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Abstract
The acoustic and structural dynamic properties of vehicles—often referred to as Noise, Vibration, Harshness (NVH)—form
a crucial criterion during product development. To reduce iterations with physical prototypes, NVH simulation models are
well established. In early development phases, many parameters of NVHmodels, such as material and contact properties, are
either assumed based on empirical values or have to be measured. In both cases, the value of these parameters is uncertain.
Thus, the output of NVH system simulation models such as structure borne or air borne sound is also uncertain and must
be quantified. However, applying state-of-the-art uncertainty analysis methods to NVH simulation models considering
all uncertain input parameters is inefficient due to their high computation time. Therefore, this paper presents a method
of coupled sensitivity (SA) and uncertainty analysis (UA), which enables the efficient uncertainty calculation for NVH
simulations. In this method, firstly the most influential parameters are determined using a SA to reduce the number of
input parameters. Depending on the number of parameters and the computation time of the NVH simulation model, either
the Morris SA or an EFAST SA is chosen. Finally, a fuzzy UA is performed, which quantifies the uncertainty of the output
of the NVH simulation and provides its possible ranges. The procedure is applied to the NVH model for predicting air
borne sound of an electric drive with 53 uncertain input parameters.

Recheneffiziente Quantifizierung parametrischer Unsicherheiten in NVH-Systemsimulationsmodellen
mittels Sensitivitäts- und Unsicherheitsanalyse

Zusammenfassung
Die unter dem Begriff Noise, Vibration and Harshness (NVH) zusammengefassten akustischen und strukturdynamischen
Eigenschaften von Fahrzeugen sind ein entscheidendes Kriterium bei der Produktentwicklung. Um zeit- und kosten-
intensive Iterationen mit physischen Prototypen zu reduzieren, haben NVH-Simulationsmodelle in den Entwicklungs-
alltag Einzug erhalten. In frühen Entwicklungsphasen werden viele Parameter von NVH-Modellen, wie z.B. Material-
und Kontakteigenschaften, entweder auf der Grundlage empirischer Werte angenommen oder müssen gemessen wer-
den. In beiden Fällen ist der Wert dieser Parameter mit Unsicherheiten behaftet. Somit ist auch die Ausgangsgröße von
NVH-System-Simulationsmodellen, wie bspw. Körper- oder Luftschall, Unsicherheiten unterworfen, die quantifiziert wer-
den müssen. Die Anwendung moderner Methoden der Unsicherheitsanalyse auf NVH-Simulationsmodelle unter Berück-
sichtigung aller unsicheren Eingangsparameter ist jedoch aufgrund der hohen Rechenzeit ineffizient. Daher wird in diesem
Beitrag eine Methode der gekoppelten Sensitivitäts- (SA) und Unsicherheitsanalyse (UA) vorgestellt, die eine effiziente
Unsicherheitsberechnung für NVH-Simulationen ermöglicht. Bei dieser Methode werden zunächst die einflussreichsten
Parameter mit Hilfe einer SA bestimmt, um die Anzahl der Eingabeparameter zu reduzieren. Abhängig von der Anzahl
der Parameter und der Berechnungszeit des NVH-Simulationsmodells wird entweder die Morris SA oder eine EFAST SA
gewählt. Abschließend wird eine Fuzzy-UA durchgeführt, die die Unsicherheit der Ausgabe der NVH-Simulation quanti-
fiziert und ihre möglichen Bereiche angibt. Das Verfahren wird auf das NVH-Modell zur Vorhersage des Luftschalls eines
elektrifizierten Antriebsstrangs mit 53 unsicheren Eingangsparametern angewandt.
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1 Introduction

The structural dynamic and acoustic behavior of drive-
trains—often referred to as Noise, Vibration and Harshness
(NVH)—is of ever-increasing importance when evaluating
a product’s requirements. It is a decisive quality feature of
the product which often is crucial in a customer’s decision
making process of which product to buy [1]. The contin-
uous trend towards shorter product development times has
imposed the need for shorter and more cost-effective itera-
tions on the product development process. In order to reduce
the effort involved in designing products, methods of virtual
product development (VPD) such as virtual prototypes are
nowadays well-established in the product development pro-
cess also for evaluating a virtual prototype’s NVH behavior
as they reduce the amount of time- and cost-intensive physi-
cal prototypes [2]. Within early phases of VPD assuring the
fulfillment of requirements is mainly based on the evalua-
tion of simulation models. Therefore, these models should
not only be sufficiently detailed to facilitate design choices
but they should furthermore be suitable to give a quantita-
tive indication on the product’s performance.

