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Abstract In this paper, we study extremal systems for sets and multifunctions in multiob-
jective optimization with variable/nonconstant ordering structures, which reduce to vector
optimization when an ordering structure is constant, i.e., it is defined by a fixed ordering
cone/set. It is important to mention that we do not impose either convexity or nonempty
interiority property on ordering structures. Based on these systems, we derive verifiable nec-
essary conditions for nondominated solutions to multiobjective problems with geometric
constraints. Examples are provided to illustrate the usage of the obtained results.

Keywords Set-valued and variational analysis · Extended extremal principle · Vector and
set optimization · Variable ordering structures · Nondominated solutions · Generalized
differentiation
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1 Introduction

Boris S. Mordukhovich is one of the founders of modern variational analysis and gen-
eralized differentiation. Among his best known achievements are the introduction of the
most powerful constructions of generalized differentiation (bearing now his name), their
developments and applications to broad classes of problems in variational analysis, opti-
mization, equilibrium, control, economics, engineering, and other fields. His theory and
various applications have been systematically summarized in the 2-volume monograph
[16, 17] in which the driving force in establishing the full calculus for limiting differential
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objects and applications to various problems of optimization, equilibrium, stability, con-
trol, systems with lumped, and distributed parameters, mechanics, economics, and so on is
the extremal principle. It plays a fundamental role in variational analysis similar to that of
separation theorem of convex analysis. In this paper, we develop new applications of the
extremal principle to multiobjective (including vector-valued and set-valued) optimization
with variable/nonconstant ordering structures.

Consider a constrained multiobjective optimization problem with respect to a variable
ordering structure described by

nondominate F(x) subject to x ∈ � with respect to D, (P)

where F : X ⇒ Z is a set-valued cost between Banach spaces, � is a nonempty set in the
domain space X, and D : Z ⇒ Z is a variable ordering structure of the codomain/image
space Z. The purpose of problem (P) is to find a feasible solution that must not be dominated
by other feasible solutions of problem (P) with respect to a variable ordering structure D;
see Definition 1 below.

Given two distinct vectors z1 and z2 in a decision vector space Z, we can write z2 =
z1 + d for some nonzero vector d ∈ Z. If z1 is preferred by the decision maker to z2, then
d can be viewed as a domination factor. The set of all the domination factors for z together
with the zero vector 0 ∈ Z is denoted by D(z), and the set-valued mapping D : Z ⇒ Z is
called a variable ordering structure. Define an ordering relation induced from D denoted
by ≤N via

z1 ≤N z2 if and only if z2 ∈ z1 + D(z1).

Excluding the trivial case in which a point exists in feasible region that simultaneously max-
imizes or minimizes all objectives, multiobjective optimization problems have conflicting
objectives. In general cases, it is naturally acceptable to say that a good solution must not
be dominated by other feasible alternatives.

Definition 1 (Nondominated points to sets and nondominated solutions of problems (P)).

(i) A point z̄ ∈ � is said to be a NONDOMINATED POINT to a nonempty set � ⊂ Z with
respect to the ordering structure D if there is no z ∈ � \ {z̄} such that z ≤N z̄, i.e.,
z̄ ∈ z + D(z). The collection of all nondominated points of � with respect to D is
denoted by ND (�; D); thus we write z̄ ∈ ND (�; D).

(ii) A pair (x̄, z̄) ∈ gph F is said to be a NONDOMINATED SOLUTION of problem (P) if
x̄ ∈ � and z̄ ∈ ND (F (�); D), where F(�) := ∪{F(x) | x ∈ �} is the image set of
F over �, i.e., there is no pair (x, z) with x ∈ �, z ∈ F(x) and z �= z̄ such that

z ≤N z̄ ⇐⇒ z̄ ∈ z + D(z). (1)

For simplicity, we do not mention z̄ when F = f : X → Z is singleton and we say that
(x̄, z̄) is a nondominated solution of F with respect to D when � = X.

Observe that if z̄ is a nondominated point of � with respect to D, then (z̄, z̄) is a nondom-
inated solution of the constant set-valued mapping F(z) ≡ � ∀ z ∈ Z. Observe also that
nondomination is a far-going extension of Pareto efficiency. In fact, when the ordering struc-
ture is constant, i.e., D(z) ≡ � ∀ z ∈ Z for some closed, convex and pointed cone � ⊂ Z,
the concept of nondomination reduces to the Pareto efficiency of vector optimization
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ordered by the ordering cone �, see, e.g., [13, 14]. In this case, we use the notation ≤� and
the relation

z1 ≤� z2 if and only if z2 − z1 ∈ �.

Thus, a point z̄ ∈ � a PARETO EFFICIENT POINT of � with respect to � if and only if
there is no other point z ∈ � \ {z̄} such that z ≤� z̄, if and only if

� ∩ (z̄ − �) = {z̄} ⇐⇒ (� − z̄) ∩ (−�) = {0}.
The reader is referred to [6, Proposition 3.1] for relations between nondominated

and efficient points. The following example shows that the existence of nondominated
points/solutions does not guarantee that of efficient ones. Let D : R ⇒ R be a cone-valued
ordering structure defined by

D(z) :=
⎧
⎨

⎩

R+ if z > 0,

R if z = 0,

R− if z < 0.

