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Abstract We say that a regular graph G of order n and degree r ≥ 1 (which is not the
complete graph) is strongly regular if any two distinct vertices have τ common neighbors if
they are adjacent and have θ common neighbors if they are not adjacent. We here describe
the parameters n, r, τ , and θ for strongly regular graphs of order 3(2p + 1) and 4(2p + 1),
where 2p + 1 is a prime number.
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1 Introduction

Let G be a simple graph of order n. The spectrum of G consists of the eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn of its (0,1) adjacency matrix A and is denoted by σ(G). We say that a regular
graph G of order n and degree r ≥ 1 (which is not the complete graph Kn) is strongly
regular if any two distinct vertices have τ common neighbors if they are adjacent and have
θ common neighbors if they are not adjacent. Besides, we say that a regular connected
graph G is strongly regular if and only if it has exactly three distinct eigenvalues [1]. Let
λ1 = r, λ2 and λ3 denote the distinct eigenvalues of G. Let m1 = 1,m2 and m3 denote the
multiplicity of r, λ2, and λ3, respectively. The results obtained in this work are based on the
following assertion [2, 3].

Theorem 1 Let G be a connected strongly regular graph of order n and degree r . Then
m2m3δ

2 = nrr where δ = λ2 − λ3 and r = (n − 1) − r .
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Further, let r = (n − 1) − r, λ2 = −λ3 − 1, and λ3 = −λ2 − 1 denote the distinct
eigenvalues of the strongly regular graph G, where G denotes the complement of G. It is
known that τ = n − 2r − 2 + θ and θ = n − 2r + τ where τ = τ(G) and θ = θ(G).

Remark 1 (i) A strongly regular graph G of order 4n+1 and degree r = 2n with τ = n−1
and θ = n is called the conference graph; (ii) a strongly regular graph is the conference
graph if and only if m2 = m3; and (iii) if m2 �= m3, then G is an integral1 graph.

Remark 2 If G is a disconnected strongly regular graph of degree r , then G = mKr+1,
where mH denotes the m-fold union of the graph H . We know that G is a disconnected
strongly regular graph if and only if θ = 0.

Due to Theorem 1, we have recently obtained the following results [3]: (i) there is no
strongly regular graph of order 4p+3 if 4p+3 is a prime number, and (ii) the only strongly
regular graphs of order 4p+1 are conference graphs if 4p+1 is a prime number. Besides, in
the same work, we have described the parameters n, r, τ , and θ for strongly regular graphs
of order 2(2p + 1), where 2p + 1 is a prime number. We now proceed to establish the
parameters of strongly regular graphs of order 3(2p + 1) and 4(2p + 1) where 2p + 1 is a
prime number, as follows. First,

Proposition 1 (Elzinga [1]) Let G be a connected or disconnected strongly regular graph
of order n and degree r . Then,

r2 − (τ − θ + 1)r − (n − 1)θ = 0. (1)

Proposition 2 (Elzinga [1]) Let G be a connected strongly regular graph of order n and
degree r . Then,

2r + (τ − θ)(m2 + m3) + δ(m2 − m3) = 0, (2)

where δ = λ2 − λ3.

Second, in what follows, (x, y) denotes the greatest common divisor of integers x, y ∈ N

while x | y means that x divides y.

2 Main Results

Remark 3 In the following two Theorems 2 and 3, the complements of strongly regular

graphs appear in pairs in (k0) and (k
0
) classes, where k denotes the corresponding number

of a class.

Proposition 3 Let G be a connected strongly regular graph of order 3(2p + 1) and degree
r , where2 2p + 1 is a prime number. If p ≥ 2, then G is a conference graph if and only if
δ2 = 3(2p + 1).

1We say that a connected or disconnected graph G is integral if its spectrum σ(G) consists of integral values.
2The connected strongly regular graphs of order 9 are (i) the conference graph of degree r = 4 with τ = 1
and θ = 2. Its eigenvalues are λ2 = 1 and λ3 = −2 with m2 = 4 and m3 = 4 and (ii) 3K3 of degree r = 6
with τ = 3 and θ = 6. Its eigenvalues are λ2 = 0 and λ3 = −3 with m2 = 6 and m3 = 2.
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Proof We note first that if G is a conference graph, then δ2 = 3(2p + 1). Conversely, let
us assume that δ2 = 3(2p + 1). Since 3 � (2p + 1), it follows that δ2 is not a perfect square.
Since δ = λ2 − λ3 �∈ N, it turns out that G is not integral, which proves the statement.

Remark 4 Since the strongly regular graphs of order n = 9 are completely described, in the
sequel, it will be assumed that p ≥ 2.

Proposition 4 LetG be a connected strongly regular graph of order 3(2p+1) and degree r ,
where 2p+1 is a prime number. If δ = 2p+1, then G belongs to the class (10) represented
in Theorem 2.

Proof Using Theorem 1, we have (2p + 1)m2m3 = 3r r , which means that (2p + 1) | r or
(2p + 1) | r . Without loss of generality, we may consider only the case when (2p + 1) | r .

Case 1 (r = 2p + 1). Then, m2m3 = 3(4p + 1) and m2 + m3 = 6p + 2, which provides
that m2 and m3 are the roots of the quadratic equation m2 − (6p + 2)m + 3(4p + 1) = 0.
So we find that m2, m3 = 6p+2±�

2 where �2 = (6p − 2)2 − 12, a contradiction because
�2 is not a perfect square for p ≥ 2.

Case 2 (r = 2(2p + 1)). Then m2m3 = 12p which yields that m2 = 6p and m3 = 2 or
m2 = 2 and m3 = 6p. Consider first the case when m2 = 6p and m3 = 2. Using (2), we
obtain τ −θ = −(2p+1). Since λ2,3 = τ−θ±δ

2 , we get easily λ2 = 0 and λ3 = − (2p+1),
which proves that G is the strongly regular graph 3K2p+1 of degree r = 4p + 2 with
τ = 2p + 1 and θ = 4p + 2. Consider the case when m2 = 2 and m3 = 6p. Using (2), we
obtain τ − θ = 3(p−1)(2p+1)

3p+1 , a contradiction because (3p + 1) � 3(p − 1).

Proposition 5 There is no connected strongly regular graph G of order 3(2p + 1) and
degree r with δ = 2(2p + 1), where 2p + 1 is a prime number.

