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Abstract
Prognostic and health management (PHM) of plastic gears has attracted attention due to an increasing performance of
plastic gears, uncovering potential applications in the industry, especially in vehicle transmissions. Meanwhile, health
indicator (HI) construction and remaining useful life (RUL) estimation are two key elements to efficiently perform PHM.
In this paper, a health indicator generator (HIG) based on an artificial neural network (ANN) is constructed. The HIG
is learned from training data extracted from plastic gears’ raw vibration data using the Fourier decomposition method
(FDM) in a sensitive frequency band (SFB) and labeled using a change-point detection algorithm (CDA). Three prediction
strategies, including linear regression (LR), estimation of parameters for Weibull distribution (EWD), HI combined average
RUL (HI-ARUL), are deployed using HI generated from HIG to predict the RUL of the plastic gear. The results show
that the generated HI is sensitive to the early failure of plastic gears and is capable of applying an efficient and precise
diagnosis method, which can be performed during the whole working time of plastic gear with prediction errors smaller
than 7%.

Vorhersage der Restnutzungsdauer von Kunststoffzahnrädernmit künstlichem neuronalemNetz

Zusammenfassung
Das Prognose- und Gesundheitsmanagement (PHM) von Kunststoffzahnrädern hat durch die zunehmende Leistungsfä-
higkeit von Kunststoffzahnrädern und deren Einsatzmöglichkeiten in der Industrie, insbesondere in Fahrzeuggetrieben,
Aufmerksamkeit erregt. In der Zwischenzeit sind die Konstruktion des Zustandsindikators (HI) und die Schätzung der
Restnutzungsdauer (RUL) zwei Schlüsselelemente für eine effiziente Durchführung von PHM. In diesem Artikel wird ein
Gesundheitsindikatorgenerator (HIG) basierend auf einem künstlichen neuronalen Netz (ANN) konstruiert. Das HIG wird
aus Trainingsdaten gelernt, die aus den Rohschwingungsdaten von Kunststoffzahnrädern mit der Fourier-Zerlegungsmetho-
de (FDM) in einem empfindlichen Frequenzband (SFB) extrahiert und mit einem Änderungspunkt-Erkennungsalgorithmus
(CDA) gekennzeichnet werden. Drei Vorhersagestrategien, einschließlich lineare Regression (LR), Schätzung von Para-
metern der Weibull-Verteilung (EWD), HI kombinierter Durchschnitt RUL (HI-ARUL), werden unter Verwendung von
HI, das aus HIG generiert wird, eingesetzt, um die RUL des Kunststoffzahnrads vorherzusagen. Die Ergebnisse zeigen,
dass der erzeugte HI empfindlich auf den frühen Ausfall von Kunststoffzahnrädern reagiert. Daher ist es möglich, ein
effizientes und präzises Diagnoseverfahren anzuwenden, das während der gesamten Arbeitszeit von Kunststoffzahnrädern
mit Vorhersagefehlern von weniger als 7% durchgeführt werden kann.
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1 Introduction

Gears are widely used as essential machine elements to
transmit power and motion [1, 2]. Many studies on metal-
lic gears have been done, including design, manufacturing
operation, and monitoring [3–5]. However, for mechanical
engineers, plastic gears are a fascinating mean of reducing
drive-cost, weight, noise, and ability to operate without lu-
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brication. Plastic gears also allow for smaller, more efficient
transmissions in many products. Today, the drive capacity
and working accuracy of plastic gears have been boosted
due to better molding techniques combined with flexible ge-
ometric designs [6, 7]. Despite the technical advantages of
plastic gears over metallic gears, the differences between
the two are motivations for further investigations. Bravo
et al. [8] indicated that the major part of the differences is
due to plastics having an elastic modulus of approximately
100 times lower than most steels and 30 times lower than
aluminum. Therefore, plastic gears mesh with increased ar-
eas of contact between teeth during engagement [9]. In ad-
dition, the potential of using plastic gears in engineering
applications is limited due to the poor heat conduction,
i.e. varying temperature during operation, low dimensional
stability due to shrinkage, moisture absorption, low-load
capacity, and thermal expansion [10]. The above reasons
result in the failure behavior of plastic gears entirely differ-
ent from the metallic gears. For example, different modes
of failure are observed, e.g. melting of gear teeth, deflec-
tion of teeth, deformation of tooth profile, debris formation,
cracks, tooth fracture and surface pitting [11]. In the next
few years, if metallic gears are widely replaced with plas-
tic gears in transmissions, e.g., electromechanical actuators
in cars, the prognostic and health management (PHM) of
plastic gears should be further investigated to improve reli-
ability in finished products.

PHM of machine elements has long received researchers’
attention for its crucial role in improving reliability and re-
ducing cost in the industrial systems [12, 13]. PHM gener-
ally combines condition monitoring, fault diagnostics, fault
prognostics, and decision support [14]. The remaining use-
ful life (RUL) prediction is regarded as one of the most cru-
cial issues in performing PHM. It commonly takes two key
steps to efficiently implement RUL prediction: extraction of
degradation or health status features from the original sen-
sor data and an approximation of the prediction model to
estimate RUL. During the working time from the running-
in period to failure, the degradation information of rotating
machinery spreads out to the surrounding environment. It
can be recorded by vibration, acoustic or temperature sen-
sors, etc. [15]. Among those types of sensor data, vibration
data is most popular because it is easy to measure and pro-
vides rich dynamic information reflecting health conditions.
However, vibration data usually contains noise, e.g. vibra-
tion data obtained from a gear operation test rig not only
includes fundamental meshing frequencies but also nonlin-
earity frequencies of the test rig, rolling-elements noise of
bearings, motor vibration, and its harmonics. Thus, it is nec-
essary to apply feature extraction methods to extract robust
features reflecting the health status of monitored objects
from their original vibration data.