(2)

It is easy to check that the function ϕ(x) := x3 has no Pareto efficient (either maximum or
minimum) solution in the usual sense, but the origin x̄ = 0 is a nondominated solution of ϕ

with respect to the variable ordering structure D in (2).
The concept of nondomination was introduced and further developed by Yu in [8, 22,

23]. Yu imposed, in his early works, on variable ordering structures, two conditions: (i) if d

is a domination factor for z, then any positive multiple of d is also a domination factor for
z, and (ii) if d1 and d2 are two domination factors for z, then d1 + d2 is also a domination
factor for z. The validity of these two conditions is equivalent to the convexity and cone-
valuedness properties of domination sets. The cone-valuedness condition should be dropped
since it leads to the trivial cone, i.e., {0}, in order to apply domination structures to some
classes of decision making problems as justified by Bergtresser et al. [9].

To the best of our knowledge, the topic on necessary conditions for nondominated points
to sets and solutions to constrained multiobjective optimization problems with respect to
variable ordering structures seems to be ‘new’ and underdeveloped even for the class of
convex- and cone-valued ordering structures. The only results in this direction which we are
familiar with are in [6, 10, 11].

– In [11], Engau formulated necessary conditions for nondominated points to sets with
respect to variable ordering structures satisfying that each domination factor set is an
ideal-symmetric convex cone. Her technique heavily relies on the geometric angles in
R

2 and R
3. It seems to be not able to extend them to higher dimensions.

– In [10], Eichfelder and Ha obtained generalized Fermat and Lagrange multiplier
rules for multiobjective problems with respect to variable Bishop–Phelps-cone-valued
ordering structures by using scalarizing techniques to convert the problem under
consideration into a scalar one.

– In [6], Bao and Mordukhovich established for the first time the necessary conditions for
nondominated points of sets and for the nondominated solutions to vector optimization
problems with general geometric constraints for the class of general variable ordering
structures satisfying the following three conditions:

(A) (additivity and multiplicity) D(z) is a nonempty convex cone for all z ∈
dom D;

(B) (nonsubspace property) D(z̄) is not a subspace of Z, i.e., D(z̄) \ (−D(z̄)) �=
∅;
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(C) (nontrivial intersection cone) The common cone �D := ⋂
z∈dom D D(z) is

not a trivial cone, i.e., there is some nonzero vector e ∈ �D.

Their techniques base on the variational dual-space approach in [1, 4, 6, 16, 17] by
using the extremal principle of variational analysis and generalized differentiation.

In contrast to multiobjective optimization with variable ordering structures, we have, in
multiobjective optimization with ordering cones, many powerful tools in establishing neces-
sary conditions for Pareto efficient points of constrained and unconstrained multiobjective
optimization problems in terms of ordering cones and the given data in both variational
dual-space approaches [3–5, 17] and scalarization primal-space approaches [12]. One of the
weakest assumptions imposed on ordering cones is the so-called local asymptotic closed-
ness (LAC) property; see Definition 5 below. Unfortunately, combining techniques in [6]
for variable convex- and cone-valued ordering structures and arguments in [3–5] for LAC
ordering cones does not lead to meaningful necessary nondomination conditions provided
that three LAC conditions:

(A’) D(z) is LAC at the origin for all z ∈ dom D;
(B’) D(z̄) \ (−D(z̄)) �= ∅;
(C’) �D := ⋂

z∈dom D D(z) contains a nonzero element and enjoys the LAC property at
the origin;

are satisfied. In this paper, we suggest a new way to study multiobjective optimization
problems with general variable ordering structures.

Besides the given ordering structure D, we need a multifunction P : Z ⇒ Z which is
called an upper-level-set mapping and defined by

P(z) := I (z) + D(z) = z + D(z).

We have

z1 ≤N z2 ⇐⇒ z2 ∈ P(z1) ⇐⇒ (z1, z2) ∈ gph P−1,

where P−1 stands for the inverse of the mapping P. That is that the domination order ≤N

is nothing but a binary relation deduced from gph P−1. Precisely, let Q ⊂ Z × Z be an
arbitrary subset of a product space Z × Z, and let R be a binary relation on Q describing
by z1Rz2 if and only if (z1, z2) ∈ Q for all z1, z2 ∈ Z. The strict preference ≺ on Q is
defined by [z1 ≺ z2 if and only if z1Rz2 and ¬z2Rz1]. The indifference relation ∼ on Q

is defined by [z1 ∼ z2 if and only if z1Rz2 and z2Rz1]. The disjoint union �:=≺ ∪ ∼ is
called a preference on Q.

As we learn from the literature of vector optimization, the ideal way to deal with
multiobjective optimization with preferences is to assume that the preference � in ques-
tion has a utility representation, i.e., there is a utility function U : Z → R such that
z1 � z2 =⇒ U(z1) ≤ U(z2). The existence of such a function allows us to convert a
multiobjective optimization problem to a scalar one. However, the class of preferences with
utility descriptions is not very broad. In fact, a preference ≺ on a finite-dimensional space
Z has a continuous utility function if and only if both lower-level and upper-level sets

{z1 ∈ Z | z1 � z2} and {z2 ∈ Z | z1 � z2}
are closed in Z for all z ∈ Z. An efficient way is to require that preferences enjoy certain
additional properties such as reflexivity, nonreflexitivity, anti-symmetritivity, symmetritivity,
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and transitivity to have specific structures for Q. It is well recognized that in vector opti-
mization the partial order induced by a closed, convex, and pointed ordering cone is a
preference satisfying reflexivity, anti-symmetritivity, and transitivity properties. However,
the difficulty is that with many problems it is not possible to either obtain a mathematical
representation for a utility function of the preference under consideration or justify the ful-
fillment of certain additional properties for preferences. It is pointed out in [20, page 22]
that “much of the mathematical theory is based on maximality with respect to partial
orders or partially preorders, at best. More general concepts of optimality based on prefer-
ences satisfying conditions other than merely those of reflexivity and transitivity” should be
considered.