Proof Contrary to the statement, assume that G is a strongly regular graph with
δ = 2(2p + 1). Using Theorem 2, we have 4(2p + 1)m2m3 = 3r r which means that
(2p + 1) | r or (2p + 1) | r . Consider the case when r = 2p + 1 and r = 4p + 1.
Then ,4m2m3 = 3(4p + 1), a contradiction because 4 � (4p + 1). Consider the case when
r = 2(2p +1) and r = 2p. Then, m2 +m3 = 6p +2 and m2m3 = 3p, a contradiction.

Proposition 6 Let G be a connected strongly regular graph of order 3(2p + 1) and degree
r , where 2p + 1 is a prime number. If m2 = 2p + 1 and m3 = 4p + 1, then G belongs to

the class (60) or (7
0
) represented in Theorem 2.

Proof Using (2), we obtain pδ = r+(τ−θ)(3p+1). Since δ = λ2−λ3 and τ−θ = λ2+λ3,
we arrive at 2p(2|λ3| − λ2) = τ − θ + r . Since r ≤ 6p + 1, θ ≤ r and τ < r , it follows
that 0 ≤ τ − θ + r ≤ 12p. Let 2|λ3| − λ2 = t where t = 0, 1, . . . , 6. Let λ3 = −k

where k is a positive integer. Then (i) λ2 = 2k − t ; (ii) τ − θ = k − t ; (iii) δ = 3k − t ;
and (iv) r = (2p + 1)t − k. Since δ2 = (τ − θ)2 + 4(r − θ) (see [1]), we obtain (v)
θ = (2p + 1)t − (2k2 − (t − 1)k). Using (ii), (iv), and (v), it is not difficult to see that (1)
is transformed into

2(p + 1)t2 − 3(2p + 1)t + 6k2 − 3k(2t − 1) = 0. (3)
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Case 1 (t = 0). Using (i), (ii), (iii), and (iv), we find that λ2 = 2k and λ3 = − k, τ −θ = k,
δ = 3k, and r = − k, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = 2k − 1 and λ3 = − k,
τ − θ = k − 1, δ = 3k − 1, r = (2p + 1) − k, and θ = (2p + 1) − 2k2. Using (3), we
find that 4p + 1 = 3k(2k − 1). Replacing k with 4k − 1, we arrive at p = 24k2 − 15k + 2,
where k is a positive integer. So we obtain that G is a strongly regular graph of order
3(48k2 − 30k + 5) and degree r = 2(3k − 1)(8k − 3) with τ = (2k − 1)(8k − 1) and
θ = (2k − 1)(8k − 3).

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = 2(k − 1) and λ3 = − k,
τ −θ = k−2, δ = 3k−2, r = 2(2p+1)−k, and θ = 2(2p+1)−(2k2−k). Using (3), we
find that 4p+1 = 3(k−1)(2k−1). Replacing k with 4k+2, we arrive at p = 24k2+15k+2,
where k is a non-negative integer. So we obtain that G is a strongly regular graph of order
3(48k2 + 30k + 5) and degree r = 8(3k + 1)(4k + 1) with τ = 4(4k + 1)2 + 4k and
θ = 4(4k + 1)2.

Case 4 (t = 3). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = 2k − 3 and λ3 = − k,
τ −θ = k−3, δ = 3(k−1), r = 3(2p+1)−k, and θ = 3(2p+1)− (2k2−2k). Using (3),
we find that (k−1)(2k−3) = 0. So we obtain that G is the complete graph, a contradiction.

Case 5 (t = 4, 5, 6). Using (3), we find that (x) 8p + 6k2 − 21k + 20 = 0; (y) 20p + 6k2 −
27k + 35 = 0 and (z) 12p + 2k2 − 11k + 18 = 0 for t = 4, t = 5 and t = 6, respectively,
a contradiction.

Proposition 7 Let G be a connected strongly regular graph of order 3(2p + 1) and degree
r , where 2p + 1 is a prime number. If m2 = 2(2p + 1) and m3 = 2p, then G belongs to the

class (20) or (40) or (5
0
) represented in Theorem 2.

Proof Using (2), we obtain 2p(|λ3|−2λ2) = (τ − θ)+ δ + r . Since (τ − θ)+ δ = 2λ2 and
λ2 ≤ � 6p+3

2 �−1 (see [3]), it follows that 0 < (τ−θ)+δ+r ≤ 12p. Let |λ3|−2λ2 = t where
t = 1, 2, . . . , 6. Let λ2 = k where k is a non-negative integer. Then (i) λ3 = − (2k + t); (ii)
τ − θ = − (k + t); (iii) δ = 3k + t ; (iv) r = 2(pt − k); and (v) θ = 2pt − (2k2 + (t + 2)k).
Using (ii), (iv), and (v), we can easily see that (1) is transformed into

t (t − 3)p + 3k(k + 1) = 0. (4)

Case 1 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − (2k + 1),
τ − θ = − (k + 1), δ = 3k + 1, r = 2(p − k), and θ = 2p − (2k2 + 3k). Using (4), we find
that 2p = 3k(k+1). So we obtain that G is a strongly regular graph of order 3(3k2+3k+1)
and degree r = k(3k + 1) with τ = k2 − k − 1 and θ = k2, where k ≥ 2.

Case 2 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − 2(k + 1),
τ −θ = − (k+2), δ = 3k+2, r = 2(2p−k), and θ = 4p− (2k2 +4k). Using (4), we find
that 2p = 3k(k+1). So we obtain that G is a strongly regular graph of order 3(3k2+3k+1)
and degree r = 2k(3k + 2) with τ = 4k2 + k − 2 and θ = 2k(2k + 1).

Case 3 (t = 3). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − (2k + 3),
τ − θ = − (k + 3), δ = 3(k + 1), r = 2(3p − k), and θ = 6p − (2k2 + 5k). Using (4),
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we find that k(k + 1) = 0. So we obtain that G is a strongly regular graph (2p + 1)K3 of
degree r = 6p with τ = 6p − 3 and θ = 6p.

Case 4 (t = 4, 5, 6). Using (4), we find that (x) 4p+3k2+3k = 0; (y) 10p+3k2+3k = 0
and (z) 6p + k2 + k = 0 for t = 4, t = 5 and t = 6, respectively, a contradiction.

Proposition 8 Let G be a connected strongly regular graph of order 3(2p + 1) and degree
r , where 2p + 1 is a prime number. If m3 = 2p + 1 and m2 = 4p + 1, then G belongs to

the class (6
0
) or (70) represented in Theorem 2.