As a result, developing reliable, sophisticated NVHmod-
els which are usable already at an early phase of the de-
velopment process as well as developing appropriate work-
flows to use the NVH models to evaluate the fulfillment of
acoustic requirements have been a key focus of recent re-
search [3–6]. Special focus needs to be given onto the key
points of structural-dynamic sound propagation: Excitation
(such as gear stages, electric engines, inverters, power-split
transmissions), elements in the transfer path (flexible struc-
tures of housing and shafts, bearings, elastomeric mounts,
joints etc.) and sound radiation. Numerous models of differ-
ent fidelity levels have therefore been developed to model
the structural-dynamic effects of the aforementioned ma-
chine elements [7, 8]. However, the parameters of these
models are often uncertain, such as material and contact
properties. Especially during early phases of the develop-
ment process these parameters are either assumed based on
empirical values or have to be elaborately measured. Thus,
also the output of NVH system simulation models such as
structure borne or air borne sound is prone to uncertain-
ties. These uncertainties must be quantified considering the
influence and interactions of all uncertain input parame-
ters when taking design decisions based on NVH models’
results.

Uncertainty analysis (UA) such as Monte Carlo simu-
lations, Bayesian networks and fuzzy logic are well-es-
tablished methods in order to quantify the uncertainty of
a model’s output and are applied to a variety of engineering
domains, including stress calculation [9, 10] and simplified
structural dynamic models [11, 12] but also civil engineer-
ing [13], biological models [14] and medicine [15]. UA can

be applied when a deterministic model is linking input pa-
rameter values to outputs. However, NVH system model’s
inherent non-linear and cross-coupled transient effects to-
gether with a large number of parameters and therefore
a highly multidimensional parameter space often renders
the application of classical uncertainty analysis unfeasibly
computationally expensive. Thus, it is currently not feasi-
ble to evaluate the uncertainties of outputs of NVH system
simulation models during the VDP. As a result, it is uncer-
tain if a calculated NVH quantity such as a sound-pressure
level is reliably meeting the requirements imposed on it. To
overcome these limitations, this paper presents a method
of coupled sensitivity (SA) and uncertainty analysis (UA),
which enables the efficient quantification of uncertainties
of NVH simulations based on uncertain input parameters.
The advantages of the proposed method are demonstrated
on an NVH simulation model of a battery-electric vehicle
(BEV) which calculates the air borne sound.

The paper is structured as follows: In Sect. 2, an
overview over the state of the art of UA and SA as well
as NVH system simulation models is given. Section 3
describes the problem of efficiently calculating uncertain-
ties of NVH simulation models. The solution approach is
presented in Sect. 4 and applied to an electro-mechanic
drivetrain in Sect. 5. Conclusion and outlook are given in
Sect. 6.

2 State of the art

2.1 Uncertainty analysis (UA) and sensitivity
analysis (SA) methods

Both UA and SA methods are used to evaluate parame-
ter uncertainties in numerical models. UA methods aim at
quantifying the influence of one or several uncertain input
parameters onto the model’s output’s uncertainty. If multi-
domain models are used, UA aims at quantifying the uncer-
tainty throughout the entire model toolchain. The result of
a UA therefore is a range of possible output values which
are weighted e.g. with probabilities of occurrence of indi-
vidual values within the output range. An UA will however
not allow for deducing the influence of individual input
parameters on the outputs range [12, 16].

To allow for the identification of the most relevant in-
put parameters (i.e. the parameters, which should be given
the most care during parameter identification), conducting
a SA is necessary. The result of a SA is the identification
of parameters which are most relevant for a change in the
output as well as the cross-influence between multiple un-
certain input parameters. The result of a SA is quantified
either as the main effect of an uncertain input parameter,
which describes the change in the output when varying the
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specific uncertain input parameter and leaving every other
input parameter constant, or as a total effect, which addi-
tionally considers cross influences between uncertain pa-
rameters and which is therefore the sum of the main effect
and the cross influencing effects [17].

In order to understand and evaluate existing SA and UA
methods, a second differentiation is necessary: Uncertain-
ties can generally be classified into aleatory and epistemic
uncertainties. Aleatory uncertainties are arbitrary and can
be described by a probability distribution. They most com-
monly originate within the variance of material properties
or environmental influences around a known mean value.
Epistemic uncertainties on the other hand are a result of
a lack of information on a parameter which is subsequently
estimated (e.g. based on experience) during the modelling
process [12, 18].

Uncertainty analysis is most commonly done by using
one of the following methods:

� Monte-Carlo simulation [19]: Based on an initially as-
signed probability distribution, which is often assumed
either normal, logarithmic or uniformly distributed,
a fraction of the full parameter space is evaluated either
based on (Quasi-)random or Latin hypercube Sampling
[16]. While it is an easy-to-use method, it requires a large
amount of calculations to be carried out and the output’s
quality heavily depends on the chosen fraction of the
parameter space.

