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Abstract We first give simple proofs to some main results on semilocal rings of Zhang
(Proc. Amer. Math. Soc. 137, 845–852, 2009). Then, as an extension, we prove that the
R/J (R)-module aR is semisimple if and only if every descending chain in aR : a1R ⊇
· · · ⊇ anR ⊇ · · · with ai+1 = ai − aibiai (i = 1, 2, . . . ) eventually terminates.
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1 Introduction

Semilocal rings are characterized in several amazing ways by Camps and Dicks [2],
then based on their results, two new conceptions “hollow chain” and “hollow length” are
introduced in [6]. Let R be a ring, a descending chain

a0R � a1R � · · · � anR � · · · � an+1R · · · with an+1 = an−anbnan for some bn ∈R

is called a hollow chain of a0 ∈ R. Let r = sup{n ∈ Z | a0R � a1R � · · · � an−1R �

anR is a hollow chain of a0}, then r is called the right hollow length of a0, denoted as
h.length(a0) = r . And it is proved in [6] that R is a semilocal ring with u. dim(R/J (R)) =
n if and only if h.length(1R) = n. Several other equivalent conditions of semilocal rings are
obtained in [6]. However, some proofs in [6] are not concise. Recently, Camillo and Nielsen
gave a short and intuitive proof of Camps–Dicks’s following result in [1].

Theorem 1 Let R be a ring. The following conditions are equivalent.

(1) R is semilocal;
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(2) There exist a ring S and a R-S-bimodule RMS such that MS has finite uniform
dimension, and for r ∈ R the equation annM(r) = (0) implies r ∈ U(R).

Motivated by the method used in [1], we first give short and intuitive proofs of some
other characterizations of semilocal rings of [2, 6] in Theorem 2.

For a ring R, write R = R/J (R), we then generalized some results in [6] by
discussing when will aR be a semisimple R-module in Theorem 3. For a module M , write
E = End(M). Generally, it is not easy to find the relations between the structure of E and
the submodules of M , but based on Theorem 3, we find that for all f ∈ E, the condition
f E is a semisimple E-module is decided by chain conditions of submodules of M .

All rings are associative with 1, and modules are unital. LetR be a ring.U(R) and r.U(R)

denote respectively the set of invertible and right invertible elements of R. u. dim(M)

denotes the uniform dimension of module M . For more results on semilocal rings, please
refer to [3, 5]. We refer to [4] for all undefined notions used in the text.

2 Main Results

The following result contains some important results of [2, Theorem 1] and [6, Corollary
10], we now provide a short and intuitive proof.

Theorem 2 Let R be a ring. The following are equivalent:

1) R is semilocal;
2) h.length(1R) < ∞;
3) Every descending chain of principal right ideals of R

a0R ⊇ a1R ⊇ a2R ⊇ · · · ⊇ anR ⊇ · · · with ai+1 = ai − aibiai

eventually terminates.
4) Every strict descending chain

a0R � a1R � a2R � · · · � anR � · · · with ai+1 = ai − aibiai

eventually terminates.
5) There exists a partial order ≥ on R, satisfying the minimum conditions such that for

any a, b ∈ R, if 1 − ab /∈ U(R), then a > a − aba.
5’) There exists a partial order ≥ on R, satisfying the minimum conditions such that for

any a, b ∈ R, if 1 − ab /∈ r.U(R), then a > a − aba.

Proof 3) ⇒ 4), 5) ⇒ 5′) are trivial.

1) ⇒ 3). By Theorem 1, there is a R-S-bimodule RMS satisfying condition 2) of The-
orem 1. Since annM(a − ada) = annM(a) ⊕ annM(1 − da), we know
from the descending chain in condition 3) that for any n > 1, annM(an) =
annM(a0) ⊕ annM(1 − b0a0) ⊕ · · · ⊕ annM(1 − bn−1an−1). So for any
n > 1, u. dim(annM(an)) = u. dim(annM(a0)) ⊕ u. dim(annM(1 − b0a0))

+ · · · + u. dim(annM(1 − bn−1an−1)) ≤ u. dim(M), thus, all but finite
u. dim(annM(1 − biai)) = 0. By condition 2) of Theorem 1, it means that
1 − biai ∈ U(R), thus 1 − aibi ∈ U(R), so by [6, Lemma 3], all but finite
ai+1R = ai(1 − biai)R = aiR. It proves 3).

