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Abstract In this paper, we introduce the notion of n-flat covers of modules and prove that
every module over any ring admits an n-flat cover. Then, we give some criteria for com-
puting left and right Fn-dimensions in terms of the properties of the derived functor of
Hom.
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1 Introduction

The notions of (pre)covers and (pre)envelopes of modules were introduced by Enochs [2] in
1981. Since then, the existence and the properties of (pre)covers and (pre)envelopes relative
to certain submodule categories have been studied widely. The theory of (pre)covers and
(pre)envelopes, which plays an important role in Homological algebra and representation
theory of algebras, becomes now one of the main research topics in relative homological
algebra.

In 2001, Bican et al. [1] proved that every module over any ring admits a flat cover. After
introducing the notion of an n-flat module, it is natural to ask the following question: For
any ring R, do all modules have n-flat covers? In this paper, we introduce the notion of
n-flat covers of modules and show that over any ring R, every module admits an n-flat
cover. Further, using this result, we study the derived functors of Hom.
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In what follows, we write R −Mod (resp. Mod−R) and Fn for the categories of all left
(resp. right) R-modules and all n-flat left R-modules, respectively. We prove that every left
R-module has an n-flat cover over any ring R (see Theorem 3), so every left R-module M

has a left Fn-resolution, that is, there is an exact sequence · · · → F1 → F0 → M → 0
with each Fin-flat such that Hom(Fn,−) leaves the sequence exact. Write K0 = M , K1 =
ker(F0 → M), Ki = ker(Fi−1 → Fi−2) for i ≥ 2. The mth kernel Km (m ≥ 0) is called
the mth Fn-syzygy of M .

Recall that a ring R is called right n-coherent (for integers n > 0 or n = ∞) if
every finitely generated submodule of a free right R-module whose projective dimen-
sion is ≤ n − 1 is finitely presented. It is known that every left R-module M has an
n-flat pre-envelope over the right n-coherent ring (see [8, Theorem 3.1]). Thus, M has a
right Fn-resolution, that is, there is an exact complex 0 → M → F 0 → F 1 → · · ·
with each F in-flat such that Hom(−,Fn) leaves the sequence exact. Let L0 = M ,
L1 = coker(M → F 0), Li = coker(F i−2 → F i−1) for i ≥ 2. The mth cokernel
Lm (m ≥ 0) is called the mth Fn-cosyzygy of M . Note that Hom(−,−) is left balance
on R − Mod × R − Mod by Fn × Fn for a right n-coherent ring R (see [3, Defi-
nition 8.2.13]). Thus, the ith left derived functor of Hom(−,−), which is denoted by
Fnexti (−,−), can be computed using a right Fn-resolution of the first variable or a
left Fn-resolution of the second variable. Following [3, Definition 8.4.1], the left Fn-
dimension of a left R-module M , denoted by left Fn-dim(M) (or Fn-dim(M)), is defined
as inf{m: there is a left Fn -resolution of the form 0 → Fm → · · · → F0 → M →
0 of M}. If there is no such m, set left Fn-dim(M) = ∞. The right versions can be defined
similarly.

This paper is divided into four sections. In Section 2 of this paper, we introduce the
notion of n-flat covers of modules. In Section 3, we prove that over any ring R, every mod-
ule admits an n-flat cover. In Section 4, we investigate the left derived functor Fnexti (−, −).
Let R be a right n-coherent ring. We first show that every left R-module M has a left
Fn-resolution. Next, we prove that Fnexti (−,−) is well defined, and finally, we prove
that the right Fn-dim(N) ≤ m − 2 (m ≥ 2) if and only if Fnextm+k(N,M) = 0
for all left R-modules M and k ≥ −1 if and only if Fnextm−1(N,M) = 0 for all left
R-modules M .

Throughout this paper, R is an associative ring with identity and all R-modules are,
if not specified otherwise, left R-modules. For an R-module M , we use M+ to denote
the character module HomZ(M,Q/Z) of M . Let M and N be R-modules. Hom(M,N)

(resp. Exti (M,N)) means HomR(M,N) (resp. ExtiR(M,N)), and similarly, M ⊗ N (resp.
Tori (M,N)) denotes M ⊗R N (resp. TorRi (M,N)) for an integer i ≥ 1. A left R-module
M is called n-flat [5] if Tor1(N,M) = 0 holds for all finitely presented right R-modules
N with projective dimension (p.d)≤ n and a left R-module M is called n-absolutely pure
[5] if Ext1(N,M) = 0 holds for all finitely presented left R-modules N with projective
dimension ≤ n.