Proof Using (2), we obtain 2p(|λ3| − 2λ2) = τ − θ + r . Let |λ3| − 2λ2 = t where
t = 0, 1, . . . , 6. Let λ2 = k where k is a non-negative integer. Then, (i) λ3 = − (2k + t);
(ii) τ − θ = − (k + t); (iii) δ = 3k + t ; (iv) r = (2p + 1)t + k; and (v) θ = (2p + 1)t −
(2k2 + (t − 1)k). Using (ii), (iv), and (v), we can easily see that (1) is reduced to

2(p + 1)t2 − 3(2p + 1)t + 6k2 + 3k(2t − 1) = 0. (5)

Case 1 (t = 0). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − 2k, τ−θ =
− k, δ = 3k, r = k and θ = − k(2k − 1), a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − (2k + 1),
τ − θ = − (k + 1), δ = 3k + 1, r = (2p + 1) + k, and θ = (2p + 1) − 2k2. Using (5), we
find that 4p + 1 = 3k(2k + 1). Replacing k with 4k + 1, we arrive at p = 24k2 + 15k + 2,
where k is a non-negative integer. So we obtain that G is a strongly regular graph of order
3(48k2 + 30k + 5) and degree r = 2(3k + 1)(8k + 3) with τ = (2k + 1)(8k + 1) and
θ = (2k + 1)(8k + 3).

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − 2(k + 1),
τ − θ = − (k + 2), δ = 3k + 2, r = 2(2p + 1) + k, and θ = 2(2p + 1) − (2k2 + k).
Using (5), we find that 4p + 1 = 3(k + 1)(2k + 1). Replacing k with 4k − 2, we arrive at
p = 24k2 − 15k + 2, where k is a positive integer. So we obtain that G is a strongly regular
graph of order 3(48k2−30k+5) and degree r = 8(3k−1)(4k−1)with τ = 4(4k−1)2−4k
and θ = 4(4k − 1)2.

Case 4 (t = 3, 4, 5, 6). Using (5), we find that (x) 2k2 + 5k + 3 = 0; (y) 8p + 6k2 + 21k +
20 = 0; (z) 20p+6k2 +27k +35 = 0 and (w) 12p+2k2 +11k +18 = 0 for t = 3, 4, 5, 6,
respectively, a contradiction.

Proposition 9 Let G be a connected strongly regular graph of order 3(2p + 1) and degree
r , where 2p + 1 is a prime number. If m3 = 2(2p + 1) and m2 = 2p, then G belongs to the

class (4
0
) or (50) represented in Theorem 2.

Proof Using (2), we obtain 2p(2|λ3|−λ2) = (τ − θ)− δ + r . Since (τ − θ)− δ = 2λ3 and
|λ3| ≤ � 6p+3

2 � (see [3]), it follows that −6p ≤ (τ − θ) − δ + r ≤ 6p. Let 2|λ3| − λ2 = t

where t = 0, ±1, ±2,±3. Let λ3 = − k where k is a positive integer. Then (i) λ2 = 2k − t ;
(ii) τ − θ = k − t ; (iii) δ = 3k − t ; (iv) r = 2(pt + k); and (v) θ = 2pt − (2k2 − (t + 2)k).
Using (ii), (iv), and (v), we can easily see that (1) is reduced to

t (t − 3)p + 3k(k − 1) = 0. (6)
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Case 1 (t = 0). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = 2k and λ3 = − k,
τ − θ = k, δ = 3k, r = 2k, and θ = − 2k2 + 2k. Using (6), we find that k(k − 1) = 0. So
we obtain that G is disconnected, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = 2k − 1 and λ3 = − k,
τ − θ = k − 1, δ = 3k − 1, r = 2(p + k), and θ = 2p − (2k2 − 3k). Using (6), we find that
2p = 3k(k−1). Replacing k with k+1, we obtain thatG is a strongly regular graph of order
3(3k2 + 3k + 1) and degree r = (k + 1)(3k + 2) with τ = (k + 1)2 + k and θ = (k + 1)2.

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = 2(k − 1) and λ3 = − k,
τ − θ = k − 2, δ = 3k − 2, r = 2(2p + k), and θ = 4p − (2k2 − 4k). Using (6), we find
that 2p = 3k(k − 1). Replacing k with k + 1, we obtain that G is a strongly regular graph
of order 3(3k2 + 3k + 1) and degree r = 2(k + 1)(3k + 1) with τ = 4k2 + 7k + 1 and
θ = 2(k + 1)(2k + 1), where 3 k ≥ 2.

Case 4 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 2k − 3 and λ3 = − k,
τ − θ = k − 3, δ = 3(k − 1), r = 2(3p + k), and θ = 6p − (2k2 − 5k). Using (6) we find
that k(k − 1) = 0. So we obtain that G is the complete graph, a contradiction.

Case 5 (t = −1, −2,−3). Using (v), we find that (x) θ = −2p − 2k2 + k; (y) θ =
−4p − 2k2; and (z) θ = −6p − 2k2 − k for t = −1, t = −2, and t = −3, respectively, a
contradiction.

Theorem 2 Let G be a connected strongly regular graph of order 3(2p + 1) and degree r ,
where 2p + 1 is a prime number. Then G is one of the following strongly regular graphs:

(10) G is the strongly regular graph 3K2p+1 of order n = 3(2p+1) and degree r = 4p+2
with τ = 2p + 1 and θ = 4p + 2, where p ∈ N and 2p + 1 is a prime number. Its
eigenvalues are λ2 = 0 and λ3 = −(2p + 1) with m2 = 6p and m3 = 2;

(20) G is the strongly regular graph (2p + 1)K3 of order n = 3(2p + 1) and degree
r = 6p with τ = 6p − 3 and θ = 6p, where p ∈ N and 2p + 1 is a prime number.
Its eigenvalues are λ2 = 0 and λ3 = −3 with m2 = 2(2p + 1) and m3 = 2p;

(30) G is the conference graph of order n = 3(4k − 1) and degree r = 6k − 2 with
τ = 3k−2 and θ = 3k−1, where k ∈ N and 4k−1 is a prime number. Its eigenvalues

are λ2 = −1+√
3(4k−1)
2 and λ3 = −1−√

3(4k−1)
2 with m2 = 6k − 2 and m3 = 6k − 2;

(40) G is the strongly regular graph of order n = 3(3k2+3k+1) and degree r = k(3k+1)
with τ = k2 − k − 1 and θ = k2, where k ≥ 2 and 3k2 + 3k + 1 is a prime number.
Its eigenvalues are λ2 = k and λ3 = −(2k + 1) with m2 = 2(3k2 + 3k + 1) and
m3 = 3k(k + 1);

