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Abstract The primary goal of this paper is to present a unified approach and shed new light
on convex and Clarke generalized differentiation theories using the concepts and techniques
from Mordukhovich’s developments. We show that the concepts and techniques used by
Mordukhovich are important, not only to his generalized differentiation theory itself, but
also to many other aspects of nonsmooth analysis. In particular, they can be used to derive
convex subdifferential calculus rules as well as many important calculus rules of Clarke
subdifferentials.
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1 Introduction

For centuries, differential calculus has served as an indispensable tool for science and
technology, but the rise of more complex models requires new tools to deal with nondiffer-
entiable data. Geometric properties of convex functions and sets were the topics of study for
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many accomplished mathematicians such as Fenchel and Minkowski in the early twentieth
century. However, the beginning era of nonsmooth/variational analysis did not start until the
1960s when Moreau and Rockafellar independently introduced a concept called subgradi-
ent for convex functions and, together with many other mathematicians, started developing
the theory of generalized differentiation for convex functions and sets. The choice to start
with convex functions and sets comes from the fact that they have several interesting prop-
erties that are important for applications to optimization. The theory is now called convex
analysis, a mature field serving as the mathematical foundation for convex optimization.

The beauty and tremendous applications of convex analysis motivated the search for
a new theory to deal with broader classes of functions and sets where convexity is not
assumed. This work was initiated by Clarke, a student of Rockafellar. In the early 1970s,
Clarke began to develop a generalized differentiation theory for the class of Lipschitz
continuous functions. This theory revolves around a notion called generalized gradient, a
concept that has led to numerous works, developments, and applications.

The theory of generalized differentiation for nonsmooth functions relies on the interac-
tion between the analytic and geometric properties of functions and sets. In the mid 1970s,
the work of Mordukhovich brought this key idea to a very high level of generality and beauty
as reflected in two important objects of his theory of generalized differentiation: nonsmooth
functions and set-valued mappings. The generalized derivative notions for nonsmooth func-
tions and set-valued mappings introduced by Mordukhovich are now called under the names
Mordukhovich subdifferentials and coderivatives, respectively. Mordukhovich’s generalized
differentiation theory is effective for many applications, especially to optimization theory.
In spite of the nonconvexity of the Mordukhovich generalized derivative constructions, they
possess well-developed calculus rules in many important classes of Banach spaces including
reflexive spaces.

Our main goal in this paper is to develop a unified approach for generalized differ-
ential calculus of convex subdifferentials and Clarke subdifferentials. We show that the
concepts and techniques used by Mordukhovich are important, not only to his generalized
differentiation theory itself, but also to many other aspects of nonsmooth analysis.

The paper is organized as follows. In Section 2, we introduce important concepts of non-
smooth analysis that are used throughout the paper. In Section 3, we obtain a subdifferential
formula in the sense of convex analysis for the optimal value function under convexity, and
then use it to derive many important subdifferential rules of convex analysis. Section 4 is
devoted to deriving coderivative and subdifferential calculus rules in the sense of Clarke
using Mordukhovich’s constructions.

2 Definitions and Preliminaries

In this section, we present basic concepts and results of nonsmooth analysis to be used in
the next sections.

Let X be a Banach space. For a function ϕ : X → R which is Lipschitz continuous
around x ∈ X with Lipschitz modulus � ≥ 0, the Clarke generalized directional derivative
of ϕ at x in direction v ∈ X is defined by

ϕ◦(x; v) := lim sup
x→x, t↓0

ϕ(x + tv) − ϕ(x)

t
.
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The generalized directional derivatives of ϕ at x are employed to define the Clarke
subdifferential of the function at this point:

∂Cϕ(x) := {x∗ ∈ X∗ | 〈x∗, v〉 ≤ ϕ◦(x; v) for any v ∈ X}.
Given a nonempty closed set � and given a point x ∈ �, the Clarke normal cone to � at

x is a subset of the dual space X∗ defined by

NC(x; �) := cl∗
{⋃

λ>0

λ∂C dist(x; �)

}
,

where dist(·; �) is the distance function to � with the representation

dist(x; �) := inf{‖x − w‖ | w ∈ �}, x ∈ X.

With the definition of Clarke normal cones to nonempty closed sets in hand, the Clarke
subdifferential ∂Cϕ(x) for a lower semicontinuous extended-real-valued function ϕ : X →
(−∞,∞] at x ∈ dom ϕ := {x ∈ X | ϕ(x) < ∞} can be defined in terms of Clarke normal
cones to the epigraph of the function by

∂Cϕ(x) := {x∗ ∈ X∗ | (x∗, −1) ∈ NC((x, ϕ(x)); epi ϕ)}.
Similarly, the Clarke singular subdifferential of ϕ at x is defined by

∂∞
C ϕ(x) := {x∗ ∈ X∗ | (x∗, 0) ∈ NC((x, ϕ(x)); epi ϕ)}.

Another important normal cone structure of nonsmooth analysis is called the Fréchet
normal cone to � at x ∈ � and is defined by

N̂(x; �) :=
⎧⎨
⎩x∗ ∈ X∗

∣∣∣∣∣∣ lim sup

x
�−→x

〈x∗, x − x〉
‖x − x‖ ≤ 0

⎫⎬
⎭ .

We also define the set of Fréchet ε-normals to � at x by

N̂ε(x;�) :=
⎧⎨
⎩x∗ ∈ X∗

∣∣∣∣∣∣ lim sup

x
�−→x

〈x∗, x − x〉
‖x − x‖ ≤ ε

⎫⎬
⎭ .

If x /∈ �, we put N̂(x; �) := ∅ and N̂ε(x; �) := ∅.
The Mordukhovich normal cone to � at x is defined in terms of the Fréchet ε-normals to

the set around x using the Kuratowski upper limit:

N(x; �) := Lim sup
x→x; ε↓0

N̂ε(x; �).

If X is an Asplund space (see [3]) and � is locally closed around x, then the limiting normal
cone can be equivalently represented as

N(x; �) := Lim sup
x→x

N̂(x;�).

The Mordukhovich subdifferential and singular subdifferential of an extended-real-valued
lower semicontinuous function ϕ : X → (−∞,∞] at x ∈ dom ϕ are then, respectively,
defined by

∂ϕ(x) := {x∗ ∈ X∗ | (x∗,−1) ∈ N((x, ϕ(x)); epi ϕ)},
∂∞ϕ(x) := {x∗ ∈ X∗ | (x∗, 0) ∈ N((x, ϕ(x)); epi ϕ)}.
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It is well-known that when ϕ is a convex function, both subdifferential constructions reduce
to the subdifferential in the sense of convex analysis

∂Cϕ(x) = ∂ϕ(x) = {x∗ ∈ X∗ | 〈x∗, x − x〉 ≤ ϕ(x) − ϕ(x) for all x ∈ X}.
Moreover, if the set � is convex, both normal cone structures reduce to the normal cone in
the sense of convex analysis

NC(x;�) = N(x; �) = {x∗ ∈ X∗ | 〈x∗, x − x〉 ≤ 0 for all x ∈ X}.
The relation between the Mordukhovich normal cone and subdifferential constructions

can also be represented by

N(x;�) = ∂δ(x;�), x ∈ �,

where δ(·; �) is the indicator function associated with � given by δ(x; �) = 0 if x ∈ �, and
δ(x; �) = +∞ otherwise. Similar relations also hold true for Clarke and Fréchet normal
cones and subdifferentials.