� Bayesian networks [20] are a combination of Bayesian
statistics with neural networks which calculate a likeli-
hood function based on a training dataset. The likelihood
function is subsequently multiplied with an initial as-
sumption about the parameter’s probability distribution,
the so-called priori function. Bayesian networks are
mainly used to quantify aleatory uncertainties because

Fig. 1 Reduced (a) and gener-
alized (b) fuzzy Transformation
method
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Table 1 Example calculations for SA according to Morris

Simulation Value of Parameter X1 Value of Parameter X2 Value of Parameter X3

1 x1 x2 x3
2 x1+� x2 x3
3 x1+� x2+� x3
4 x1+� x2+� x3+�

the required priori functions are difficult to obtain for
parameters prone to epistemic uncertainties. Training
the neural network adds an additional step to the UA
which imposes additional effort as well as additional
uncertainties in the quality of the trained network.

Fuzzy-Logic and fuzzy transform method [21, 22] model
epistemic and aleatory uncertainties by mapping a mem-
bership function between 0 and 1 to the parameter range of
each individual uncertain input parameter. Parameter value
with a membership function’s value of 0 are considered as
outside of the uncertainty band of the input parameter and
thus not considered in the uncertainty calculation. A mem-
bership function’s value of 1 indicates the most probable
value of the input parameter. In order to incorporate fuzzy
logic into deterministic simulation models, fuzzy transfor-
mation methods [23] are used, which split the continuous
interval of uncertain parameters into discrete α-Cuts which
are used for simulation. By retransforming the discrete out-
put membership function into an uncertainty band, an eval-
uation of the output’s uncertainty is carried out. Two dif-
ferent variations of the fuzzy-Transformation method exist:
A reduced fuzzy-transformation method will only evaluate
the minimum and maximum value of a parameter range
for a given value of the membership function (i.e. for each
α-Cut), while a generalized fuzzy-transformation method
will also consider parameter values in between. The varia-
tions are visualized in Fig. 1 for one uncertain input parame-
ter. The result of a fuzzy UA again is a membership function
of the model’s output. The output parameter’s value which
is assigned to a membership function of 1 is considered
as the most probable output, while membership function’s
values of 0 are considered as impossible to occur given the
chosen range of the input parameters.
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The following methods are widely used for sensitivity
analysis:

� Linear regression is an approach suitable for the identi-
fication of linear models by calculating regression coef-
ficients between input and output. Similarly, correlation
analysis can be applied to identify the relationship be-
tween input- and output variables where a correlation co-
efficient of 1 indicates the highest sensitivity [16].

� Extended Fourier Amplitude Sensitivity (EFAST) [24],
which is based on the Fourier Amplitude Sensitivity
method [25], compares the variance of the output param-
eter to the variance of all input parameters by assigning
each individual input parameter a frequency and calcu-
lating the spectrum of the variance of the output. EFAST
allows for both the calculation of the total and the main
effect. While the total effect allows for identifying negli-
gible input parameters, the main effect is used to rank the
relevance of the input parameters with respect to each
other.

� Morris [26] proposes a method based on calculating
elementary effects which is the change of the output’s
parameter when one individual parameter is changed.
Each individual uncertain input parameter is varied by
a value �. For the example of a system with three in-
put parameters X1, X2 and X3, the calculations listed in
Table 1 are carried out.
The elementary effect is then calculated by dividing the
output of two consecutive simulations by �. The process
is repeated r times (with r being a tuning parameter of the
method) with different values of �. Evaluating the ele-
mentary effect’s standard deviation yields the indication
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Fig. 2 Model toolchain for deriving the NVH behavior of a BEV [30]

for the sensitivity of the input parameter. The proposed
method is computationally very efficient, compared to
the Fourier Amplitude Sensitivity methods. However, as
it is a screening-based method, it only allows for the iden-
tification of negligible input parameters, but not a ranking
of individual parameters.

UA and SA are numerously applied on simple structural
dynamic models in literature, so that only an excerpt of rel-
evant engineering applications can be given. Monte-Carlo
and fuzzy-logic methods are used in [9] to evaluate the un-
certainty of a crash test model based on the uncertainty of
sheet metal thickness [12]. demonstrates the application and
limitations of applying Monte-Carlo methods and fuzzy-
transformation method onto an NVH model of the influ-
ence of joints onto the dynamics of a motorcycle’s engine.
Other applications of uncertainty or sensitivity analysis on
structural dynamic models can be found in [11, 27, 28].

2.2 NVH system simulationmodels

NVH system simulation models aim at predicting the air
borne or structure borne sound of systems such as drive-
trains especially already at an early stage of the develop-
ment process. This allows the design engineer to evaluate
requirements of the acoustic behavior before manufacturing
the first physical prototype. NVH models therefore com-
prise of models for the relevant effects of excitation, sound
transfer and sound radiation along the chain of acoustic
transmission. The NVH model of a battery electric vehicle
(BEV), as presented in [4, 29], on which the developed UA
method is demonstrated in Sect. 5, is shown as an example
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for NVH system models in Fig. 2. The individual parts of
the model will be explained in what follows.