The extraction of degradation or health features from
vibration data is performed using three typical meth-
ods: time-domain, frequency-domain, and time-frequency-
domain [16]. Time-domain methods calculate statistical
features from time-series data using methods such as root
mean square (RMS), Kurtosis factor (KF), absolute mean
amplitude (AMA), and peaks. Frequency-domain methods
employ fast Fourier transform (FFT) to express time-do-
main data in a frequency-amplitude relationship. The high-
active frequencies, which are strongly related to failure,
can be effortlessly recognized. The time-frequency-domain
methods investigate original data using the time-frequency
representation transformations such as short-time Fourier
transform (STFT), Wavelet transform (WT), Wigner-Ville
transform (WVT). The extracted degradation or health fea-
tures are used to generate health indicators that reflect the
rotating machinery’s state during working time.

The health indicator (HI) has been generated to display
degradation profiles in previous approaches. Mahamad et al.
[17] fitted the Weibull hazard rate function to measurement
values RMS and KF extracted from vibration data of bear-
ings. Ali et al. [18] released a new measurement based on
RMS and KF values of vibration data, namely Root mean
square entropy estimator (RMSEE), which exhibits fewer
fluctuations. In their work, Weibull Distribution (WD) was
used to fit RMS, KF, and RMSEE for tracking the degrada-
tion of bearings. Zhang et al. [19] employed Wavelet packet
decomposition to decompose vibration signals into low-fre-
quency and high-frequency parts, converted to frequency-
domain using FFT. The peaks of frequencies of the de-
composed signals were selected to track the degradation of
a blower. Wu et al. [20] calculated power values on a sen-
sitive frequency band (SFB) of bearings as a degradation
indicator. Ji et al. [21] used a principal component analysis
(PCA) for feature extraction to eliminate useless informa-
tion and noise. Zhang et al. [22] translated the multi-dimen-
sion sensor data of aircraft engines to the dimensionless
health index using a single-layer perceptron called a data
generator. The construction of HI is thoroughly reviewed
by Wang et al. [23].

After the HI is extracted, a prediction strategy is imple-
mented to estimate RUL. There are mainly two categories of
prediction strategy: model-based methods and data-driven
methods. Using a model-based method, Bechhoefer et al.
[24] approximated the coefficient of a Paris’s Law equation
for gear RUL estimation. Zheng [25] estimated three-pa-
rameters of Weibull Distribution (WD) using the graphical
method and genetic algorithm for failure analysis of a series
of CNC lathes. Li et al. [26] used the standard sequential
probability ratio test method for Weibull life distribution
combined with the hidden Markov model (HMM) to de-
scribe gearboxes’ deterioration process. If precise models
are established, the model-based methods can satisfy the
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prediction results. However, due to the complexity of struc-
tures in the real world, it is hard to build physical models.
Data-driven methods are efficient and easy to deploy since
data-driven machine health monitoring is popular due to
the widespread deployment of low-cost sensors and their
connection to the Internet [27]. In fact, data-driven meth-
ods are designed to mine data without any understanding
of the physical processes of phenomena. Hence, in case of
scarce data, the data-driven methods are not efficient, i.e.
although the models can perform well on the validation data
set, they would not be reliable in case of scarce data. Using
a data-driven model, Tian [28] developed a method based
on an Artificial Neural Network (ANN) to achieve a more
accurate RUL of pump bearings. Guo et al. [29] employed
a recurrent neural network based-health indicator (RNN-
HI) for RUL prediction of bearings. Nistane [30] compare
prognostic models based on four approaches: Gated recur-
rent neural network (GRNN), classification and regression
tree (CART), and autoregressive-moving average models
(ARMA) in prognostics of rolling element bearings. Dong
et al. [31] optimized a modified version of SVM, namely
LS-SVM, for bearing degradation process prediction.

Despite numerous studies about RUL prediction of rotat-
ing machinery, the construction of HI and RUL prediction
for plastic gears has been largely unknown. This paper con-
structs an automatic HI generator (HIG) from the real-time
vibration data of plastic gears based on ANN architecture.
The generated HI is suitable for monitoring plastic gear
conditions during operation. However, to estimate RUL of
plastic gears, it is necessary to deploy prediction strate-
gies. There are numerous RUL prediction strategies based
on physical models or data-driven models as mentioned
above in order to highlight the efficiency of generated HI
we selected simple and common models including linear
regression (LR), estimation of parameters for Weibull dis-
tribution (EWD), and a proposed data-driven strategy using
HI and average RUL (HI-ARUL) from historical run-to-
failure tests of plastic gears. The errors between predic-
tion RUL and actual RUL are compared to evaluate the
efficiency of the selected methods. The signal processing
method for vibration data to extract the degradation status
of plastic gear and the labeling method for training data

Fig. 1 Main procedures of
a prognostic method using deep
learning-based health indicator
construction and physical-based
RUL prediction

to achieve desirable HI are two highlight contributions in
this paper. The main concepts are presented in four main
sections:

� In Sect. 2, a traditional prognostic framework using deep
learning for RUL estimation in real-time is depicted.

� In Sect. 3, backgroundmethods are introduced, including
the Fourier decomposition method, change-point detec-
tion algorithm, ANN architecture, linear regression, and
Weibull distribution estimation.

� In Sect. 4, experimental works are described, including
data acquisition, the feature extraction method, the label-
ing and pre-processing method for input data, and train-
ing of the ANN.

� In Sect. 5, results of the generated HI and RUL prediction
using three strategies are discussed.

2 Prognosis framework

Numerous prognostic methods and systems have been pub-
lished. However, it depends on specific cases of collected
data and monitored objects which suitable methods are con-
sidered and selected. A large number of run-to-failure tests
and efficient vibration data pre-processing techniques for
plastic gears are the reasons for our selected methods. In
this article, we employ a deep learning-based model for HI
generating. Then, three prediction strategies are performed
to estimate RUL. The procedure of the proposed method
includes two phases as depicted in Fig. 1.