1) ⇒ 2). Similar to the 1) ⇒ 3),we can get h.length(1R) ≤ u. dim(M).
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Let AR be a maximal submodule of RR . We will indicate in the following 2) ⇒ 1) and
5′) ⇒ 1) that A is a direct summand. Since a ring is semisimple if and only if
every maximal left ideal is a summand, we can get 1).

2) ⇒ 1). First, for any b ∈ R, we have h.length(b) ≤ h.length(1) < ∞. In fact, if
b /∈ U(R), then 1 − 1(1 − b) = b /∈ U(R). So by [6, Lemma 3], we get
1R � (1 − 1(1 − b)1)R = bR, thus h.length(1) > h.length(b); If b ∈ U(R)

and bR � (b − bdb)R for some d ∈ R, then (1 − bd) /∈ r.U(R), so 1R �

(1−bd)R = (1−bd)bR = (b−bdb)R, thus h.length(1) > h.length(b−bdb),
so h.length(1) ≥ h.length(b).

Let � = {b ∈ R|b /∈ A}, then 1R ∈ �. Since for any b ∈ R, h.length(b) ≤
h.length(1R) < ∞, there exists an element b ∈ � such that h.length(b) =
Min{h.length(b) | b ∈ �}. We have bR ∩ A = 0. In fact, for any bx ∈
bR ∩ A, if b − bxb ∈ A, then b = (bx)b + b − bxb ∈ A, a contradiction.
Whence b − bxb ∈ �. The conditions h.length(b − bxb) � h.length(b) and
h.length(b) = Min{h.length(b) | b ∈ �} indicate that bR = (b − bxb)R.
[6, Lemma 3] shows 1 − bx ∈ r.U(R). We can prove similarly that for any
y ∈ R, 1− bxy ∈ r.U(R), so bx ∈ J (R). Therefore bR ∩ A = 0. Since A is a
maximal left ideal of R, R = bR ⊕ A.

5′) ⇒ 1). Write � = {b ∈ R | b /∈ A}. By 5’), there is a minimum element b ∈ �.
Similar to the proof of 2) ⇒ 1), we can get R = Rb ⊕ A.

4) ⇒ 5′). Define an order ≥ on R via a ≥ b if a = b or aR � bR and b = a − ada

for some d ∈ R. Then a routine verification shows that this order satisfying
condition 5’).

5′) ⇒ 5). By 5′) ⇒ 1), we know that R is semilocal, thus R is direct finite, so r.U(R) =
U(R).

Let R and S be rings and let RMS be a R-S-bimodule. If

(i) MS has finite uniform dimension;
(ii) for r ∈ R, the equation annM(r) = (0) implies r ∈ U(R),

then we know that R is semilocal and dim(R/J (R)) = h.length(1R) ≤ u. dim(MS). A
natural question is:

When will dim(R/J (R)) = u. dim(MS)?
We now give a characterization of this condition.

Proposition 1 Suppose that R is a semilocal ring with dim(R/J (R)) = n, RMS is a R-S-
bimodule satisfying the above conditions (i) and (ii). Let

a0R � a1R � a2R � · · · � anR with ai+1 = ai − aibiai

be a hollow chain of a0 = 1R .
Then dim(R/J (R)) = u. dim(Ms) if and only if

1) annM(an) is an essential submodule of M , and
2) for any b ∈ R, if R/bR is local, then annM(b) is uniform.