For unexplained terminology and basic results, we refer to [6, 7].

2 n-Flat Covers

In this section, we generalize the definition of flat cover [2] and cotorsion for a fixed positive
integer n and we study some basic results.
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Definition 1 If φ : F → M is a homomorphism between left R-modules with F n-flat,
then φ is called n-flat cover of M if for every F ′ n-flat and every homomorphism F ′ → M

the diagrams

(a) F

F
φ

M

can always be completed to a commutative diagram or equivalently Hom(F ′, F ) →
Hom(F ′,M) → 0 is exact and

(b)
F

F M

can be completed to a commutative diagram only by automorphisms of n-flat module
F . If (a) is satisfied (and perhaps not (b)), then φ : F → M is called n-flat precover
of M .

The notion of n-flat (pre)envelope can be defined dually.

Theorem 1 Fn is closed under direct limits.

Proof Since the functor Torn commutes with direct limits, it follows that the direct limit of
n-flat modules is n-flat.

Given a class C of R-modules, let ⊥C be the class of R-modules K such that
Ext1(K,C) = 0 for every C ∈ C and let C ⊥ be the class of R-modules K such that
Ext1(C,K) = 0 for every C ∈ C .

Definition 2 Recall that a left R-module U is said to be cotorsion if Ext1(F,U) = 0 for all
flat left R-modules F , i.e., U ∈ F⊥, where F is the class of all flat modules.

A left R-module U is said to be n-cotorsion if Ext1(F,U) = 0 for all n-flat left R-
modules F , i.e., U ∈ F⊥

n .

Theorem 2 For any ring R and any R-module M , if M has an n-flat precover, then it has
an n-flat cover.

Proof It follows from Theorem 1 and [7, Theorem 2.2.8].

By Theorem 2, in order to find an n-flat cover for a module M , we only need to find an
n-flat precover of M .

3 All Modules have n-Flat Covers

In this section, we show that over any ring R, every module M has an n-flat cover.



574 C. Selvaraj, R. Udhayakumar

Consider the classes of modules

G = {M ∈ Mod − R | M is finitely presented with p.d ≤ n},
Fn = {M ∈ R − Mod | Tor1(N,M) = 0 ∀ N ∈ G }

and

Cn = {M ∈ R − Mod | Ext1(F,M) = 0 ∀F ∈ Fn}.
Clearly, F⊥

n = Cn.

Proposition 1 Fn is closed under pure submodules.

Proof Let B ∈ Fn and let A ⊆ B be a pure submodule. Then, we have an exact sequence
0 → A → B → B/A → 0. Therefore, the exact sequence 0 → (B/A)+ → B+ → A+ →
0 is split and hence B+ ∼= (B/A)+ ⊕ A+. By [5, Lemma 5], B+ is n-absolutely pure and
so (B/A)+ and A+ are n-absolutely pure. Therefore, B/A,A ∈ Fn by [5, Lemma 5].

Lemma 1 ⊥Cn = Fn, i.e., Fn = ⊥(F⊥
n ).

Proof Clearly, Fn ⊂ ⊥(F⊥
n ) = ⊥Cn. On the other hand, for any finitely presented right R-

module N with p.d ≤ n, N+ = HomZ(N,Q/Z) is pure injective as a left R-module. Then,
by the mixed isomorphism theorem, we have

0 = Ext1(F,N+) = Ext1(F,HomZ(N,Q/Z)) ∼= HomZ(Tor1(F,N),Q/Z).

This shows that Tor1(F,N) = 0 for any finitely presented right R-module N with p.d ≤ n.
Hence, F is n-flat.

Note that (Fn,F⊥
n (= Cn)) is a cotorsion theory.

Definition 3 A cotorsion theory (Fn,Cn) with Fn the class of all n-flat modules (and so
F⊥

n = Cn the class of all n-cotorsion modules) is called the n-flat n-cotorsion theory.