In the offline procedure: vibration signals are collected
from run-to-failure tests of plastic gears for training. The
robust features are extracted from vibration data using pro-
posed techniques. In this scenario, the raw vibration signals
are first decomposed and reconstructed in narrow frequency
bands using the Fourier decomposition method (FDM). The
absolute mean amplitude (AMA) of reconstructed signals
are calculated and then assessed to select the most robust
features, which are low-noise and can reflect the health sta-
tus of plastic gears. The extracted robust features are pre-
processed and labeled using data normalization and change-
point detection algorithm (CDA) methods before inputting
to an ANN. The trained ANN is considered a HIG, which
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automatically generates HI of plastic gears from real-time
vibration data.

In the online procedure: the real-time run-to-failure tests
of plastic gears are carried out to evaluate the proposed
prognostic method’s performance. Correspondingly, robust
features are extracted from the two tests. The trained HIG
predicts the label of new input features every minute. The
predicted labels are considered HI of the plastic gear, which
approximates 0 when the plastic gear is healthy, reaches 1
once the plastic gear has broken, and has an increasing
trend when the plastic gear runs into degradation. The gen-
erated HI is not only able to detect early deviations from the
healthy state but also capable of forecasting time to failure
of the plastic gear by using three prediction strategies: lin-
ear regression (LR), estimation of parameters for Weibull
distribution (EWD), health indicator—average remaining
useful life (HI-ARUL).

3 Background methods

3.1 Fourier decompositionmethod

Vibration signals obtained from a gear operation test rig in-
clude DC, shaft frequency, fundamental meshing frequency,
rolling-elements noise of bearings, motor vibration, and its
harmonics [32]. The extraction of features from raw vibra-
tion signal data has met challenges due to an enormous
amount of noise and unnecessary information. The selec-
tion of robust components in collected data plays a decisive
role in achieving precise diagnostic and prognostic tasks.
This obstacle leads the authors to use the Fourier decompo-
sition method (FDM) to decompose vibration signals into
multi-components, which are then assessed to select robust
components reflecting plastic gears’ situation. The imple-
mentation process of the FDM is described in Fig. 2.

Fig. 2 The Fourier decomposition method implementation process

The figure shows a one-second vibration signal collected
from the gear operation test rig at a 100,000Hz sampling
rate representing 100,000 data points. The input signal was
represented in frequency-domain using fast Fourier trans-
form (FFT). A narrow frequency band was selected to re-
construct the signal using the inverse FFT (iFFT). A recon-
structed signal consists of 200 data points reflecting time-
domain characteristics of frequencies in the corresponding
frequency band. Reconstructed signals were then assessed
to determine the desirable narrow frequency band. In this
paper, the FDM was employed to explore a sensitive fre-
quency band (SFB) of plastic gears in Sect. 4.2. Then, ro-
bust features are calculated from the SFB, which reflect
early failure situations of plastic gear and are low-noise.

3.2 Change-point detection algorithm

The creation of change-point detection algorithm (CDA)
is a long-established issue, and numerous papers proposed
various approaches [33]. The objective of a CDA is to dis-
cover the abrupt changes in time-series data. A CDA divides
a series data into multiple parts that are searched for the
parts containing the abrupt change. For a detailed explana-
tion, we assume time series data with length m represented
by circles, as shown in Fig. 3.

The vector of data m contains a change point if it can
be split into two segments with length m1 and m2 satisfing
Eq. 1:

C .m1/ + C .m2/ + � < C .m/ (1)

where τ is a threshold value, and C represents a cost func-
tion, which could be probability density or “means,” “vari-
ance,” or “linear” value of data. By selection of a thresh-
old value and cost function, the abrupt change-point can
be detected. In this paper, we define threshold values and
compare mean values of data segments for CDA setting to
discover a rising tendency in health data of plastic gears
when degradation happened during run-to-failure tests in
Sect. 4.3.

Fig. 3 The time series data represented by circles
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Fig. 4 A multilayer perceptron including three layers using Rectified
Linear Unit (ReLU) activation

3.3 Artificial neural network

Artificial neural networks (ANNs) have emerged since the
1980s from developments in cognitive and computer sci-
ence research [34]. However, applications of ANNs have
become popular as a result of increasing computing power,
increasing data size, and advanced deep learning research.
A popular ANN model—Rumelhart’s multilayer perceptron
(MLP), consists of at least three layers of neurons: an input
layer, a hidden layer, and an output layer, as can be seen in
Fig. 4.

The computation of the network is performed by calcu-
lating the weighted sum of the input vector with weight
vector and bias. The weighted sum is then fed into the ac-
tivation function to achieve an output. The computation of
an ANN can be given as:

by = �
�

wT :x + b
�

(2)

where: x = Œx1; x2; :::; xm�T is input variable matrix with
T samples and m features, w corresponding weight matrix,
b is bias vector, and by is output response variable vector.
If the input variables are vibration data obtained from the
accelerometer, the dimension of input matrixmwill equal 1.
The activation function σ defines the output of the neural
network in a range of values avoiding the infinity value.
The activation also adds nonlinearity to the output, which
makes ANN capable to reflect complex nonlinear relation-
ship in real-world applications. There are three common
activation functions: ReLU, sigmoid, and tanh. Dependent
on the designable target and characteristic of data, the acti-
vation function has to be suitably selected.

We employed an ANN to construct a data generator to
generate HI from new input data automatically in this paper.
The extracted features from vibration data can be consid-
ered as x, the label of extracted features is the response vec-
tor by . The training dataset consists of extracted features
and labels, which are used to train the network. The trained
network’s weights and biases are used to predict the labels

of new input variables. The predicted label is considered as
the HI of the plastic gear. To achieve desirable HI, we pro-
pose a labeling method, which is described in Sect. 4.5, and
appointed ReLU as the activation function. The most com-
monly used activation function returns 0 if it receives any
negative input, but for the positive value, it returns the value
back. Hence, with the proposed labeling method, when the
testing input data is lower than almost training input data,
the trained ANN predicts a negative label. However, the
activation returns the negative predicted label as 0, which
is suitable for healthy state of plastic gears. If the predicted
label is positive, the activation returns it back.

