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Abstract The idea of this paper is to perturb Mann iteration scheme and obtain a strong
convergence result for approximation of solutions to constrained convex minimization prob-
lem in a real Hilbert space. Furthermore, we give computational analysis of our iterative
scheme.
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1 Introduction

Let H be a real Hilbert space and C a nonempty, closed, and convex subset of H . Let
f : H → R be a convex and continuously Fréchet differentiable functional. Consider the
following constrained convex minimization problem:

minimize{f (x) : x ∈ C}. (1)

The gradient projection method (for short, GPM) generates a sequence {xn} using the
following recursive formula:

xn+1 = PC(xn − λ∇f (xn)) ∀n ≥ 1, (2)

or more generally,

xn+1 = PC(xn − λn∇f (xn)) ∀n ≥ 1, (3)

where in both (2) and (3), the initial guess x0 is taken from C arbitrarily, and the parameters,
λ or λn, are positive real numbers known as stepsize.
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The gradient projection (or projected-gradient) algorithm is a powerful tool for solving
constrained convex optimization problems and has been extensively studied (see [5, 6, 9, 11,
15, 17–23] and the references therein). It has been recently applied to solve split feasibil-
ity problems which find applications in image reconstructions and the intensity-modulated
radiation therapy (see [3, 4, 14, 25]).

The convergence of algorithms (2) and (3) depends on the behavior of the gradient ∇f .
The gradient projection method (3) has been considered with several stepsize rules:

– Constant stepsize, where for some λ > 0, we have λn = λ for all n.
– Diminishing stepsize, where λn → 0 and

∑∞
n=1 λn = ∞.

– Polyak’s stepsize, where λn = f (xn)−f ∗
‖∇f (xn)‖2 , where f ∗ is the optimal value of (1).

– Modified Polyak’s stepsize, where λn = f (xn)−f̂n

‖∇f (xn)‖2 and f̂n = min0≤j≤n f (xj ) − δ for
some scalar δ > 0.

The constant stepsize rule is suitable when we are interested in finding an approximate
solution to problem (1). Diminishing stepsize rule is an off-line rule and is typically used
with λn = c

n+1 or c√
n+1

for some c > 0. The constant and the diminishing stepsizes are

also well suited for some distributed implementations of the method.
As a matter of fact, it is known (see [11]) that if ∇f is α-strongly monotone and L-

Lipschitzian with constants α,L > 0, then the operator

T := PC(I − λ∇f ) (4)

is a contraction; hence, the sequence {xn} defined by algorithm (2) converges in norm to
the unique solution of the minimization problem (1). More generally, if the sequence {λn}
is chosen to satisfy the property

0 < lim inf λn ≤ lim sup λn <
2α

L2
,

then the sequence {xn} defined by algorithm (3) converges in norm to the unique minimizer
of (1). However, if the gradient ∇f fails to be strongly monotone, the operator T defined
by (4) would fail to be contractive; consequently, the sequence {xn} generated by algorithm
(3) may fail to converge strongly (see [22, Sect. 5]). If ∇f is Lipschitzian, then algorithms
(2) and (3) can still converge in the weak topology under certain conditions.

Recently, Xu [22] gave an alternative operator-oriented approach to algorithm 3, namely
an averaged mapping approach. He gave his averaged mapping approach to the gradient
projection algorithm (3) and the relaxed gradient projection algorithm. Moreover, he con-
structed a counterexample which shows that algorithm (2) does not converge in norm in
an infinite-dimensional space and also presented two modifications of gradient projection
algorithms which are shown to have strong convergence. Further, he regularized the mini-
mization problem (1) to devise an iterative scheme that generates a sequence converging in
norm to the minimum-norm solution of (1) in the consistent case.

Very recently, motivated by the work of Xu [22], Ceng et al. [6] proposed implicit and
explicit iterative schemes for finding the approximate minimizer of a constrained convex
minimization problem and prove that the sequences generated by their schemes converge
strongly to a solution of the constrained convex minimization problem. Such a solution
is also a solution of a variational inequality defined over the set of fixed points of a
nonexpansive mapping.
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Motivated by the works of Xu [22] and Ceng et al. [6], we prove a strong convergence
theorem for finding the approximate minimizer of a constrained convex minimization prob-
lem in a real Hilbert space. Furthermore, we give computational analysis of our result. Our
result complements the results of Xu [22] and several other works in this direction.