Proof “ ⇐ ” By [6, Proposition 8], R/(1 − aibi)R is local for each i. So by
condition 2) and the equation annM(an) = annM(1 − a0b0)) ⊕ · · · ⊕ annM(1 −
an−1bn−1)), u. dim(annM(an)) = ∑n−1

i=0 u. dim(annM(1 − aibi)) = n, condition 1) shows
u. dim(M) = u. dim(annM(an)) = n.
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“ ⇒ ” aiR �= ai+1R gives 1 − aibi /∈ r.U(R) = U(R), thus 1 − biai /∈ U(R).
Condition (ii) shows that annM(1 − biai) �= 0, whence u. dim(annM(1 − biai)) ≥ 1. So
n = u. dim(M) ≥ u. dim(annM(an)) = ∑n−1

i=0 u. dim(annM(1 − biai)) ≥ n.
Thus u. dim(annM(an)) = n = u. dim(M), whence annM(an) is an essential submodule

of M and each u. dim(annM(1 − biai)) = 1, i.e., annM(1 − biai) is uniform.
For any b ∈ R, suppose that R/bR is local, then b /∈ U(R). By [6, Proposition 8(1)], we

know that h.length(b) = h. dim(R) − 1 = n − 1.
Therefore, we can find a hollow chain of b = b1

b1R � b2R � · · · � bnR with bi+1 = bi − bicibi .

Write b0 = 1R and c0 = 1 − b, then b1 = b = 1 − 1(1 − b)1 = b0 − b0c0b0. Since
1 − c0b0 = b /∈ U(R), we have the following hollow chain of b0 = 1,

b0R � b1R � b2R � · · · � bnR with bi+1 = bi − bicibi .

Then similar to the above proof, we can know that annM(1−cibi) is uniform, so annM(b)

= annM(1 − c0b0) is uniform, as asserted.

Theorem 3 Let R be a ring, a ∈ R. The following conditions are equivalent:

1) aR is a semisimple R- module;
2) h.length(a) < ∞;
3) Every descending chain in aR

a1R ⊇ · · · ⊇ anR ⊇ · · · with ai+1 = ai − aibiai (i = 1, 2, . . . )

eventually terminates;
4) Every strict descending chain in aR

a1R � · · · � anR � · · · with ai+1 = ai − aibiai (i = 1, 2, . . . )

eventually terminates;
5) Every descending chain in aR

a1R ⊇ · · · ⊇ anR ⊇ · · · with a1 = a and ai+1 = ai − aibiai (i = 1, 2, . . . )

eventually terminates;
6) Every strict descending chain in aR

a1R � · · · � anR � · · · with a1 = a and ai+1 = ai − aibiai (i = 1, 2, . . . )

eventually terminates.

Proof 3) ⇒ 4), 3) ⇒ 5), 2) ⇒ 6), 4) ⇒ 6), 5) ⇒ 6) are trivial.
1) ⇒ 3). Given a descending chain in aR

aR ⊇ a1R ⊇ a2R ⊇ · · · ⊇ anR ⊇ · · · with ai+1 = ai − aibiai (1)

We have a descending chain in aR

a1R ⊇ · · · ⊇ anR ⊇ · · · with ai+1 = ai − aibiai . (2)

Since aR is semisimple and cyclic, aR is a direct sum of finite simple modules. So
aR has a composition series of finite length. Thus, the descending chain (2) eventually
terminates. By [6, Lemma 3], it means the chain (1) eventually terminates.

1) ⇒ 2) is similar to the 1) ⇒ 3).
6) ⇒ 1) We first prove the following result.
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Claim If B � aR, then there exists a submodule C �= 0 of aR such that B ∩ C = 0.
Write � = {b ∈ R | b = a − aya for some y ∈ R and b /∈ B}. a ∈ � shows � �= ∅.
Define an order ≤ on � via

x ≤ y if x = y or xR � yR and y = x − xdx for some d ∈ R.

Then it is easy to show that “ ≤ ” is a partial order for �. Condition 6) shows that (�, ≤)

is inductive, so by Zorn lemma, there is a maximum element b ∈ �.
We have bR ∩ B = 0. In fact, for any bx ∈ bR ∩ B, we can get 1 − bx ∈ r.U(R).

