_2 = 3k$ and $\lambda_3 = -3(3k + 1)$ with $m_2 = 4(3k + 1)(9k + 2)$ and $m_3 = 36k^2 + 20k + 3$.

Proof Using Theorem 1, we have $m_2m_3\delta^2 = 4(2p+1)r\,\bar{r}$. We shall now consider the following three cases.

Case 1 $((2p + 1) | \delta^2)$. In this case, $(2p + 1) | \delta$ because *G* is an integral graph. Since $\delta = \lambda_2 + |\lambda_3| < 8p + 4$ (see [3]), it follows that $\delta = 2p + 1$ or $\delta = 2(2p+1)$ or $\delta = 3(2p+1)$. Using Propositions 10, 11, and 12, it turns out that *G* belongs to the class (1^0) or (2^0) .

Case 2 ((2p + 1) | m_2). Since $m_2 + m_3 = 8p + 3$, it follows that $m_2 = 2p + 1$ and $m_3 = 6p + 2$ or $m_2 = 2(2p + 1)$ and $m_3 = 4p + 1$ or $m_2 = 3(2p + 1)$ and $m_3 = 2p$. Using Propositions 13, 14, and 15, it turns out that *G* belongs to the class (3⁰) or (4⁰) or (5⁰) or (6⁰) or ($\overline{7}^0$) or (8⁰).

Case 3 ((2p + 1) | m_3). Since $m_3 + m_2 = 8p + 3$, it follows that $m_3 = 2p + 1$ and $m_2 = 6p + 2$ or $m_3 = 2(2p + 1)$ and $m_2 = 4p + 1$ or $m_3 = 3(2p + 1)$ and $m_2 = 2p$. Using Propositions 16, 17, and 18, it turns out that *G* belongs to the class ($\overline{5}^0$) or ($\overline{6}^0$) or ($\overline{7}^0$) or ($\overline{8}^0$).

References

- 1. Elzinga, R.J.: Strongly regular graphs: values of λ and μ for which there are only finitely many feasible (v, k, λ, μ) . Electron. J. Linear Algebra **10**, 232–239 (2003)
- 2. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)
- Lepović, M.: Some characterizations of strongly regular graphs. J. Appl. Math. Comput. 29, 373–381 (2009)