Let F : X ⇒ Y be a set-valued mapping between two Banach spaces X and Y . That
means F(x) is a subset of Y for every x ∈ X. The domain and graph of F are given,
respectively, by

dom F := {x ∈ X | F(x) �= ∅} and gph F := {(x, y) ∈ X × Y | y ∈ F(x)}.
We say that F has convex graph if its graph is a convex set in X × Y . Similarly, we say that
F has closed graph if its graph is a closed set in X × Y . It is easy to see that if A : X → Y

is a bounded linear mapping, then A has closed convex graph.
Let us continue with generalized derivative concepts for set-valued mappings introduced

by Mordukhovich. The set-valued mapping D∗F(x, y) : Y ∗ ⇒ X∗ defined by

D∗F(x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N((x, y); gph F)}
is called the Mordukhovich coderivative of F at (x, y). By convention, D∗F(x, y)(y∗) = ∅
for all (x, y) /∈ gph F and y∗ ∈ Y ∗. When F is single-valued, one writes D∗F(x) instead of
D∗F(x, y), where y = F(x). The corresponding Clarke coderivative is similarly defined
by

D∗
CF(x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ NC((x, y); gph F)}.

In general, one has

D∗F(x, y)(y∗) ⊆ D∗
CF(x, y)(y∗) for all (x, y) ∈ gph F, y∗ ∈ Y ∗,

where the inclusion holds as equality if F has convex graph.
The following theorem which establishes the relation between Clarke and Mordukhovich

generalized differentiation constructions will play an important role in our paper; see [3] for
the definition and proof.

Theorem 1 Let X be an Asplund space. The following assertions hold:

(i) Let � ⊆ X be a closed set. Then

NC(x; �) = cl∗co N(x; �).

(ii) Let ϕ : X → (−∞,∞] be lower semicontinuous and let x ∈ dom ϕ. Then

∂Cϕ(x) = cl∗co[∂ϕ(x) + ∂∞ϕ(x)].
In particular, if ϕ is Lipschitz continuous around x, then

∂Cϕ(x) = cl∗co ∂ϕ(x).
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3 Convex Subdifferential Calculus via Mordukhovich
Subgradients

Our goal in this section is to develop a unified approach for convex subdifferential calculus
in infinite dimensions. We show that the concepts and techniques of nonsmooth analysis
involving Mordukhovich subdifferential and coderivative constructions can be employed
to shed new light on a fundamental subject of convex analysis: convex subdifferential
calculus.

Let us start with some well-known examples of computing coderivatives of convex set-
valued mappings. We provide the details for the convenience of the reader. Throughout this
section, we assume X, Y , and Z are Banach spaces unless otherwise stated.

Example 1 Let K be a nonempty convex set in Y . Define F : X →→ Y by F(x) = K for
every x ∈ X. Then

gphF = X × K.

For any (x, y) ∈ X × K , one has N((x, y); gph F) = {0} × N(y;K). Thus, for y∗ ∈ Y ∗,

D∗F(x, y)(y∗) =
{ {0} if − y∗ ∈ N(y; K),

∅ otherwise.

In particular, if K = X, then

D∗F(x, y)(y∗) =
{ {0} if y∗ = 0,

∅ otherwise.

The example below shows that the coderivative concept is a generalization of the adjoint
mapping well known in functional analysis.

Example 2 Let F : X ⇒ Y be given by F(x) = {A(x) + b}, where A : X → Y is a
bounded linear mapping and b ∈ Y . For (x, y) ∈ gph F with y = A(x) + b, one has

D∗F(x, y)(y∗) = {A∗y∗} for all y∗ ∈ Y ∗.
Let us first prove that

N((x, y); gph F) = {(x∗, y∗) ∈ X∗ × Y ∗ | x∗ = −A∗y∗}.
Obviously, gphF is a convex set. By the definition, (x∗, y∗) ∈ N((x, y); gphF) if and
only if

〈x∗, x − x〉 + 〈y∗, F (x) − F(x)〉 ≤ 0 for all x ∈ X. (1)

In our case, we have

〈x∗, x − x〉 + 〈y∗, F (x) − F(x)〉 = 〈x∗, x − x〉 + 〈y∗, A(x) − A(x)〉
= 〈x∗, x − x〉 + 〈A∗y∗, x − x〉
= 〈x∗ + A∗y∗, x − x〉.

Thus, Eq. (1) is equivalent to 〈x∗ +A∗y∗, x −x〉 ≤ 0 for all x ∈ X, which holds if and only
if x∗ = −A∗y∗. As a result, x∗ ∈ D∗F(x, y)(y∗) if and only if x∗ = A∗y∗.

The example below establishes the relationship between subdifferential and coderivative.

Example 3 Let f : X → (−∞,∞] be a convex function. Define

F(x) := [f (x),∞).
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Then gph F = epi f is a convex set. For y = f (x) ∈ R, one has

D∗F(x, y)(λ) =
⎧⎨
⎩

λ∂f (x) if λ > 0,

∂∞f (x) if λ = 0,

∅ if λ < 0.

First, we have the following

gph F = {(x, λ) ∈ X × R | λ ∈ F(x)} = {(x, λ) ∈ X × R | λ ≥ f (x)} = epi f.

For λ > 0, by the definition, v ∈ D∗F(x, y)(λ) if and only if (v,−λ) ∈ N((x, y); gph F),
which is equivalent to ( v

λ
,−1) ∈ N((x, y); epi f ) or v ∈ λ∂f (x). Similarly, for λ = 0,

v ∈ D∗F(x, y)(0) if and only if (v, 0) ∈ N((x, y); epi f ) or v ∈ ∂∞f (x). Observe that if
(v,−μ) ∈ N((x, f (x)); epi f ), then μ ≥ 0. Thus, the last part of the formula follows.

Let F : X →→ Y be a set-valued mapping between Banach spaces, and let ϕ : X × Y →
(−∞,∞] be an extended-real-valued function. The optimal value function built on F and
ϕ is given by

μ(x) := inf{ϕ(x, y) | y ∈ F(x)}. (2)

We adopt the convention that inf ∅ = ∞. Thus, μ is an extended-real-valued function. Under
convexity assumptions on F and ϕ, we will show that convex subdifferentials of the optimal
value function μ can be represented as an equality in terms of convex subdifferentials of
the function ϕ and coderivatives of the mapping F . Note that the result cannot be derived
directly from [3].

The following obvious proposition guarantees that μ(x) > −∞, which is the standing
assumption for this section.