(4
0
) G is the strongly regular graph of order n = 3(3k2 + 3k + 1) and degree

r = 2(k + 1)(3k + 1) with τ = 4k2 + 7k + 1 and θ = 2(k + 1)(2k + 1), where k ≥ 2
and 3k2 + 3k + 1 is a prime number. Its eigenvalues are λ2 = 2k and λ3 = −(k + 1)
with m2 = 3k(k + 1) and m3 = 2(3k2 + 3k + 1);

3The case when k = 1 is impossible. Indeed, in this case, we have n = 21, r = 16 and θ = 12, which yields
that τ = − 1, a contradiction.
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(50) G is the strongly regular graph of order n = 3(3k2 + 3k + 1) and degree
r = (k + 1)(3k + 2) with τ = (k + 1)2 + k and θ = (k + 1)2, where k ∈ N and
3k2 + 3k + 1 is a prime number. Its eigenvalues are λ2 = 2k + 1 and λ3 = −(k + 1)
with m2 = 3k(k + 1) and m3 = 2(3k2 + 3k + 1);

(5
0
) G is the strongly regular graph of order n = 3(3k2 + 3k + 1) and degree

r = 2k(3k + 2) with τ = 4k2 + k − 2 and θ = 2k(2k + 1), where k ∈ N and
3k2 +3k +1 is a prime number. Its eigenvalues are λ2 = k and λ3 = −2(k +1) with
m2 = 2(3k2 + 3k + 1) and m3 = 3k(k + 1);

(60) G is the strongly regular graph of order n = 3(48k2 − 30k + 5) and degree
r = 2(3k − 1)(8k − 3) with τ = (2k − 1)(8k − 1) and θ = (2k − 1)(8k − 3), where
k ∈ N and 48k2 − 30k + 5 is a prime number. Its eigenvalues are λ2 = 8k − 3 and
λ3 = −(4k − 1) with m2 = 48k2 − 30k + 5 and m3 = 3(4k − 1)(8k − 3);

(6
0
) G is the strongly regular graph of order n = 3(48k2 − 30k + 5) and degree

r = 8(3k − 1)(4k − 1) with τ = 4(4k − 1)2 − 4k and θ = 4(4k − 1)2, where
k ∈ N and 48k2 − 30k + 5 is a prime number. Its eigenvalues are λ2 = 4k − 2 and
λ3 = −2(4k − 1) with m2 = 3(4k − 1)(8k − 3) and m3 = 48k2 − 30k + 5;

(70) G is the strongly regular graph of order n = 3(48k2 + 30k + 5) and degree
r = 2(3k + 1)(8k + 3) with τ = (2k + 1)(8k + 1) and θ = (2k + 1)(8k + 3), where
k ≥ 0 and 48k2 + 30k + 5 is a prime number. Its eigenvalues are λ2 = 4k + 1 and
λ3 = −(8k + 3) with m2 = 3(4k + 1)(8k + 3) and m3 = 48k2 + 30k + 5;

(7
0
) G is the strongly regular graph of order n = 3(48k2 + 30k + 5) and degree

r = 8(3k + 1)(4k + 1) with τ = 4(4k + 1)2 + 4k and θ = 4(4k + 1)2, where k ≥ 0
and 48k2 + 30k + 5 is a prime number. Its eigenvalues are λ2 = 2(4k + 1) and
λ3 = −(4k + 2) with m2 = 48k2 + 30k + 5 and m3 = 3(4k + 1)(8k + 3).

Proof We note first that if G is a strongly regular graph with δ2 = 3(2p + 1), according to
Proposition 3, it belongs to the class (30). Consequently, assume that G is an integral (non-
conference) strongly regular graph. Using Theorem 1, we have m2m3δ

2 = 3(2p + 1)r r .
We shall now consider the following three cases.

Case 1 ((2p + 1) | δ2). In this case, (2p + 1) | δ because G is an integral graph. Since
δ = λ2 + |λ3| < 6p + 3 (see [3]), it follows that δ = 2p + 1 or δ = 2(2p + 1). Using
Propositions 4 and 5, it turns out that G belongs to the class (10).

Case 2 ((2p + 1) | m2). Since m2 + m3 = 6p + 2, it follows that m2 = 2p + 1 and
m3 = 4p + 1 or m2 = 2(2p + 1) and m3 = 2p. Using Propositions 6 and 7, it turns out

that G belongs to the class (20) or (40) or (5
0
) or (60) or (7

0
).

Case 3 ((2p + 1) | m3). Since m3 + m2 = 6p + 2, it follows that m3 = 2p + 1 and
m2 = 4p + 1 or m3 = 2(2p + 1) and m2 = 2p. Using Propositions 8 and 9, it turns out

that G belongs to the class (4
0
) or (50) or (6

0
) or (70).

Proposition 10 Let G be a connected strongly regular graph of order 4(2p+1) and degree
r , where 2p + 1 is a prime number. If δ = 2p + 1, then G belongs to the class (20)
represented in Theorem 3.

Proof Using Theorem 1, we have (2p + 1)m2m3 = 4r r , which means that (2p + 1) | r or
(2p + 1) | r . It is sufficient to consider only the case when (2p + 1) | r .
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Case 1 (r = 2p + 1). Then, m2m3 = 8(3p + 1) and m2 + m3 = 8p + 3. So we find that
m2, m3 = 8p+3±�

2 where �2 = (8p −3)2 −32, a contradiction because �2 is not a perfect
square.

Case 2 (r = 2(2p + 1)). Then m2m3 = 8(4p + 1) which yields that m2,m3 = 8p+3±�
2

where �2 = (8p − 3)2 − 32(p + 1) and �2 = (8p − 6)2 + 16p − 59. We can easily verify
that �2 = −39, 73, 313 for p = 1, 2, 3, respectively. Since �2 is not a perfect square for
p = 1, 2, 3, we can assume p ≥ 4. So we obtain (8p − 6) < � < (8p − 3) for p ≥ 4,
which provides that � = 8p − 5. Using this fact, we find that m2 = 8p − 1 and m3 = 4 or
m2 = 4 and m3 = 8p − 1. Thus, we have 4(8p − 1) = 8(4p + 1), a contradiction.

