On Strongly Regular Graphs of Order $3(2p + 1)$ and $4(2p + 1)$ where $2p + 1$ is a Prime Number

Mirko Lepovic´

Received: 12 December 2013 / Accepted: 12 May 2014 / Published online: 19 November 2014 © Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2014

Abstract We say that a regular graph *G* of order *n* and degree $r \geq 1$ (which is not the complete graph) is strongly regular if any two distinct vertices have *τ* common neighbors if they are adjacent and have *θ* common neighbors if they are not adjacent. We here describe the parameters *n, r, t,* and θ for strongly regular graphs of order $3(2p + 1)$ and $4(2p + 1)$, where $2p + 1$ is a prime number.

Keywords Strongly regular graph · Conference graph · Integral graph

Mathematics Subject Classification (2010) 05C50

1 Introduction

Let *G* be a simple graph of order *n*. The spectrum of *G* consists of the eigenvalues $\lambda_1 \geq$ $\lambda_2 \geq \cdots \geq \lambda_n$ of its (0,1) adjacency matrix *A* and is denoted by $\sigma(G)$. We say that a regular graph *G* of order *n* and degree $r \ge 1$ (which is not the complete graph K_n) is strongly regular if any two distinct vertices have *τ* common neighbors if they are adjacent and have *θ* common neighbors if they are not adjacent. Besides, we say that a regular connected graph *G* is strongly regular if and only if it has exactly three distinct eigenvalues [\[1\]](#page-13-0). Let $\lambda_1 = r$, λ_2 and λ_3 denote the distinct eigenvalues of *G*. Let $m_1 = 1$, m_2 and m_3 denote the multiplicity of *r*, λ_2 , and λ_3 , respectively. The results obtained in this work are based on the following assertion [\[2,](#page-13-1) [3\]](#page-13-2).

Theorem 1 *Let G be a connected strongly regular graph of order n and degree r. Then* $m_2 m_3 \delta^2 = n r \bar{r}$ *where* $\delta = \lambda_2 - \lambda_3$ *and* $\bar{r} = (n-1) - r$ *.*

M. Lepović (\boxtimes)

Tihomira Vuksanovica 32, Kragujevac 34000, Serbia ´ e-mail: lepovic@kg.ac.rs

Further, let $\bar{r} = (n-1) - r$, $\bar{\lambda}_2 = -\lambda_3 - 1$, and $\bar{\lambda}_3 = -\lambda_2 - 1$ denote the distinct eigenvalues of the strongly regular graph \overline{G} , where \overline{G} denotes the complement of *G*. It is known that $\overline{\tau} = n - 2r - 2 + \theta$ and $\overline{\theta} = n - 2r + \tau$ where $\overline{\tau} = \tau(\overline{G})$ and $\overline{\theta} = \theta(\overline{G})$.

Remark 1 (i) A strongly regular graph *G* of order $4n + 1$ and degree $r = 2n$ with $\tau = n - 1$ and $\theta = n$ is called the conference graph; (ii) a strongly regular graph is the conference graph if and only if $m_2 = m_3$; and (iii) if $m_2 \neq m_3$, then *G* is an integral¹ graph.

Remark 2 If *G* is a disconnected strongly regular graph of degree *r*, then $G = mK_{r+1}$, where *mH* denotes the *m*-fold union of the graph *H*. We know that *G* is a disconnected strongly regular graph if and only if $\theta = 0$.

Due to Theorem 1, we have recently obtained the following results [\[3\]](#page-13-2): (i) there is no strongly regular graph of order $4p+3$ if $4p+3$ is a prime number, and (ii) the only strongly regular graphs of order $4p+1$ are conference graphs if $4p+1$ is a prime number. Besides, in the same work, we have described the parameters n, r, τ , and θ for strongly regular graphs of order $2(2p + 1)$, where $2p + 1$ is a prime number. We now proceed to establish the parameters of strongly regular graphs of order $3(2p + 1)$ and $4(2p + 1)$ where $2p + 1$ is a prime number, as follows. First,

Proposition 1 (Elzinga [\[1\]](#page-13-0)) *Let G be a connected or disconnected strongly regular graph of order n and degree r. Then,*

$$
r^{2} - (\tau - \theta + 1)r - (n - 1)\theta = 0.
$$
 (1)

Proposition 2 (Elzinga [\[1\]](#page-13-0)) *Let G be a connected strongly regular graph of order n and degree r. Then,*

$$
2r + (\tau - \theta)(m_2 + m_3) + \delta(m_2 - m_3) = 0,\t(2)
$$

where $\delta = \lambda_2 - \lambda_3$ *.*

Second, in what follows, (x, y) denotes the greatest common divisor of integers $x, y \in \mathbb{N}$ while $x \mid y$ means that x divides y .

2 Main Results

Remark 3 In the following two Theorems 2 and 3, the complements of strongly regular graphs appear in pairs in (k^0) and (\overline{k}^0) classes, where *k* denotes the corresponding number of a class.

Proposition 3 *Let G be a connected strongly regular graph of order* $3(2p + 1)$ *and degree r*, where^{[2](#page-1-1)} $2p + 1$ *is a prime number. If* $p \ge 2$ *, then G is a conference graph if and only if* $\delta^2 = 3(2p + 1)$ *.*

¹We say that a connected or disconnected graph *G* is integral if its spectrum $\sigma(G)$ consists of integral values.

²The connected strongly regular graphs of order 9 are (i) the conference graph of degree $r = 4$ with $\tau = 1$ and $\theta = 2$. Its eigenvalues are $\lambda_2 = 1$ and $\lambda_3 = -2$ with $m_2 = 4$ and $m_3 = 4$ and (ii) 3*K*₃ of degree $r = 6$ with $\tau = 3$ and $\theta = 6$. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -3$ with $m_2 = 6$ and $m_3 = 2$.

Proof We note first that if *G* is a conference graph, then $\delta^2 = 3(2p + 1)$. Conversely, let us assume that $\delta^2 = 3(2p + 1)$. Since $3 \nmid (2p + 1)$, it follows that δ^2 is not a perfect square. Since $\delta = \lambda_2 - \lambda_3 \notin \mathbb{N}$, it turns out that *G* is not integral, which proves the statement.

Remark 4 Since the strongly regular graphs of order $n = 9$ are completely described, in the sequel, it will be assumed that $p \geq 2$.

Proposition 4 *Let G be a connected strongly regular graph of order* $3(2p+1)$ *and degree r, where* $2p+1$ *is a prime number. If* $\delta = 2p+1$ *, then G belongs to the class* (1⁰) *represented in Theorem 2.*

Proof Using Theorem 1, we have $(2p + 1)m_2m_3 = 3r\bar{r}$, which means that $(2p + 1) | r$ or $(2p + 1)$ $|\bar{r}$. Without loss of generality, we may consider only the case when $(2p + 1)$ $|r$.

Case 1 ($r = 2p + 1$). Then, $m_2m_3 = 3(4p + 1)$ and $m_2 + m_3 = 6p + 2$, which provides that m_2 and m_3 are the roots of the quadratic equation $m^2 - (6p + 2)m + 3(4p + 1) = 0$. So we find that m_2 , $m_3 = \frac{6p+2\pm\Delta}{2}$ where $\Delta^2 = (6p-2)^2 - 12$, a contradiction because Δ^2 is not a perfect square for $p \geq 2$.

Case 2 ($r = 2(2p + 1)$). Then $m_2m_3 = 12p$ which yields that $m_2 = 6p$ and $m_3 = 2$ or $m_2 = 2$ and $m_3 = 6p$. Consider first the case when $m_2 = 6p$ and $m_3 = 2$. Using [\(2\)](#page-1-2), we $\text{obtain } τ - θ = -(2p + 1).$ Since $λ_{2,3} = \frac{τ - θ ± δ}{2}$, we get easily $λ_2 = 0$ and $λ_3 = -(2p + 1)$, which proves that *G* is the strongly regular graph $\overline{3K_{2p+1}}$ of degree $r = 4p + 2$ with $\tau = 2p + 1$ and $\theta = 4p + 2$. Consider the case when $m_2 = 2$ and $m_3 = 6p$. Using [\(2\)](#page-1-2), we obtain $\tau - \theta = \frac{3(p-1)(2p+1)}{3p+1}$, a contradiction because $(3p + 1) \nmid 3(p - 1)$.