3.4 Linear regression

Many existing algorithms are based on deep neural mod-
els, which can model the non-linear complex relationship
between the vibration data and RUL. However, in some
cases, where knowledge of a suitable degradation model is
unavailable, the linear model is the most natural choice to
use [35]. In this study, linear regression is applied to es-
timate Weibull distribution parameters using the graphical
method in Sect. 3.5. Moreover, in Sect. 5.2, the RUL of
plastic gear is estimated by fitting a linear model using the
generated HI. The linear model parameters are optimized
by minimizing the residual sum of squares between the ob-
served values in the dataset and the values predicted by the
linear approximation.

3.5 Weibull distribution estimation

The Weibull Distribution (WD) has been widely studied
since its introduction in 1951 by Professor Wallodi Weibull.
The WD can reflect the fatigue strength and fatigue life of
mechanical products and their parts under random loads
[36]. WD functions are defined in Table 1 by three param-
eters: ˇ > 0 is the shape parameter, � > 0 is the scale
parameter, and � > 0 is the location parameter. The data
vector at time t is let as xt. There are plenty of works that

Table 1 The Weibull distribution functions

Probability
density
function
(pdf)

f .xt ; ˇ; �; �/ = ˇ

�

�

xt−�

�

�ˇ−1
exp

�

−
�

xt−�

�

�ˇ
�

Cumulative
distribution
function
(cdf)

f .xt ; ˇ; �; �/ = 1 − exp

�

−
�

xt −�

�

�ˇ
�

Reliability
function

R .xt ; ˇ; �; �/ = exp

�

−
�

xt−�

�

�ˇ
�

Failure rate
function

� .xt ; ˇ; �; �/ = ˇ

�

�

xt−�

�

�ˇ−1
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Fig. 5 The influence of three
parameters on the cdf

Fig. 6 An example of using
graphical method for estimation
of parameters for Weibull cdf

applied WD to fit the degradation profiles of machinery
parts for RUL estimation, e.g. [24, 25]. In this paper, we
employ a Weibull cumulative distribution function (cdf) to
perform a physical-based prediction method. Fig. 5 shows
the shapes of the cdf with changing parameters. The lo-
cation parameter γ locates the distribution along the time
axis. Changing the value of γ has the effect of “sliding” the
distribution to the left (� < 0) or to the right (� > 0). We
commonly use the distribution at the start time t = 0. Thus,
the location parameter γ commonly is set as 0.

The common Weibull cdf model is reduced including
two parameters by setting � = 0, which is given as:

f .xt ; ˇ; �; �/ = 1 − exp

 

−

�

xt

�

�ˇ
!

(3)

If both size of the Eq. 3 are transformed by ln .1= .1 − xt//,
we get:

ln
�

1

1 − f .xt ; ˇ; �; �/

�

=
�

xt

�

�ˇ

(4)

so that:

ln

�

ln

�

1

1 − f .xt ; ˇ; �; �/

�	

= ˇlnxt − ˇln� (5)

If we let Y = ln
h

ln
�

1
1−f .xt ;ˇ;�;�/

�i

, X = lnxt , and

c = −ˇln�, then Eq. 5 represents a simple linear regression
function corresponding to:

Y = ˇX + c (6)

Hence, the two parameters of Weibull cdf can be esti-
mated by using LR. This method is a common estimation
method for WD called the graphical method [37]. Fig. 6
describes a mechanism of using the graphical method to
shape Weibull cdf for fitting assumed health data. In the
first step, the change point is identified to collect data for
fitting, which is transformed to a logarithmic scale. Then,
LR is deployed on transformed data to determine two pa-
rameters of the Weibull cdf. The predicted failure time point
is when the Weibull cdf reaches 1. The WD is implemented
after developing an HI of plastic gears in Sect. 5.3.

4 Experimental works

4.1 Data acquisition

The vibration data used in this paper are collected from
a gear operation test rig shown in Fig. 7. In this figure, ① is
an accelerometer, ② is the driving steel gear, ③ is the plastic
test gear, and ④ is a high-speed camera monitoring crack
at the tooth root of the test gear. POM (Polyoxymethylene)
spur gears are the research objects, module is 1.0mm, and
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Fig. 7 The plastic gear operation test rig [38]

Fig. 8 The testing plastic gear specification

the number of teeth is 48, as can be seen in Fig. 8. The
number of teeth of the driving steel spur gear is 67.

The testing condition was kept constant at 1000 rpm ro-
tational speed and 7Nm of torque loading applied to the
plastic gear. Each run-to-failure test of the plastic gears was
carried out from the initial stage until one tooth has broken.
The time to failure can be precisely captured by the high-
speed camera, e.g. at 266min in Fig. 9. The images cap-
tured before the break can only approximately reflect the
current health status of the plastic gear.

In this research, seven run-to-failure tests were con-
ducted to train and evaluate the proposed ANN. The initial
crack time and time to failure (when at least one tooth

Fig. 9 Captured images from
the high-speed camera during
a run-to-failure test

Table 2 The failure time monitored by the high-speed camera

Failure Training test Evaluation test

Test #1 Test #2 Test #3 Test #4 Test #5 Test A Test B

Initial crack [min] 144 139 144 125 142 225 133

Broken [min] 182 172 174 167 172 266 163

has broken) were determined by monitoring the high-speed
camera images. Results are listed in Table 2.

In each run-to-failure test, the data acquisition system
collected one-second vibration data every one minute at
100,000Hz sampling frequency. Hence, each one-second
vibration data consists of 100,000 data points. As the ro-
tational speed is 1000rpm, the number of teeth of plastic
gear is 48, the rotational frequency results as 16.67Hz, and
the fundamental gear meshing frequency (GMF) would be
800.16Hz.