Especially in mechatronic systems such as BEVs, NVH
simulation models often combine models of different do-
mains such as electromagnetics, mechanics and acoustics.
The models of excitation mechanisms (such as gear stages,
electric or combustion engines) are usually nonlinear and
thus defined by cross-influences between multiple input pa-
rameters. The NVH model studied in this work contains
electrics models which mimics the control strategy of the
system and a quasi-static force look up array, which in-
cludes the dependency of the radial and tangential forces
in the electric machine in dependency of the currents and
eccentricities. As the transfer-path from the excitation to
a receiver point (typically the driver’s position) is also in-
fluenced by non-linear elements such as rolling bearings,
elastomeric mounts and joints [7, 31, 32], the entire sys-
tem model needs to be solved in time-domain which is
computationally expensive compared to linear, frequency-
domain models. Solving in time-domain also accounts for
the nonlinearities of the electric engine’s excitation. While
this allows to consider transient effects during rpm runup
and nonlinearities in the excitation and transfer behavior of
the system, solving NVH models in time domain is com-
putationally expensive, as it requires implicitly solving the
system’s state for each time-domain. Additionally, a high
sampling rate is necessary to capture all effects in the au-
dible frequency range up to 20kHz which further increases
the computational effort, thereby posing strict requirements
concerning efficiency on the UA and SA method.

The structural dynamic model of the demonstrator ex-
ample is an EMBS model including linearized rolling-bear-
ing and elastomeric mount models in form of stiffness and
damping matrices and modally reduced flexible bodies of
the shafts, gears and housing. Mostly, a linear calculation
of the sound radiation based on the surface velocities con-
cludes the model chain, which can either be modeled an-
alytically or using boundary element method (BEM) [33].
A rpm-runup under constant torque is simulated. Other ap-
plications for such complex NVH system simulation models
can be found in hydro-mechanical powersplit drives [3] or
gearbox models of drivetrains [34].

Because of the multi-physical effects and the large scope
of NVH models, these models usually contain many nonlin-
ear, cross-influencing parameters such as material proper-
ties, stiffnesses and damping of rolling bearings or elas-
tomeric mounts and contact stiffnesses and damping in
spline couplings which leads to a large design space while
simultaneously taking relatively long calculating times (up
to several days) therefore posing strong requirements on
the application of UA and SA methods. The uncertainties
of NVH models’ parameters are mostly epistemic, as these
parameters are often times estimated based on analytical

calculations or similar designs during the development pro-
cess before the manufacturing of physical prototypes.

3 Problem formulation

For complex NVH simulation models such as the ones pre-
sented in Chap. 2.2 there are today no methods for apply-
ing uncertainty analysis which are sufficiently fast enough
to integrate them into the virtual product development pro-
cess because of the nonlinear nature of NVH models with
a large number of parameters with a strong cross-influ-
ence. Uncertainty analysis methods for NVH models are
however needed, as generating reliable measures to quan-
tify the acoustic behavior of a virtual prototype is crucial
during the development process. Many input parameters to
NVH models are however unknown or at least uncertain
during the early phases of product development, so that the
influence of their uncertainty on the model’s output quality
has to be evaluated.

The following requirements are posed onto a UA method
to account for the uncertainties in NVH models:

� Consideration of both aleatory and epistemic uncertain-
ties because in the early phase of a development pro-
cesses parameter uncertainties are not only caused by
the stochastic variation of parameters but also because of
a lack of knowledge of e.g. elastomeric mount stiffnesses
or similar material properties

� Integration of the UA on existing numerical models be-
cause NVH simulation models are generated for discrete
parameter sets during the development process to aid in
design choices and existing models should be used and
integrated into a UA method.

4 Solution

In order to evaluate the uncertainty of NVH system sim-
ulation models, a solution approach is presented which
combines sensitivity analysis (SA) and uncertainty anal-
ysis (UA) as shown in Fig. 3. It allows for the first time
to quantify an NVH simulation model’s uncertainty with
respect to many influencing input parameters by reducing
the parameter space to the most important (i.e. sensitive)
parameters using computationally efficient SA methods be-
fore executing the UA. This approach reduces the calcula-
tion time sufficiently to make the model usable during the
product development process without the need to neglect
the influence of certain input parameters a priori. It consid-
ers the time required to execute the simulation model for
each given set of input parameters as well as the model’s
number of uncertain input parameters to be considered in
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Start

Creation of an executable NVH simulation model, 
Determination of its output variable and calculation time T

Identification of k uncertain input parameters, 
their boundaries and membership functions

T > 1h SA according 
to Morris

SA using 
eFAST

k > 10

UA using Fuzzy 
transformation

Finish

Fig. 3 Proposed method of combining SA and UA to quantify uncer-
tainties of NVH system simulation models

the UA. The choice of the individual SA and UA methods
will be explained in what follows.