Case 3 (r = 3(2p + 1)). In this situation, m2m3 = 24p and m2 + m3 = 8p + 3, which
yields that m2 = 8p and m3 = 3 or m2 = 3 and m3 = 8p. Consider first the case when
m2 = 8p and m3 = 3. Using (2), we obtain τ − θ = − (2p + 1). Since λ2,3 = (τ−θ)±δ

2 , we
get easily λ2 = 0 and λ3 = − (2p + 1), which proves that G is the strongly regular graph
4K2p+1 of degree r = 6p + 3 with τ = 4p + 2 and θ = 6p + 3. Consider the case when

m2 = 3 and m3 = 8p. Using (2), we obtain τ − θ = (2p+1)(8p−9)
8p+3 , a contradiction because

(8p + 3) � (8p − 9).

Proposition 11 Let G be a connected strongly regular graph of order 4(2p+1) and degree
r , where 2p + 1 is a prime number. If δ = 2(2p + 1), then G belongs to the class (10)
represented in Theorem 3.

Proof Using Theorem 1, we have (2p + 1)m2m3 = r r , which means that (2p + 1)|r or
(2p + 1) | r . We shall here consider only the case when (2p + 1) | r .

Case 1 (r = 2p + 1). In this situation, we have m2m3 = 6p + 2 and m2 + m3 = 8p + 3, a
contradiction.

Case 2 (r = 2(2p + 1)). Then, m2m3 = 8p + 2 and m2 + m3 = 8p + 3, which means
that m2 = 8p + 2 and m3 = 1 or m2 = 1 and m3 = 8p + 2. Consider first the case when
m2 = 8p+2 and m3 = 1. Using (2), we obtain easily τ −θ = − 2(2p+1), which provides
that λ2 = 0 and λ3 = − 2(2p + 1). So we obtain that G is the complete bipartite graph
K4p+2,4p+2 of degree r = 2(2p + 1) with τ = 0 and θ = 2(2p + 1). Consider the case

when m2 = 1 and m3 = 8p+2. Using (2), we obtain τ −θ = 2(2p+1)(8p−1)
8p+3 , a contradiction

because (8p + 3) � (8p − 1).

Case 3 (r = 3(2p + 1)). In this situation, we have m2m3 = 6p and m2 + m3 = 8p + 3, a
contradiction.

Proposition 12 There is no connected strongly regular graph G of order 4(2p + 1) and
degree r with δ = 3(2p + 1), where 2p + 1 is a prime number.

Proof Contrary to the statement, assume that G is a strongly regular graph with
δ = 3(2p + 1). Using Theorem 2, we have 9(2p + 1)m2m3 = 4r r . Consider first the
case when r = 2p + 1 and r = 6p + 2. Then, 9m2m3 = 8(3p + 1) and 9(m2 + m3) =
9(8p + 3), a contradiction. Consider the case when r = 2(2p + 1) and r = 4p + 1.
Then 9m2m3 = 8(4p + 1) and 9(m2 + m3) = 9(8p + 3), a contradiction. Consider the
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case when r = 3(2p + 1) and r = 2p. Then 3m2m3 = 8p and m2 + m3 = 8p + 3, a
contradiction.

Proposition 13 Let G be a connected strongly regular graph of order 4(2p+1) and degree
r , where 2p + 1 is a prime number. If m2 = 2p + 1 and m3 = 6p + 2, then G belongs to

the class (60) or (7
0
) or (80) represented in Theorem 3.

Proof Using (2), we obtain 4p(3|λ3| − λ2) = 3(τ − θ) − δ + 2r . Since 3(τ − θ) − δ =
2λ2 + 4λ3, it follows that −16p ≤ 3(τ − θ) − δ + 2r ≤ 24p. Let 3|λ3| − λ2 = t where
−4 ≤ t ≤ 6. Let λ3 = −k where k is a positive integer. Then (i) λ2 = 3k − t ; (ii)
τ−θ = 2k−t ; (iii) δ = 4k−t ; (iv) r = (2p+1)t−k; and (v) θ = (2p+1)t−(3k2−(t−1)k).
Using (ii), (iv), and (v), we can easily see that (1) is reduced to

(p + 1)t2 − 2(2p + 1)t + 6k2 − 2k(2t − 1) = 0. (7)

Case 1 (t = 0). Using (i), (ii), (iii), and (iv), we find that λ2 = 3k and λ3 = − k, τ −θ = k,
δ = 4k, and r = − k, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = 3k − 1 and λ3 = − k,
τ − θ = 2k − 1, δ = 4k − 1, r = (2p + 1) − k, and θ = (2p + 1) − 3k2. Using (7),
we find that 3p + 1 = 2k(3k − 1). Replacing k with 3k + 1, we arrive at p = 18k2 +
10k + 1, where k is a positive integer. So we obtain that G is a strongly regular graph of
order 4(36k2 + 20k + 3) and degree r = (4k + 1)(9k + 2) with τ = 9k2 + 8k + 1 and
θ = k(9k + 2).

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = 3k − 2 and λ3 = − k,
τ − θ = 2(k −1), δ = 2(2k −1), r = 2(2p +1)− k, and θ = 2(2p +1)− (3k2 − k). Using
(7), we find that 2p = 3k(k − 1). Replacing k with k + 1, we obtain that G is a strongly
regular graph of order 4(3k2 +3k +1) and degree r = (2k +1)(3k +1) with τ = 3k(k +1)
and θ = k(3k + 1).

Case 4 (t = 3). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = 3(k − 1) and λ3 = − k,
τ −θ = 2k −3, δ = 4k −3, r = 3(2p+1)−k, and θ = 3(2p+1)− (3k2 −2k). Using (7),
we find that 3p − 3 = 2k(3k − 5). Replacing k with 3k, we arrive at p = 18k2 − 10k + 1,
where k is a positive integer. So we obtain that G is a strongly regular graph of order
4(36k2 − 20k + 3) and degree r = 9(3k − 1)(4k − 1) with τ = 9(3k − 1)2 + 3(2k − 1) and
θ = 9(3k − 1)2.

Case 5 (t = 4). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = 3k − 4 and λ3 = − k,
τ − θ = 2(k − 2), δ = 4(k − 1), r = 4(2p + 1) − k, and θ = 4(2p + 1) − (3k2 − 3k).
Using (7), we find that (k − 1)(3k − 4) = 0. So we obtain that G is the complete graph, a
contradiction.

Case 6 (t = 5 and t = 6). Using (7), we find that 5p+6k2 −18k +15 = 0 and 6p+3k2 −
11k + 12 = 0 for t = 5 and t = 6, respectively, a contradiction.