Proposition 1 Consider the optimal value function μ given by Eq. (2). Suppose that ϕ(x, ·)
is bounded below on F(x). Then μ(x) > −∞. In particular, suppose that there exist b ∈ R

and a function g : X → (−∞,∞] such that for any (x, y) ∈ X×Y with y ∈ F(x), one has

ϕ(x, y) ≥ g(x) + b.

Then μ(x) > −∞ for all x ∈ X.

Proposition 2 Suppose that F has convex graph and ϕ is a convex function. Then the
optimal value function μ defined by Eq. (2) is a convex function.

Proof Fix x1, x2 ∈ dom μ and λ ∈ (0, 1). For any ε > 0, by the definition, there exist
yi ∈ F(xi) such that

ϕ(xi, yi) < μ(xi) + ε for i = 1, 2.

It follows that

λϕ(x1, y1) < λμ(x1) + λε,

(1 − λ)ϕ(x2, y2) < (1 − λ)μ(x2) + (1 − λ)ε.

Adding these inequalities and applying the convexity of ϕ yield

ϕ(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2) ≤ λϕ(x1, y1) + (1 − λ)ϕ(x2, y2)

< λμ(x1) + (1 − λ)μ(x2) + ε.

Since gph F is convex,

(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2) = λ(x1, y1) + (1 − λ)(x2, y2) ∈ gph F.
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Therefore, λy1 + (1 − λ)y2 ∈ F(λx1 + (1 − λ)x2), and hence

μ(λx1 + (1 − λ)x2) ≤ ϕ(λx1 + (1 − λ)x2, λy1 + (1 − λ)y2)

< λμ(x1) + (1 − λ)μ(x2) + ε.

Letting ε → 0, we derive the convexity of μ.

The optimal value function (2) can be used as a convex function generator in the sense
that many operations that preserve convexity can be reduced to this function.

Proposition 3 Consider the optimal value function (2), where F : X →→ Y has convex
graph and ϕ : X × Y → (−∞,∞] is a convex function. Let

S(x) := {y ∈ F(x) | μ(x) = ϕ(x, y)}. (3)

Assume that μ(x) < ∞ and S(x) �= ∅. For any y ∈ S(x), one has⋃
(u,v)∈∂ϕ(x,y)

[u + D∗F(x, y)(v)] ⊆ ∂μ(x). (4)

Proof Fix any w that belongs to the left side. Then there exists (u, v) ∈ ∂ϕ(x, y) such that

w − u ∈ D∗F(x, y)(v).

Thus, (w − u,−v) ∈ N((x, y); gph F). Then

〈w − u, x − x〉 − 〈v, y − y〉 ≤ 0 for all (x, y) ∈ gph F.

This implies

〈w, x − x〉 ≤ 〈u, x − x〉 + 〈v, y − y〉 ≤ ϕ(x, y) − ϕ(x, y) = ϕ(x, y) − μ(x)

whenever y ∈ F(x). It follows that

〈w, x − x〉 ≤ inf
y∈F(x)

ϕ(x, y) − μ(x) = μ(x) − μ(x).

Therefore, w ∈ ∂μ(x).

The opposite inclusion in Eq. (4) also holds true under the sequentially normally
compactness and the qualification condition presented below.

A nonempty closed subset � of a Banach space is said to be sequentially normally

compact (SNC) at x ∈ � if for xk
�−→ x and x∗

k ∈ N(xk;�), the following implication
holds: [

x∗
k

w∗−→ 0

]
=⇒

[
x∗
k

‖·‖−→ 0

]
.

In this definition, xk
�−→ x means that xk → x and xk ∈ � for every k. Obviously, every

subset of a finite dimensional Banach space is SNC. An extended-real-valued function ϕ :
X → (−∞,∞] is called sequentially normally epi-compact (SNEC) at x if its epigraph is
SNC at (x, ϕ(x)).

Let us give a simple proof in the proposition below that every convex set with nonempty
interior is SNC at any point of the set.

Proposition 4 Let � be a convex set with nonempty interior of a Banach space. Then � is
SNC at any point x ∈ �.
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Proof Let u ∈ int � and let δ > 0 satisfy B(u; 2δ) ⊆ �. Fix sequences {xk} and {x∗
k }

with xk
�−→ x and x∗

k ∈ N(xk; �), and x∗
k

w∗−→ 0. Choose k0 such that ‖xk − x‖ < δ for all
k ≥ k0. It is not hard to see that for any e ∈ B, one has

x̃k := u + δe + xk − x ∈ � for all k ≥ k0.

Thus,
〈x∗

k , x̃k − xk〉 ≤ 0.

It follows that
δ〈x∗

k , e〉 ≤ 〈x∗
k , x − u〉,

so δ‖x∗
k ‖ ≤ 〈x∗

k , x − u〉 → 0. Therefore, ‖x∗
k ‖ → 0, and hence � is SNC at x.

Theorem 2 Let X and Y be Asplund spaces. Consider the optimal value function (2), where
F : X →→ Y has closed convex graph and ϕ : X×Y → (−∞, ∞] is a lower semicontinuous
convex function. Assume that μ(x) < ∞ and S(x) �= ∅, where S is the solution mapping
(3). For any y ∈ S(x), one has

∂μ(x) =
⋃

(u,v)∈∂ϕ(x,y)

[
u + D∗F(x, y)(v)

]
under the qualification condition:

∂∞ϕ(x, y) ∩ [−N((x, y); gph F)] = {(0, 0)}, (5)

and either ϕ is SNEC at (x, y) or gph F is SNC at this point.

Proof By Proposition 3, we only need to prove the inclusion ⊆. Fix any w ∈ ∂μ(x) and
y ∈ S(x). Then

〈w, x − x〉 ≤ μ(x) − μ(x)

= μ(x) − ϕ(x, y)

≤ ϕ(x, y) − ϕ(x, y) for all y ∈ F(x).

Thus, for any (x, y) ∈ X × Y , one has

〈w, x − x〉 + 〈0, y − y〉 ≤ ϕ(x, y) + δ((x, y); gph F) − [ϕ(x, y) + δ((x, y); gph F)].
Let f (x, y) := ϕ(x, y) + δ((x, y); gph F). By the subdifferential sum rule (see
[3, Theorem 3.36]), one has

(w, 0) ∈ ∂f (x, y) = ∂ϕ(x, y) + N((x, y); gph F),

under the qualification condition (5). Thus,

(w, 0) = (u1, v1) + (u2, v2),

where (u1, v1) ∈ ∂ϕ(x, y) and (u2, v2) ∈ N((x, y); gph F). Then v2 = −v1, and hence
(u2, −v1) ∈ N((x, y); gph F). It follows that u2 ∈ D∗F(x, y)(v1) and

w = u1 + u2 ∈ u1 + D∗F(x, y)(v1),

where (u1, v1) ∈ ∂ϕ(x, y).

A function g : Rn → (−∞,∞] is called nondecreasing componentwise if the following
implication holds:

[xi ≤ yi for all i = 1, . . . , n] ⇒ [g(x1, . . . , xn) ≤ g(y1, . . . , yn)].
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Proposition 5 Let fi : X → R for i = 1, . . . , n be convex functions and let h : X → R
n

be defined by h(x) = (f1(x), . . . , fn(x)). Suppose that g : R n → (−∞,∞] is a convex
function that is nondecreasing componentwise. Then g ◦ h : X → (−∞,∞] is a convex
function.