In short, the process is as follows: Firstly, an executable
NVH simulation model is created. It combines all excita-
tion mechanisms, transfer path properties and sound radi-
ation calculation which are necessary to evaluate the input
parameter’s uncertainty and therefore usually is comprised
of a model toolchain integrating the structural dynamics
domain (using e.g. eMBS) with the acoustic domain (using
e.g. BEM). The output variable, of which the uncertainty
is to be quantified, is chosen and the model calculation
time T is determined. Then, the amount k of uncertain in-
put parameters is identified. For each of these input param-
eters, the boundaries (i.e. maximum and minimum value)
are determined and the membership function in between
the boundaries for the UA is defined. The complexity of
the NVH model is described by the parameters k and T and

Table 2 Requirements and properties of UA methods

Requirement Monte Carlo Simula-
tion

Bayesian Net-
works

Fuzzy Logic Fuzzy Transformation
method

Consideration of aleatory and epistemic uncer-
tainties

X X ✔ ✔

Integrability into existing NVH models ✔ ✔ X ✔

an appropriate method for parameter reduction is chosen.
Three cases can be distinguished:

1. If the model is sufficiently fast (a simulation time of
less than 1h has empirically been determined as a use-
ful boundary value) and has a sufficiently small amount
of uncertain input parameters (i.e. not more than 10),
an uncertainty analysis can directly be carried out. The
limit values for T and k can be increased by the design
engineer, if more time is available during the product
development process, thereby increasing the algorithms
accuracy, or vice versa, reduced, if faster results are
required, accepting a decrease in accuracy.

2. If either the limit for T or k is exceeded, a sensitivity anal-
ysis is carried out before conducting the UA in order to
reduce the parameter space by ranking the parameters by
their sensitivity and only considering the most relevant
once. If the model runs fast enough (T less than 1h) but
the number of parameters exceeds 10, a SA using EFAST
is executed. The EFAST method is chosen because it al-
lows for a thorough ranking of the uncertain input param-
eters by using both total and main effect. The choice of
using EFAST is elaborated in greater detail in what fol-
lows by comparing the method to other SA methods.

3. If, however, the model running time exceeds 1h, execut-
ing an EFAST consumes too much time, so that a SA
according to Morris is conducted first, as it is more com-
putationally efficient but only capable of computing the
total effect of an uncertain input parameter. This abstrac-
tion is required on long running models, as more thor-
ough SA analysis cannot be executed within a reasonable
time because of the large number of model evaluations
required for calculating both total and main effects of un-
certain input parameters.

Therefore, the method combines up to three algorithms:
UA using fuzzy transformation, SA using EFAST and SA
according to Morris. The choice of these algorithms is ex-
plained in what follows.

A comparison of the requirements on UA methods as
described in Chap. 3 and the properties of the UA methods
introduced in Chap. 2 is presented in Table 2.

The fuzzy transformation method is chosen because it is
the only one being capable of both considering aleatory and
epistemic uncertainties and being able to operate on discrete
parameter values. Monte Carlo Simulation and Bayesian
networks only include aleatory uncertainties and the fuzzy
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Fig. 4 Classification of Sensitiv-
ity Analysis methods according
to [35]
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logic requires continuous membership functions of the un-
certain input parameters which prohibits it from being ap-
plied onto existing, discrete NVH simulation models. The
advantage of choosing the fuzzy transformation method
as the UA method is furthermore, that it allows to define
a trade-off between accuracy and computational effort by
choosing the number of α-Cuts as well as choosing either
a reduced or generalized method.

The disadvantage of the fuzzy transformation method
however is, that with a large number of input parameters,
the calculation effort scales with a factor of 2k. Therefore,
for 10 uncertain input parameters, 2049 (2 * 210+ 1) evalu-
ations of the model have to be carried out. As a result, for
models with more than 10 uncertain input parameters, SA
has to be applied in order to reduce the parameter space. As
NVH models include non-linear interdependencies between
parameters, linear regression methods cannot capture the
model’s sensitivities accurately. Additionally, the parame-
ters’ influences do not have to be monotonic, as shifting
system resonances with respect to excitation frequencies

Fig. 5 Influence of number of uncertain input parameters on the num-
ber of model evaluations for Fuzzy UA, Morris SA and EFAST SA

by changing stiffnesses or mass might cause a rise in sound
pressure levels first, as a resonance is moved towards the
excitation frequencies, and subsequently the sound pressure
level can decrease again, as the resonance passes the excita-
tion frequency. Therefore, methods for sensitivity analysis,
which are able to include non-monotonic behavior, needs to
be applied. Figure 4 shows the classification of existing SA
methods according to [35] with respect to the requirements
to include non-monotonic dependencies.

Variance decomposition methods allow for a ranking of
the sensitivity of input parameters. This is helpful in order
to reduce the parameter space. As the parameter’s influence
usually is continuous in NVH models and no metamod-
els should be developed, the EFAST method is chosen as
a method for sensitivity analysis. The number of model
evaluations using EFAST only shows a linear dependency
on the number of input parameters. However, as it scales
with a Factor of 65k, conducting a SA using EFAST still
is not practicably feasible, see Fig. 5. Therefore, a screen-
ing SA is needed to further reduce the number of model
evaluations.