Proposition 5 *There is no connected strongly regular graph G of order* $3(2p + 1)$ *and degree r* with $\delta = 2(2p + 1)$ *, where* $2p + 1$ *is a prime number.*

Proof Contrary to the statement, assume that *G* is a strongly regular graph with $\delta = 2(2p + 1)$. Using Theorem 2, we have $4(2p + 1)m_2m_3 = 3r\bar{r}$ which means that $(2p + 1)$ | *r* or $(2p + 1)$ | *F*. Consider the case when $r = 2p + 1$ and $\bar{r} = 4p + 1$. Then $4m_2m_3 = 3(4p + 1)$, a contradiction because $4 \nmid (4p + 1)$. Consider the case when $r = 2(2p + 1)$ and $\bar{r} = 2p$. Then, $m_2 + m_3 = 6p + 2$ and $m_2m_3 = 3p$, a contradiction.

Proposition 6 *Let G be a connected strongly regular graph of order* $3(2p + 1)$ *and degree r*, where $2p + 1$ *is a prime number. If* $m_2 = 2p + 1$ *and* $m_3 = 4p + 1$ *, then G belongs to the class* (6^0) *or* (7^0) *represented in Theorem* 2.

Proof Using [\(2\)](#page-1-2), we obtain $p\delta = r + (\tau - \theta)(3p + 1)$. Since $\delta = \lambda_2 - \lambda_3$ and $\tau - \theta = \lambda_2 + \lambda_3$, we arrive at $2p(2|\lambda_3| - \lambda_2) = \tau - \theta + r$. Since $r \le 6p + 1, \theta \le r$ and $\tau < r$, it follows that $0 \le \tau - \theta + r \le 12p$. Let $2|\lambda_3| - \lambda_2 = t$ where $t = 0, 1, ..., 6$. Let $\lambda_3 = -k$ where *k* is a positive integer. Then (i) $\lambda_2 = 2k - t$; (ii) $\tau - \theta = k - t$; (iii) $\delta = 3k - t$; and (iv) $r = (2p + 1)t - k$. Since $\delta^2 = (\tau - \theta)^2 + 4(r - \theta)$ (see [\[1\]](#page-13-0)), we obtain (v) $\theta = (2p + 1)t - (2k^2 - (t - 1)k)$. Using (ii), (iv), and (v), it is not difficult to see that [\(1\)](#page-1-3) is transformed into

$$
2(p+1)t2 - 3(2p+1)t + 6k2 - 3k(2t - 1) = 0.
$$
 (3)

 $\textcircled{2}$ Springer

Case 1 (*t* = 0). Using (i), (iii), (iiii), and (iv), we find that $\lambda_2 = 2k$ and $\lambda_3 = -k$, $\tau - \theta = k$, $\delta = 3k$, and $r = -k$, a contradiction.

Case 2 (*t* = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 2k - 1$ and $\lambda_3 = -k$, $\tau - \theta = k - 1, \delta = 3k - 1, r = (2p + 1) - k$, and $\theta = (2p + 1) - 2k^2$. Using [\(3\)](#page-2-0), we find that $4p + 1 = 3k(2k - 1)$. Replacing *k* with $4k - 1$, we arrive at $p = 24k^2 - 15k + 2$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $3(48k^2 - 30k + 5)$ and degree $r = 2(3k - 1)(8k - 3)$ with $\tau = (2k - 1)(8k - 1)$ and $\theta = (2k - 1)(8k - 3).$

Case 3 (*t* = 2). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 2(k - 1)$ and $\lambda_3 = -k$, $\tau - \theta = k - 2$, $\delta = 3k - 2$, $r = 2(2p + 1) - k$, and $\theta = 2(2p + 1) - (2k^2 - k)$. Using [\(3\)](#page-2-0), we find that $4p+1 = 3(k-1)(2k-1)$. Replacing *k* with $4k+2$, we arrive at $p = 24k^2 + 15k + 2$, where *k* is a non-negative integer. So we obtain that *G* is a strongly regular graph of order $3(48k^2 + 30k + 5)$ and degree $r = 8(3k + 1)(4k + 1)$ with $\tau = 4(4k + 1)^2 + 4k$ and $\theta = 4(4k+1)^2$.

Case 4 (*t* = 3). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 2k - 3$ and $\lambda_3 = -k$, $\tau - \theta = k - 3$, $\delta = 3(k - 1)$, $r = 3(2p + 1) - k$, and $\theta = 3(2p + 1) - (2k^2 - 2k)$. Using [\(3\)](#page-2-0), we find that $(k-1)(2k-3) = 0$. So we obtain that *G* is the complete graph, a contradiction.

Case 5 (*t* = 4, 5, 6). Using [\(3\)](#page-2-0), we find that (x) $8p + 6k^2 - 21k + 20 = 0$; (y) $20p + 6k^2 - 16k^2 - 16k^2$ 27*k* + 35 = 0 and (z) 12*p* + 2 k^2 − 11*k* + 18 = 0 for *t* = 4*, t* = 5 and *t* = 6, respectively, a contradiction. a contradiction.

Proposition 7 *Let G be a connected strongly regular graph of order* 3*(*2*p* + 1*) and degree r*, where $2p + 1$ *is a prime number. If* $m_2 = 2(2p + 1)$ *and* $m_3 = 2p$ *, then G belongs to the class* (2⁰) *or* (4⁰) *or* $(\overline{5}^0)$ *represented in Theorem* 2.

Proof Using [\(2\)](#page-1-2), we obtain $2p(|\lambda_3| - 2\lambda_2) = (\tau - \theta) + \delta + r$. Since $(\tau - \theta) + \delta = 2\lambda_2$ and $\lambda_2 \leq \lfloor \frac{6p+3}{2} \rfloor - 1$ (see [\[3\]](#page-13-2)), it follows that $0 < (\tau - \theta) + \delta + r \leq 12p$. Let $|\lambda_3| - 2\lambda_2 = t$ where $t = 1, 2, \ldots, 6$. Let $\lambda_2 = k$ where *k* is a non-negative integer. Then (i) $\lambda_3 = -(2k + t)$; (ii) $\tau - \theta = -(k + t)$; (iii) $\delta = 3k + t$; (iv) $r = 2(pt - k)$; and (v) $\theta = 2pt - (2k^2 + (t + 2)k)$. Using (ii), (iv), and (v), we can easily see that (1) is transformed into

$$
t(t-3)p + 3k(k+1) = 0.
$$
 (4)

Case 1 (*t* = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(2k + 1)$, $\tau - \theta = -(k+1), \delta = 3k+1, r = 2(p-k), \text{ and } \theta = 2p - (2k^2 + 3k)$. Using [\(4\)](#page-3-0), we find that $2p = 3k(k+1)$. So we obtain that *G* is a strongly regular graph of order $3(3k^2+3k+1)$ and degree $r = k(3k + 1)$ with $\tau = k^2 - k - 1$ and $\theta = k^2$, where $k > 2$.

Case 2 (*t* = 2). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -2(k + 1)$, $\tau - \theta = -(k+2), \delta = 3k+2, r = 2(2p-k), \text{ and } \theta = 4p - (2k^2 + 4k)$. Using [\(4\)](#page-3-0), we find that $2p = 3k(k+1)$. So we obtain that *G* is a strongly regular graph of order $3(3k^2+3k+1)$ and degree $r = 2k(3k + 2)$ with $\tau = 4k^2 + k - 2$ and $\theta = 2k(2k + 1)$.

Case 3 (*t* = 3). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(2k + 3)$, $\tau - \theta = -(k + 3), \delta = 3(k + 1), r = 2(3p - k), \text{ and } \theta = 6p - (2k^2 + 5k)$. Using [\(4\)](#page-3-0), we find that $k(k + 1) = 0$. So we obtain that *G* is a strongly regular graph $\overline{(2p + 1)K_3}$ of degree $r = 6p$ with $\tau = 6p - 3$ and $\theta = 6p$.

Case 4 (*t* = 4, 5, 6). Using [\(4\)](#page-3-0), we find that $(x) 4p + 3k^2 + 3k = 0$; (y) $10p + 3k^2 + 3k = 0$
and $(z) 6p + k^2 + k = 0$ for $t = 4$, $t = 5$ and $t = 6$, respectively, a contradiction. and (z) $6p + k^2 + k = 0$ for $t = 4$, $t = 5$ and $t = 6$, respectively, a contradiction.

Proposition 8 *Let G be a connected strongly regular graph of order* $3(2p + 1)$ *and degree r*, where $2p + 1$ *is a prime number. If* $m_3 = 2p + 1$ *and* $m_2 = 4p + 1$ *, then G belongs to the class* $(\overline{6}^0)$ *or* (7^0) *represented in Theorem* 2.