4.2 Feature extraction and selection

Extraction of robust features from raw and noisy vibra-
tion data plays a crucial role in tracking the degradation or
health status of a gear. Typically, measurement values are
efficiently extracted by using methods such as peaks, ab-
solute mean amplitude (AMA), root mean square (RMS),
Kurtosis factor (KF) [16], as can be seen in Table 3.

However, the characteristics of plastic gears are different
from metal gears, e.g. thermal expansion, high deforma-
tion during operation, often dry-running operation [11]. As
a result, the feature extraction from vibration data of plastic
gear has met challenges. For example, Fig. 10 shows noisy
features extracted from a run-to-failure test of plastic gear
using the four mention statistical methods.

Thus, we propose a feature extraction method using
FDM based on the following reasons. In gear meshing
operation, the main vibration causes are fundamental gear
meshing frequency and its harmonics. Any errors in gear
manufacture or assembly or degradation will result in fre-
quency sidebands surrounded GMF reflecting one per rev-
olution modulation [39]. Fig. 11 shows frequency-domain
representation of one-second vibration data for a healthy
and a cracked plastic gear.

As can be seen, three orders of GMF harmonic, their
sideband, and the nonlinearity frequencies of the test rig,
e.g. 24Hz, are the main vibration frequencies. As shown in
the enlarging plot, there is an occurrence of fundamental
frequencies as shaft frequency in low-frequency band and
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Table 3 The four common statistic methods for feature extraction

Peak MAX jx .i/j
Absolute mean
amplitude
(AMA)

1
N

PN
i jx .i/j

Root mean
square (RMS)

q

1
N

PN
i x .i/

2

Kurtosis factor
(KF)

1
N

PN
i jx .i/j4=

�
q

1
N

PN
i x .i/

2
�4

an increasing amplitude of frequency sidebands surrounded
GMFs when the crack happened. This phenomenon was
also reported in simulation modeling of gear fault based
on stiffness [40]. The emergence of increasing amplitude
in a low-frequency band when the crack happened lead
the authors to utilize specific narrow frequency bands for
tracking the deterioration of plastic gears. A specific nar-
row frequency band, which reflects early failure and shows
low noise, can be considered as SFB. The scheme of the
proposed feature extraction method is shown in Fig. 12.
From frequency-domain of vibration data, narrow fre-
quency bands are selected to reconstruct data using inverse
FFT. The AMA of reconstructed signals are assessed and
compared to determine the SFB.

Fig. 10 A noisy features ex-
tracted from raw vibration data
using statistical methods

Fig. 11 Frequency-domain rep-
resentations of one-second vi-
bration data for a healthy and
a cracked plastic gear

Fig. 12 A feature extraction scheme using FDM and AMA

Fig. 13 shows AMA values of reconstructed data from
specific frequency bands. We investigated a frequency band
from [0Hz, 1700Hz], which covers two fundamental GMF
at 800.16Hz, 1600.32Hz, and their sidebands.

As can be seen, the result of AMA of reconstructed
data from three frequency bands [1Hz, 100Hz], [700Hz,
900Hz], [1500Hz, 1700Hz] are noisy. In the other cases,
the degradation of plastic gear results in an increase of
AMA of reconstructed signals from remain frequency bands
during the test. Among the remaining frequency bands, the
AMA of reconstructed data from frequency band [300Hz,
500Hz] shows a low-noise, early changing tendency, and
low amplitude. Especially, the small value of AMA in the
selected frequency band [300Hz, 500Hz] is evidence of
a small effect from the main vibration frequencies. There-
fore, we selected the AMA of reconstructed data from fre-
quency band [300Hz, 500Hz] as robust extracted features
of plastic gear for the next procedures.
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Fig. 13 AMA of reconstructed
data in various specific narrow
frequency bands

4.3 Change-point detection of health condition

The extracted AMA from frequency band [300Hz, 500Hz]
includes three main significant areas, as can be seen in
Fig. 14. There is an increasing tendency of AMA before
the initial crack time, in the following designated as the
changing area. The initial crack time is approximately cap-
tured by the high-speed camera in the initial crack area [41].
Meanwhile, the break is precisely detected by the high-
speed camera when at least one tooth of plastic gear has
broken.

Until now, there is a lack of explanation about the appear-
ance of a change in health status extracted from vibration
data before the initial crack happened in plastic gears. Sev-
eral previous studies noted that wear failure, thermal failure,
and fatigue failure are typical failure types that happened
during a run-to-failure test of plastic gear [11, 42]. Further-

Fig. 14 The situations of plastic gear related to AMA and AAMA

more, plastic gears work without lubrication, which may
cause other types of failure before fatigue crack happened.
Despite challenges in the explanation about the relationship
between vibration monitoring and specific failure types of
plastic gears, CDA shows an efficient performance in track-
ing changes in health data. To improve the quality of CDA
application, we calculate average absolute mean amplitude
(AAMA), which is given:

AAMA .i/ =
1

n

i
X

i−n

AMA .i/ (7)

where (n= 5) is the sliding window length. The current
value of AAMA is the average of five preceding AMA.
This calculation makes data smooth based on historical
data without using unknown future data. Using the prin-
ciple of CDA explained in Sect. 2.1, the change point of
data can be detected by comparison of the mean values of
data segments using a specific threshold. Table 4 summa-
rizes the detected change-point time of seven run-to-failure
tests when the threshold decreases from 10–0.001. In this
table, CDA discovers a constant change point if the thresh-
old gets a high value, i.e., threshold 10 or 5. Besides, if the
threshold takes a small value, i.e., threshold ≤0.01, CDA
reveals early change points.