Screening SA methods allow for a computationally effi-
cient identification of uncertain input parameters with neg-
ligible effect on the output parameter. Therefore, a SA ac-
cording to Morris is carried out before a SA of EFAST
if the number of uncertain input parameters becomes too
large. The method according to Morris is chosen because
it allows for non-monotonic parameter interdependencies
with a high computational efficiency.

In detail, the entire method is presented in Fig. 6. Af-
ter having created the executable NVH model, identified
the uncertain input parameters and their membership func-
tion (which is assumed uniformly distributed for the SA
and normally distributed for UA if no further information
is available) as well as the uncertain output parameter, the
model execution time is determined. If it is larger than 1h,
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Fig. 6 Proposed method of
combining UA and SA in detail
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a SA according to Morris is carried out. This consist of
generating a sample matrix for a number of repetitions r,
which is initially set to 2. The model evaluations accord-
ing to the sample matrix are carried out and the elementary
effects are determined. The execution of an NVH model
usually aims at deriving the behavior of an output variable
(such as air borne sound) as a function of an rpm runup.
Therefore, the rpm runup is conducted and the sensitivity
analysis is carried out for each individual sampling point of
the rpm runup. In order to identify negligible input param-
eters based on the elementary effects, the entire operating
range (i.e. the range from minimum to maximum rpm) is
split into operating ranges in which similar parameters can
be neglected. The identification of the operating ranges is
carried out as follows: A boundary between two operating
ranges is identified at rpm sampling points at which 33%
of the uncertain input parameters are causing less than 85%
of the outputs’ variation. At these points, a new operating
range is started. The standard deviation of the elementary
effects, which is considered the indicator for the sensitivity
of an input parameter, is integrated along the rpm axis of
each operating range to yield scalar, comparable parame-
ters.

Next, a SA according to EFAST is executed. The evalu-
ation of the total effect allows for a ranking of the uncertain
input parameters and thus for the further reduction of the
parameter space by only considering the most relevant un-
certain input parameters in the following UA. Again, as al-
ready done for the SA according to Morris, the total effects,
which are calculated as a function of the system’s rpm, are
integrated over the rpm-values of the operating range in
order to obtain scalar, comparable variables, which allow
for the identification of negligible parameters. As a last
step, the fuzzy UA is carried out. Firstly, a reduced fuzzy
UA is done, which allows to check if the output param-
eter is monotonic with respect to all input parameters. If
it is monotonic, the result of the reduced fuzzy UA is the
model’s output uncertainty. If it is not monotonic, a gen-
eralized fuzzy method has to be conducted to obtain the
model’s output’s uncertainty.

The main advantage of the method is an improvement in
computational efficiency in calculating a model’s output’s
uncertainty. This allows for the adoption during product
development processes. For large models, neglecting some
uncertain input parameters however reduces the accuracy
of the uncertainty calculation. By choosing appropriate SA
methods, this error is minimized, but a small difference be-
tween a full UA and the proposed method has to be accepted
to increase the computational efficiency. Furthermore, the
method will be of limited use in a model which has a large
number of parameters with very comparable sensitivities, as
the SA will not be able to meaningfully reduce the parame-
ter set. The assumption for applying this model is therefore,

that only a few uncertain input parameters are responsible
for the most of the output’s uncertainty.

In Sect. 5, the application of the presented method, its
advantages and the aforementioned error will be discussed
on an NVH system simulation model of a BEV’s drivetrain.

5 Application to an E-Motive NVH
simulation model

The developed method is demonstrated on the NVH model
of a battery electric vehicle’s (BEV) drivetrain as presented
in [4, 29] and introduced in Sect. 2.2. Modeling three differ-
ent domains (electrics, structural dynamics and acoustics) is
necessary to calculate the air borne sound at the left driver’s
ear induced by the drivetrain which is defined as its output
value.

While each domain model induces its own parametric
uncertainties, the method is demonstrated on the uncertain
parameters of the structural dynamic models. These param-
eters are:

� Mass and Modal damping values of the two coolant pipes
(4 parameters)

� Stiffness of the three elastomeric mounts (3 parameters)
� Damping of the three elastomeric mounts (3 parameters)
� Stiffness and damping of torque support arm (2 parame-

ters)
� Stiffness and damping of spline coupling (2 parameters)
� Mass and Damping of the electric connector (2 parame-

ters)
� Stiffness and damping of the six bearings (12 parameters)
� Damping of two tapered bearings (2 parameters)
� Stiffness and damping of four parking brake components

(8 parameters)
� Stiffness and damping of two side shafts (4 parameters)
� Average modal damping of eleven modally reduced as-

semblies (11 parameters)

These uncertain input parameters are identified because
they fulfilled one of the following criteria:

� Either, the parameter is known to exhibit strong variance
in series production such as elastomer components