Proof Using [\(2\)](#page-1-2), we obtain $2p(|\lambda_3| - 2\lambda_2) = \tau - \theta + r$. Let $|\lambda_3| - 2\lambda_2 = t$ where $t = 0, 1, \ldots, 6$. Let $\lambda_2 = k$ where *k* is a non-negative integer. Then, (i) $\lambda_3 = -(2k + t)$; (ii) $\tau - \theta = -(k + t)$; (iii) $\delta = 3k + t$; (iv) $r = (2p + 1)t + k$; and (v) $\theta = (2p + 1)t$ $(2k^2 + (t-1)k)$. Using (ii), (iv), and (v), we can easily see that [\(1\)](#page-1-3) is reduced to

$$
2(p+1)t2 - 3(2p+1)t + 6k2 + 3k(2t - 1) = 0.
$$
 (5)

Case 1 (*t* = 0). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -2k$, $\tau - \theta =$ $-k, \delta = 3k, r = k$ and $\theta = -k(2k - 1)$, a contradiction.

Case 2 (*t* = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(2k + 1)$, $\tau - \theta = -(k+1), \delta = 3k+1, r = (2p+1) + k$, and $\theta = (2p+1) - 2k^2$. Using [\(5\)](#page-4-0), we find that $4p + 1 = 3k(2k + 1)$. Replacing *k* with $4k + 1$, we arrive at $p = 24k^2 + 15k + 2$, where *k* is a non-negative integer. So we obtain that *G* is a strongly regular graph of order $3(48k^2 + 30k + 5)$ and degree $r = 2(3k + 1)(8k + 3)$ with $\tau = (2k + 1)(8k + 1)$ and $\theta = (2k+1)(8k+3)$.

Case 3 (*t* = 2). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -2(k + 1)$, $\tau - \theta = -(k + 2), \delta = 3k + 2, r = 2(2p + 1) + k$, and $\theta = 2(2p + 1) - (2k^2 + k)$. Using [\(5\)](#page-4-0), we find that $4p + 1 = 3(k + 1)(2k + 1)$. Replacing *k* with $4k - 2$, we arrive at $p = 24k^2 - 15k + 2$, where *k* is a positive integer. So we obtain that *G* is a strongly regular graph of order 3(48 $k^2 - 30k + 5$) and degree $r = 8(3k-1)(4k-1)$ with $\tau = 4(4k-1)^2 - 4k$ and $\theta = 4(4k - 1)^2$.

Case 4 (*t* = 3, 4, 5, 6). Using [\(5\)](#page-4-0), we find that (x) $2k^2 + 5k + 3 = 0$; (y) $8p + 6k^2 + 21k +$ $20 = 0$; (z) $20p + 6k^2 + 27k + 35 = 0$ and (w) $12p + 2k^2 + 11k + 18 = 0$ for $t = 3, 4, 5, 6$, respectively, a contradiction.

Proposition 9 *Let G be a connected strongly regular graph of order* $3(2p + 1)$ *and degree r*, where $2p + 1$ *is a prime number. If* $m_3 = 2(2p + 1)$ *and* $m_2 = 2p$ *, then G belongs to the class* $(\overline{4}^0)$ *or* (5^0) *represented in Theorem 2.*

Proof Using [\(2\)](#page-1-2), we obtain $2p(2|\lambda_3| - \lambda_2) = (\tau - \theta) - \delta + r$. Since $(\tau - \theta) - \delta = 2\lambda_3$ and $|λ_3|$ ≤ $\lfloor \frac{6p+3}{2} \rfloor$ (see [\[3\]](#page-13-2)), it follows that $-6p$ ≤ $(τ − θ) − δ + r ≤ 6p$. Let $2|λ_3| − λ_2 = t$ where $t = 0, \pm 1, \pm 2, \pm 3$. Let $\lambda_3 = -k$ where *k* is a positive integer. Then (i) $\lambda_2 = 2k - t$; (ii) $\tau - \theta = k - t$; (iii) $\delta = 3k - t$; (iv) $r = 2(pt + k)$; and (v) $\theta = 2pt - (2k^2 - (t+2)k)$. Using (ii), (iv), and (v), we can easily see that (1) is reduced to

$$
t(t-3)p + 3k(k-1) = 0.
$$
 (6)

Case 1 (*t* = 0). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 2k$ and $\lambda_3 = -k$, $\tau - \theta = k$, $\delta = 3k$, $r = 2k$, and $\theta = -2k^2 + 2k$. Using [\(6\)](#page-4-1), we find that $k(k - 1) = 0$. So we obtain that *G* is disconnected, a contradiction.

Case 2 (*t* = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 2k - 1$ and $\lambda_3 = -k$, $\tau - \theta = k - 1$, $\delta = 3k - 1$, $r = 2(p + k)$, and $\theta = 2p - (2k^2 - 3k)$. Using [\(6\)](#page-4-1), we find that $2p = 3k(k-1)$. Replacing k with $k+1$, we obtain that G is a strongly regular graph of order $3(3k^2 + 3k + 1)$ and degree $r = (k + 1)(3k + 2)$ with $\tau = (k + 1)^2 + k$ and $\theta = (k + 1)^2$.

Case 3 (*t* = 2). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 2(k - 1)$ and $\lambda_3 = -k$, $\tau - \theta = k - 2$, $\delta = 3k - 2$, $r = 2(2p + k)$, and $\theta = 4p - (2k^2 - 4k)$. Using [\(6\)](#page-4-1), we find that $2p = 3k(k - 1)$. Replacing *k* with $k + 1$, we obtain that *G* is a strongly regular graph of order $3(3k^2 + 3k + 1)$ and degree $r = 2(k + 1)(3k + 1)$ with $\tau = 4k^2 + 7k + 1$ and $\theta = 2(k + 1)(2k + 1)$, where ^{[3](#page-5-0)} $k > 2$.

Case 4 (*t* = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = 2k - 3$ and $\lambda_3 = -k$, $\tau - \theta = k - 3$, $\delta = 3(k - 1)$, $r = 2(3p + k)$, and $\theta = 6p - (2k^2 - 5k)$. Using [\(6\)](#page-4-1) we find that $k(k - 1) = 0$. So we obtain that *G* is the complete graph, a contradiction.

Case 5 (*t* = −1, −2, −3). Using (v), we find that (x) θ = −2*p* − 2*k*² + *k*; (y) θ = $-4p - 2k^2$; and (z) $\theta = -6p - 2k^2 - k$ for $t = -1$, $t = -2$, and $t = -3$, respectively, a contradiction. contradiction.

Theorem 2 Let G be a connected strongly regular graph of order $3(2p + 1)$ and degree *r*, *where* 2*p* + 1 *is a prime number. Then G is one of the following strongly regular graphs:*

- (1^0) *G is the strongly regular graph* $3K_{2p+1}$ *of order* $n = 3(2p+1)$ *and degree* $r = 4p+2$ *with* $\tau = 2p + 1$ *and* $\theta = 4p + 2$ *, where* $p \in \mathbb{N}$ *and* $2p + 1$ *is a prime number. Its eigenvalues are* $\lambda_2 = 0$ *and* $\lambda_3 = -(2p + 1)$ *with* $m_2 = 6p$ *and* $m_3 = 2$;
- (2^0) *G is the strongly regular graph* $\overline{(2p+1)K_3}$ *of order* $n = 3(2p + 1)$ *and degree* $r = 6p$ *with* $\tau = 6p - 3$ *and* $\theta = 6p$ *, where* $p \in \mathbb{N}$ *and* $2p + 1$ *is a prime number. Its eigenvalues are* $\lambda_2 = 0$ *and* $\lambda_3 = -3$ *with* $m_2 = 2(2p + 1)$ *and* $m_3 = 2p$ *;*
- $(3⁰)$ *G is the conference graph of order* $n = 3(4k 1)$ *and degree* $r = 6k 2$ *with* $\tau = 3k - 2$ *and* $\theta = 3k - 1$ *, where* $k \in \mathbb{N}$ *and* $4k - 1$ *is a prime number. Its eigenvalues* $\int \frac{dx}{2} dx = \frac{-1 + \sqrt{3(4k-1)}}{2}$ *and* $\lambda_3 = \frac{-1 - \sqrt{3(4k-1)}}{2}$ *with* $m_2 = 6k - 2$ *and* $m_3 = 6k - 2$;
- (4^0) *G is the strongly regular graph of order* $\overline{n} = 3(3k^2+3k+1)$ *and degree* $r = k(3k+1)$ *with* $\tau = k^2 - k - 1$ *and* $\theta = k^2$ *, where* $k \geq 2$ *and* $3k^2 + 3k + 1$ *is a prime number. Its eigenvalues are* $\lambda_2 = k$ *and* $\lambda_3 = -(2k+1)$ *with* $m_2 = 2(3k^2 + 3k + 1)$ *and* $m_3 = 3k(k+1)$;
- $\overline{(4}^{0}$ *G is the strongly regular graph of order* $n = 3(3k^2 + 3k + 1)$ *and degree* $r = 2(k+1)(3k+1)$ *with* $\tau = 4k^2 + 7k + 1$ *and* $\theta = 2(k+1)(2k+1)$ *, where* $k > 2$ *and* $3k^2 + 3k + 1$ *is a prime number. Its eigenvalues are* $\lambda_2 = 2k$ *and* $\lambda_3 = -(k+1)$ *with* $m_2 = 3k(k + 1)$ *and* $m_3 = 2(3k^2 + 3k + 1)$ *;*

³The case when $k = 1$ is impossible. Indeed, in this case, we have $n = 21$, $r = 16$ and $\theta = 12$, which yields that $\bar{\tau} = -1$, a contradiction.