In this direction, many authors relaxed the transitivity property of preferences. One
way is to impose less restrictive conditions on ordering cones of vector optimization. For
example, Bao and Mordukhovich [2] did not require the pointedness and solidness (i.e.,
nonempty interior) assumptions, Mordukhovich [17], Bao and Mordukhovich [3–5], and
Bao [1] did not need the convexity and cone properties, Tammer and Weidner [21] and
Rubinov and Gasimov [19] needed a light property for the ordering set � ⊂ Z: there
is e ∈ � such that � + λe ⊂ � for all λ > 0, i.e., the recession cone of � is non-
trivial, and Bao and Mordukhovich [1, 4] further weaken to the LAC property. Another
way is to modify the transitivity condition by Zhu [24], Mordukhovich et al. [15], Mor-
dukhovich [17], and Bellaassali and Jourani [7]. They paid their main attention to the class
of closed preferences. Recall that a preference is said to be closed if it meets the following
requirements:

– Nonreflexivity: z �∈ P(z) ∀ z ∈ Z;
– Local satiation: z ∈ cl P(z) ∀ z ∈ U , where U is a neighborhood of z̄;
– Almost transitivity: [z1 ∈ cl P(z2) & z2 ∈ P(z3)] =⇒ z1 ∈ P(z3) ∀ z1, z2, z3 ∈ Z.

Although all the techniques used in these papers fundamentally based on the Ekeland
principle, Mordukhovich et al. [15] finally achieved an advanced tool that is called the
(extended) extremal principle for set-valued mappings and extensively used it to estab-
lish necessary conditions for Pareto efficient solutions in multiobjective optimization in the
sense that a pair (x̄, z̄) ∈ gph F is a Pareto efficient solution of problem (P) if there is no
pair (x, z) with x ∈ S, z ∈ F(x) and z �= z̄ such that

z ∈ z̄ − D(z̄). (3)

Since then, there have been much further developments and applications of the extended
extremal principle for multifunctions.

In this paper, we develop new applications of the extremal principle, exploited before
in the case of Pareto efficient solutions, to multiobjective optimization with variable order-
ing structures. The remaining of the paper is organized as follows. Section 2 presents some
of the basic concepts and tools from variational analysis and generalized differentiation
broadly used in the sequel; the main tools are versions of the extremal principle for sys-
tems of sets or those of multifunctions. In Section 3, we establish relationships between
nondomination and extremality in multiobjective optimization with respect to variable
ordering structures and derive from them the new verifiable necessary optimality condi-
tions for nondominated solutions of multiobjectve optimization problems with geometric
constraints.

Throughout the paper, we employ the standard notation of variational analysis; cf. [16,
18]. For a Banach space X, we denote its norm by ‖·‖, consider the dual space X∗ equipped
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with the weak∗ topology w∗, and denote the canonical pairing between X and X∗ by 〈·, ·〉.
Given a set-valued mapping F : X ⇒ X∗, the notation

Lim supx→x̄F (x) :=
{

x∗ ∈ X∗ | ∃ sequences xk → x̄ and x∗
k

w∗−→ x∗

with x∗
k ∈ F(xk) for all k ∈ N

} (4)

signifies the sequential Painlevé–Kuratowski upper/outer limit with respect to the norm
topology of X and the weak∗ topology of X∗, where N := {1, 2, . . .}.

2 Basic Tools of Variational Analysis

The key tool in this paper is the extremal principle in variational analysis. Since it uncondi-
tionally holds in Asplund spaces, all Banach spaces in question are assumed to be Asplund
unless otherwise stated. Recall that a Banach space is Asplund if every convex continuous
function ϕ : U → R defined on an open convex subset U of X is Fréchet differentiable
on a dense subset of U . The class of Asplund spaces is quite broad including every reflex-
ive Banach space and every Banach space with a separable dual; in particular, c0, �p, and
Lp[0, 1] for 1 < p < ∞ are Asplund. It has been comprehensively investigated in geo-
metric theory of Banach spaces and largely employed in variational analysis; see, e.g., [16,
17]. In the sequel, we present several definitions and properties of the basic generalized
differential constructions held in the Asplund space setting and enjoying a full calculus.

Let X be a Banach space and � ⊂ X be a nonempty subset of X. The Fréchet/regular
normal cone to � at x ∈ � is defined by

N̂(x;�) :=
⎧
⎨

⎩
x∗ ∈ X∗

∣
∣
∣
∣
∣
∣

lim sup
u

�→ x

〈x∗, u − x〉
‖u − x‖ ≤ 0

⎫
⎬

⎭
, (5)

where u
�→ x means u → x with u ∈ �. Assume now that X is Asplund and � is locally

closed around x̄ ∈ �, i.e., there is a neighborhood U of x̄ such that � ∩ cl U is a closed
set. The (basic, limiting, Mordukhovich) normal cone to � at x̄ is defined by the sequential
Painlevé–Kuratowski outer limit of Fréchet normal cones to � at x as x tends to x̄. By (4),
we have

N(x̄; �) := Lim sup
x→x̄

N̂ (x;�)

=
{

x∗ ∈ X∗
∣
∣
∣ ∃ xk → x̄, x∗

k

w∗−→ x∗ with x∗
k ∈ N̂(xk; �)

}

. (6)

In contrast to the Fréchet normal cone (5), the limiting normal cone (6) is often nonconvex
enjoying nevertheless full calculus. Both cones (6) and (5) reduce to the normal cone of
convex analysis when � is convex.