In this paper, we considered three specific thresholds
at 10, 1, and 0.01 reflecting change-point detection from late
to early. Fig. 15 presents an example of the implementation
of CDA in Test #1 corresponding to three thresholds. In the
figure, the red solid line is AAMA, and the blue solid lines
are the mean values of divided segments of data by CDA.
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Table 4 The detected change-points of training dataset

Threshold Change-point time [min]

Test #1 Test #2 Test #3 Test #4 Test #5 Test A Test B

10 149 142 129 150 131 218 135

5 149 142 129 142 131 218 135

1 121 131 123 131 104 204 106

0.5 121 129 109 131 104 192 102

0.1 89 126 94 107 97 191 90

0.05 89 106 88 76 97 180 89

0.01 88 106 86 78 95 180 81

0.005 87 106 86 78 95 168 81

0.001 86 105 86 79 95 168 81

Fig. 15 An example of the
change-point detection by using
CDA

4.4 Data normalization

Data normalization is an important step that guarantees the
learning of the deep learning model reaches stable con-
vergence of network weights and biases. Unscaled input
data can result in a slow learning process or exploding gra-
dients causing the failure of the learning process. In this
work, the AAMA was normalized to be within a range
of [0, 1], namely NAAMA, using the min/max normaliza-
tion method. Besides, a scaler of the training dataset was
established to normalize new real-time testing data with un-
known extreme values. In other words, the new real-time
testing data will be normalized to be within a range of [0, 1]
using minimum and maximum values of the historical train-
ing data set. In the unusual case, if there exist extreme val-
ues in a new data set that is out of the training data set,
it will be necessary to update and re-train the HIG. The
scheme of real-time testing data normalization is depicted

Fig. 16 The real-time data normalization scheme

in Fig. 16. The result of NAAMA from five run-to-fail-
ure tests from the data normalization process is shown in
Fig. 17.

4.5 Learning of ANN

In this paper, we utilize supervised learning of ANN as
a regressor to map the relationship between NAAMA and
labels, which required data composed of labels. This means
that NAAMA and design labels of training data are used to
train the ANN. Then, the trained ANN is used to predict
the labels of new input NAAMA.

Fig. 17 Data normalization results of the training dataset
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Fig. 18 Labeling method for training data in three cases

Fig. 19 Random sub-training dataset and validation dataset

In the labeling method, to label NAAMA, we proposed
a two-piece-wise linear model, which consists of two sec-
tions: healthy states of plastic gear from the first stage
until change-point time detected using CDA, and perfor-
mance degradation from the change-point time until plastic
gear has broken. In this method, the broken time point is
precisely identified by the high-speed camera. While the
change points have been caught by CDA using three spe-
cific thresholds. Fig. 18 shows three cases of the labeling
method for five run-to-failure tests corresponding to three
change-point determinations.

Fig. 20 Cross-entropy loss re-
sults of learning

Randomization of training data ensures that the learning
of ANNs is generalized. Hence, after labeling, the training
dataset was randomized and divided into two groups with
a ratio of 92% for the sub-training dataset and 8% for the
validation dataset, as can be seen in Fig. 19.

The batch size was taken as 16. The backpropagation al-
gorithm and gradient descent method were used to optimize
the learning procedure [43]. The training time consumed
around three seconds on an i7 6700 processor at 3.4GHz
with 16GB memory. Cross-entropy loss function and root
mean square error (RMSE) are two metrics used to evaluate
the learning performance of ANN. Loss results express the
fast convergence of learning after less than 10 iterations, as
can be seen in Fig. 20.

RMSE computes the difference between actual labels
and predicted labels to validate performance of trained
ANN is given by:

RMSE =

v

u

u

t

1

n

n
X

i=1

.yi −byi /
2 (8)

where yi is the actual value, byi is the predicted value, and
n is the number of observations. In Fig. 21, the green line
is the actual labels of the input NAAMA in the validation
dataset, while the pink line is predicted labels computed by
trained ANN. The labeling method in Case 3 is able to re-
liably determine the early change point, however, the small
RMSE of 0.390 proved that the learning process of the
ANN with the labeling method in Case 1 is more accurate.
Additionally, the evaluation of RMSE in Table 5 consid-
ering three cases of labeling method and various sizes of
ANN, reveals the optimal configuration of this ANN. As
mention in Sect. 3.3, a three layer ANN is sufficient for the
large majority of problems. For example, Model #1 in the
table consists of one input layer with 64 units, one hidden
layer with 64 units, and one output layer with one unit.
With an increase in the number of hidden layers, such as
Model #2–#5, the change of RMSE is negligible. This re-
sult proved that a simple ANN with three basic layers is
sufficient for data in this study.
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Fig. 21 RMSE between pre-
dicted labels and actual labels of
NAAMA

Table 5 Effect of the size of ANN architecture on RMSE

Model Number of neural in layers RMSE

Case 1 Case 2 Case 3

#1 64—64—1 0.390 0.422 0.470

#2 64—64—32—1 0.388 0.431 0.464

#3 64—64—32—16—1 0.389 0.420 0.469

#4 64—64—32—16—8—1 0.376 0.426 0.473

#5 64—64—32—16—8—4—1 0.386 0.418 0.470

5 Results and discussion

In this section, the HI of the plastic gear is first introduced.
The generated HI can be used to detect early deviations
from the healthy state and is capable to estimate the RUL
of plastic gears using three prediction strategies.

Fig. 22 Generated HI of Test A
and Test B in three cases of
labeling method

5.1 Health indicator of plastic gear

With the purpose of generating HI for plastic gears, two
real-time run-to-failure tests, namely Test A and Test B,
were pre-processed as an input for the trained ANN, called
HIG. Firstly, NAAMA was extracted from the raw vibration
data of the two tests. Then the extracted NAAMA was fed
into the HIG to predict the label. If the predicted label
efficiently reflects the health status of plastic gear, it will be
suitable to be considered as HI of the plastic gear. Fig. 22
shows the result of HI generated from the two real-time
tests using the HIG. The black solid line represents the
input NAAMA. The green solid line is the actual label and
the pink solid line is the output predicted label. In which,
the actual label is the piece-wise model generated by the
proposed labeling method as the explanation in Sect. 4.5.
The actual label reflects perfectly health status of the plastic
gear including the healthy situation with value 0, the break
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Fig. 23 The change-points of
predicted labels

with value 1, and the linear degradation status with values
from 0 up to 1. However, the generating of actual labels only
could be determined using CDA when the run-to-failure
tests finished. Thus, the actual label is used to evaluate
the predicted label considering the possibility of using the
predicted label as the HI of the plastic gear.