- *(*50*) G is the strongly regular graph of order ⁿ* ⁼ ³*(*3*k*² ⁺ ³*^k* ⁺ ¹*) and degree r* = $(k + 1)(3k + 2)$ *with* $\tau = (k + 1)^2 + k$ *and* $\theta = (k + 1)^2$ *, where* $k \in \mathbb{N}$ *and* $3k^2 + 3k + 1$ *is a prime number. Its eigenvalues are* $\lambda_2 = 2k + 1$ *and* $\lambda_3 = -(k+1)$ *with* $m_2 = 3k(k + 1)$ *and* $m_3 = 2(3k^2 + 3k + 1)$ *;*
- $(\overline{5}^0)$ *G is the strongly regular graph of order n* = 3(3 $k^2 + 3k + 1$) *and degree r* = $2k(3k + 2)$ *with* $\tau = 4k^2 + k - 2$ *and* $\theta = 2k(2k + 1)$ *, where* $k \in \mathbb{N}$ *and* $3k^2 + 3k + 1$ *is a prime number. Its eigenvalues are* $\lambda_2 = k$ *and* $\lambda_3 = -2(k+1)$ *with* $m_2 = 2(3k^2 + 3k + 1)$ *and* $m_3 = 3k(k + 1)$ *;*
- (6^0) *G is the strongly regular graph of order* $n = 3(48k^2 30k + 5)$ *and degree* $r = 2(3k-1)(8k-3)$ with $\tau = (2k-1)(8k-1)$ and $\theta = (2k-1)(8k-3)$, where $k \in \mathbb{N}$ and $48k^2 - 30k + 5$ *is a prime number. Its eigenvalues are* $\lambda_2 = 8k - 3$ *and* $\lambda_3 = -(4k - 1)$ *with* $m_2 = 48k^2 - 30k + 5$ *and* $m_3 = 3(4k - 1)(8k - 3)$ *;*
- (6^0) *G is the strongly regular graph of order n* = 3(48*k*² 30*k* + 5*) and degree* $r = 8(3k - 1)(4k - 1)$ *with* $\tau = 4(4k - 1)^2 - 4k$ *and* $\theta = 4(4k - 1)^2$, *where* $k \in \mathbb{N}$ *and* $48k^2 - 30k + 5$ *is a prime number. Its eigenvalues are* $\lambda_2 = 4k - 2$ *and* $\lambda_3 = -2(4k - 1)$ *with* $m_2 = 3(4k - 1)(8k - 3)$ *and* $m_3 = 48k^2 - 30k + 5$;
- $(7⁰)$ *G is the strongly regular graph of order* $n = 3(48k² + 30k + 5)$ *and degree* $r = 2(3k + 1)(8k + 3)$ with $\tau = (2k + 1)(8k + 1)$ and $\theta = (2k + 1)(8k + 3)$, where $k > 0$ and $48k^2 + 30k + 5$ *is a prime number. Its eigenvalues are* $\lambda_2 = 4k + 1$ and $\lambda_3 = -(8k+3)$ *with* $m_2 = 3(4k+1)(8k+3)$ *and* $m_3 = 48k^2 + 30k + 5$;
- (7^0) *G is the strongly regular graph of order* $n = 3(48k^2 + 30k + 5)$ *and degree* $r = 8(3k + 1)(4k + 1)$ *with* $\tau = 4(4k + 1)^2 + 4k$ *and* $\theta = 4(4k + 1)^2$ *, where* $k > 0$ *and* $48k^2 + 30k + 5$ *is a prime number. Its eigenvalues are* $\lambda_2 = 2(4k + 1)$ *and* $\lambda_3 = -(4k+2)$ *with* $m_2 = 48k^2 + 30k + 5$ *and* $m_3 = 3(4k+1)(8k+3)$ *.*

Proof We note first that if *G* is a strongly regular graph with $\delta^2 = 3(2p + 1)$, according to Proposition 3, it belongs to the class (3^0) . Consequently, assume that *G* is an integral (nonconference) strongly regular graph. Using Theorem 1, we have $m_2m_3\delta^2 = 3(2p + 1)r\bar{r}$. We shall now consider the following three cases.

Case 1 ($(2p + 1)$ | δ^2). In this case, $(2p + 1)$ | δ because *G* is an integral graph. Since *δ* = $\lambda_2 + |\lambda_3|$ < 6*p* + 3 (see [\[3\]](#page-13-2)), it follows that *δ* = 2*p* + 1 or *δ* = 2(2*p* + 1). Using Propositions 4 and 5, it turns out that *G* belongs to the class *(*10*)*.

Case 2 ((2*p* + 1) | *m*₂). Since $m_2 + m_3 = 6p + 2$, it follows that $m_2 = 2p + 1$ and $m_3 = 4p + 1$ or $m_2 = 2(2p + 1)$ and $m_3 = 2p$. Using Propositions 6 and 7, it turns out that *G* belongs to the class (2⁰) or (4⁰) or ($\overline{5}^{0}$) or (6⁰) or ($\overline{7}^{0}$).

Case 3 ($(2p + 1)$ | *m*₃). Since $m_3 + m_2 = 6p + 2$, it follows that $m_3 = 2p + 1$ and $m_2 = 4p + 1$ or $m_3 = 2(2p + 1)$ and $m_2 = 2p$. Using Propositions 8 and 9, it turns out that *G* belongs to the class $(\overline{4}^0)$ or (5^0) or $(\overline{6}^0)$ or (7^0) . \Box

Proposition 10 *Let G be a connected strongly regular graph of order* 4*(*2*p*+1*) and degree r*, where $2p + 1$ *is a prime number. If* $\delta = 2p + 1$ *, then G belongs to the class* (2⁰) *represented in Theorem 3.*

Proof Using Theorem 1, we have $(2p + 1)m_2m_3 = 4r\bar{r}$, which means that $(2p + 1) | r$ or $(2p + 1)$ | \bar{r} . It is sufficient to consider only the case when $(2p + 1)$ | *r*.

Case 1 ($r = 2p + 1$). Then, $m_2m_3 = 8(3p + 1)$ and $m_2 + m_3 = 8p + 3$. So we find that $m_2, m_3 = \frac{8p+3\pm\Delta}{2}$ where $\Delta^2 = (8p-3)^2 - 32$, a contradiction because Δ^2 is not a perfect square.

Case 2 ($r = 2(2p + 1)$). Then $m_2m_3 = 8(4p + 1)$ which yields that $m_2, m_3 = \frac{8p+3\pm\Delta}{2}$ where $\Delta^2 = (8p - 3)^2 - 32(p + 1)$ and $\Delta^2 = (8p - 6)^2 + 16p - 59$. We can easily verify that $\Delta^2 = -39$, 73, 313 for $p = 1, 2, 3$, respectively. Since Δ^2 is not a perfect square for *p* = 1, 2, 3, we can assume $p \ge 4$. So we obtain $(8p - 6) < \Delta < (8p - 3)$ for $p \ge 4$, which provides that $\Delta = 8p - 5$. Using this fact, we find that $m_2 = 8p - 1$ and $m_3 = 4$ or $m_2 = 4$ and $m_3 = 8p - 1$. Thus, we have $4(8p - 1) = 8(4p + 1)$, a contradiction.