� Or, the parameters could not be physically measured di-
rectly, such as the stiffness and damping of the park brake
components and the electric connectors and no estab-
lished literature values could be obtained

� Or, the parameter is part of a linearization of a non-linear
behavior, such as the stiffness of the spline coupling and
the bearings

To motivate the necessity for the proposed method, the
effort for directly conducting a UA using fuzzy transfor-
mation method is determined: One simulation takes 16h.
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Table 3 Operating ranges and most sensitive input parameters

Operating
range [ro-
tor rpm]

Most sensitive
input parame-
ter

2nd most sen-
sitive input
parameter

3rd most sen-
sitive input
parameter

1000 ...
2670

Stiffness of
left elas-
tomeric mount

Stiffness of
right elas-
tomeric mount

Modal damp-
ing of housing

2671 ...
4890

Stiffness of
left side shaft

Modal damp-
ing of housing

Stiffness of
right elas-
tomeric mount

4891 ...
6000

Stiffness of
rotor bearing

Stiffness of
spline coupling

Modal damp-
ing of housing

For the 53 uncertain input parameters, conducting an un-
certainty analysis using fuzzy transformation would require
3.6 * 1016 model evaluations which leads to a calculation
time of 2.4 * 1016 days. Even considering the possibility of
parallel execution of the model, the UA is taking orders of
magnitude too long to include it into VPD processes.

Fig. 7 10 most influencing input
parameters for the three operat-
ing ranges according to SA of
Morris
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Operating range III

On the other hand, conducting a SA according to Morris
only requires 108 model evaluations. While 2592 simula-
tion hours may seem a long time at first, using parallel
execution of 25 models reduces the time required for a SA
according to Morris to 2.88 days. The sensitivity analy-
sis is carried out for different operation ranges sampling
points individually, so that the sensitivity of the parameters
is a function of the system’s rpm. Three distinctive operat-
ing ranges can be identified. Within each of these operating
ranges, the most sensitive input parameters are the same.
Table 3 shows the identified operating ranges from the SA
according to Morris and the corresponding three most rel-
evant input parameters.

The SA according to Morris is evaluated in order to
identify the 10 most significant input parameters for further
evaluation using EFAST and later on UA, see Fig. 7. The
number of input parameters to retain in the further steps of
the method is a value that allows to adapt the method in
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Fig. 8 Uncertain input parameters for the first operating range accord-
ing to EFAST

a tradeoff between accuracy and computational efficiency
depending on the simulation time of the model and the
time available for conducting the SA. 10 significant input
parameters have been empirically determined to be suitable
for the demonstration of the following steps. The 10 most

Fig. 9 Membership functions of the four main influencing parameters

significant input parameters retained for the three operating
ranges are shown in Fig. 7.

For each of the operating ranges, the 10 uncertain input
parameters are used as the input for an EFAST sensitivity
analysis. Using the EFAST sensitivity analysis, the total
effect of the uncertain input parameters is evaluated for
each rpm sampling point and subsequently integrated along
the rpm-axis to yield the sensitivity which is used to create
the ranking of the parameters. Figure 8 shows the relative
total effects of the 10 input parameters used in EFAST for
the first operating range. By defining a threshold of 5% of
relative sensitivity, the four most relevant parameters are
subsequently used in a fuzzy algorithm in order to evaluate
the uncertainty.

Finally, for the 4 identified uncertain parameters, the UA
can be carried out. In order to conduct the fuzzy transforma-
tion method, the uncertain input parameters have to be as-
signed to membership functions which represent the range
and distribution of the parameter’s values. The assigned
membership functions are exemplarily shown in Fig. 9.

They are assumed to be normally distributed. The mean
value is assigned a membership function of 1, the bound-
aries are set to be 0 at three times of the standard deviation.
The chosen boundaries are –50%/+100% for the stiffness
of the elastomeric mounts, ±25% for the stiffness of the
bearing and 0.5% as well as 5.5% for the modal damping.
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Fig. 10 Membership function of
the air borne sound at the driver’s
ear for the first operating range
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Fig. 11 Membership function of
the air borne sound for four (a)
and five (b) uncertain input
parameters
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This results in an asymmetric membership function for the
elastomeric mounts. The dynamic stiffening of elastomers
towards higher frequencies is known to be in the order
of magnitude of the quasi-static stiffness itself, therefore
+100% (factor 2) has been chosen as the upper bound-
ary. The lower boundary has been set at half of the nominal
value (factor ½), respectively. Therefore, the absolute differ-
ence between upper boundary and nominal value is larger
than between the nominal value and the lower boundary,
which results in an asymmetric stiffness. Five α-Cuts are
used to transform the continuous membership function to
discrete input values for the uncertainty analysis. The fuzzy
transformation UA is carried out using the FAMOUS tool-
box [36].