Given a set-valued mapping F : X ⇒ Z between Banach spaces X and Z. The domain
and graph of F are defined by

dom F := {x ∈ X | F(x) �= ∅} and gph F := {(x, z) ∈ X × Z | z ∈ F(x)},
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respectively. The normal coderivative D∗
NF(x̄, z̄) : Z∗ ⇒ X∗ is defined, via the normal

cone to the graph of F by

D∗
NF(x̄, z̄)(z∗) := {x∗ ∈ X∗ | (x∗,−z∗) ∈ N((x̄, z̄); gph F)}. (7)

We also need a modification of (7) by using the norm convergence on Z∗ and weak∗
sequential convergence on X∗. It is known as the mixed coderivative D∗

MF(x̄, z̄) : Z∗ ⇒ X∗
with

D∗
MF(x̄, z̄)(z∗) :=

{

x∗ ∈ X∗∣∣ ∃ (xk, zk)
gphF−→(x̄, z̄), x∗

k

w∗→ x∗, z∗
k → z∗

with (x∗
k ,−z∗

k) ∈ N̂((xk, zk); gph F)
}

. (8)

For a single-valued function F = f : X → Z, we omit z̄ = f (x̄) in the coderivative
notation. It follows from (7) and (8) that

D∗
MF(x̄, z̄)(z∗) ⊂ D∗

NF(x̄, z̄)(z∗) for all z∗ ∈ Z∗,

which is strict in many common situations, but holds as equality when, in particular,
dim Z < ∞. Furthermore, we have

D∗
Nf (x̄)(z∗) = D∗

Mf (x̄)(z∗) = {∇f (x̄)∗z∗} for all z∗ ∈ Z∗

provided that f is strictly differentiable at x̄; in particular, f ∈ C 1 around this point.
An important ingredient of variational analysis and generalized differentiation in infinite-

dimensional spaces relates to appropriate “sequential normal compactness” properties of
sets and mappings that are automatic in finite dimensions. Given a set � ⊂ X × Z, we
say that it is sequentially normally compact (SNC) at (x̄, z̄) ∈ � if for any sequence of
(xk, zk, x

∗
k , z∗

k) ∈ X × Z × X∗ × Z∗ satisfying

(xk, zk)
�→(x̄, z̄) and (x∗

k , z∗
k) ∈ N̂((xk, zk); �), k ∈ N, (9)

the following implication holds:

(x∗
k , z∗

k)
w∗→(0, 0) =⇒ (x∗

k , z∗
k)

‖·‖−→(0, 0) as k → ∞.

The more subtle partial SNC (PSNC) property of � at (x̄, z̄) means that for any sequence
(xk, zk, x

∗
k , z∗

k) satisfying (9) we have the implication

x∗
k

w∗→ 0 and z∗
k

‖·‖−→ 0 =⇒ x∗
k

‖·‖−→ 0 as k → ∞.

Applying these properties to graphs of set-valued mappings induces the corresponding prop-
erties for mappings. Namely, F : X ⇒ Z is SNC at (x̄, z̄) ∈ gph F if its graph is SNC at
(x̄, z̄), and that F is PSNC at (x̄, z̄) if the graph of F is PSNC at (x̄, z̄). It turns out that the
above SNC/PSNC properties are ensured by certain Lipschitzian behavior of sets and map-
pings; see [16, 17]. In particular, F is PSNC at (x̄, z̄) if it is Lipschitz-like around this point,
i.e., there are neighborhoods U of x̄ and V of z̄ and a constant � ≥ 0 such that

F(x) ∩ V ⊂ F(u) + �‖x − u‖B for all x, u ∈ U.

This clearly reduces to the classical local Lipschitz continuity for single-valued func-
tions. Furthermore, for Lipschitz-like mappings between general Banach spaces, we
have

D∗
MF(x̄, z̄)(0) = {0} (10)
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by [16, Theorem 1.44], while the coderivative condition (10) together with the PSNC
property of F at (x̄, z̄) provides a complete characterization of the Lipschitz-like prop-
erty of F around this point for closed-graph mappings between Asplund spaces; see
[16, Theorem 4.10].

Finally, we recall the extremal principle for two multifuntions; see [15, Definition 3.3]
for a version with n mappings.

Definition 2 (Extremal systems for multifunctions) Let Si : Mi ⇒ X for i = 1, 2 be set-
valued mappings from metric spaces (Mi, di) into a Banach space X. We say that x̄ is a
LOCAL EXTREMAL POINT of the system {S1, S2} at (s̄1, s̄2) provided that x̄ ∈ S1(s̄1) ∩
S2(s̄2) and there exists a neighborhood U of x̄ such that for every ε > 0 there are si ∈
dom Si satisfying the conditions

di(si , s̄i ) ≤ ε, dist (x̄; Si(si)) ≤ ε for i = 1, 2, and

S1(s1) ∩ S2(s2) ∩ U = ∅. (11)

In this case, {S1, S2, x̄} is called an extremal system for multifunctions at (s̄1, s̄2).

When S1 and S2 enjoy the linear transformation property of the form

M1 := X, M2 := {0}, S1(s1) := �1 + s1, and S2(0) := �2, (12)

the extremal system for two multifunctions S1 and S2 reduces to that for two sets �1 and
�2.