Case 3 ($r = 3(2p + 1)$). In this situation, $m_2m_3 = 24p$ and $m_2 + m_3 = 8p + 3$, which yields that $m_2 = 8p$ and $m_3 = 3$ or $m_2 = 3$ and $m_3 = 8p$. Consider first the case when *m*₂ = 8*p* and *m*₃ = 3. Using [\(2\)](#page-1-2), we obtain $\tau - \theta = -(2p + 1)$. Since $\lambda_{2,3} = \frac{(\tau - \theta) \pm \delta}{2}$, we get easily $\lambda_2 = 0$ and $\lambda_3 = -(2p + 1)$, which proves that *G* is the strongly regular graph $4K_{2p+1}$ of degree $r = 6p + 3$ with $\tau = 4p + 2$ and $\theta = 6p + 3$. Consider the case when $m_2 = 3$ and $m_3 = 8p$. Using [\(2\)](#page-1-2), we obtain $\tau - \theta = \frac{(2p+1)(8p-9)}{8p+3}$, a contradiction because $(8p + 3) \nmid (8p - 9)$.

Proposition 11 *Let G be a connected strongly regular graph of order* 4*(*2*p*+1*) and degree r*, where $2p + 1$ *is a prime number. If* $\delta = 2(2p + 1)$ *, then G belongs to the class* (1^0) *represented in Theorem 3.*

Proof Using Theorem 1, we have $(2p + 1)m_2m_3 = r\bar{r}$, which means that $(2p + 1)|r$ or $(2p + 1)$ | \bar{r} . We shall here consider only the case when $(2p + 1)$ | *r*.

Case 1 ($r = 2p + 1$). In this situation, we have $m_2m_3 = 6p + 2$ and $m_2 + m_3 = 8p + 3$, a contradiction.

Case 2 ($r = 2(2p + 1)$). Then, $m_2m_3 = 8p + 2$ and $m_2 + m_3 = 8p + 3$, which means that $m_2 = 8p + 2$ and $m_3 = 1$ or $m_2 = 1$ and $m_3 = 8p + 2$. Consider first the case when $m_2 = 8p + 2$ and $m_3 = 1$. Using [\(2\)](#page-1-2), we obtain easily $\tau - \theta = -2(2p + 1)$, which provides that $\lambda_2 = 0$ and $\lambda_3 = -2(2p + 1)$. So we obtain that *G* is the complete bipartite graph *K*_{4*p*+2*,*4*p*+2 of degree $r = 2(2p + 1)$ with $\tau = 0$ and $\theta = 2(2p + 1)$. Consider the case} when $m_2 = 1$ and $m_3 = 8p + 2$. Using [\(2\)](#page-1-2), we obtain $\tau - \theta = \frac{2(2p+1)(8p-1)}{8p+3}$, a contradiction $\text{because } (8p + 3) \nmid (8p - 1).$

Case 3 ($r = 3(2p + 1)$). In this situation, we have $m_2m_3 = 6p$ and $m_2 + m_3 = 8p + 3$, a contradiction. contradiction.

Proposition 12 *There is no connected strongly regular graph G of order* $4(2p + 1)$ *and degree r* with $\delta = 3(2p + 1)$ *, where* $2p + 1$ *is a prime number.*

Proof Contrary to the statement, assume that *G* is a strongly regular graph with $\delta = 3(2p + 1)$. Using Theorem 2, we have $9(2p + 1)m_2m_3 = 4r\bar{r}$. Consider first the case when $r = 2p + 1$ and $\bar{r} = 6p + 2$. Then, $9m_2m_3 = 8(3p + 1)$ and $9(m_2 + m_3) =$ $9(8p + 3)$, a contradiction. Consider the case when $r = 2(2p + 1)$ and $\bar{r} = 4p + 1$. Then $9m_2m_3 = 8(4p + 1)$ and $9(m_2 + m_3) = 9(8p + 3)$, a contradiction. Consider the case when $r = 3(2p + 1)$ and $\overline{r} = 2p$. Then $3m_2m_3 = 8p$ and $m_2 + m_3 = 8p + 3$, a contradiction. contradiction.

Proposition 13 *Let G be a connected strongly regular graph of order* $4(2p+1)$ *and degree r*, where $2p + 1$ *is a prime number. If* $m_2 = 2p + 1$ *and* $m_3 = 6p + 2$ *, then G belongs to the class* (6^0) *or* (7^0) *or* (8^0) *represented in Theorem 3.*

Proof Using [\(2\)](#page-1-2), we obtain $4p(3|\lambda_3| - \lambda_2) = 3(\tau - \theta) - \delta + 2r$. Since $3(\tau - \theta) - \delta =$ $2\lambda_2 + 4\lambda_3$, it follows that $-16p \leq 3(\tau - \theta) - \delta + 2r \leq 24p$. Let $3|\lambda_3| - \lambda_2 = t$ where $-4 \le t \le 6$. Let $\lambda_3 = -k$ where *k* is a positive integer. Then (i) $\lambda_2 = 3k - t$; (ii) τ −*θ* = 2*k*−*t*; (iii) δ = 4*k*−*t*; (iv) r = (2*p*+1)*t*−*k*; and (v) θ = (2*p*+1)*t*−(3*k*²−(*t*−1)*k*). Using (ii), (iv), and (v), we can easily see that (1) is reduced to

$$
(p+1)t2 - 2(2p + 1)t + 6k2 - 2k(2t - 1) = 0.
$$
 (7)

Case 1 ($t = 0$). Using (i), (ii), (iii), and (iv), we find that $\lambda_2 = 3k$ and $\lambda_3 = -k$, $\tau - \theta = k$, $\delta = 4k$, and $r = -k$, a contradiction.

Case 2 (*t* = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 3k - 1$ and $\lambda_3 = -k$, $\tau - \theta = 2k - 1, \delta = 4k - 1, r = (2p + 1) - k$, and $\theta = (2p + 1) - 3k^2$. Using [\(7\)](#page-8-0), we find that $3p + 1 = 2k(3k - 1)$. Replacing *k* with $3k + 1$, we arrive at $p = 18k^2 +$ $10k + 1$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $4(36k^2 + 20k + 3)$ and degree $r = (4k + 1)(9k + 2)$ with $\tau = 9k^2 + 8k + 1$ and $\theta = k(9k + 2)$.

Case 3 ($t = 2$). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 3k - 2$ and $\lambda_3 = -k$, $\tau - \theta = 2(k-1), \delta = 2(2k-1), r = 2(2p+1) - k$, and $\theta = 2(2p+1) - (3k^2 - k)$. Using [\(7\)](#page-8-0), we find that $2p = 3k(k - 1)$. Replacing k with $k + 1$, we obtain that G is a strongly regular graph of order $4(3k^2 + 3k + 1)$ and degree $r = (2k+1)(3k+1)$ with $\tau = 3k(k+1)$ and $\theta = k(3k + 1)$.

Case 4 (*t* = 3). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 3(k - 1)$ and $\lambda_3 = -k$, $\tau - \theta = 2k - 3$, $\delta = 4k - 3$, $r = 3(2p + 1) - k$, and $\theta = 3(2p + 1) - (3k^2 - 2k)$. Using [\(7\)](#page-8-0), we find that $3p − 3 = 2k(3k − 5)$. Replacing *k* with 3*k*, we arrive at $p = 18k² − 10k + 1$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $4(36k^2 - 20k + 3)$ and degree $r = 9(3k - 1)(4k - 1)$ with $\tau = 9(3k - 1)^2 + 3(2k - 1)$ and $\theta = 9(3k - 1)^2$.

Case 5 (*t* = 4). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 3k - 4$ and $\lambda_3 = -k$, $\tau - \theta = 2(k - 2), \delta = 4(k - 1), r = 4(2p + 1) - k, \text{ and } \theta = 4(2p + 1) - (3k^2 - 3k).$ Using [\(7\)](#page-8-0), we find that $(k - 1)(3k - 4) = 0$. So we obtain that *G* is the complete graph, a contradiction.

Case 6 (*t* = 5 and *t* = 6). Using [\(7\)](#page-8-0), we find that $5p + 6k^2 - 18k + 15 = 0$ and $6p + 3k^2 - 16k + 15 = 0$ $11k + 12 = 0$ for $t = 5$ and $t = 6$, respectively, a contradiction.

Case 7 (*t* ≤ −1). Using [\(7\)](#page-8-0), we find that $(p+1)t^2 + 2|t|(2p+1) + 6k^2 + 2k(2|t|+1) = 0$, a contradiction a contradiction.