As can be seen that the NAAMA can reflect the condi-
tion of plastic gear with low values for healthy status and
increasing values during degradation period. However, the
predicted label of NAAMA expresses outstanding charac-
teristics to be considered as HI as following.

� The first characteristic: The predicted label can be used to
efficiently represent the healthy situation of plastic gears
with the value approximated the absolute 0 value. In ad-
dition, with the labeling method Case 3, the predicted la-

Table 6 Comparison between change-points of the predicted labels and the actual labels

Indicator Test A Test B

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Predicted label 218 201 180 135 105 81

Actual label 218 204 180 135 106 81

Table 7 Comparison between values of NAAMA and the predicted labels

Indicator Test A Test B

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

NAAMA 0.826 0.826 0.826 0.801 0.801 0.801

Predicted label 0.908 0.913 0.994 0.881 0.895 0.980

Actual label 1 1 1 1 1 1

bel may reflect the early stage of plastic gear with a high
wear rate [42].

� The second characteristic: the change-point of the pre-
dicted label reveals deviations from the healthy state
when it takes a value greater than a threshold, as shown
in Fig. 23. The threshold should be greater than 0 and
small enough to early detect the change of the HI from 0,
e.g. the minimum threshold 0.001 of using CDA as re-
sults in Sect. 4.3, The change point of the predicted
label is equivalent to the change point of the actual label
detected by using CDA, as shown in Table 6.

� The third characteristic: it is hard to design an absolute
precise health indicator, which equals 1 when a plastic
gear is broken due to the imperfections in gear manu-
facturing and in experimental settings, e.g. gear geomet-
ric errors or the difference in the orientation and position

K



582 Forsch Ingenieurwes (2022) 86:569–585

of gears between an experimental situation and a perfect
situation. However, at the time to failure, the predicted
labels are greater than the corresponding NAAMA and
approach absolute 1 value, as seen in Table 7. This speci-
fication reveals the potential of accuracy improvement of
prognostic tasks based on value thresholds of HI.

With the above mention characteristics, we use the pre-
dicted label as the HI for plastic gear. The generated HI not
only reflects situations of plastic gear during the working
time but also is capable to release efficient and precise di-
agnosis results even when using common and simple RUL
prediction strategies.

5.2 RUL estimation

Three strategies were applied to predict the RUL of plastic
gears with the HI generated from two evaluation tests. The
HI in the healthy situation of plastic gear approximately
equals 0 and is not useful for prediction tasks. The predic-
tion strategies could be performed using the HI collected
from the change-point until the current time when the pre-
diction is made, namely “fitting HI”. Fig. 24 illustrates the
utilization of three prediction strategies in the same scenar-
ios: Test A, labeling method Case 3 with change-point of
HI is at 180min and the current time is at 200min for the
prediction of the time to failure.

Three prediction strategies are described by the follow-
ing mechanisms.

The LR strategy matches a linear model close to the fitting
HI. The predicted time to failure is decided when the linear
model reaches threshold 1, as can be seen in Fig. 24a.

The EWD strategy utilizes the graphical method to estimate
two parameters of Weibull cdf from fitting HI data. The
predicted time to failure is estimated when the Weibull cdf
model equals 1, as can be seen in Fig. 24b.

Fig. 24 An example for the
prediction of time to failure
using three strategies

a b c

TheHI-ARUL strategy employs HI and average RUL of con-
ducted run-to-failure tests to estimate the time to failure, as
can be seen in Fig. 24c. Naturally, the RUL of plastic gear
by percentage can be calculated from the generated HI us-
ing Eq. 9:

RULPred_Percentage = .1 −HI/ � 100% (9)

Where RULPred_Percentage is the predicted RUL in per-
centage and HI is the current health indicator. However, the
predicted RUL can also be specifically calculated by time
unit according to:

RULPred_Time = RULPred_Percentage � RULAverage (10)

Where RULPred_Time is the predicted RUL in time unit
and RULAverage is the average RUL measuring by time cal-
culated from historical run-to-failure tests. Table 8 shows
the average RUL calculated from five run-to-failure tests
considering three cases of change-point detection. In this
table, the RUL of plastic gear in each case is computed
as the subtraction of time to failure and change-point time.
Accordingly, in three cases of change-point detection, the
average RUL of plastic gears is 33.4, 51.4, or 82.8min,
respectively.

The time to failure predicted by the HI-ARUL strategy
can be calculated as:

TimePred_Broken = TimeCurrent + RULPred_Time (11)

Where, TimePred_Broken is the predicted time to failure,
TimeCurrent is the current time when the prediction is made.
For the example depicted in Fig. 24c, as the change-point
time of HI is 180min, the prediction is made at 200min,
and the HI at 200min equals 0.2711, the results are:

RULPred_Percentage = .1 − 0.2711/ � 100% = 72.89% (12)

RULPred_Time = 72.89% � 82.8 = 60.35.minutes/ (13)

TimePred_Broken = 200 + 60.35 = 260.35.minutes/ (14)
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Table 8 Average RUL of five run-to-failure tests corresponding three cases

Test Broken time
[min]

Change-point time [min] RUL [min]

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Test #1 182 149 121 88 33 61 94

Test #2 172 142 131 106 30 41 66

Test #3 174 129 123 86 45 51 88

Test #4 167 150 131 78 17 36 89

Test #5 172 130 104 95 42 68 77

Average RUL 33.4 51.4 82.8

Table 9 Prediction errors using LR for Test A

Case Change-point
time [min]

Error [%]