Definition 3 (Extremal systems for sets) Let �1 and �2 be nonempty sets of a space X and
x̄ ∈ �1 ∩ �2. We say that x̄ is a local extremal point of the set system {�1, �2} in X if
there are a neighborhood U of x̄ and a sequence {ak} ⊂ Z with ‖ak‖ → 0 such that

�1 ∩ (�2 + ak) ∩ U = ∅ for all k ∈ N. (13)

To formulate the exact extremal principle for multifunctions in the case of infinite-
dimensional codomain/image spaces, we need the following normal compactness property
for set-valued mappings.

Definition 4 (ISNC property of moving sets) A set-valued mapping S : M ⇒ X between
a metric space (M, d) to a Banach space X is said to be imagely SNC (or ISNC, in short) at
(s̄, x̄) ∈ gph S if for any sequences (sk, xk, x

∗
k ) satisfying

x∗
k ∈ N̂(sk; S(sk)), (sk, xk)

gph S−→(s̄, x̄), and x∗
k

w∗−→ 0

one has ‖x∗
k ‖ → 0 as k → ∞.

Obviously, the ISNC condition for moving sets unconditionally holds when X has finite
dimensions. Moreover, if S can be described in the form S(s) := g(s) + � for all s around
s̄, where � is a subset of X having the SNC property at x̄, and g : M → X is a function
being single-valued around s̄ and continuous at s̄, then S is ISNC at (s̄, z̄).

We are now ready to recall a simple version of the exact/limiting extremal principle for
systems of multifunctions which were formulated by Mordukhovich, Treman, and Zhu for
finitely many sets in [15, Theorem 4.7]. Let x̄ ∈ S1(s̄1) ∩ S2(s̄2) be a local extremal point
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of the system {S1, S2} at (s̄1, s̄2). Assume that the codomain space X is Asplund. Assume
also that each mapping Si is closed-valued around s̄i for i = 1, 2, and that either S1 is
ISNC at (s̄1, x̄) or S2 is ISNC at (s̄2, x̄). Then, the EXACT EXTREMAL PRINCIPLE FOR

MULTIFUNCTIONS S1 and S2 holds: there is a nonzero dual element x∗ ∈ X∗ such that

x∗ ∈ N+(x̄; S1(s̄1)) ∩ (−N+(x̄; S2(s̄2))),

where N+(x̄; Si(s̄i )) for i = 1, 2 stand for the IMAGELY NORMAL CONES to Si(s̄i ) at x̄

defined by

N+(x̄; Si(s̄i )) := Lim sup

(s,x)
gph Si−→ (s̄i ,x̄)

N̂(x; Si(s)).

When S1 and S2 are defined, via �1 and �2, by (12), the extremal principle for mul-
tifunctions reduces to the classical EXTREMAL PRINCIPLE FOR SETS: Let x̄ be a local
extremal point to the set system {�1, �2} in an Asplund space X, where both sets �1 and
�2 are locally closed around x̄. Then there is a nonzero dual element x∗ ∈ X∗ such that
x∗ ∈ N(x̄;�1) ∩ (−N(x̄; �2)) provided that either �1 is SNC at x̄ or �2 is SNC at x̄.
The SNC condition can be relaxed in product spaces. In this paper, we need the EXACT

EXTREMAL PRINCIPLE FOR SETS IN PRODUCT SPACES: Let x̄ ∈ �1 ∩ �2 be a local
extremal point of the product sets �1, �2 ⊂ X1 × X2 that are supposed to be locally closed
around x̄, and let J1, J2 ⊂ {1, 2} with J1 ∪J2 = {1, 2}. Assume that both spaces X1 and X2
are Asplund, and that �1 is PSNC at x̄ with respect to J1 while �2 is strongly PSNC at x̄

with respect to J2. Then there exists x∗ �= 0 satisfying

x∗ ∈ N(x̄;�1) ∩ (−N(x̄; �2)).

The extremal principle and its variants can be viewed as variational counterparts of the
convex separation theorem for sets in nonconvex settings. In fact, it plays a fundamental
role in variational analysis similar to that played by the separation theorem and equiva-
lent results in convex analysis as well as in its outgrowths and applications; see the books
by Mordukhovich [16, 17], which fully revolve around the extremal principle for sets and
its modications. In this paper, we develop new applications of the extremal principle to
multiobjective optimization with respect to variable ordering structures.

3 Extremal Systems in Constrained Multiobjective Nondomination Problems

This section addresses the relationships between nondomination and extremality at non-
dominated solutions for the class of problems (P)

nondominate F(x) subject to x ∈ � with respect to D

since the most crucial step in establishing necessary optimality conditions for Pareto effi-
cient solutions in the variational dual-space approach is to construct an extremal system at a
solution under consideration. Let us recall several useful extremal systems at efficient solu-
tions before constructing new extremal systems of sets and multifunctions at nondominated
solutions of problem (P).

Proposition 1 (Extremal set systems for Pareto efficient solutions) Assume that (x̄, z̄) is a
Pareto efficient solution of problem (P) with respect to the constant ordering structure, i.e.,
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D(z) ≡ � for some convex and nonsubspace cone of the image space Z in the sense of
(3). Then it is a (local) extremal point of the set system {�1, �2}, where �1 := gph F and
�2 := � × (z̄ − �).

Proof See, e.g., [2, Theorem 5.1].

Proposition 2 (Extremal multifunction systems for Pareto efficient solutions) Assume that
(x̄, z̄) is a Pareto efficient solution of problem (P) with respect to the variable ordering
structure D in the sense of (3). Then (x̄, z̄) is a (local) extremal point at (z̄, 0) for the system
of multifunctions Si : Mi ⇒ X × Z for i = 1, 2 defined by

S1(s1) := � × (s1 − cl D(s1)) with M1 := (z̄ − D(z̄)) ∪ {z̄},
S2(s2) ≡ S2 := gph F with M2 := {0},

provided that the preference deduced from D enjoys the almost transitivity property.