2 Preliminaries

Definition 1 A mapping T : C → C is said to be nonexpansive if

‖T x − Ty‖ ≤ ‖x − y‖ ∀x, y ∈ C.

Construction of fixed points of nonexpansive mappings is an important subject in non-
linear mapping theory and its applications, in particular, in image recovery and signal
processing (see, for example, [3, 4, 14, 25]). For the past 40 years or so, the approximation of
fixed points of nonexpansive mappings and fixed points of some of their generalizations and
approximation of zeros of accretive-type operators have been a flourishing area of research
for many mathematicians. For example, the reader can consult the recent monographs of
Berinde [2] and Chidume [7].

For any point u ∈ H , there exists a unique point PCu ∈ C such that

‖u − PCu‖ ≤ ‖u − y‖ ∀y ∈ C.

PC is called themetric projection ofH ontoC. We know that PC is a nonexpansive mapping
of H onto C. It is also known that PC satisfies

〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2
for all x, y ∈ H . Furthermore, PCx is characterized by the properties PCx ∈ C and

〈x − PCx, PCx − y〉 ≥ 0

for all y ∈ C.

Definition 2 Amapping T : H → H is said to be firmly nonexpansive if and only if 2T −I

is nonexpansive, or equivalently

〈x − y, T x − Ty〉 ≥ ‖T x − Ty‖2 ∀x, y ∈ H.

Alternatively, T is firmly nonexpansive if and only if T can be expressed as

T = 1

2
(I + S),

where S : H → H is nonexpansive. Projections are firmly nonexpansive.

Definition 3 A mapping T : H → H is said to be an averaged mapping if and only if it
can be written as the average of the identity mapping I and a nonexpansive mapping; that is

T = (1 − α)I + αS, (5)

where α ∈ (0, 1) and S : H → H is nonexpansive. More precisely, when (5) holds, we say
that T is α-averaged. Thus, firmly nonexpansive mappings (in particular, projections) are
1
2 -averaged mappings.

Some properties of averaged mappings are in the following proposition.
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Proposition 1 ([4, 8]) For given operators S, T , V : H → H .

(a) If T = (1−α)S+αV for some α ∈ (0, 1) and if S is averaged and V is nonexpansive,
then T is averaged.

(b) T is firmly nonexpansive if and only if the complement I − T is firmly nonexpansive.
(c) If T = (1 − α)S + αV for some α ∈ (0, 1) and if S is firmly nonexpansive and V is

nonexpansive, then T is averaged.
(d) The composite of finitely many averaged mappings is averaged. That is, if each of the

mappings {Ti}Ni=1 is averaged, then so is the composite T1 . . . TN . In particular, if T1
is α1-averaged and T2 is α2-averaged, where α1, α2 ∈ (0, 1), then the composite T1T2
is α-averaged, where α = α1 + α2 − α1α2.

Definition 4 A nonlinear operator T whose domain D(T ) ⊂ H and range R(T ) ⊂ H is
said to be

(a) monotone if

〈x − y, T x − Ty〉 ≥ 0 ∀x, y ∈ D(T ),

(b) β-strongly monotone if there exists β > 0 such that

〈x − y, T x − Ty〉 ≥ β‖x − y‖2 ∀x, y ∈ D(T ),

(c) ν-inverse strongly monotone (for short, ν-ism) if there exists ν > 0 such that

〈x − y, T x − Ty〉 ≥ ν‖T x − Ty‖2 ∀x, y ∈ D(T ).

It can be easily seen that (i) if T is nonexpansive, then I −T is monotone; (ii) the projection
mapping PC is a 1-ism. The inverse strongly monotone (also referred to as co-coercive)
operators have been widely used to solve practical problems in various fields, for instance,
in traffic assignment problems; see, for example, [3, 10] and the references therein.

The following proposition gathers some results on the relationship between averaged
mappings and inverse strongly monotone operators.

Proposition 2 ([4]) Let T : H → H be an operator from H to itself.

(a) T is nonexpansive if and only if the complement I − T is 1
2 -ism.

(b) If T is ν-ism, then for γ > 0, γ T is ν
γ
-ism.

(c) T is averaged if and only if the complement I − T is ν-ism for some ν > 1/2. Indeed,
for α ∈ (0, 1), T is α-averaged if and only if I − T is 1

2α -ism.