Otherwise, we have (b − bxb)R � bR. b ∈ � shows that b = a − aya for some y ∈ R, so
b−bxb = (a −aya)− (a −aya)x(a −aya) = a −a[y + (1−ya)x(1−ay)]a. In addition,
by b /∈ B and bx ∈ B, we know that b − bxb /∈ B, so b − bxb ∈ �, thus b − bxb > b, but
b is a maximal element in �, a contradiction. For bx ∈ bR ∩ B, repeating the argument, we
see that 1 − bxy ∈ r.U(R) for all y ∈ R, so bx ∈ J (R), i.e., bx = 0.

Since b /∈ B, bR �= 0. Set C = bR �= 0, then B ∩ C = 0. So the claim is proved.
Let A be a submodule of aR. Suppose A � aR, if we can prove that A is a summand of

aR, then aR is semisimple.
Let X be the complement of A in aR. If A ⊕ X �= aR, applying the claim, we can find a

D ⊆ aR such that D �= 0 and (A ⊕ X) ∩ D = 0, and so A ∩ (X ⊕ D) = 0, a contradiction.
So A ⊕ X = aR.

Let S be a ring and MS a module. Write End(M) = E and E = E/J (E). For any
f ∈ E, as an application of Theorem 3, we can characterize the semisimplicity of f E by
chain conditions of submodules of module MS .

For f, g ∈ E, we proved in [6, Remark 4] that if f (M) = (f −fgf )(M), then 1−fg is
surjective. Besides, since (f − fgf )(M) = f (M) ∩ (1 − fg)(M), we know that f (M) =
(f −fgf )(M) if and only if 1−fg is surjective. Since ker(f −fgf ) = ker f ⊕ker(1−gf ),
and ker(1 − gf ) ∼= ker(1 − fg), ker(f − fgf ) = ker f if and only if 1 − fg is injective.

We can get from Theorem 3 the following

Proposition 2 Let MS be a module and f ∈ E = End(M). If M is direct finite, then the
following conditions are equivalent.

(1) f E is a semisimple E-module;
(2) Write f0 = f , for every sequence g0, g1, g2, . . . of elements of End(M), if we set

fn+1 = fn − fngnfn for every n ≥ 0, then the chains

(i) f0(M) ⊇ f1(M) ⊇ · · · ⊇ fn(M) ⊇ · · · ,
(ii) ker f0 ⊆ ker f1 ⊆ · · · ⊆ ker fn ⊆ · · ·

of submodules of M both eventually terminate.

By Theorem 3, we can get the following sufficient conditions for f E to be semisimple.

Proposition 3 Let MS be a module and f ∈ E = End(M). Write f0 = f , for every
sequence g0, g1, g2, . . . of elements of End(M), setting fn+1 = fn − fngnfn for every
n ≥ 0, if the chains

(i) f0(M) ⊇ f1(M) ⊇ · · · ⊇ fn(M) ⊇ · · · ,
(ii) ker f0 ⊆ ker f1 ⊆ · · · ⊆ ker fn ⊆ · · ·
of submodules of M both eventually terminate, then f E is a semisimple E-module.
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The following result is a generalization of [6, Corollary 13], their proofs are similar.

Corollary 1 Let MS be a module for which every monomorphism M → M splits. f0 =
f ∈ E = End(M). The following conditions are equivalent

(i) f E is a semisimple E-module.
(ii) For every sequence g0, g1, g2, . . . of elements of End(M), if we set fn+1 = fn −

fngnfn for every n ≥ 0, then the chain ker f0 ⊆ ker f1 ⊆ · · · ⊆ ker fn ⊆ · · · of
submodules of M eventually terminates.

Moreover, h. dim(f E) ≤ dim(M).

Corollary 2 Let MS be a module for which every monomorphism in End(M) splits. Write
E = E/J (E). For any f ∈ E, if M/ ker f has finite uniform dimension, then f E is a
semisimple E-module.
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