The result of the UA for the defined uncertain input pa-
rameters is shown in Fig. 10 in Form of the membership
function of the loudness in sone depending on the rpm.
A membership function value of 1 indicates the most prob-
able output, whereas a membership function of 0 indicates
that the output values cannot occur based on the given inter-
vals of the uncertain input parameters. In between, higher
membership function values indicate more probable out-
put parameter values. It can be seen that for the chosen
demonstrator case, a spread of 4 to 7 sone around the nom-
inal value can be observed. It can also be seen that the
uncertainty is largest at low rpm ranges and decreases to-
wards higher rpms. Furthermore, the uncertainty of the air
borne sound is asymmetrically distributed towards higher
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loudness values with a maximum of 5 sone above the nom-
inal value at the rpm range below 1200rpm as well as at
1700 rpm.

The demonstrated method is evaluated using an addi-
tional fifth uncertain input parameter for the UA, which is
the stiffness of the side shafts. The uncertainty bands are
compared in Fig. 11. Up to an rpm range of 2200rpm, no
significant differences can be observed. However, in the rpm
range from 2400 to 2550rpm, the worst-case values (mem-
bership function with a value of 0) show a larger spread of
8 sone compared to 4 sone with only four input parameters.
It can therefore be concluded, that the developed method
is capable of evaluating the overall system’s uncertainty,
while for individual operating points of interest, a study of
the next influencing parameter should be included to gain
insights about the error in the quantitative evaluations.

6 Summary and outlook

The structural dynamic and acoustic behavior of drive-
trains—often referred to as Noise, Vibration and Harshness
(NVH)—is of ever-increasing importance when evaluating
a product’s requirements. It is a decisive quality feature
of the product which often is crucial during a customer’s
decision of which product to buy. As a result, developing
reliable, sophisticated NVH models has been a key focus of
recent research. Special focus needs to be given onto the key
points of structural-dynamic sound propagation: Excitation
(such as gear stages, combustion and electric engines, in-
verters, power-split transmissions), elements in the transfer
path (bearings, elastomeric mounts, joints etc.) and sound
radiation. Numerous models of different fidelity levels have
therefore been developed to model the structural-dynamic
effects of the aforementioned machine elements. The pa-
rameters of these models are often uncertain, such as mate-
rial and contact properties. Especially during early phases
of the development process these parameters are either as-
sumed based on empirical values or have to be elaborately
measured. Thus, also the output of NVH system simulation
models such as structure borne or air borne sound is prone
to uncertainties, which must be quantified considering the
influence and interactions of all uncertain input parame-
ters. These models are characterized by nonlinear cross-
influences between a large number of uncertain parameters
and long simulation times which renders the application of
existing UA methods unusable.

Therefore, in this work a method is presented, to con-
duct uncertainty analysis (UA) for NVH simulation models.
The proposed method therefore combines the advantages of
sensitivity analysis (SA) and UA. Using SA, the uncertain
input parameters are ranked according to the relevance to
the output. Only the most relevant input parameters are then

included in the uncertainty analysis. By applying the pro-
posed method, it is for the first time possible, to quantify
the uncertainty of an NVH model within a time period of
a few days.

The method is demonstrated on the NVH model of a bat-
tery electric vehicle’s (BEV) drivetrain with 53 uncertain
input parameters. The simulation time needed to conduct
a UA can be reduced from 2.4 * 1016 days to 43 days.
By conducting 25 model evaluations in parallel, the simu-
lation was carried out in 1.7 days. This enables the NVH
engineer to include uncertainty analysis during the devel-
opment process and obtain information on the uncertainty
of the model’s output. A spread of the air borne sound for
the given input parameters’ distribution of 4 to 7 sone de-
pending on the operating point can be observed. A second
advantage of the proposed method is that the application of
SA allows for the identification of parameters which influ-
ence the output the most. The stiffness of the elastomeric
mounts was found to contribute most to the uncertainty of
the output signal. Therefore, the proposed method can also
be used to derive which parts of the model should be care-
fully considered during the modelling process and enhance
NVH model’s quality in a target-oriented way.

In future works, special focus should be given to the
methodological identification of operating ranges for the
input parameter’s ranking using SA methods. Furthermore,
an approach for identifying the required number of input
parameters considered during the UA depending on the
desired reliability of the uncertainty results should be de-
veloped. With increasing model fidelity of NVH system
simulation models, additional parameters should be ana-
lyzed in future works: The consideration of eccentricity ef-
fects on the NVH behavior allows for the consideration of
manufacturing tolerances and modeling joint behavior in-
troduces parameters concerning the contact and the assem-
bly process. Theses parameters should further be studied
using the proposed method to analyze their influence on
the uncertainty of the calculated sound. Additionally, the
applicability of the developed model to other models which
are not used to evaluate the NVH behavior of systems but
share similar characteristics such as considering multiple
domains using numerous, nonlinear parameters, should be
explored. This will allow a broader understanding of the
advantages of the proposed method for analyzing the un-
certainties in fulfilling the requirements during early phases
of the development process.
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