Proposition 14 *Let G be a connected strongly regular graph of order* 4*(*2*p*+1*) and degree r*, where $2p + 1$ *is a prime number. If* $m_2 = 2(2p + 1)$ *and* $m_3 = 4p + 1$ *, then G belongs to the class (*40*) represented in Theorem 3.*

Proof Using [\(2\)](#page-1-2), we obtain $8p(\lambda_3|-\lambda_2) = 3(\tau-\theta)+\delta+2r$. Since $3(\tau-\theta)+\delta = 4\lambda_2+2\lambda_3$, it follows that $-8p \le 3(\tau - \theta) + \delta + 2r \le 32p$. Let $|\lambda_3| - \lambda_2 = t$ where −1 ≤ *t* ≤ 4. Let *λ*₂ = *k* where *k* is a non-negative integer. Then (i) $λ_3 = -(k + t)$; (ii) $τ - θ = -t$; (iii) $\delta = 2k + t$; (iv) $r = (4p + 1)t - k$; and (v) $\theta = (4p + 1)t - (k^2 + (t + 1)k)$. Using (ii), (iv), and (v), we can easily see that (1) is reduced to

$$
t(t-2)(4p+1) + 2k(k+1) = 0.
$$
 (8)

Case 1 (*t* = 0). Using (i), (ii), (iii), and (iv), we find that $\lambda_2 = k$ and $\lambda_3 = -k$, $\tau - \theta = 0$, $\delta = 2k$, and $r = -k$, a contradiction.

Case 2 (*t* = 1). Using (i), (iii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(k+1)$, $\tau - \theta = -1$, $\delta = 2k + 1$, $r = (4p + 1) - k$, and $\theta = (4p + 1) - (k^2 + 2k)$. Using [\(8\)](#page-9-0), we find that $4p + 1 = 2k(k + 1)$, a contradiction because $2 \nmid (4p + 1)$.

Case 3 (*t* = 2). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(k + 2)$, $\tau - \theta = -2$, $\delta = 2(k+1)$, $r = 2(4p+1) - k$, and $\theta = 2(4p+1) - (k^2 + 3k)$. Using [\(8\)](#page-9-0), we find that $k(k + 1) = 0$. So we obtain that *G* is the cocktail-party graph $(4p + 2)K₂$ of degree $r = 8p + 2$ with $\tau = 8p$ and $\theta = 8p + 2$.

Case 4 ($t = 3, 4$ and $t = -1$). Using [\(8\)](#page-9-0), we find that (x) $3(4p + 1) + 2k(k + 1) = 0$; (y) $4(4p + 1) + k(k + 1) = 0$ and (z) $3(4p + 1) + 2k(k + 1) = 0$ for $t = 3$, $t = 4$ and $t = -1$ respectively, a contradiction. respectively, a contradiction.

Proposition 15 *Let G be a connected strongly regular graph of order* 4*(*2*p*+1*) and degree r*, where $2p + 1$ *is a prime number. If* $m_2 = 3(2p + 1)$ *and* $m_3 = 2p$ *, then G belongs to the class* (3^0) *or* (5^0) *represented in Theorem 3.*

Proof Using [\(2\)](#page-1-2), we obtain $4p(|\lambda_3|-3\lambda_2) = 3(\tau - \theta) + 3\delta + 2r$. Since $3(\tau - \theta) + 3\delta = 6\lambda_2$, it follows that $0 < 3(\tau - \theta) + 3\delta + 2r \le 40p$. Let $|\lambda_3| - 3\lambda_2 = t$ where $t = 1, 2, ..., 10$. Let $\lambda_2 = k$ where *k* is a non-negative integer. Then (i) $\lambda_3 = -(3k+t)$; (ii) $\tau - \theta = -(2k+t)$; (iii) $\delta = 4k + t$; (iv) $r = 2pt - 3k$; and (v) $\theta = 2pt - (3k^2 + (t+3)k)$. Using (ii), (iv), and (v) , we can easily see that (1) is reduced to

$$
t(t-4)p + 6k(k+1) = 0.
$$
 (9)

Case 1 (*t* = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(3k + 1)$ 1*)*, $τ − θ = − (2k + 1)$, $δ = 4k + 1$, $r = 2p - 3k$, and $θ = 2p - (3k² + 4k)$. Using [\(9\)](#page-9-1), we find that $p = 2k(k + 1)$ which yields that $2p + 1 = (2k + 1)^2$, a contradiction.

Case 2 (*t* = 2). Using (i), (iii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(3k + 2)$, $\tau - \theta = -2(k + 1), \delta = 2(2k + 1), r = 4p - 3k, \text{ and } \theta = 4p - (3k^2 + 5k)$. Using [\(9\)](#page-9-1), we find that $2p = 3k(k + 1)$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $4(3k^2 + 3k + 1)$ and degree $r = 3k(2k + 1)$ with $\tau = 3k^2 - k - 2$ and $\theta = k(3k + 1)$.

Case 3 (*t* = 3). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -3(k+1)$, $\tau - \theta = -(2k+3), \delta = 4k+3, r = 3(2p-1), \text{ and } \theta = 6p - (3k^2 + 6k)$. Using [\(9\)](#page-9-1), we find that $p = 2k(k + 1)$ which yields that $2p + 1 = (2k + 1)^2$, a contradiction.

Case 4 (*t* = 4). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(3k+4)$, $\tau - \theta = -2(k+2)$, $\delta = 4(k+1)$, $r = 8p - 3k$, and $\theta = 8p - (3k^2 + 7k)$. Using [\(9\)](#page-9-1), we find that $k(k + 1) = 0$. So we obtain that *G* is the strongly regular graph $\overline{(2p + 1)K_4}$ of degree $r = 8p$ with $\tau = 8p - 4$ and $\theta = 8p$.

Case 5 (*t* ≥ 5). In this case, we find that $t(t-4)p + 6k(k+1) = 0$, a contradiction (see (9)). □ $(see (9)).$ $(see (9)).$ $(see (9)).$

Proposition 16 *Let G be a connected strongly regular graph of order* 4*(*2*p*+1*) and degree r*, where $2p + 1$ *is a prime number. If* $m_3 = 2p + 1$ *and* $m_2 = 6p + 2$ *, then G belongs to the class* $(\overline{6}^0)$ *or* (7^0) *or* $(\overline{8}^0)$ *represented in Theorem 3.*

Proof Using [\(2\)](#page-1-2) we obtain $4p(\lambda_3 - 3\lambda_2) = 3(\tau - \theta) + \delta + 2r$. Let $|\lambda_3| - 3\lambda_2 = t$ where $-2 \le t \le 8$. Let $\lambda_2 = k$ where *k* is a non-negative integer. Then (i) $\lambda_3 = -(3k + t)$; (ii) $\tau - \theta = -(2k + t)$; (iii) $\delta = 4k + t$; (iv) $r = (2p + 1)t + k$ and (v) $\theta = (2p + 1)t - (3k^2 + 1)$ $(t - 1)k$). Using (ii), (iv) and (v) we can easily see that [\(1\)](#page-1-3) is reduced to

$$
(p+1)t2 - 2(2p + 1)t + 6k2 + 2k(2t - 1) = 0.
$$
 (10)

Case 1 (*t* = 0). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -3k$, $\tau - \theta = -2k$, $\delta = 4k$, $r = k$, and $\theta = -k(3k - 1)$, which provides that $\theta = 0$. So we obtain that *G* is disconnected, a contradiction.

Case 2 (*t* = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(3k + 1)$, $\tau - \theta = -(2k + 1), \delta = 4k + 1, r = (2p + 1) + k$, and $\theta = (2p + 1) - 3k^2$. Using [\(10\)](#page-10-0) we find that $3p + 1 = 2k(3k + 1)$. Replacing *k* with $3k - 1$, we arrive at $p = 18k^2 - 1$ $10k + 1$, where k is a positive integer. So we obtain that G is a strongly regular graph of order $4(36k^2 - 20k + 3)$ and degree $r = (4k - 1)(9k - 2)$ with $\tau = 9k^2 - 8k + 1$ and $\theta = k(9k - 2)$.

Case 3 (*t* = 2). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(3k + 2)$, $\tau - \theta = -2(k+1), \delta = 2(2k+1), r = 2(2p+1) + k$, and $\theta = 2(2p+1) - (3k^2 + k)$. Using [\(10\)](#page-10-0), we find that $2p = 3k(k + 1)$, where *k* is a positive integer. So we obtain that *G* is a strongly regular graph of order $4(3k^2 + 3k + 1)$ and degree $r = (2k + 1)(3k + 2)$ with $\tau = 3k(k+1)$ and $\theta = (k+1)(3k+2)$.