Proof Define the set-valued mapping F : X →→ R
n by

F(x) = [f1(x),∞) × [f2(x),∞) × · · · × [fn(x),∞).

Then
gph F = {(x, t1, . . . , tn) ∈ X × R

n | ti ≥ fi(x)}.
Since fi is convex for i = 1, . . . , n, gph F is convex. Define ϕ : X × R

n → (−∞,∞] by
ϕ(x, y) = g(y). Since g is nondecreasing componentwise, it is obvious that

inf{ϕ(x, y) | y ∈ F(x)} = g(f1(x), . . . , fn(x)) = (g ◦ h)(x).

Thus, g ◦ h is convex by Proposition 2.

Proposition 6 Let X be an Asplund space. Let f : X → R be a convex function and let
ϕ : R → (−∞,∞] be a nondecreasing convex function. Let x ∈ X and let y := f (x). Then

∂(ϕ ◦ f )(x) = ∪λ∈∂ϕ(y)λ∂f (x),

under the assumption that ∂∞ϕ(y) = {0} or 0 /∈ ∂f (x).

Proof It has been proved that ϕ ◦ f is a convex function. Define

F(x) = [f (x),∞).

Since ϕ is a nondecreasing function, one has

(ϕ ◦ f )(x) = inf
y∈F(x)

ϕ(y).

By Theorem 2,
∂(ϕ ◦ f )(x) = ∪λ∈∂ϕ(y)[D∗F(x, y)(λ)].

Since ϕ is nondecreasing, λ ≥ 0 for every λ ∈ ∂ϕ(y). By Proposition 3,

∂(ϕ ◦ f )(x) = ∪λ∈∂ϕ(y)[D∗F(x, y)(λ)] = ∪λ∈∂ϕ(y)λ∂f (x).

Note that the condition ∂∞ϕ(y) = {0} or 0 /∈ ∂f (x) guarantees qualification condition (5),
and ϕ is automatically SNEC at y since its epigraph is a subset in finite dimensions.

The same approach can be applied for the general composition in Proposition 7. A sim-
plified version of the proposition below in finite dimensions can be found in [2]. Note that
our result is new in infinite dimensions and more general in finite dimensions. Moreover,
our proof is much simpler than the proof in [2].

Proposition 7 Let X be an Asplund space. Let fi : X → R for i = 1, . . . , n be convex
functions that are locally Lipschitz around x, and let h : X → R

n be defined by h(x) =
(f1(x), . . . , fn(x)).

Suppose that g : Rn → (−∞,∞] is a convex function that is nondecreasing componen-
twise. Then g◦h : X → (−∞,∞] is a convex function. Moreover, for any x ∈ dom (g◦h),
one has

∂(g ◦ h)(x) =
{

m∑
i=1

λix
∗
i

∣∣ (λ1, . . . , λm) ∈ ∂g(h(x)), x∗
i ∈ ∂fi(x) for i = 1, . . . , m

}
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under the condition that whenever (λ1, . . . , λm) ∈ ∂∞g(h(x)), x∗
i ∈ ∂fi(x) for i =

1, . . . , m, the following implication holds[
m∑

i=1

λix
∗
i = 0

]
⇒ [λi = 0 for i = 1, . . . , m].

Proof Define the set-valued mapping F : X →→ R
n by

F(x) = [f1(x),∞) × [f2(x),∞) × · · · × [fn(x),∞).

Then
gph F = {(x, t1, . . . , tn) ∈ X × R

n | ti ≥ fi(x) for all i = 1, . . . , n}.
The set gph F is convex since fi is convex for i = 1, . . . , n. Define ϕ : X × R

n →
(−∞,∞] by ϕ(x, y) = g(y). Since g is increasing componentwise, it is obvious that

inf{ϕ(x, y) | y ∈ F(x)} = g(f1(x), . . . , fn(x)) = (g ◦ h)(x).

Define
�i = {(x, λ1, λ2, . . . , λn) | λi ≥ fi(x)}.

Then
gph F = ∩n

i=1�i.

Using the Lipschitz continuity of fi for i = 1, . . . , n and the structure of the set �i , one
can apply the intersection rule (see [3, Corollary 3.5]), to get that: (x∗,−λ1, . . . , −λn) ∈
N((x, f1(x), . . . , fn(x)); gph F) if and only if

(x∗, −λ1, . . . , −λn) ∈ N
(
(x, f1(x), . . . , fn(x)); ∩n

i=1�i)
) =

n∑
i=1

N((x, f1(x), . . . , fn(x));�i).

If this is the case, then

x∗ =
n∑

i=1

x∗
i ,

where (x∗
i ,−λi) ∈ N(x, fi(x)). Using Theorem 2, one has that x∗ ∈ ∂(g ◦ h)(x) if and

only if there exists (λ1, . . . , λm) ∈ ∂g(h(x)) such that

(x∗,−λ1, . . . ,−λn) ∈ N((x, f1(x), . . . , fn(x)); gph F).

This is equivalent to the fact that x∗ = ∑n
i=1 x∗

i , where x∗
i ∈ λi∂fi(x). In other words,

x∗ =
m∑

i=1

λix
∗
i ,

where (λ1, . . . , λm) ∈ ∂g(h(x)), x∗
i ∈ ∂fi(x) for i = 1, . . . , n. The proof is now complete.

Proposition 8 Let X and Y be Asplund spaces. Let ϕ : X×Y → (−∞,∞] be an extended-
real-valued function, and let K be a nonempty convex subset of Y . Define

μ(x) := inf{ϕ(x, y) | y ∈ K}
and

S(x) := {y ∈ K | ϕ(x, y) = μ(x)}.
Suppose that for every x, ϕ(x, ·) is bounded below on K . Let x ∈ X with μ(x) < ∞ and
suppose that S(x) �= ∅. Then for every y ∈ S(x), one has

∂μ(x) = {u ∈ X∗ | (u, v) ∈ ∂ϕ(x, y),−v ∈ N(y; K)}
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under the qualification condition

[(0, v) ∈ ∂∞ϕ(x, y),−v ∈ N(y;K)] ⇒ [v = 0].
In particular, if K = Y , then this qualification condition holds automatically and

∂μ(x) = {u ∈ X∗ | (u, 0) ∈ ∂ϕ(x, y)}.

Proof The results follow directly from Example 1 and Theorem 2 for the mapping F(x) =
K .

Proposition 9 Let X and Y be Asplund spaces. Let B : Y → X be an affine mapping with
B(y) = A(y) + b, where A is a bounded linear mapping and b ∈ X. Let ϕ : Y → (−∞,∞]
be a convex function so that for every x ∈ X, ϕ is bounded below on B−1(x). Define

μ(x) := inf{ϕ(y) | B(y) = x} = inf{ϕ(y) | y ∈ B−1(x)}
and

S(x) := inf{y ∈ B−1(x) | ϕ(y) = μ(x)}.
Fix x ∈ X with μ(x) < ∞ and S(x) �= ∅. For any y ∈ S(x), one has

∂μ(x) = (A∗)−1(∂ϕ(y)).