The following proposition is an analog version of Proposition 2 in [1].

Proposition 2 Let R be any ring. The n-flat n-cotorsion theory (Fn,Cn) of the category of
R-modules is cogenerated by a set.

Proof Let F ∈ Fn. By [3, Lemma 5.3.12], Card(R) ≤ ℵβ . Then, we can write F as a
union of a continuous chain (Fα)α<λ of pure submodules of F such that Card(F0) ≤ ℵβ and
Card(Fα+1/Fα) ≤ ℵβ whenever α+1 < λ. If N is an R-module such that Ext1(F0, N) = 0
and Ext1(Fα+1/Fα,N) = 0 whenever α + 1 < λ, then Ext1(F,N) = 0 by [3, Theorem
7.3.4]. Since Fα is a pure submodule of F for any α < λ, we have Fα ∈ Fn by Propo-
sition 1. On the other hand, Fα is a submodule of Fα+1 whenever α + 1 < λ; hence,
Fα+1/Fα ∈ Fn by Proposition 1. Let K be a set of representatives of all modules X ∈ Fn

with Card(X) ≤ ℵβ . Then, F⊥
n = K⊥, but then, this just says that the n-flat n-cotorsion

theory is cogenerated by the set K .

Thus, the following result is a consequence of [4, Theorem 3.2.15].

Theorem 3 Over any ring R, every module admits an n-flat cover.
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Proof It follows immediately from Proposition 2 and Theorem 2.

4 Derived Functors

In this section, we obtain some results using the main result in Section 3. Throughout this
section, we assume R is a right n-coherent ring.

Theorem 4 Given an R-module M , there is an exact sequence

· · · → F2 → F1 → F0 → M → 0

with the Fi’s n-flat, which remains exact if we apply any functor Hom(F,−) where F is
n-flat (such a sequence will be called an n-flat left resolution of M).

Proof Given an R-module M , take F0 to be an n-flat precover of M . Since F0 and F are
n-flat, we have the commutative diagram

so that Hom(F, F0) → Hom(F,M) → 0 is exact. Now, we have the exact sequence
0 → K1 → F0 → M → 0. Take F1 to be an n-flat precover of K1 which gives the
commutative diagram

Thus, Hom(F, F1) → Hom(F, F0) → Hom(F,M) → 0 is exact. Continuing this
procedure, we obtain the exact sequence

· · · → Hom(F, F2) → Hom(F, F1) → Hom(F, F0) → Hom(F,M) → 0.

Therefore, · · · → F2 → F1 → F0 → M → 0 is an n-flat left resolution of M and
Hom(F,−) is exact.

Remark 1 Similarly, using the result [8, Theorem 3.1], we can prove for an R-module M

that there is an exact sequence 0 → M → F 0 → F 1 → · · · with F i’s n-flat, which
remains exact if we apply any functor Hom(−, F ) where F is n-flat (such a sequence will
be called an n-flat right resolution of M).

By the method described above, we can get an n-flat resolution · · · → F2 → F1 →
F0 → M → 0 for any R-module M . Using a similar argument to that for projective
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modules, we can show that this complex is unique up to homotopy. This leads us to get new
derived functors, which are well defined. We call these Fnexti (N,M).

Theorem 5 The Fnexti (N,M) are well defined.

Proof Take two different n-flat resolutions and a map φ ∈ Hom(M, M). We need to show
that there is a commutative diagram

and that the associated map of n-flat resolutions is unique up to homotopy. Now, F0 is
a precover of M , so there exists φ0 : F0 → F0 which makes the following diagram
commutative

Next, we find φ1 using φ0. We have the following commutative diagrams

and F1 is a precover of K1; there exists a φ1 : F1 → F1. Assume that φ0, φ1, . . . , φm−1 are
defined. Complete the following diagram
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to get a ψm which makes this diagram commutative, and since Fm is a precover of Km, we
have a φm : Fm → Fm making the diagram

commutative. This tells us that we complete the diagram. We now argue uniqueness up to
homotopy, that is, from the following diagram

we can find s0, s1, . . . , sm, . . . , with sm : Fm → Fm+1, such that φm − φm = dm+1sm +
sm−1dm, where s−1 : M → F0 is the zero map.