Since the Lipschitz continuity of the gradient of f implies that it is indeed inverse
strongly monotone (ism), its complement can be an averaged mapping. Consequently, the
GPA can be rewritten as the composite of a projection and an averaged mapping, which is
again an averaged mapping. This shows that averaged mappings play an important role in
the gradient projection algorithm. Recall that a mapping T is nonexpansive if and only if it
is Lipschitz with a Lipschitz constant not more than one and that a mapping is an averaged
mapping if and only if it can be expressed as a proper convex combination of the identity
mapping and a nonexpansive mapping. An averaged mapping with a fixed point is asymp-
totically regular and its Picard iterates at each point converge weakly to a fixed point of the
mapping. This convergence property is quite helpful.

In the sequel, we shall also make use of the following lemmas.
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Lemma 1 Let H be a real Hilbert space. Then the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 ∀ x, y ∈ H.

Lemma 2 Let H be a real Hilbert space. The following inequality holds:

‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2 ∀x, y ∈ H.

Lemma 3 (Reich, [16]) Let K be closed and convex subset of a reflexive real Banach space
E with a uniformly Gâteaux differentiable norm. Assume that every weakly compact and
convex subset ofE has the fixed-point property for nonexpansive mappings. LetA : K → E

be an accretive mapping which satisfies the range condition K ⊆ R(I + sA) for all s > 0.
Suppose that 0 ∈ R(A), then for each x ∈ K , the strong limit, limt→∞ Jtx exists and
belongs to A−1(0). If we denote limt→∞ Jtx by Qx, then Q : K → A−1(0) is the unique
sunny nonexpansive retraction of K onto A−1(0).

We remark that in Hilbert spaces, a sunny nonexpansive retraction is a projection
mapping.

Lemma 4 (Moore and Nnoli, [12]) Let {θn}∞n=1 be a sequence of nonnegative real numbers
satisfying the following relation:

θn+1 ≤ θn − αn	(θn+1) + σn, n ≥ 1,

where (i) 0 < αn < 1; (ii)
∑∞

n=1 αn = ∞; (iii)	 : [0, ∞) → [0, ∞) is a strictly increasing
function with 	(0) = 0. Suppose that σn = o(αn) (where σn = o(αn) if and only if
limn→∞ σn

αn
= 0), then θn → 0 as n → ∞.

We adopt the following notation: xn → x means that xn → x strongly.

3 Main Result

In this section, we modify the gradient projection method so as to have strong convergence.
Below, we include such modification. We use constant stepsize λ since we are interested in
finding an approximate solution to problem (1).

Theorem 1 Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Suppose that the minimization problem (1) is consistent and let S denote its solution set.
Assume that the gradient ∇f is L-Lipschitzian with constant L > 0. For a fixed u ∈ C, let
the sequence {xn} be generated iteratively by x1 ∈ C,

xn+1 = (1 − αn)xn + αnPC(xn − λ∇f (xn)) − αnγn(xn − u), n ≥ 1, (6)

where 0 < λ < 2
L
and {αn}, {γn} are sequences in (0, 1) satisfying the following conditions:

(i) αn(1 + γn) < 1,
(ii) αn = o(γn),
(iii)

∑∞
n=1 αnγn = +∞.

Then the sequence {xn} converges strongly to a minimizer x̂ of (1), where x̂ is the projection
of the starting point u onto the solution set of the convex problem being solved.
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Proof Observe that x∗ ∈ C solves the minimization problem (1) if and only if x∗ solves
the fixed-point equation

x∗ = PC(I − λ∇f )x∗,
where λ > 0 is any fixed positive number. Note that the gradient ∇f is L-Lipschitzian with
constant L > 0 implies that the gradient ∇f is 1

L
-ism [1], which then implies that λ∇f is

1
λL

-ism. So by Proposition 2(c), I −λ∇f is λL
2 -averaged. Now since the projection PC is 1

2 -
averaged, we see from Proposition 2(d) that the composite PC(I − λ∇f ) is 2+λL

4 -averaged
for 0 < λ < 2

L
. Therefore, we can write

PC(I − λ∇f ) = 2 − λL

4
I + 2 + λL

4
T = (1 − β)I + βT ,

where T is nonexpansive and β = 2+λL
4 ∈ (0, 1). Then, we can rewrite (6) as

xn+1 = (1 − θn)xn + θnT xn − αnγn(xn − u), (7)

where θn = βαn ∈ (0, 1) ∀n ≥ 1. For any x∗ ∈ S, notice that T x∗ = x∗. We first show
that the sequence {xn}∞n=1 is bounded. Observe that T is nonexpansive and is equivalent to