190 min 200 min 210 min 220 min 230 min 240 min 250 min 260 min 266 min

1 218 – – – 0.75 4.13 4.13 1.88 1.50 2.63

2 201 – – 3.76 2.63 4.88 4.51 2.63 0 1.13

3 180 – 4.13 8.64 8.27 7.89 6.76 5.26 3.38 2.25

Table 10 Prediction errors using LR for Test B

Case Change-point
time [min]

Error [%]

90 min 100 min 110 min 120 min 130 min 140 min 150 min 160 min 162 min

1 135 – – – – – 2.47 9.87 8.02 6.79

2 105 – – – 46.9 37.6 12.9 9.26 8.02 7.41

3 81 – 6.79 3.08 3.70 6.79 4.93 4.93 4.93 4.93

Table 11 Prediction errors using EWD for Test A

Case Change-point
time [min]

Error [%]

190 min 200 min 210 min 220 min 230 min 240 min 250 min 260 min 266 min

1 218 – – – 10.9 8.27 4.13 0.37 6.01 8.27

2 201 – – 13.1 9.02 5.64 2.25 1.50 6.01 8.27

3 180 14.6 16.9 14.3 10.5 7.14 3.76 0.75 2.63 4.13

Table 12 Prediction errors using EWD for Test B

Case Change-point
time [min]

Error [%]

90 min 100 min 110 min 120 min 130 min 140 min 150 min 160 min 162 min

1 135 – – – – – 0.00 15.4 16.6 15.4

2 105 – – 0.00 2.46 2.46 4.32 8.02 11.7 12.3

3 81 – – 10.5 1.23 0.61 1.23 3.70 6.79 6.79

The actual time to failure captured by the high-speed
camera in test A is at 266min. Finally, the predicted RUL
by time unit of plastic gear can be calculated as:

RULPred_Time = TimePred_Broken − TimeCurrent (15)

To compare the effectiveness of the three prediction
strategies mentioned above, Table 9, 10, 11, 12, 13 and 14
record errors between the predicted time to failure and the
actual time to failure during the working time of the two
real-time tests. The prediction is making every ten minutes
from change-point time until the end of the test using and

comparing three cases of labeling method. The error can
be simply calculated as:

Error =
�

1 −
jTimePred_Broken − TimeActual_Brokenj

TimeActual_Broken

�

� 100%
(16)

Where TimeActual_Broken is the actual time to failure cap-
tured by the high-speed camera. Values of errors are smaller
than 5%, which express a good prediction performance, are
shown in italics. However, it is impossible to predict the
broken time of plastic gears before the change point hap-
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Table 13 Prediction errors using HI-ARUL for Test A

Case Change-point
time [min]

Error [%]

190 min 200 min 210 min 220 min 230 min 240 min 250 min 260 min 266 min

1 218 – – – 5.80 5.39 5.71 2.04 1.45 1.15

2 201 – – 4.24 5.22 5.28 5.17 1.51 1.99 1.68

3 180 1.02 2.12 3.84 5.68 5.61 5.86 2.24 1.19 0.19

Table 14 Prediction errors using HI-ARUL for Test B

Case Change-point
time [min]

Error [%]

90 min 100 min 110 min 90 min 130 min 140 min 90 min 160 min 162 min

1 135 – – – – – 1.10 1.71 4.33 2.45

2 105 – – 1.34 1.92 6.15 1.30 1.84 5.21 3.33

3 81 1.92 2.44 1.17 2.60 6.63 0.72 1.43 3.74 1.03

pened when the HI approximately equals 0. Hence, in these
scenarios, the results are shown as dashes.

According to the prediction errors listed in Table 13
and 14, HI-ARUL expresses outstanding prediction results.
The HI-ARUL method can perform a prediction at the very
early stage, when the change-point time of HI has been
detected, with errors are 1.02% and 1.92%. The errors are
slightly changed during the whole working time of plas-
tic gears. However, the fluctuation area in degradation data
[18] is unavoidable causing the higher error. For example,
in Table 14, the error of prediction at 130min is 6.63% for
Test B using the labeling method Case 3. Additionally, the
accuracy of this method depends on the average RUL of
the dataset. Test A has a long time of test (266min), which
is different from almost all tests, causing higher errors than
Test B. Table 13 proves the robustness of the proposed
method in comparison with the other two prediction strate-
gies even when the real-time input test is different from the
tests for training.

Although LR and EWD are established methods used for
RUL prediction of rotating machinery but have met chal-
lenges. For example, LR can be adaptive with Test A but
not Test B when the HI is largely different from the linear
model. The EWD is based on linear regression of graphical
method to estimate parameters. A slight error of linear ap-
proximation in the graphical method can cause a significant
error in shaping WD. Additionally, in the initial stage of
prediction, e.g., in Table 12, errors are high when the EWD
method is performed at the current time of 90 or 100min
even when the change-point time is at 81min resulting in
blank results.

6 Conclusion

Health indicator construction is the key to achieve a precise
RUL prediction, which is crucial to perform prognostics
and health management of rotating machinery for failure

prevention and maintenance cost reduction. In this paper,
HI of plastic gears were automatically generated from two
real-time run-to-failure tests by HIG based on ANN. The
HIG was trained on input data using data pre-processing
techniques (FDM and AMA for robust feature extraction,
CDA for labeling method). Besides, the sensitivity to failure
of the HIG was considered corresponding to three cases of
the labeling method. With the most sensitive level (Case 3),
the HI is used not only for early failure detection but also
to predict the time to failure of plastic gears from the ini-
tial stage of performance degradation. Among three con-
sidered prediction strategies, the HI-ARUL expresses an
outstanding performance with acceptable errors (<5%) and
the RUL predictability from the early change point of HI
during the whole working time of plastic gear. Although the
construction and evaluation of the data generator are based
on a limited amount of data from seven run-to-failure tests,
the proposed method reveals applicability in monitoring and
maintenance for plastic gears. Especially, the transferring
of proposed techniques to an end-to-end structure based on
ANN, which automatically outputs HI and RUL estimation,
can be convenient for users.
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