We know that d0 ◦ φ0 = d0 = d0 ◦ φ0; thus, d0(φ0 − φ0) = 0. Therefore, we have the
diagram

which can be completed since F1 is an n-flat precover. Call this map s0, which gives φ0 −
φ0 = d1 ◦ s0.

The next step is to create an s1 which will complete the following diagram
commutatively.

Let s1 be the map which completes the following diagram
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Therefore, we have that

d1(φ1 − φ1 − s0d1) = d1(φ1 − φ1) − d1(s0d1)

= d1(φ1 − φ1) − (d1s0)d1

= d1(φ1 − φ1) − (φ0 − φ0)d1

= 0

as desired. Now, suppose that s0, . . . , sm−1 are determined. Define sm as the completion of
the following diagram

This gives the commutative diagram

Now, as desired, we have

dm(φm − φm − sm−1dm) = dm(φm − φm − sm−1dm)

= dm(φm − φm) − dm(sm−1dm)

= dm(φm − φm) − (dmsm−1)dm

= dm(φm − φm) − (φm−1 − φm−1 − sm−2dm−1)dm

= dm(φm − φm) − (φm−1 − φm−1)dm + sm−2dm−1dm

= 0 + 0,

since our diagram has exact rows. Then, the similar argument for that of projective modules
gives the process of proving the choice of maps and then of n-flat resolutions is unique up
to homotopy.

Let · · · → F1
f→ F0

g→ M → 0 be an n-flat resolution of M . Applying Hom(N,−),
we obtain the deleted complex

· · · → Hom(N, F1)
f∗→ Hom(N, F0) → 0.
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Then, Fnexti (N,M) is exactly the ith homology of the complex above. There is a canonical
map

σ : Fnext
0(N,M) = Hom(N, F0)

im(f∗)
−→ Hom(N,M)

defined by σ(α + im(f∗)) = gα for α ∈ Hom(N, F0).

Proposition 3 Assume M has a left Fn-resolution. Then, the following statements are
equivalent:

(1) M is n-flat.
(2) The canonical map σ : Fnext0(N,M) → Hom(N,M) is an epimorphism for any left

R-module N .
(3) The canonical map σ : Fnext0(M,M) → Hom(M,M) is an epimorphism.

Proof (1) ⇒ (2) is obvious by letting F0 = M .

(2) ⇒ (3) is trivial.

(3) ⇒ (1). By (3), there exists α ∈ Hom(M,F0) such that σ(α + im(f∗)) = gα =
1Hom(M,M).
Thus, M is a direct summand of F0, and hence, it is n-flat.

Proposition 4 The following statements are equivalent for a left R-module M:

(1) Fn-dim(M) ≤ 1;
(2) The canonical map σ : Fnext0(N,M) → Hom(N,M) is a monomorphism for any left

R-module N .

Proof (1) ⇒ (2). By (1), M has an n-flat resolution 0 → F1 → F0 → M → 0. Thus,
we get an exact sequence

0 → Hom(N, F1) → Hom(N, F0) → Hom(N,M)

for any left R-module N . Hence, σ is a monomorphism.
(2) ⇒ (1). Consider the exact sequence 0 → K1 → F0 → M → 0 with F0 n-flat. We

only need to show that K1 is n-flat. By [3, Theorem 8.2.3], we have the commutative
diagram with exact rows:

Note that σ2 is an epimorphism by Proposition 3 and σ3 is a monomorphism by (2).
Thus, σ1 is an epimorphism by Snake lemma (see [6, Theorem 6.5]). Thus, K1 is n-flat by
Proposition 3 and so (1) follows.

Remark 2 From Proposition 3 and Proposition 4, we get that the canonical map

σ : Fnext
0(N,M) −→ Hom(N,M)

is an isomorphism when M is n-flat and Fn-dim(M) ≤ 1.
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Proposition 5 The following statements are equivalent for a left R-module M and an
integer m ≥ 2:

(1) Fn-dim(M) ≤ m,
(2) Fnextm+k(N,M) = 0 for all left R-modules N and k ≥ −1, and
(3) Fnextm−1(N,M) = 0 for all left R-modules N .