Proof Let us apply Theorem 2 for F(x) = B−1(x) (preimage) and ϕ(x, y) ≡ ϕ(y). Then

N((x, y); gph F) = {(u, v) ∈ X∗ × Y ∗ | − A∗u = v}.
Thus,

D∗F(x, y)(v) = {u ∈ X∗ | A∗u = v} = (A∗)−1(v).

It follows that

∂μ(x) =
⋃

v∈∂ϕ(y)

[
D∗F(x, y)(v)

] = (A∗)−1(∂ϕ(y)).

It is not hard to verify that the qualification condition (5) satisfies automatically in this
case.

Proposition 10 Let X be an Asplund space. Let fi : X → (−∞, ∞] for i = 1, 2 be convex
functions. Define the convolution of f1 and f2 by

(f1 ⊕ f2)(x) = inf{f1(x1) + f2(x2) | x1 + x2 = x}.
Suppose that (f1 ⊕ f2)(x) > −∞ for all x ∈ X and let x ∈ dom f1 ⊕ f2. Fix x1, x2 ∈ X

such that x = x1 + x2 and (f1 ⊕ f2)(x) = f1(x1) + f2(x2). Then

∂(f1 ⊕ f2)(x) = ∂f1(x1) ∩ ∂f2(x2).

Proof Let us apply Proposition 9 for ϕ : X × X → (−∞,∞] with ϕ(y1, y2) =
f1(y1) + f2(y2) and A : X × X → X with A(y1, y2) = y1 + y2. Then A∗(v) = (v, v)
for any v ∈ X∗ and ∂ϕ(y1, y2) = (∂f1(y1), ∂f2(y2)). So v ∈ ∂(f1 ⊕ f2)(x) if and only if
A∗(v) = (v, v) ∈ ∂ϕ(y1, y2), i.e., v ∈ ∂f1(x1) ∩ ∂f2(x2).

Remark 1 The optimal value function (2) covers many other convex operations. Thus, based
on Theorem 2, it is possible to derive many other convex subdifferential calculus rules.
Some examples are given below.
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(i) Let f1, f2 : X → (−∞,∞] be convex functions. Define

ϕ(x, y) = f1(x) + y,

and F(x) = [f2(x),∞). For any x ∈ X, one has

f1(x) + f2(x) = inf
y∈F(x)

ϕ(x, y).

(ii) Let B : X → Y be an affine function, and let f : Y → (−∞,∞] be a convex
function. Define F(x) = {B(x)} and ϕ(x, y) = f (y) for x ∈ X and y ∈ Y . Then

(f ◦ B)(x) = inf
y∈F(x)

ϕ(x, y).

(iii) Let f1, f2 : X → (−∞,∞] be convex functions. Define F(x) = [f1(x),∞) ×
[f2(x),∞) and

ϕ(y1, y2) = max{y1, y2} = |y1 − y2| + y1 + y2

2
.

Then
max{f1, f2}(x) = inf

(y1,y2)∈F(x)
ϕ(y1, y2).

4 Convexified Coderivative and Subdifferential Calculus

Throughout this section, we assume that all Banach spaces under consideration are reflex-
ive. Under this assumption, the definition of sequential normal compactness can be rewritten
using weak sequential convergence. A subset � ⊆ X is sequentially normally compact (or
shortly SNC) at x ∈ � if and only if, for any sequences involved, we have the implication[

xk
�→ x, x∗

k

w→ 0, x∗
k ∈ N̂(xk; �)

]
=⇒ [‖x∗

k ‖ → 0 as k → ∞]
.

A subset � in the product space X ×Y is said to be partially sequentially normally com-
pact (PSNC) at (x, y) ∈ � (with respect to X) if and only if for any sequences (xk, yk) ⊆ �

and {(x∗
k , y∗

k )} ⊆ X∗ × Y ∗ such that (x∗
k , y∗

k ) ∈ N̂((xk, yk); �), x∗
k

w−→ 0 and y∗
k

‖·‖−→ 0, we

have x∗
k

‖·‖−→ 0.
Accordingly, a set-valued mapping G : X →→ Y is SNC (PSNC) at (x, y) ∈ gph G

if and only if its graph is SNC (PSNC) at this point, and an extended-real-valued func-
tion ϕ : X → (−∞,∞] is sequentially normally epi-compact (SNEC) at x ∈ dom ϕ if
and only if its epigraph is SNC at (x, ϕ(x)). These properties and their partial variants are
comprehensively studied and applied in [3, 4].

For the purposes of this paper, we need the following modifications of the above
properties.

Definition 1 (i) A set � ⊆ X is sequentially convexly normally compact (SCNC) at
x ∈ � if and only if we have the implication[

xk
�→ x, x∗

k

w→ 0, x∗
k ∈ co N(xk; �)

]
=⇒ [‖x∗

k ‖ → 0 as k → ∞]
(6)

for any sequences involved in Eq. (6). A mapping G : X ⇒ Y is SCNC at
(x, y) ∈ gph G if and only if its graph is SCNC at this point. A function ϕ : X →
(−∞,∞] is sequentially convexly epi-compact (SCNEC) at x ∈ dom ϕ if and only if
its epigraph is SCNC at (x, ϕ(x)).
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(ii) A subset � of the product space X × Y is said to be partially sequentially convex-
ifically normally compact (PSCNC) at (x, y) ∈ � with respect to X if and only

if for any sequences (xk, yk)
�−→ (x, y), {(x∗

k , y∗
k )} ⊆ X∗ × Y ∗ with (x∗

k , y∗
k ) ∈

coN((xk, yk); �), x∗
k

w−→ 0 and y∗
k

‖·‖−→ 0, we have x∗
k

‖·‖−→ 0. A mapping G : X ⇒ Y

is PSCNC at (x, y) ∈ gph G if and only if its graph is PSCNC at this point.

It is easy to check that the SCNC property holds at every point of a convex set with
nonempty interior. Let us extend this result to a broad class of nonconvex sets. Given � ⊆ X

with x ∈ �, recall from [7] that v ∈ X is a hypertangent to � at x if for some δ > 0 we have

x + tw ∈ � for all x ∈ (x + δB) ∩ �, w ∈ v + δB, and t ∈ (0, δ).

From the definition, we see that if � ⊆ X admits a hypertangent at x, then � is SCNC
at this point. Moreover, if ϕ : X → (−∞, ∞] is locally Lipschitz around x ∈ dom ϕ, then
it is SCNEC at this point; see [5] for more details.

Lemma 1 Let X be a reflexive space and let � be a subset of X with x ∈ �. Then

NC(x;�) = clcoN(x; �). (7)

Proof By [3, Theorem 3.57], we have

NC(x; �) = cl∗co N(x; �).