Case 4 (*t* = 3). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -3(k + 1)$, $\tau - \theta = -(2k+3), \delta = 4k+3, r = 3(2p+1) + k$, and $\theta = 3(2p+1) - (3k^2 + 2k)$. Using [\(10\)](#page-10-0), we find that 3*p*−³ ⁼ ²*k(*3*k*+5*)*. Replacing *^k* with 3*k*, we arrive at *^p* ⁼ ¹⁸*k*2+10*k*+1, where k is a positive integer. So we obtain that G is a strongly regular graph of order $4(36k^2 + 20k + 3)$ and degree $r = 9(3k + 1)(4k + 1)$ with $\tau = 9(3k + 1)^2 - 3(2k + 1)$ and $\theta = 9(3k+1)^2$.

Case 5 (*t* \geq 4). Using (i), (iii), (iii), and (iv), we find that $\lambda_2 = k$ and $\lambda_3 = -(3k + 4)$, $\tau - \theta = -2(k+2), \delta = 4(k+1), \text{ and } r = 4(2p+1) + k \ge 8p + 4, \text{ a contradiction.}$

Case 6 (*t* = −1, −2). Using [\(10\)](#page-10-0), we obtain $(p+1)t^2+2|t|(2p+1)+6k^2-2k(2|t|+1)=0$, a contradiction. a contradiction.

Proposition 17 *There is no connected strongly regular graph G of order* $4(2p + 1)$ *and degree r with* $m_3 = 2(2p + 1)$ *and* $m_2 = 4p + 1$ *, where* $2p + 1$ *is a prime number.*

Proof Contrary to the statement, assume that *G* is a strongly regular graph with $m_3 =$ 2(2*p* + 1) and $m_2 = 4p + 1$. Using [\(2\)](#page-1-2), we obtain $8p(\lambda_3 - \lambda_2) = 3(\tau - \theta) - \delta + r$. Let $|\lambda_3| - \lambda_2 = t$ where $-2 \le t \le 3$. Let $\lambda_2 = k$ where *k* is a non-negative integer. Then (i) $\lambda_3 = -(k + t)$; (ii) $\tau - \theta = -t$; (iii) $\delta = 2k + t$; (iv) $r = 2t(2p + 1) + k$; and (v) $\theta = 2t(2p + 1) - (k^2 + (t - 1)k)$. Using (ii), (iv), and (v), we can easily see that [\(1\)](#page-1-3) is reduced to

$$
(4p+3)t2 - 4(2p + 1)t + 2k2 + 2k(2t - 1) = 0.
$$
 (11)

Case 1 (*t* = 0). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -k$, $\tau - \theta = 0$, $\delta = 2k$, $r = k$, and $\theta = -k^2 + k$, a contradiction.

Case 2 (*t* = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(k+1)$, $\tau - \theta = -1$, $\delta = 2k + 1$, $r = 2(2p + 1) + k$, and $\theta = 2(2p + 1) - k^2$. Using [\(11\)](#page-11-0), we find that $4p + 1 = 2k(k + 1)$, a contradiction because $2 \nmid (4p + 1)$.

Case 3 ($t = 2$). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = k$ and $\lambda_3 = -(k + 2)$, $\tau - \theta = -2$, $\delta = 2(k + 1)$, $r = 4(2p + 1) + k$, and $\theta = 4(2p + 1) - (k^2 + k)$. Using [\(11\)](#page-11-0), we find that $(k + 1)(k + 2) = 0$, a contradiction.

Case 4 ($t = 3$ and $t = -1, -2$). Using [\(11\)](#page-11-0), we find that (x) $12p + 2k^2 + 10k + 5 = 0$; (y) $12p + 2k^2 - 6k + 7 = 0$; and (z) $16p + k^2 - 5k + 10 = 0$ for $t = 3$, $t = -1$, and $t = -2$, respectively, a contradiction. respectively, a contradiction.

Proposition 18 *Let G be a connected strongly regular graph of order* 4*(*2*p*+1*) and degree r,* where $2p + 1$ *is a prime number. If* $m_3 = 3(2p + 1)$ *and* $m_2 = 2p$ *, then G belongs to the class (*5 0 *) represented in Theorem 3.*

Proof Using [\(2\)](#page-1-2), we obtain $4p(3|\lambda_3|-\lambda_2) = 3(\tau - \theta) - 3\delta + r$. Since $3(\tau - \theta) - 3\delta = 6\lambda_3$, it follows that $-16p \leq 3(\tau - \theta) - 3\delta + 2r \leq 16p$. Let $3|\lambda_3| - \lambda_2 = t$ where $-4 \leq t \leq 4$. Let $\lambda_3 = -k$ where *k* is a positive integer. Then (i) $\lambda_2 = 3k - t$; (ii) $\tau - \theta = 2k - t$; (iii) $\delta = 4k - t$; (iv) $r = 2pt + 3k$; and (v) $\theta = 2pt - (3k^2 - (t+3)k)$. Using (ii), (iv), and (v), we can easily see that (1) is reduced to

$$
t(t-4)p + 6k(k-1) = 0.
$$
 (12)

Case 1 ($t = 0$). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 3k$ and $\lambda_3 = -k$, $\tau - \theta =$ $2k, δ = 4k, r = 3k$, and $θ = -3k² + 3k$. Using [\(12\)](#page-11-1), we find that $k(k − 1) = 0$, which yields that $\theta = 0$. So we obtain that *G* is disconnected, a contradiction.

Case 2 (*t* = 1). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 3k + 1$ and $\lambda_3 = -k$, $\tau - \theta = 2k - 1$, $\delta = 4k - 1$, $r = 2p + 3k$, and $\theta = 2p - (3k^2 - 4k)$. Using [\(12\)](#page-11-1), we find that $p = 2k(k - 1)$, which yields that $2p + 1 = (2k - 1)^2$, a contradiction.

Case 3 (*t* = 2). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 3k - 2$ and $\lambda_3 = -k$, $\tau - \theta = 2(k - 1), \delta = 2(2k - 1), r = 4p + 3k$, and $\theta = 4p - (3k^2 - 5k)$. Using [\(12\)](#page-11-1), we find that $2p = 3k(k - 1)$. Replacing *k* with $k + 1$, we obtain that *G* is the strongly regular graph of order $4(3k^2 + 3k + 1)$ and degree $r = 3(k + 1)(2k + 1)$ with $\tau = (k + 2)(3k + 1)$ and $\theta = (k + 1)(3k + 2)$.

Case 4 (*t* = 3). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 3(k - 1)$ and $\lambda_3 = -k$, $\tau - \theta = 2k - 3$, $\delta = 4k - 3$, $r = 6p + 3k$, and $\theta = 6p - (3k^2 - 6k)$. Using [\(12\)](#page-11-1), we find that $p = k(k - 1)$, which yields that $2p + 1 = (2k - 1)^2$, a contradiction.

Case 5 (*t* = 4). Using (i), (ii), (iii), (iv), and (v), we find that $\lambda_2 = 3k - 4$ and $\lambda_3 = -k$, $\tau - \theta = 2(k - 2)$, $\delta = 4(k - 1)$, $r = 8p + 3k$, and $\theta = 6p - (3k^2 - 7k)$. Using [\(12\)](#page-11-1), we find that $k(k - 1) = 0$, a contradiction.

Case 6 (*t* ≤ −1). In this case, we find that $|t|(|t| + 4)p + 6k(k - 1) = 0$, a contradiction (see (12)). (see [\(12\)](#page-11-1)).