Proof See, e.g., [17, Example 5.56].

Since the necessary conditions for Pareto efficient solutions of constrained multiobjec-
tive optimization problems with respect to ordering cones or constant ordering structures
are particular cases of those with respect to variable ordering structures, we do not present
necessary conditions derived from the extremal systems above. The reader can find some
variants being not the ‘best’ necessary results below; otherwise, see [2, 4].

Next, we introduce several extremal systems in multiobjective optimization with respect
to variable ordering structures. To the best of our knowledge, Bao and Mordukhovich con-
structed for the first time the extremal system of three sets �1, �2, and �3 in the product
space W = X × Z × Z := X × Z1 × Z2 in the recent paper [6], where �i for i = 1, 2, 3
are described by

⎧
⎪⎨

⎪⎩

�1 := {(x, z1, z2) ∈ W | (x, z1) ∈ gph f } ,

�2 := {(x, z1, z2) ∈ W | (z1, z2) ∈ gph P = gph (I + D)} ,

�3 := � × Z × {z̄} with z̄ = f (x̄)

in order to establish some necessary nondomination conditions for problems (P). They
assumed that the cost function f is single-valued and the ordering structure D enjoys condi-
tions (A)–(C) in the introduction section. Observe that it is possible to combine these three
sets into two sets since �1 is independent on Z2, �2 is independent on X, and �3 is inde-
pendent on Z1; see Proposition 3 for full justifications. Our main goal is to weaken the
convex-valuedness and the cone-valuedness of ordering structures to the so-called asymp-
totic closedness property defined in [3, Definition 3.2]; see also [4, 5]. For the sake of
self-contentedness, we recall the definition of the latter property and list several suffi-
cient conditions for sets while referring the reader to the cited references for more results,
discussions, and applications.

Definition 5 (Asymptotic closedness property) Let � ⊂ Z be a subset in a Banach space
Z, and let z̄ ∈ cl �. We say that � is ASYMPTOTICALLY CLOSED at z̄ if there is a sequence
{ck} ⊂ Z with ‖ck‖ → 0 as k → ∞ satisfying

cl � + ck ⊂ �\{z̄}.
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Note that the asymptotic closedness of a set is fully independent on the local closedness
of the same set and that it holds in many rather general settings:

– every proper convex subcone � ⊂ Z with nonempty interior and its nonconvex
complement Z\� have the asymptotic closedness property at the origin;

– every closed and convex cone � ⊂ Z with �\(−�) �= ∅ has the asymptotic closedness
property at the origin;

– the epigraph of an extended-real-valued function ϕ : X → R∪ {∞} has the asymptotic
closedness property at (x̄, ϕ(x̄)) provided that ϕ is lower semicontinuous around x̄.

Proposition 3 (Extremal set systems for nondominated solutions) Assume that (x̄, z̄) is a
nondominated solution of problem (P) with respect to the variable ordering structure D in
the sense of Definition 1, where gph D is a closed set in Z × Z. Then, the triple (x̄, z̄, z̄) is
a (local) extremal point for the system of two sets �1 and �2 with

�1 := gph F × {z̄} and �2 := � × gph (P), (14)

where P = I + D is the upper level-set mapping of the ordering structure D provided that
gph P is asymptotically closed at (z̄, z̄) which is equivalent to that gph D is asymptotically
closed at (z̄, 0).

Proof Since the graph of the upper level-set mapping P enjoys the asymptotic closedness
property there exists, by Definition 5, a sequence {(bk, ck)} ⊂ Z × Z with ‖(bk, ck)‖ → 0
as k → ∞ satisfying

cl gph P + (bk, ck) ⊂ gph P \ {(z̄, z̄)} for all k ∈ N. (15)

It is easy to check that (x̄, z̄, z̄) ∈ �1 ∩ �2. To justify the extremality of the set system
{�1, �2} at this common point, it suffices to show the validity of the extremality condition
(13) which, by taking into account the set structures of �1 and �2 in (14), reduces to

(gph F × {z̄}) ∩ ((� × gph P) + ak) = ∅ for all k ∈ N, (16)

where the sequence {ak} ⊂ X × Z × Z with ak := (0, bk, ck) for all k ∈ N converges to
zero as k → ∞. Arguing by contradiction, suppose that (16) does not hold for some k ∈ N.
Then, we can find (x, z1, z2) in the intersection on the left-hand side of (16) ensuring that
x ∈ �, z1 ∈ F(x), z2 = z̄ satisfying

(z1, z̄) ∈ gph P + (bk, ck) = cl gph P + (bk, ck) ⊂ gph P \ {(z̄, z̄)},
where the equality holds due to the closedness assumption and the inclusion does due to the
asymptotic closedness assumption (15). This implies that z1 �= z̄ and z̄ ∈ P(z1) = z1 +
D(z1) contradicting the nondomination of (x̄, z̄) to problem (P). The obtained contradiction
verifies the fulfillment of (16) and thus the extremality of the set system {�1, �2} at the
common point (x̄, z̄, z̄). The proof is complete.

Let us illustrate by an example the importance of the asymptotic closedness requirement
imposed on ordering structures in Proposition 3.