〈T x − Ty, x − y〉 ≤ ‖x − y‖2 − 1

2
‖(I − T )x − (I − T )y‖2. (8)

Using (7), we have

‖xn+1 − x∗‖2 = ‖(1 − αnγn − θn)(xn − x∗) + θn(T xn − x∗) − αnγn(x
∗ − u)‖

≤ ‖(1 − αnγn − θn)(xn − x∗) + θn(T xn − x∗)‖ + αnγn‖u − x∗‖. (9)

Then, using (8), we obtain

‖(1 − αnγn − θn)(xn − x∗) + θn(T xn − x∗)‖2
= (1 − αnγn − θn)

2‖xn − x∗‖2 + θ2n‖T xn − x∗‖2
+2(1 − αnγn − θn)θn〈T xn − x∗, xn − x∗〉

≤ (1 − αnγn − θn)
2‖xn − x∗‖2 + θ2n‖xn − x∗‖2

+2(1 − αnγn − θn)θn

[
‖xn − x∗‖2 − 1

2
‖xn − T xn‖2

]

= (1 − αnγn)
2‖xn − x∗‖2 − (1 − αnγn − θn)θn‖xn − T xn‖2

≤ (1 − αnγn)
2‖xn − x∗‖2,

which implies that

‖(1 − αnγn − θn)(xn − x∗) + θn(T xn − x∗)‖ ≤ (1 − αnγn)‖xn − x∗‖. (10)

It follows from (9) and (10) that

‖xn+1 − x∗‖ ≤ (1 − αnγn)‖xn − x∗‖ + αnγn‖u − x∗‖
≤ max{‖xn − x∗‖, ‖u − x∗‖}
...

≤ max{‖x1 − x∗‖, ‖u − x∗‖}.
Thus, {xn}∞n=1 is bounded and so is {T xn}.

Next, we show that the sequence {xn}∞n=1 converges strongly to x̂. For each n ≥ 1, let
A := I − T . Then A is a bounded, continuous, and monotone mapping. Since {xn}∞n=1 is
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bounded, we have that {Axn}∞n=1 is bounded. Furthermore, by Theorem 2 of [13],A satisfies
the range condition. Observe that if for all γ > 0, we define

Aγ : C → C by Aγ x = γAx ∀x ∈ C,

then we easily see that Aγ satisfies the range condition and

S = F(T ) = A−1(0) = A−1
γ (0) = F(J

Aγ
s ) = {x ∈ H : J

Aγ
s x = x},

where J
Aγ
s is the resolvent of the operator Aγ ∀γ > 0. Observe that

‖Aγ xn‖ = γ ‖Axn‖ ≤ γ sup
x∈B

‖Ax‖ ∀n ≥ 1,

where B is any closed ball containing the sequence {xn}. This implies that
limγ→0 ‖Aγ xn‖ = 0 for each n ≥ 1. Furthermore, we obtain from Lemma 3 that

lims→∞ J
Aγ
s u = Qγ u, where Qγ is the unique projection mapping from R(I + sA) onto

A−1
γ (0) = A−1(0) = F(T ). Thus, from uniqueness of projection mapping, we obtain that

if Q is the projection mapping of R(I + sA) onto A−1(0), then Qγ = Q for all γ > 0. This

implies that Qu = lims→∞ J
Aγ
s u for all γ > 0. Let x̂ := Qu. We show that if

ξn := max{〈u − x̂, xn − x̂〉, 0} ∀n ≥ 1,

then limn→∞ ξn = 0. We further observe that since J
Aγ
s = (I + sAγ )−1, then (I +

sAγ )J
Aγ
s u = u. This implies thatAγ oJ

Aγ
s u = 1

s
(u−J

Aγ
s u) and thus sinceAγ is monotone,

we have that
〈

Aγ xn − 1

s
(u − J

Aγ
s u), xn − J

Aγ
s u

〉

≥ 0 ∀s > 0, γ > 0.

This implies that for some positive constant M > 0,

〈u − J
Aγ
s u, xn − J

Aγ
s u〉 ≤ s〈Aγ xn, xn − J

Aγ
s u〉 ≤ ‖Aγ xn‖sM.

Thus, lim supγ→0〈u − J
Aγ
s u, xn − J

Aγ
s u〉 ≤ 0 ∀n ≥ 1. Therefore, given ε > 0, there exists

δ := δ(ε) > 0 such that for all γ ∈ (0, δ],
〈u − J

Aγ
s u, xn − J

Aγ
s u〉 < ε.