Since in the reflexive spaces, the weak∗ topology and weak topology on X∗ coincide, we
obtain by the celebrated Mazur’s theorem that

NC(x; �) = cl∗co N(x; �) = clco N(x; �),

which completes the proof.

Let us start with a new sum rule for Clarke coderivatives that allow us to obtain many
calculus rules for Clarke subdifferentials and normal cones. Given Fi : X ⇒ Y, i = 1, 2,
we define a multifunction S : X × Y ⇒ Y × Y by

S(x, y) :=
{
(y1, y2) ∈ Y 2 | y1 ∈ F1(x), y2 ∈ F2(x), y1 + y2 = y

}
. (8)

S is said to be inner semicontinuous at (x, y, y1, y2) ∈ gph S if for any sequence {(xk, yk)}
converging to (x, y) with S(xk, yk) �= ∅ for each k ∈ N, there exists (y1k, y2k) ∈ S(xk, yk)

such that {(y1k, y2k)} contains a convergent subsequence to (y1, y2).
In the theorem below, we show that under the inner semicontinuity of S, the convexi-

fied coderivative of a sum of two set-valued mappings can be represented in terms of the
coderivative of each set-valued mapping. However, this does not hold true under the so-
called inner semicompactness; see [3, Definition 1.63]. We use the fact that every bounded
sequence in a reflexive Banach space has a subsequence that is weakly convergent, and that
every closed convex set is weakly closed.

Theorem 3 Let Fi : X ⇒ Y for i = 1, 2 be closed-graph mappings and (x, y) ∈ gph (F1+
F2). Fix (y1, y2) ∈ S(x, y) such that S is inner semicontinuous at (x, y, y1, y2). Assume
that either F1 is PCSNC at (x, y1) or F2 is PCSNC at (x, y2), and that {F1, F2} satisfies
the qualification condition

D∗
CF1(x, y1)(0) ∩ (−D∗

CF2(x, y2)(0)
) = {0}.
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Then
D∗

C(F1 + F2)(x, y)(y∗) ⊆ D∗
CF1(x, y1)(y

∗) + D∗
CF2(x, y2)(y

∗).

Proof Define

�i := {(x, y1, y2) | (x, yi) ∈ gph Fi} for i = 1, 2.

Following the proof of [3, Theorem 3.10], one has{
(x∗, y∗, y∗) | (x∗, y∗) ∈ N((x, y); gph (F1 + F2))

} ⊆ N((x, y1, y2);�1 ∩ �2).

It follows that{
(x∗, y∗, y∗) | (x∗, y∗) ∈ co N((x, y); gph (F1 + F2))

} ⊆ co N((x, y1, y2); �1 ∩ �2).

Under the assumptions made, one can apply [3, Theorem 3.4] to obtain the following
inclusion:

N((x, y1, y2);�1 ∩ �2) ⊆ N((x, y1, y2);�1) + N((x, y1, y2);�2).

This implies

co N((x, y1, y2); �1 ∩ �2) ⊆ co N((x, y1, y2);�1) + co N((x, y1, y2); �2).

By the definition of �1 and �2,

N((x, y1, y2);�1) = N((x, y1); gph F1) × {0},
and

N((x, y1, y2);�2) = {(x∗, 0, y∗) | (x∗, y∗) ∈ N((x, y2); gph F2)}.
Now fix any x∗ ∈ D∗

C(F1 + F2)(x, y)(y∗). Then

(x∗,−y∗) ∈ NC((x, y); gph (F1 + F2)).

Let us show that

x∗ ∈ D∗
CF1(x, y1)(y

∗) + D∗
CF2(x, y2)(y

∗).
Using Lemma 1, there exists a sequence {(x∗

k ,−y∗
k )} in co N((x, y); gph (F1 + F2)) such

that (x∗
k ,−y∗

k ) → (x∗,−y∗), and hence (x∗
k , −y∗

k , −y∗
k ) → (x∗,−y∗,−y∗).

Because (x∗
k ,−y∗

k ,−y∗
k ) ∈ co N((x, y1, y2);�1 ∩ �2), using the above results, there

exist sequences {(x∗
1k, −y∗

k , 0)} in coN((x, y1, y2);�1) and {(x∗
2k, 0,−y∗

k )} in coN((x,

y1, y2);�2) such that
x∗

1k + x∗
2k = x∗

k for every k ∈ N.

Without loss of generality, we assume that F1 is PCSNC at (x, y1).
We assume by a contradiction that {x∗

1k} is not bounded, so we can extract a subsequence,
without relabeling, such that ‖x∗

1k‖ → ∞. Then

1

‖x∗
1k‖

(x∗
1k + x∗

2k) → 0.

The bounded sequence {z∗
k} defined by z∗

k := x∗
1k

‖x∗
1k

‖ has a weak convergent subsequence,

say, z∗
k

w−→ z∗. Then (z∗, 0, 0) ∈ NC((x, y1, y2); �1), and it is clear that (z∗, 0, 0) ∈
(−NC((x, y1, y2); �2)), which implies (z∗, 0) ∈ NC((x, y1);�1)

⋂
(−NC((x, y2); �2)).

It follows that
z∗ ∈ D∗

CF1(x, y1)(0) ∩ (−D∗
CF2(x, y2)(0)

) = {0},
so z∗ = 0. Because F1 is PCSNC at (x, y1), one has that ‖z∗

k‖ → 0. This is a contradiction
since ‖z∗

k‖ = 1 for every k ∈ N.
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Thus, {x∗
1k} is bounded, so we can extract a weak convergent subsequence. Suppose that

x∗
1k

w−→ x∗
1 and x∗

2k

w−→ x∗
2 .

Using the fact that NC((x, yi); gph (Fi)) = cl co N((x, yi); gph (Fi)), one obtains

(x∗
i , −y∗) ∈ NC((x, yi); gph (Fi)).

By definition, x∗
i ∈ D∗

CFi(x, yi)(y
∗) for i = 1, 2. So we have

x∗ = x∗
1 + x∗

2 ∈ D∗
CF1(x, y1)(y

∗) + D∗
CF2(x, y2)(y

∗).

The theorem has been proved.

The PCSNC holds automatically in finite dimensions, so we obtain the following sum
rule for Clarke coderivatives in finite dimensions.

Corollary 1 Let Fi : R
m ⇒ R

n for i = 1, 2 be closed-graph mappings with
(x, y) ∈ gph (F1 + F2). Assume that S is inner semicontinuous at (x, y, y1, y2) and that
{F1, F2} satisfies the qualification condition

D∗
CF1(x, y1)(0) ∩ (−D∗

CF2(x, y2)(0)
) = {0}. (9)

Then

D∗
C(F1 + F2)(x, y)(y∗) ⊆ D∗

CF1(x, y1)(y
∗) + D∗

CF2(x, y2)(y
∗). (10)

Next, we consider

	(x) := F(x) + 
(x;�), x ∈ X,

where F : X →→ Y and 
(x;�) = {0} ⊆ X if x ∈ � and 
(x;�) = ∅ otherwise.