Case 7 (t ≤ −1). Using (7), we find that (p+1)t2+2|t |(2p+1)+6k2+2k(2|t |+1) = 0,
a contradiction.
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Proposition 14 Let G be a connected strongly regular graph of order 4(2p+1) and degree
r , where 2p + 1 is a prime number. If m2 = 2(2p + 1) and m3 = 4p + 1, then G belongs
to the class (40) represented in Theorem 3.

Proof Using (2), we obtain 8p(|λ3|−λ2) = 3(τ−θ)+δ+2r . Since 3(τ−θ)+δ = 4λ2+2λ3,
it follows that −8p ≤ 3(τ − θ) + δ + 2r ≤ 32p. Let |λ3| − λ2 = t where −1 ≤ t ≤ 4. Let
λ2 = k where k is a non-negative integer. Then (i) λ3 = − (k + t); (ii) τ − θ = − t ; (iii)
δ = 2k + t ; (iv) r = (4p + 1)t − k; and (v) θ = (4p + 1)t − (k2 + (t + 1)k). Using (ii),
(iv), and (v), we can easily see that (1) is reduced to

t (t − 2)(4p + 1) + 2k(k + 1) = 0. (8)

Case 1 (t = 0). Using (i), (ii), (iii), and (iv), we find that λ2 = k and λ3 = − k, τ − θ = 0,
δ = 2k, and r = − k, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − (k + 1),
τ − θ = − 1, δ = 2k + 1, r = (4p + 1) − k, and θ = (4p + 1) − (k2 + 2k). Using (8), we
find that 4p + 1 = 2k(k + 1), a contradiction because 2 � (4p + 1).

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − (k + 2),
τ − θ = − 2, δ = 2(k + 1), r = 2(4p + 1) − k, and θ = 2(4p + 1) − (k2 + 3k). Using (8),
we find that k(k + 1) = 0. So we obtain that G is the cocktail-party graph (4p + 2)K2 of
degree r = 8p + 2 with τ = 8p and θ = 8p + 2.

Case 4 (t = 3, 4 and t = −1). Using (8), we find that (x) 3(4p + 1) + 2k(k + 1) = 0; (y)
4(4p + 1) + k(k + 1) = 0 and (z) 3(4p + 1) + 2k(k + 1) = 0 for t = 3, t = 4 and t = −1
respectively, a contradiction.

Proposition 15 Let G be a connected strongly regular graph of order 4(2p+1) and degree
r , where 2p + 1 is a prime number. If m2 = 3(2p + 1) and m3 = 2p, then G belongs to the
class (30) or (50) represented in Theorem 3.

Proof Using (2), we obtain 4p(|λ3|−3λ2) = 3(τ −θ)+3δ+2r . Since 3(τ −θ)+3δ = 6λ2,
it follows that 0 < 3(τ −θ)+3δ+2r ≤ 40p. Let |λ3|−3λ2 = t where t = 1, 2, . . . , 10. Let
λ2 = k where k is a non-negative integer. Then (i) λ3 = − (3k + t); (ii) τ − θ = − (2k + t);
(iii) δ = 4k + t ; (iv) r = 2pt − 3k; and (v) θ = 2pt − (3k2 + (t + 3)k). Using (ii), (iv),
and (v), we can easily see that (1) is reduced to

t (t − 4)p + 6k(k + 1) = 0. (9)

Case 1 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − (3k +
1), τ − θ = − (2k + 1), δ = 4k + 1, r = 2p − 3k, and θ = 2p − (3k2 + 4k). Using (9), we
find that p = 2k(k + 1) which yields that 2p + 1 = (2k + 1)2, a contradiction.

Case 2 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − (3k + 2),
τ − θ = − 2(k + 1), δ = 2(2k + 1), r = 4p − 3k, and θ = 4p − (3k2 + 5k). Using (9),
we find that 2p = 3k(k + 1), where k is a positive integer. So we obtain that G is a strongly
regular graph of order 4(3k2 + 3k + 1) and degree r = 3k(2k + 1) with τ = 3k2 − k − 2
and θ = k(3k + 1).
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Case 3 (t = 3). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − 3(k + 1),
τ − θ = − (2k + 3), δ = 4k + 3, r = 3(2p − 1), and θ = 6p − (3k2 + 6k). Using (9), we
find that p = 2k(k + 1) which yields that 2p + 1 = (2k + 1)2, a contradiction.

Case 4 (t = 4). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − (3k + 4),
τ − θ = − 2(k + 2), δ = 4(k + 1), r = 8p − 3k, and θ = 8p − (3k2 + 7k). Using (9),
we find that k(k + 1) = 0. So we obtain that G is the strongly regular graph (2p + 1)K4 of
degree r = 8p with τ = 8p − 4 and θ = 8p.

Case 5 (t ≥ 5). In this case, we find that t (t − 4)p + 6k(k + 1) = 0, a contradiction
(see (9)).

Proposition 16 Let G be a connected strongly regular graph of order 4(2p+1) and degree
r , where 2p + 1 is a prime number. If m3 = 2p + 1 and m2 = 6p + 2, then G belongs to

the class (6
0
) or (70) or (8

0
) represented in Theorem 3.

Proof Using (2) we obtain 4p(|λ3| − 3λ2) = 3(τ − θ) + δ + 2r . Let |λ3| − 3λ2 = t where
−2 ≤ t ≤ 8. Let λ2 = k where k is a non-negative integer. Then (i) λ3 = − (3k + t); (ii)
τ − θ = − (2k + t); (iii) δ = 4k + t ; (iv) r = (2p + 1)t + k and (v) θ = (2p + 1)t − (3k2 +
(t − 1)k). Using (ii), (iv) and (v) we can easily see that (1) is reduced to

(p + 1)t2 − 2(2p + 1)t + 6k2 + 2k(2t − 1) = 0. (10)

Case 1 (t = 0). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − 3k,
τ − θ = − 2k, δ = 4k, r = k, and θ = − k(3k − 1), which provides that θ = 0. So we
obtain that G is disconnected, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − (3k + 1),
τ − θ = − (2k + 1), δ = 4k + 1, r = (2p + 1) + k, and θ = (2p + 1) − 3k2. Using
(10) we find that 3p + 1 = 2k(3k + 1). Replacing k with 3k − 1, we arrive at p = 18k2 −
10k + 1, where k is a positive integer. So we obtain that G is a strongly regular graph of
order 4(36k2 − 20k + 3) and degree r = (4k − 1)(9k − 2) with τ = 9k2 − 8k + 1 and
θ = k(9k − 2).