Moreover, we have (in particular, for γ = δ) that for some constant M0 > 0,

〈u − x̂, xn − x̂〉 = 〈u − x̂, (xn − x̂) − (xn − JAδ
s u)〉 + 〈u − JAδ

s u, xn − JAδ
s u〉

+〈JAδ
s u − x̂, xn − JAδ

s u〉
< 〈u − x̂, (xn − x̂) − (xn − JAδ

s u)〉 + ‖JAδ
s u − x̂‖M0 + ε. (11)

Observe that

lim
s→∞〈u − x̂, (xn − x̂) − (xn − JAδ

s u)〉 = 0.

Thus, as s → ∞, we obtain from (11) that 〈u − x̂, xn − x̂〉 ≤ ε, so

lim sup
n→∞

〈u − x̂, xn − x̂〉 ≤ ε (12)

and since ε > 0 is arbitrary, (12) gives

lim sup
n→∞

〈u − x̂, xn − x̂〉 ≤ 0
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from which we can deduce that lim
n→∞ξn = 0. From (7), we have

‖xn+1 − x̂‖2 = ‖xn − x̂ − αn(β(xn − T xn) + γn(xn − u))‖2
≤ ‖xn − x̂‖2 − 2αn〈β(xn − T xn) + γn(xn − u), xn+1 − x̂〉
≤ ‖xn−x̂‖2 − 2αnγn‖xn+1 − x̂‖2+2αnγn〈(xn+1 − xn) + u − x̂, xn+1 − x̂〉

−2αn〈(xn − xn+1) + β(I − T )xn+1 + xn+1 − β(I − T )xn+1 − xn

+β(I − T )xn, xn+1 − x̂〉
≤ ‖xn−x̂‖2−2αnγn‖xn+1−x̂‖2+(α2

nγn+α2
n)M

∗+2αnγn〈u − x̂, xn+1 − x̂〉
≤ ‖xn − x̂‖2 − 2αnγn‖xn+1 − x̂‖2 + α2

n(γn + 1)M∗ + 2αnγnξn

= ‖xn − x̂‖2 − 2αnγn‖xn+1 − x̂‖2 + δn,

where δn = α2
n(γn + 1)M∗ + 2αnγnξn = o(αn) for some M∗ > 0. Hence, by Lemma 4, we

have that xn → x̂ as n → ∞. This completes the proof.

4 Computational Analysis

In this section, we give a computational analysis result using our iterative scheme.
Let H be a real Hilbert space and C := {x ∈ H : ‖x‖ ≤ r} (i.e., a closed ball centered

at the origin of radius r) and define f : C → R by f (x) = 1
2‖x‖2. Then f is convex

and differentiable with ∇f (x) = x. Observe that ∇f is 1-Lipschitzian. Let us consider the
problem

min
x∈C

f (x). (13)

Clearly, we see that the optimal solution x̂ to the minimization problem (13) is x̂ = 0.
Now, by our Theorem 1, we can take αn = 1

(n+1)1/2
, γn = 1

(n+1)1/3
, n ≥ 1 and λ = 1

2 .

By the choice of our function f and λ, we see that PC(x − 1
2∇f (x)) = PC(x − 1

2x) =
PC( 12x) = 1

2x. Furthermore, our iterative scheme (6) becomes

xn+1 =
(

1 − 1

(n + 1)
1
2

)

xn + xn

2(n + 1)
1
2

− 1

(n + 1)
5
6

(xn − u).

5 Conclusions

Since the gradient projection method (GPM) fails, in general, to converge in norm in
infinite-dimensional Hilbert spaces, here in our result, we have provided a strongly
convergent modification of gradient projection method (GPM).

We note that Theorem 4.1 and Theorem 4.2 of Xu [22] are weak convergence results,
while our Theorem 1 is a strong convergence result. Thus, our Theorem 1 improves Theorem
4.1 and Theorem 4.2 of Xu [22]. Furthermore, our iterative scheme in this paper does not
involve the “CQ” algorithm studied by Xu [22]. Also, our result does not require additional
projections which was required in Theorem 5.4 of Xu [22] and Theorem 3.3 of [24] in order
to guarantee strong convergence. Our method of proof is different from the methods of proof
of Xu [22], Yao et al. [23], Ceng et al. [6], Su and Xu [18], and others.
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