Proposition 11 Let � and gph F be closed with x ∈ � and (x, y) ∈ gph F such that
either F is PCSNC at (x, y) or � is SCNC at x. Assume that

D∗
CF(x, y)(0) ∩ (−NC(x; �)) = {0}.

Then

D∗
C(F + 
(·;�))(x, y)(y∗) ⊆ D∗

CF(x, y)(y∗) + NC(x; �), y∗ ∈ Y ∗.

Proof Let us apply Theorem 3 with F1 = F and F2 = 
(·;�). It is not hard to see that for
any (x, y) ∈ gph (F + 
(·;�)), we have S(x, y) = {(y, 0)}, which implies that S is inner
semicontinuous at (x, y, y, 0). We also see that gph 
(·;�) = �×{0}, so it is PCSNC under
the assumption that � is SCNC at x. We have N((x, y); gph F2) = N((x, y); � × {0}) =
N(x; �) × Y ∗, so NC((x, y); gph F2) = N((x, y); � × {0}) = NC(x;�) × Y ∗. Therefore,
D∗

CF(x, y)(y∗) = NC(x,�). The rest follows directly Theorem 3.

Corollary 2 Let �1 and �2 be two closed subsets of X and x ∈ �1 ∩ �2. Assume that �1
or �2 is SCNC at x and the qualification condition

NC(x; �1) ∩ (−NC(x; �2)) = {0} (11)

is satisfied. Then

NC(x; �1 ∩ �2) ⊆ NC(x;�1) + NC(x; �2). (12)

Proof This is a special case of Proposition 11 with F1 ≡ 
(·; �1).
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Let us show that the qualification condition in Eq. (11) is weaker than a similar condition
using Clarke tangent; see [1]. Let � be a nonempty closed subset a Banach space X. For
x ∈ �, the Clarke tangent cone T (x; �) contains all v ∈ X such that, whenever tk ↓ 0 and

xk
�−→ x, there exists wk → v with xk + tkwk ∈ � for all k.

Proposition 12 Let �1 and �2 be closed subsets of X and x ∈ �1 ∩ �2. Suppose that

T (x; �1) ∩ int T (x; �2) �= ∅. (13)

Then
NC(x; �1) ∩ (−NC(x; �2)) = {0}.

Proof Fix any x∗ ∈ NC(x; �1)∩(−NC(x; �2)). Choose v ∈ T (x; �1) such that v+2δB ⊆
T (x; �2). Then we have 〈x∗, v〉 ≤ 0, and 〈−x∗, v + δe〉 ≤ 0 for any e ∈ B. It follows that

δ〈x∗, −e〉 ≤ 〈x∗, v〉
for any e ∈ B and hence δ‖x∗‖ ≤ 〈x∗, v〉 ≤ 0. Therefore x∗ = 0.

Remark 2 Note that the converse of the above proposition does not hold in general.
For example, in R

3, we consider x = (0, 0, 0), �1 = {(0, 0, z) | z ∈ R } and �2 =
{(x, y, 0) | x, y ∈ R }. We have NC(x; �1) = {(x, y, 0) | x, y ∈ R } and NC(x; �2) =
{(0, 0, z) | z ∈ R }. Thus,

NC(x; �1) ∩ (−NC(x; �2)) = {0},
but T (x; �1) ∩ int T (x; �2) = ∅ since int T (x;�2) = int T (x; �1) = ∅. Therefore, we
obtain a stronger finite-dimensional version of Corollary 2.9.8 in [1].

Definition 2 We say that an extended-real-valued function ϕ : X → (−∞,∞] is lower
regular at x ∈ dom ϕ if ∂̂ϕ(x) = ∂Cϕ(x), where ∂̂ϕ(x) is the Fréchet normal subdifferential
of ϕ at x defined by

∂̂ϕ(x) :=
{
x∗ ∈ X∗

∣∣∣∣ lim inf
x→x

ϕ(x) − ϕ(x) − 〈x∗, x − x〉
‖x − x‖ ≥ 0

}
.

It is clear that any convex function is lower regular.
Now, we apply the results obtained from coderivative calculus in Theorem 3 to obtain

calculus for Clarke subdifferential in reflexive Banach spaces.

Theorem 4 Let ϕi : X → (−∞,∞] for i = 1, . . . , m be l.s.c. around x and finite at this
point. Assume all (except possibly one) of ϕi, i = 1, . . . , m are SCNEC at (x, ϕi(x)) and[

x∗
1 + · · · + x∗

m = 0, x∗
i ∈ ∂∞

C ϕi(x)
] ⇒ x∗

i = 0, i = 1, . . . , m. (14)

Then
∂C(ϕ1 + · · · + ϕm)(x) ⊆ ∂Cϕ1(x) + · · · + ∂Cϕm(x), (15)

and
∂∞
C (ϕ1 + · · · + ϕm)(x) ⊆ ∂∞

C ϕ1(x) + · · · + ∂∞
C ϕm(x). (16)

The equality in Eq. (15) holds if all ϕi for i = 1, . . . , m are upper regular at x.

Proof We first consider the case where m = 2. Let us consider F1(x) = [ϕ1(x),∞) and
F2(x) = [ϕ2(x),∞). Obviously, gph Fi = epi (ϕi) for i = 1, 2 and gph (F1 + F2) =
epi (ϕ1 + ϕ2). We see that at the point (x, y) where y = ϕ1(x) + ϕ2(x), we have S(x, y) =
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{(ϕ1(x), ϕ2(x))}, and S is inner semicontinuous at (x, y, ϕ1(x), ϕ2(x)). Indeed, take any
sequence {(xk, yk)} converging to (x, y) with S(xk, yk) �= ∅. Fix (λ1k, λ2k) ∈ S(xk, yk).
Then

λ1k ≥ ϕ1(xk), λ2k ≥ ϕ2(xk), λ1k + λ2k = yk.

Since ϕ1 and ϕ2 are lower semicontinuous,

lim inf
k→∞ λik ≥ lim inf

k→∞ ϕi(xk) ≥ ϕi(x) for i = 1, 2.

We can see that {λ1k} and {λ2k} are bounded sequences. Let λ1 := lim infk→∞ λ1k and
λ2 := lim infk→∞ λ2k . Then there exist subsequences of {λ1k} and {λ2k} that converge to
λ1 and λ2, respectively. Since λ1 ≥ ϕ1(x), λ2 ≥ ϕ2(x), and λ1 + λ2 = y, we see that
λ1 = ϕ1(x) and λ2 = ϕ2(x), so S is inner semicontinuous at (x, y, ϕ1(x), ϕ2(x)).