Theorem 3 Let G be a connected strongly regular graph of order $4(2p + 1)$ and degree *r*, *where* 2*p* + 1 *is a prime number. Then G is one of the following strongly regular graphs:*

- *(*10*) G is the complete bipartite graph ^K*4*p*+2*,*4*p*+² *of order ⁿ* ⁼ ⁴*(*2*^p* ⁺ ¹*) and degree* $r = 4p + 2$ *with* $\tau = 0$ *and* $\theta = 4p + 2$ *, where* $p \in \mathbb{N}$ *and* $2p + 1$ *is a prime number. Its eigenvalues are* $\lambda_2 = 0$ *and* $\lambda_3 = -(4p + 2)$ *with* $m_2 = 8p + 2$ *and* $m_3 = 1$ *;*
- (2^0) *G is the strongly regular graph* $4K_{2p+1}$ *of order* $n = 4(2p+1)$ *and degree* $r = 6p+3$ *with* $\tau = 4p + 2$ *and* $\theta = 6p + 3$ *, where* $p \in \mathbb{N}$ *and* $2p + 1$ *is a prime number. Its eigenvalues are* $\lambda_2 = 0$ *and* $\lambda_3 = -(2p + 1)$ *with* $m_2 = 8p$ *and* $m_3 = 3$;
- (3^0) *G is the strongly regular graph* $\overline{(2p+1)K_4}$ *of order* $n = 4(2p + 1)$ *and degree* $r = 8p$ *with* $\tau = 8p - 4$ *and* $\theta = 8p$ *, where* $p \in \mathbb{N}$ *and* $2p + 1$ *is a prime number. Its eigenvalues are* $\lambda_2 = 0$ *and* $\lambda_3 = -4$ *with* $m_2 = 3(2p + 1)$ *and* $m_3 = 2p$;
- (4^0) *G is the cocktail-party graph* $\overline{(4p+2)K_2}$ *of order* $n = 4(2p + 1)$ *and degree* $r = 8p + 2$ *with* $\tau = 8p$ *and* $\theta = 8p + 2$ *, where* $p \in \mathbb{N}$ *and* $2p + 1$ *is a prime number. Its eigenvalues are* $\lambda_2 = 0$ *and* $\lambda_3 = -2$ *with* $m_2 = 2(2p + 1)$ *and* $m_3 = 4p + 1$;
- (5^0) *G is the strongly regular graph of order* $n = 4(3k^2 + 3k + 1)$ *and degree r* = 3 $k(2k + 1)$ *with* $τ = 3k² - k - 2$ *and* $θ = k(3k + 1)$ *, where* $k ∈ ℕ$ *and* $3k^2 + 3k + 1$ *is a prime number. Its eigenvalues are* $\lambda_2 = k$ *and* $\lambda_3 = -(3k+2)$ *with* $m_2 = 3(3k^2 + 3k + 1)$ *and* $m_3 = 3k(k + 1)$ *;*
- $(\overline{5}^0)$ *G is the strongly regular graph of order n* = 4(3 k^2 + 3 k + 1) *and degree* $r = 3(k + 1)(2k + 1)$ *with* $\tau = (k + 2)(3k + 1)$ *and* $\theta = (k + 1)(3k + 2)$ *, where* $k \in \mathbb{N}$ and $3k^2 + 3k + 1$ *is a prime number. Its eigenvalues are* $\lambda_2 = 3k + 1$ *and* $\lambda_3 = -(k+1)$ *with* $m_2 = 3k(k+1)$ *and* $m_3 = 3(3k^2 + 3k + 1)$ *;*
- (6^0) *G is the strongly regular graph of order* $n = 4(3k^2 + 3k + 1)$ *and degree* $r = (2k + 1)(3k + 1)$ *with* $\tau = 3k(k + 1)$ *and* $\theta = k(3k + 1)$ *, where* $k \in \mathbb{N}$ *and* $3k^2 + 3k + 1$ *is a prime number. Its eigenvalues are* $\lambda_2 = 3k + 1$ *and* $\lambda_3 = -(k+1)$ *with* $m_2 = 3k^2 + 3k + 1$ *and* $m_3 = (3k + 1)(3k + 2)$ *;*
- $({\bf \bar 6}^0$ *G is the strongly regular graph of order* $n = 4(3k^2 + 3k + 1)$ *and degree* $r = (2k + 1)(3k + 2)$ *with* $\tau = 3k(k + 1)$ *and* $\theta = (k + 1)(3k + 2)$ *, where* $k \in \mathbb{N}$ *and* $3k^2 + 3k + 1$ *is a prime number. Its eigenvalues are* $\lambda_2 = k$ *and* $\lambda_3 = -(3k + 2)$ *with* $m_2 = (3k + 1)(3k + 2)$ *and* $m_3 = 3k^2 + 3k + 1$;
- $(7⁰)$ *G is the strongly regular graph of order n* = 4(36 $k²$ − 20 k + 3) *and degree r* = $(4k - 1)(9k - 2)$ *with* $τ = 9k² - 8k + 1$ *and* $θ = k(9k - 2)$ *, where* $k ∈ ℕ$ *and* $36k^2 - 20k + 3$ *is a prime number. Its eigenvalues are* $\lambda_2 = 3k - 1$ *and* $\lambda_3 = -(9k - 2)$ *with* $m_2 = 4(3k - 1)(9k - 2)$ *and* $m_3 = 36k^2 - 20k + 3$;
- (7^0) *G is the strongly regular graph of order* $n = 4(36k^2 - 20k + 3)$ *and degree* $r = 9(3k-1)(4k-1)$ *with* $\tau = 9(3k-1)^2 + 3(2k-1)$ *and* $\theta = 9(3k-1)^2$ *, where* $k \in \mathbb{N}$ and 36 $k^2 - 20k + 3$ *is a prime number. Its eigenvalues are* $\lambda_2 = 3(3k - 1)$ α *and* $\lambda_3 = -3k$ *with* $m_2 = 36k^2 - 20k + 3$ *and* $m_3 = 4(3k - 1)(9k - 2)$ *;*
- $(8⁰)$ *G is the strongly regular graph of order* $n = 4(36k² + 20k + 3)$ *and degree* $r = (4k + 1)(9k + 2)$ *with* $\tau = 9k^2 + 8k + 1$ *and* $\theta = k(9k + 2)$ *, where* $k \in \mathbb{N}$ *and* $36k^2+20k+3$ *is a prime number. Its eigenvalues are* $\lambda_2 = 9k+2$ *and* $\lambda_3 = -(3k+1)$ *with* $m_2 = 36k^2 + 20k + 3$ *and* $m_3 = 4(3k + 1)(9k + 2)$ *;*
- $(\bar{8}^0)$ *G is the strongly regular graph of order* $n = 4(36k^2 + 20k + 3)$ *and degree* $r = 9(3k + 1)(4k + 1)$ *with* $\tau = 9(3k + 1)^2 - 3(2k + 1)$ *and* $\theta = 9(3k + 1)^2$, *where* $k \in \mathbb{N}$ *and* $36k^2 + 20k + 3$ *is a prime number. Its eigenvalues are* $\lambda_2 = 3k$ *and* $\lambda_3 = -3(3k+1)$ *with* $m_2 = 4(3k+1)(9k+2)$ *and* $m_3 = 36k^2 + 20k + 3$.

Proof Using Theorem 1, we have $m_2m_3\delta^2 = 4(2p + 1)r\bar{r}$. We shall now consider the following three cases.

Case 1 ($(2p + 1)$ | δ^2). In this case, $(2p + 1)$ | δ because *G* is an integral graph. Since $\delta = \lambda_2 + |\lambda_3| < 8p + 4$ (see [\[3\]](#page-13-2)), it follows that $\delta = 2p + 1$ or $\delta = 2(2p + 1)$ or $\delta = 3(2p + 1)$. Using Propositions 10, 11, and 12, it turns out that *G* belongs to the class (1^0) or (2^0) .

Case 2 ((2*p* + 1) | *m*₂). Since $m_2 + m_3 = 8p + 3$, it follows that $m_2 = 2p + 1$ and $m_3 = 6p + 2$ or $m_2 = 2(2p + 1)$ and $m_3 = 4p + 1$ or $m_2 = 3(2p + 1)$ and $m_3 = 2p$. Using Propositions 13, 14, and 15, it turns out that *G* belongs to the class (3^0) or (4^0) or (5^0) or (6^0) or $(\overline{7}^0)$ or (8^0) .

Case 3 ((2*p* + 1) | *m*₃). Since $m_3 + m_2 = 8p + 3$, it follows that $m_3 = 2p + 1$ and $m_2 = 6p + 2$ or $m_3 = 2(2p + 1)$ and $m_2 = 4p + 1$ or $m_3 = 3(2p + 1)$ and $m_2 = 2p$. Using Propositions 16, 17, and 18, it turns out that *G* belongs to the class $(\overline{5}^0)$ or $(\overline{6}^0)$ or (7^0) or $(\bar{8}^0)$. \Box

References

- 1. Elzinga, R.J.: Strongly regular graphs: values of λ and μ for which there are only finitely many feasible *(v, k, λ, μ)*. Electron. J. Linear Algebra **10**, 232–239 (2003)
- 2. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)
- 3. Lepović, M.: Some characterizations of strongly regular graphs. J. Appl. Math. Comput. 29, 373-381 (2009)