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − (3k + 2),
τ − θ = − 2(k + 1), δ = 2(2k + 1), r = 2(2p + 1) + k, and θ = 2(2p + 1) − (3k2 + k).
Using (10), we find that 2p = 3k(k + 1), where k is a positive integer. So we obtain that G
is a strongly regular graph of order 4(3k2 + 3k + 1) and degree r = (2k + 1)(3k + 2) with
τ = 3k(k + 1) and θ = (k + 1)(3k + 2).

Case 4 (t = 3). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = −3(k + 1),
τ −θ = − (2k +3), δ = 4k +3, r = 3(2p+1)+k, and θ = 3(2p+1)− (3k2 +2k). Using
(10), we find that 3p−3 = 2k(3k+5). Replacing k with 3k, we arrive at p = 18k2+10k+1,
where k is a positive integer. So we obtain that G is a strongly regular graph of order
4(36k2 + 20k + 3) and degree r = 9(3k + 1)(4k + 1) with τ = 9(3k + 1)2 − 3(2k + 1) and
θ = 9(3k + 1)2.

Case 5 (t ≥ 4). Using (i), (ii), (iii), and (iv), we find that λ2 = k and λ3 = − (3k + 4),
τ − θ = − 2(k + 2), δ = 4(k + 1), and r = 4(2p + 1) + k ≥ 8p + 4, a contradiction.
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Case 6 (t = −1, −2). Using (10), we obtain (p+1)t2+2|t |(2p+1)+6k2−2k(2|t |+1) = 0,
a contradiction.

Proposition 17 There is no connected strongly regular graph G of order 4(2p + 1) and
degree r with m3 = 2(2p + 1) and m2 = 4p + 1, where 2p + 1 is a prime number.

Proof Contrary to the statement, assume that G is a strongly regular graph with m3 =
2(2p + 1) and m2 = 4p + 1. Using (2), we obtain 8p(|λ3| − λ2) = 3(τ − θ) − δ + r .
Let |λ3| − λ2 = t where −2 ≤ t ≤ 3. Let λ2 = k where k is a non-negative integer. Then
(i) λ3 = − (k + t); (ii) τ − θ = − t ; (iii) δ = 2k + t ; (iv) r = 2t (2p + 1) + k; and (v)
θ = 2t (2p + 1) − (k2 + (t − 1)k). Using (ii), (iv), and (v), we can easily see that (1) is
reduced to

(4p + 3)t2 − 4(2p + 1)t + 2k2 + 2k(2t − 1) = 0. (11)

Case 1 (t = 0). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − k,
τ − θ = 0, δ = 2k, r = k, and θ = − k2 + k, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − (k + 1),
τ − θ = −1, δ = 2k + 1, r = 2(2p + 1) + k, and θ = 2(2p + 1) − k2. Using (11), we find
that 4p + 1 = 2k(k + 1), a contradiction because 2 � (4p + 1).

Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = k and λ3 = − (k + 2),
τ − θ = −2, δ = 2(k + 1), r = 4(2p + 1) + k, and θ = 4(2p + 1) − (k2 + k). Using (11),
we find that (k + 1)(k + 2) = 0, a contradiction.

Case 4 (t = 3 and t = −1, −2). Using (11), we find that (x) 12p + 2k2 + 10k + 5 = 0; (y)
12p + 2k2 − 6k + 7 = 0; and (z) 16p + k2 − 5k + 10 = 0 for t = 3, t = −1, and t = −2,
respectively, a contradiction.

Proposition 18 Let G be a connected strongly regular graph of order 4(2p+1) and degree
r , where 2p + 1 is a prime number. If m3 = 3(2p + 1) and m2 = 2p, then G belongs to the

class (5
0
) represented in Theorem 3.

Proof Using (2), we obtain 4p(3|λ3|−λ2) = 3(τ −θ)−3δ+r . Since 3(τ −θ)−3δ = 6λ3,
it follows that −16p ≤ 3(τ − θ) − 3δ + 2r ≤ 16p. Let 3|λ3| − λ2 = t where −4 ≤ t ≤ 4.
Let λ3 = − k where k is a positive integer. Then (i) λ2 = 3k − t ; (ii) τ − θ = 2k − t ; (iii)
δ = 4k − t ; (iv) r = 2pt + 3k; and (v) θ = 2pt − (3k2 − (t + 3)k). Using (ii), (iv), and (v),
we can easily see that (1) is reduced to

t (t − 4)p + 6k(k − 1) = 0. (12)

Case 1 (t = 0). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = 3k and λ3 = − k, τ−θ =
2k, δ = 4k, r = 3k, and θ = − 3k2 + 3k. Using (12), we find that k(k − 1) = 0, which
yields that θ = 0. So we obtain that G is disconnected, a contradiction.

Case 2 (t = 1). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = 3k + 1 and λ3 = − k,
τ − θ = 2k − 1, δ = 4k − 1, r = 2p + 3k, and θ = 2p − (3k2 − 4k). Using (12), we find
that p = 2k(k − 1), which yields that 2p + 1 = (2k − 1)2, a contradiction.
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Case 3 (t = 2). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = 3k − 2 and λ3 = − k,
τ − θ = 2(k − 1), δ = 2(2k − 1), r = 4p + 3k, and θ = 4p − (3k2 − 5k). Using (12), we
find that 2p = 3k(k − 1). Replacing k with k + 1, we obtain that G is the strongly regular
graph of order 4(3k2 + 3k + 1) and degree r = 3(k + 1)(2k + 1) with τ = (k + 2)(3k + 1)
and θ = (k + 1)(3k + 2).

Case 4 (t = 3). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = 3(k − 1) and λ3 = − k,
τ − θ = 2k − 3, δ = 4k − 3, r = 6p + 3k, and θ = 6p − (3k2 − 6k). Using (12), we find
that p = k(k − 1), which yields that 2p + 1 = (2k − 1)2, a contradiction.

Case 5 (t = 4). Using (i), (ii), (iii), (iv), and (v), we find that λ2 = 3k − 4 and λ3 = − k,
τ − θ = 2(k − 2), δ = 4(k − 1), r = 8p + 3k, and θ = 6p − (3k2 − 7k). Using (12), we
find that k(k − 1) = 0, a contradiction.

Case 6 (t ≤ −1). In this case, we find that |t |(|t | + 4)p + 6k(k − 1) = 0, a contradiction
(see (12)).