Example 1 Consider the following nonconstrained nondomination problem (P)

nondominate ϕ(x) = x3 with respect to the ordering structure D in (2).
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It is easy to check that the origin x̄ = 0 is a nondominated solution of this problem, and
that (0, 0, 0) ∈ R

3 is not a local extremal point to the set system {�1, �2} with

�1 := gph x3 × {0} and �2 := R × gph P,

where gph P = {(z1, z2) ∈ R
2 | z1 ≥ 0 and z2 ≥ z1}∪{(z1, z2) ∈ R

2 | z1 ≤ 0 and z2 ≤ z1}.
The extremality does not occur at (x̄, z̄, z̄) = (0, 0, 0) ∈ R

3 since the graph of D is not
asymptotically closed at (0, 0) ∈ gph D and thus neither is the graph of P at (0, 0) ∈ gph P.

Remark 1 (Alternative conditions)

(a) The extremality for the set system {�1, �2} at (x̄, z̄, z̄) in Proposition 3 is still valid by
replacing the asymptotic closedness property for D with a stronger asymptotic closed-
ness condition for F : there is a sequence {(bk, ck)} ⊂ Z × Z with ‖(bk, ck)‖ → 0 as
k → ∞ such that

cl gph F + (bk, ck) ⊂ gph F \ (F−1(z̄) × {z̄}) for all k ∈ N, (17)

where F−1(z̄) := {x ∈ X | z̄ ∈ F(x)}. Define a new sequence ak := (bk, ck, 0) for all
k ∈ N. Obviously, ‖ak‖ → 0 as k → ∞. We claim that the extremality condition (13)
for �1 and �2

((gph F × {z̄}) + ak) ∩ (� × gph P) = ∅ for all k ∈ N (18)

holds for the chosen sequence {ak}. Again, arguing by contradiction assume that (18)
does not hold for some k ∈ N. There is a triple (x, z1, z2) in the intersection on the
left-hand side of (18) with x ∈ �, z2 = z̄, z̄ ∈ P(z1), and

(x, z1) ∈ gph F + (bk, ck) ⊂ gph F \ (F−1(z̄) × {z̄}),
where the inclusion holds due to (17). Thus, z1 �= z̄. This together with z̄ ∈ P(z1) =
z1 + D(z1) contradicts the nondomination of (x̄, z̄) to problem (P). The contradiction
verifies the validity of (18) and thus the extremality of the set system {�1, �2} at the
point (x̄, z̄, z̄).

(b) We can also show that the assertion in Proposition 3 is still valid when � is asymptot-
ically closed at x̄, F = f : X → Z is a single-valued function, and the preimage of f

at z̄, i.e., f −1(z̄) is singleton.
(c) Observe that for any variable ordering structure D satisfying conditions (A)–(C), the

upper level-set mapping P is asymptotically closed at (z̄, z̄). Indeed, we have

gph P + (0, k−1e) ⊂ gph P \ {(z̄, z̄)} (19)

where the nonzero vector e ∈ �D is taken from condition (C). Obviously, gph P +
(0, k−1e) ⊂ gph P due to the convexity of D(z) for all z ∈ Z. Arguing by contra-
diction, assume that (19) does not hold, i.e., (z̄, z̄) ∈ gph P + (0, k−1e). This implies
that z̄ − k−1e ∈ P(z̄) = z̄ + D(z̄) or e ∈ −D(z̄) contradicting condition (B),
�D ∩ (−D(z̄)) = {0}. The contradiction justifies the validity of (19) and thus the
asymptotic closedness of gph D at (z̄, z̄) in the sense of Definition 5.

The next theorem provides an extension of necessary nondomination conditions for non-
dominated solutions of problems (P) obtained in [6, Theorem 4.2] for set-valued costs. In
contrast to the technical tools used in establishing necessary results in the previous paper,
we use the extremal system of two sets in (14) instead of three sets defined in the proof of
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[6, Theorem 4.2] and employ the exact extremal principle for sets in product spaces instead
of the approximate extremal principle to simplify our work.

Theorem 1 (Necessary nondomination condition of multiobjective problems) Let (x̄, z̄)

be a nondominated solution of problem (P) with respect to a general variable ordering
structure D : Z ⇒ Z satisfying the closedness and asymptotic closedness assumptions in
Proposition 3. Assume that gph F and � are locally closed around (x̄, z̄) and x̄, respectively.
Assume also the validity of the two SNC conditions:

(a) D is SNC at (z̄, 0), which is equivalent to P being SNC at (z̄, z̄).
(b) Either � is SNC at x̄, or F is PSNC at (x̄, z̄).

Suppose, finally, that the mixed qualification condition

D∗
MF(x̄, z̄)(0) ∩ (−N(z̄; �)) = {0} (20)

and the fixed point condition

− z∗ ∈ D∗
N D(z̄, 0)(z∗) =⇒ z∗ = 0; (21)

are satisfied. The fixed point condition for D is equivalent to that the coderivative of the
upper level-set mapping D∗

N P(z̄, z̄) has a trivial kernel, i.e., Ker D∗
N P(z̄, z̄) = {0}. Then,

there are 0 �= w∗ ∈ D∗
N P(z̄, z̄)(z∗) = z∗ + D∗

N D(z̄, 0)(z∗) for some z∗ ∈ Z∗ such that

0 ∈ D∗
NF(x̄, z̄)(w∗) + N(x̄; �). (22)

Proof By Proposition 3, we get from the nondomination of (x̄, z̄) to problem (P) that the
triple (x̄, z̄, z̄) is a local extremal point to the system of sets �1 and �2 in (14).