Because D∗
CFi(x, ϕi(x))(0) = ∂∞

C ϕi(x), the qualification condition (9) holds. Applying
Theorem 10, we have

D∗
C(F1 + F2)(x, y)(1) ⊆ D∗

CF1(x, ϕ1(x))(1) + D∗
CF2(x, ϕ2(x))(1),

and
D∗

C(F1 + F2)(x, y)(0) ⊆ D∗
CF1(x, ϕ1(x))(0) + D∗

CF2(x, ϕ2(x))(0)

which imply Eqs. (15) and (16) for m = 2.
Let us prove (15) holds as an equality under the regularity conditions. Assume that all ϕi

for i = 1, 2 are lower regular at x. Then

∂C(ϕ1 + ϕ2)(x) ⊆ ∂Cϕ1(x) + ∂Cϕ2(x)

= ∂̂ϕ1(x) + ∂̂ϕ2(x)

⊆ ∂̂(ϕ1 + ϕ2)(x)

⊆ ∂C(ϕ1 + ϕ2)(x),

which implies the equality. The proof for m > 2 follows easily by induction.

Proposition 13 Let ϕi : X → R satisfy

{v ∈ X | ϕ◦
1(x; v) < ∞} ∩ int{v ∈ X | ϕ◦

2(x; v) < ∞} �= ∅.

Then
∂∞
C ϕ1(x) ∩ (−∂∞

C ϕ2(x)) = {0}.

Proof Fix any x∗ ∈ ∂∞
C ϕ1(x) ∩ (−∂∞

C ϕ2(x)). Then (x∗, 0) ∈ NC((x, ϕ1(x)); epi ϕ1) and
(−x∗, 0) ∈ NC((x, ϕ2(x)); epi ϕ2). Fix an element v ∈ X such that ϕ◦

1(x; v) < ∞, while
v ∈ int{v1 ∈ X | ϕ2

◦(x; v1) < ∞} �= ∅. Let us show that x∗ = 0. From the proof of
[1, Theorem 2.9.5], one finds β ∈ R such that (v, β) ∈ intT ((x, ϕ2(x)); epi ϕ2). From
[1, Theorem 2.9.1], we see that if γ ∈ R is fixed such that γ > ϕ◦

1(x; v), then (v, γ ) ∈
T ((x, ϕ1(x)); epi ϕ1). Thus, there exists δ > 0 with

(v, β) + δB ⊆ T ((x, ϕ2(x)); epi ϕ2), (v, γ ) ∈ T ((x, ϕ1(x)); epi ϕ1).

Then
〈(x∗, 0), (v, β) + δ/2(e1, e2)〉 ≤ 0 ≤ 〈(x∗, 0), (v, γ )〉

whenever ‖(e1, e2)‖ ≤ 1. It follows that 〈x∗, δ/2e1〉 ≤ 0 whenever ‖e1‖ ≤ 1, which implies
x∗ = 0.

The proposition below shows that the SCNEC condition for extended-real-valued
functions holds under the directional Lipschitz condition; see [1, Definition 2.9.2].
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Proposition 14 Assume that ϕ : X → (−∞,∞] is directionally Lipschitz at x ∈ dom ϕ.
Then ϕ is SCNEC at (x, ϕ(x)).

Proof Assume that ϕ is directionally Lipschitz at x. Then by [1, Proposition 2.9.3], there
exists β ∈ R such that (v, β) is a hypertangent to epi ϕ at (x, ϕ(x)). Therefore, epi ϕ is
SCNC at this point.

Theorem 5 Let G : X →→ Y, F : Y →→ Z be closed-graph mappings with z ∈ (F ◦ G)(x),
and

S(x, z) := G(x) ∩ F−1(z) = {y ∈ G(x)|z ∈ F(y)}.
Given y ∈ S(x, z), assume that S is inner semicontinuous at (x, z, y), that either F is
PSCNC at (y, z) or G is PSCNC at (x, y), and that the qualification condition

D∗
CF(y, z)(0) ∩ ker D∗

CG(x, y) = {0}
is fulfilled. Then

D∗
C(F ◦ G)(x, z)(z∗) ⊆ D∗

CG(x, y) ◦ D∗
CF(y, z)(z∗) (17)

for any z∗ ∈ Z∗.

Proof Consider the set-valued mapping 	 : X × Y →→ Z as follows

	(x, y) = F(y) + 
((x, y); gph G).

Using [3, Theorem 1.64], because S is inner semicontinuous at (x, z, y), we have

D∗(F ◦ G)(x, z)(z∗) ⊆ {
x∗ ∈ X∗ | (x∗, 0) ∈ D∗	(x, y, z)(z∗)

}
.

Thus,

co D∗(F ◦ G)(x, z)(z∗) ⊆ {
x∗ ∈ X∗ | (x∗, 0) ∈ co D∗	(x, y, z)(z∗)

}
.

Therefore,

D∗
C(F ◦ G)(x, z)(z∗) ⊆ {

x∗ ∈ X∗ | (x∗, 0) ∈ D∗
C	(x, y, z)(z∗)

}
.

It follows from Proposition 11 that

D∗
C	(x, y, z)(z∗) ⊆ D∗

CF(y, z)(z∗) + NC((x, y); gph G).

Take x∗ ∈ D∗
C(F ◦ G)(x, z)(z∗). Then (x∗, 0) ∈ D∗

C	(x, y, z)(z∗). Since F = F(y),
there exists y∗ ∈ Y ∗ such that (y∗, −z∗) ∈ NC((y, z); gph F) and (x∗, −y∗) ∈
NC((x, y); gph G). Then y∗ ∈ D∗

CF(y, z)(z∗) and x∗ ∈ D∗
CG(x, y)(y∗). Therefore,

x∗ ∈ D∗
CG(x, y) ◦ D∗

CF(y, z)(z∗). The theorem has been proved.

Corollary 3 Let F : X →→ Y be a closed-graph mapping, and let � ⊆ Y be a closed set.
For (x, y) ∈ gph F and y ∈ �, define

F−1(�) := {x ∈ X | F(x) ∩ � �= ∅} .

Assume that S(x) := F(x) ∩ � is inner semicontinuous at (x, y), and that either F is
PSCNC at (x, y) or � is SCNC at y. Under the qualification condition

NC(y; �) ∩ ker D∗
CF(x, y) = {0},

one has
NC(x;F−1(�)) ⊆ D∗

CF(x, y)(NC(y; �)).
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Proof This follows from Theorem 5 with F1 : Y ⇒ R and G1 : X ⇒ Y , where G1 = F

and F1(·) = 
(·;�). Then gph F1 = � × {0}. Obviously, if � is SCNC at y, then gph F1
is PSCNC at (y, 0). Applying Theorem 5, we obtain the result.

Theorem 6 Let f := g ◦ F , where F : X → Y is a strictly differentiable mapping and
g : Y → (−∞,∞] is an extended-real-valued function. Assume that g is l.s.c around F(x),
and that

∂∞
C g(F (x)) ∩ (ker ∇F(x)∗) = {0}.

Then
∂Cf (x) ⊆ ∇F(x)∗(∂Cg(F (x))),

and
∂∞
C f (x) ⊆ ∇F(x)∗(∂∞

C g(F (x))).

The first inclusion holds as an equality if g is lower regular at F(x).

Proof Let us consider Eg(x) = [g(x), ∞). Obviously,

Ef (x) = (Eg ◦ F)(x).

Observe that D∗
CF(x) = ∇F(x)∗. The result then follows directly from Theorem 5 with

z∗ = 1 and z∗ = 0.
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