Proof (1) ⇒ (2). Let 0 → Fm → · · · → F0 → M → 0 be an n-flat resolution
of M , which induces an exact sequence 0 → Hom(N, Fm) → Hom(N, Fm−1) →
Hom(N, Fm−2) for any left R-module N . Hence, Fnextm(N,M) = Fnextm−1(N,M) =
0. However, it is clear that Fnextm+k(N,M) = 0 for all k ≥ 1. Then (2) holds.

(2) ⇒ (3) is trivial.
(3) ⇒ (1). Let · · · → Fm → Fm−1 → · · · → F0 → M → 0 be an n-flat resolution of

M with Km = ker(Fm−1 → Fm−2). We only need to show that Km is n-flat. In fact, we
have the following exact commutative diagram:

By (3), Fnextm−1(Km,M) = 0. Thus, the sequence

Hom(Km, Fm)
f∗→ Hom(Km, Fm−1)

g∗→ Hom(Km, Fm−2)

is exact. Since g∗(λ) = gλ = 0, λ ∈ ker(g∗) = im(f∗). Thus, there exists h ∈
Hom(Km, Fm) such that λ = f∗(h) = f h = λπh, and hence, πh = 1 since λ is monic.
Therefore, Km is n-flat.

Proposition 6 The following statements are equivalent for a left R-module N and an
integer m ≥ 2:

(1) The right Fn-dim(N) ≤ m − 2,
(2) Fnextm+k(N,M) = 0 for all left R-modules M and k ≥ −1, and
(3) Fnextm−1(N,M) = 0 for all left R-modules M .

Proof (1) ⇒ (2). Let 0 → N → F 0 → F 1 → · · · → Fm−2 → 0 be a right Fn-
resolution of N . Then, we have the following complex

0 → Hom(Fm−2,M) → Hom(Fm−3, M) → · · · → Hom(F 0, M) → 0

for any left R-module M . Hence, Fnextm+k(N,M) = 0 for all k ≥ −1.
(2) ⇒ (3) is trivial.
(3) ⇒ (1). There exists a right Fn-resolution of N :

0 → N → F 0 → F 1 → · · · → Fm−4 j→ Fm−3 h→ Fm−2 f→ Fm−1 g→ Fm → · · ·
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with each F in-flat. Let π : Fm−1 → Lm = Fm−1/im(f ) be the canonical projection,
i : Lm → Fm the induced map and let f and h factor through im(f ) and ker(f )

respectively in obvious ways, that is, f = λf ′ and h = γ h′. Then, we have the following
commutative diagram:

im

By (3), Fnextm−1(N,Lm) = 0. Thus, the sequence

Hom(Fm,Lm)
g∗
→ Hom(Fm−1, Lm)

f ∗
→ Hom(Fm−2, Lm)

is exact. Since f ∗(π) = πf = 0, π ∈ ker(f ∗) = im(g∗). So π = g∗(l) = lg for some
l ∈ Hom(Fm, Lm), but g = iπ , and hence, π = liπ . Thus, li = 1 since π is epic, and so
Lm is n-flat. It follows that im(f ) and ker(f ) are n-flat. We claim that the complex

0 → N → F 0 → F 1 → · · · j→ Fm−3 → ker(f ) → 0

is a right Fn-resolution of N . In fact, it is enough to show that the complex

0 → Hom(ker(f ),G)
(h′)∗→ Hom(Fm−3,G)

j∗
→ Hom(Fm−4,G)

is exact for any n-flat left R-module G. Note that we have the following exact commutative
diagram:

Therefore, ker((h′)∗γ ∗) = ker(h∗) = im(f ∗) = im((f ′)∗λ∗) = im(f ′)∗ = ker(γ ∗).
Let α ∈ ker(h′)∗. Since γ ∗ is epic, α = γ ∗(β) for some β ∈ Hom(Fm−2, G). Thus,
(h′)∗γ ∗(β) = (h′)∗(α) = 0, and hence, α = γ ∗(β) = 0. It follows that (h′)∗ is monic. On
the other hand, ker(j∗) = im(h∗) = im((h′)∗), so we obtain the desired exact sequence.
This completes the proof.
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