Theorem 3 Let G be a connected strongly regular graph of order 4(2p + 1) and degree r ,
where 2p + 1 is a prime number. Then G is one of the following strongly regular graphs:

(10) G is the complete bipartite graph K4p+2,4p+2 of order n = 4(2p + 1) and degree
r = 4p + 2 with τ = 0 and θ = 4p + 2, where p ∈ N and 2p + 1 is a prime number.
Its eigenvalues are λ2 = 0 and λ3 = −(4p + 2) with m2 = 8p + 2 and m3 = 1;

(20) G is the strongly regular graph 4K2p+1 of order n = 4(2p+1) and degree r = 6p+3
with τ = 4p + 2 and θ = 6p + 3, where p ∈ N and 2p + 1 is a prime number. Its
eigenvalues are λ2 = 0 and λ3 = −(2p + 1) with m2 = 8p and m3 = 3;

(30) G is the strongly regular graph (2p + 1)K4 of order n = 4(2p + 1) and degree
r = 8p with τ = 8p − 4 and θ = 8p, where p ∈ N and 2p + 1 is a prime number.
Its eigenvalues are λ2 = 0 and λ3 = −4 with m2 = 3(2p + 1) and m3 = 2p;

(40) G is the cocktail-party graph (4p + 2)K2 of order n = 4(2p + 1) and degree
r = 8p+2 with τ = 8p and θ = 8p+2, where p ∈ N and 2p+1 is a prime number.
Its eigenvalues are λ2 = 0 and λ3 = −2 with m2 = 2(2p + 1) and m3 = 4p + 1;

(50) G is the strongly regular graph of order n = 4(3k2 + 3k + 1) and degree
r = 3k(2k + 1) with τ = 3k2 − k − 2 and θ = k(3k + 1), where k ∈ N and
3k2 +3k +1 is a prime number. Its eigenvalues are λ2 = k and λ3 = −(3k +2) with
m2 = 3(3k2 + 3k + 1) and m3 = 3k(k + 1);

(5
0
) G is the strongly regular graph of order n = 4(3k2 + 3k + 1) and degree

r = 3(k + 1)(2k + 1) with τ = (k + 2)(3k + 1) and θ = (k + 1)(3k + 2), where
k ∈ N and 3k2 + 3k + 1 is a prime number. Its eigenvalues are λ2 = 3k + 1 and
λ3 = −(k + 1) with m2 = 3k(k + 1) and m3 = 3(3k2 + 3k + 1);

(60) G is the strongly regular graph of order n = 4(3k2 + 3k + 1) and degree
r = (2k + 1)(3k + 1) with τ = 3k(k + 1) and θ = k(3k + 1), where k ∈ N and
3k2 + 3k + 1 is a prime number. Its eigenvalues are λ2 = 3k + 1 and λ3 = −(k + 1)
with m2 = 3k2 + 3k + 1 and m3 = (3k + 1)(3k + 2);

(6
0
) G is the strongly regular graph of order n = 4(3k2 + 3k + 1) and degree

r = (2k + 1)(3k + 2) with τ = 3k(k + 1) and θ = (k + 1)(3k + 2), where k ∈ N

and 3k2 + 3k + 1 is a prime number. Its eigenvalues are λ2 = k and λ3 = −(3k + 2)
with m2 = (3k + 1)(3k + 2) and m3 = 3k2 + 3k + 1;
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(70) G is the strongly regular graph of order n = 4(36k2 − 20k + 3) and degree
r = (4k − 1)(9k − 2) with τ = 9k2 − 8k + 1 and θ = k(9k − 2), where k ∈ N and
36k2−20k+3 is a prime number. Its eigenvalues are λ2 = 3k−1 and λ3 = −(9k−2)
with m2 = 4(3k − 1)(9k − 2) and m3 = 36k2 − 20k + 3;

(7
0
) G is the strongly regular graph of order n = 4(36k2 − 20k + 3) and degree

r = 9(3k − 1)(4k − 1) with τ = 9(3k − 1)2 + 3(2k − 1) and θ = 9(3k − 1)2, where
k ∈ N and 36k2 − 20k + 3 is a prime number. Its eigenvalues are λ2 = 3(3k − 1)
and λ3 = −3k with m2 = 36k2 − 20k + 3 and m3 = 4(3k − 1)(9k − 2);

(80) G is the strongly regular graph of order n = 4(36k2 + 20k + 3) and degree
r = (4k + 1)(9k + 2) with τ = 9k2 + 8k + 1 and θ = k(9k + 2), where k ∈ N and
36k2+20k+3 is a prime number. Its eigenvalues are λ2 = 9k+2 and λ3 = −(3k+1)
with m2 = 36k2 + 20k + 3 and m3 = 4(3k + 1)(9k + 2);

(8
0
) G is the strongly regular graph of order n = 4(36k2 + 20k + 3) and degree

r = 9(3k + 1)(4k + 1) with τ = 9(3k + 1)2 − 3(2k + 1) and θ = 9(3k + 1)2,
where k ∈ N and 36k2 + 20k + 3 is a prime number. Its eigenvalues are λ2 = 3k and
λ3 = −3(3k + 1) with m2 = 4(3k + 1)(9k + 2) and m3 = 36k2 + 20k + 3.

Proof Using Theorem 1, we have m2m3δ
2 = 4(2p + 1)r r . We shall now consider the

following three cases.

Case 1 ((2p + 1) | δ2). In this case, (2p + 1) | δ because G is an integral graph. Since
δ = λ2+|λ3| < 8p+4 (see [3]), it follows that δ = 2p+1 or δ = 2(2p+1) or δ = 3(2p+1).
Using Propositions 10, 11, and 12, it turns out that G belongs to the class (10) or (20).

Case 2 ((2p + 1) | m2). Since m2 + m3 = 8p + 3, it follows that m2 = 2p + 1 and
m3 = 6p+2 or m2 = 2(2p+1) and m3 = 4p+1 or m2 = 3(2p+1) and m3 = 2p. Using
Propositions 13, 14, and 15, it turns out that G belongs to the class (30) or (40) or (50) or

(60) or (7
0
) or (80).

Case 3 ((2p + 1) | m3). Since m3 + m2 = 8p + 3, it follows that m3 = 2p + 1 and
m2 = 6p + 2 or m3 = 2(2p + 1) and m2 = 4p + 1 or m3 = 3(2p + 1) and m2 = 2p.

Using Propositions 16, 17, and 18, it turns out that G belongs to the class (5
0
) or (6

0
) or

(70) or (8
0
).
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3. Lepović, M.: Some characterizations of strongly regular graphs. J. Appl. Math. Comput. 29, 373–381

(2009)


	On Strongly Regular Graphs of Order 3(2p+1) and 4(2p+1)
	Abstract
	Introduction
	Main Results
	References