By denoting the product space W := X1 ×X2 = X × (Z ×Z) and using the notation J1
and J2 in the exact extremal principle for product spaces, the imposed SNC conditions (a)
and (b) imply the corresponding following SNC conditions:

(a) �2 = � × gph P is SNC at (x̄, z̄, z̄), i.e., J1 = ∅ and J2 = {1, 2}.
(b) �2 is strongly PSNC with respect to J2 = {2} at (x̄, z̄, z̄) and �1 = gph F × {z̄} is

PSNC with respect to J1 = {1} at (x̄, z̄, z̄).

Therefore, the aforementioned principle applied to the extremal set system {�1, �2} at
(x̄, z̄, z̄) ensures the existence of (x∗, w∗, z∗) �= 0 satisfying

(x∗,−w∗, z∗) ∈ N ((x̄, z̄, z̄); gph F × {z̄}) ∩ (−N ((x̄, z̄, z̄);� × gph P)) .

By taking into account the normal cones to product sets and the normal coderivative
definition (7), we get the limiting relationships

{
x∗ ∈ D∗

NF(x̄, z̄)(w∗), −x∗ ∈ N(x̄;�) and

w∗ ∈ D∗
N P(z̄, z̄)(z∗) = z∗ + D∗

N D(z̄, 0)(z∗)

}

,

which clearly verify the necessary nondomination condition

0 ∈ D∗
NF(x̄, z̄)(w∗) + N(x̄; �) with w∗ = z∗ + D∗

N D(z̄, 0)(z∗) (23)

provided that w∗ �= 0.
Let us now show that w∗ �= 0. Arguing by contradiction, we assume that w∗ = 0 and

we get from (23) that 0 = z∗ + D∗
N D(z̄, 0)(z∗). By the fixed point condition (21), z∗ = 0.

Under the imposed SNC assumptions (a) and (b), the inclusion in (23) reduces to

x∗ ∈ D∗
MF(x̄, z̄)(0) ∩ (−N(x̄; �)) .
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By the mixed qualification condition (20), x∗ = 0 and thus (x∗, w∗, z∗) = 0. This contra-
dicts the nontriviality condition of the extremal principle for (x∗, w∗, z∗) and thus justifies
the nonzero value of w∗. We complete the proof of the theorem.

We conclude this section by discussing the extremality property for systems of multi-
functions in optimization with variable ordering structures.

Proposition 4 (Extremal multifunction systems for nondominated solutions) Assume that
(x̄, z̄) is a nondominated solution of problem (P) with respect to the variable ordering struc-
ture D in the sense of Definition 1. Then, the pair (x̄, z̄) is a (local) extremal point at (z̄, 0)

for the system of multifunctions Si : Mi ⇒ X × Z × Z for i = 1, 2 defined by
{

S1(s1) ≡ gph F × {z̄} with M1 := (Z, ‖ · ‖),
S2(s2) := � × {s2} × P(s2) with M2 := (Z, ‖ · ‖), (24)

where P = I + D is the upper level-set mapping of the ordering structure D.

Proof First observe that (x̄, z̄, z̄) ∈ S1(z̄) ∩ S2(z̄). To show that z̄ is a local extremal point
for the system of the multifunctions S1 and S2 in (24) at (x̄, z̄, z̄), it suffices to check the
fulfillment of the extremality condition (11) in the following form:

S1(s1) ∩ S2(s2) = ∅ for all s1 ∈ Z, s2 ∈ Z \ {z̄}. (25)

Arguing by contradiction, suppose that (25) does not hold for some s1 ∈ Z, and s2 ∈
Z\{z̄}. Then, we can find (x, z1, z2) in the intersection on the left-hand side of (25) ensuring
by the set structures in (24) that

x ∈ �, z1 = s2 ∈ F(x), and z2 = z̄ ∈ P(s2) = P(z1) = z1 + D(z1),

which contradicts the nondomination condition (1). The obtained contradiction verifies the
fulfillment of (25) and the extremality of the multifunction system {S1, S2} at (x̄, z̄, z̄). The
proof is complete.

Unfortunately, this extremal system provides a trivial necessary nondomination condition
for problem (P). Precisely, employing the exact extremal principle for multifunctions to the
extremal system {S1, S2} in Proposition 4, we get a triple (z∗,−w∗, z∗) �= 0 such that

(z∗,−w∗, z∗) ∈ N+ ((x̄, z̄, z̄); S1(z̄)) ∩ (−N+ ((x̄, z̄, z̄); S2(z̄)))

= (
N ((x̄, z̄); gph F) × Z∗) ∩ (−N(x̄;�) × −N+ ((z̄, z̄); {z̄} × P(z̄)))

= (
N ((x̄, z̄); gph F) × Z∗) ∩ (−N(x̄; �) × Z∗ × −N+(z̄; P(z̄))

)
.

It is clear from the last expression that the nonzero triple (x∗, w∗, z∗) = (0, 0, z∗) for some
0 �= z∗ ∈ −N+(z̄; P(z̄)) satisfies the necessary condition

0 ∈ D∗F(x̄, z̄)(0) + N(x̄; �)

in a trivial way. Note also that if we impose certain condition such that the dual element w∗
is nonzero, the result is still not significant since it does not relate to the ordering structure
in question. A natural question arises: is it possible to construct an extremal system for
multifunctions such that we can derive from it a necessary nondomination condition for
problem (P)? Observe that Example 1 does not enjoy the extremality property of the system
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of sets �1 and �2 in (14), but the necessary nondomination condition (22) is satisfied with
w∗ = −1 and z∗ = 0 due to the following

−w∗ = −1 ∈ z∗ + D∗
N D(0, 0)(z∗) = 0 + D∗

N D(0, 0)(0) = R and D∗ϕ(0)(1) = {0}.
The question will be further addressed in our future research.
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