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Abstract
The cycloid planetary gear reducers in so-called Cyclo-type design are developed for a long time and already used in many
applications. However, the analysis of performance under some extreme conditions becomes more important because the
demand for accuracy increases. Among them, bearing clearance play a significant role for contact characteristics of the
drives. It is not only because the transmission accuracy can be affected, but also because the load capacity of bearings
would be reduced accordingly. Because of presence of bearing clearances, the cycloid disc is floating with three degree
of freedom in the planar mechanism. This condition will cause more complicate in the load analysis for multiple contact
pairs. The aim of the paper is thus to analyse contact characteristics of the relevant contact pairs in the Cyclo-type gear
drives considering not only the influences of the crank bearing and the pin-hole clearances, but also profile modification
of cycloid flank. A computerized loaded tooth contact analysis (LTCA) approach based on influence coefficient method
is proposed in the paper for analysis of Cyclo-type drives having clearances. The effects of the clearances on contact
characteristics are afterwards analysed by using an example from industry. The variation of shared load, contact stress on
each individual cycloid tooth and on bearing roller, as well as the load of pin-hole are simulated with comparison of three
different amounts of bearing clearance. The results show that the bearing clearances affect the loads acting on the pins of
the-pin-shaft more strongly than the bearing, and have almost no significant influence on the contact with the pins of the
pin wheel. The pin-hole clearance has less influences on the acting loads on the contact pairs, but affects significantly the
peak-to-peak value of transmission errors.
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Kontakteigenschaften von Zykloiden-Planetengetrieben unter Berücksichtigung von Spiel und
Lagerluft

Zusammenfassung
Die Zykloiden-Planetengetriebe in sogenannter Cyclo-Bauweise werden seit langem entwickelt und bereits in vielen An-
wendungen eingesetzt. Die Analyse der Leistung unter einigen extremen Bedingungen wird jedoch wichtiger, da die
Anforderungen an die Genauigkeit steigen. Unter anderem spielt die Lagerluft eine wesentliche Rolle für die Kontaktei-
genschaften der Antriebe. Dies liegt nicht nur daran, dass die Übertragungsgenauigkeit beeinträchtigt werden kann, sondern
auch, weil die Tragfähigkeit der Lager entsprechend reduziert wird. Wegen des Vorhandenseins von Lagerluft schwebt die
Zykloidenscheibe mit drei Freiheitsgraden im planaren Getriebe. Diese Bedingung wird die Lastanalyse für mehrere Kon-
taktpaare komplizierter machen. Ziel der Arbeit ist es daher, die Kontakteigenschaften der relevanten Kontaktpaare in den
Zykloidengetrieben unter Berücksichtigung der Einflüsse der Kurbellagerlüfte und der Bolzen-Bohrung-Spiele, aber auch
der Profilmodifikation der Zykloidenflanke zu analysieren. Ein computergestützter belasteter Kontaktanalyse Ansatz auf
der Grundlage eines Einflusskoeffizientenverfahrens wird in disem Artikel zur Analyse von Cyclo-Antrieben mit Spiel und
Lagerluft vorgeschlagen. Die Auswirkungen von Lagerluft und Spiel auf die Kontakteigenschaften werden anschließend
anhand eines Beispiels aus der Industrie analysiert. Die Variation der geteilten Belastung, der Kontaktspannung an jedem
einzelnen Zykloidenzahn und an der Lagerrolle sowie die Belastung der Bolzen-Bohrung werden durch den Vergleich von
drei verschiedenen Lagerluftgrößen simuliert. Die Ergebnisse zeigen, dass die Lagerluft die auf die Zapfen der Zapfenwelle
wirkenden Belastungen stärker beeinflussen als das Lager und den Kontakt mit den Triebstockverzahnung des Innenrades
fast nicht wesentlich beeinflussen. Das Pin-Bohrung-Spiel hat weniger Einfluss auf die einwirkenden Belastungen der
Kontaktpaare, beeinflusst aber maßgeblich den Spitze-Tal-Wert von Übertragungsfehlern.

1 Introduction

In general, the cycloid planetary gear reducers can be di-
vided into two different types of design, so-called Cyclo-
type and RV-type. The Cyclo reducer [2] is characterized by
two coaxial components, i.e. the crank and the pin-wheel,
one or two cycloid discs as planets, as well as a special out-
put mechanism. This output mechanism is usually designed
as a pin-hole parallel mechanism with a ratio i= +1 to con-
vert the rotational motion from the eccentrically mounted
cycloid disc to the coaxial transmission of the low-speed
pin-shaft. The RV-reducer, on the other hand, combines
a planetary gear stage and a cycloid gear stage. It consists
of three coaxial components, i.e., a sun gear of planetary
stage, a pin-wheel of cycloid stage, as well as a planetary
carrier for both stages. The eccentric motion of the cycloid
disc is realized by two or three cranks which are connected
with the planet gears. The common advantages of the two
types of gear reducers are high gear ratio and high ability to
absorb impact. In general, RV-reducers have less backlash
and larger stiffness than Cyclo-reducer. However, Cyclo-
reducers have lower manufacturing cost and more com-
pact design than RV-reducers. Therefore, Cyclo-reducers
are widely used in the application where lower precision
and frequent reverse motion are required. One of the prac-
tical examples is the wheel gearbox of automatic guided
vehicles (AGV), see Fig. 1.

In order to achieve higher performance, the analysis of
the cycloid gear drive to select suitable parameters is es-
sential. This analysis work is mostly carried out under ideal

conditions. If manufacturing and assembly errors are con-
sidered to simulate the performances under actual condi-
tions, the backlash between the teeth, the clearances in the
crank-bearing and the output mechanism cannot be ignored.
In particular, the contact characteristics, such as the un-
loaded/loaded transmission errors, the shared loads and the
contact stress on each individual contact pairs in the drive
are affected strongly by the backlash and the clearances.
As a consequence, service life of the main components
like crank-bearings or cycloid flanks/pins will be reduced.
However, the load analysis for multiple contact pairs be-
comes more complicate in such the actual situation, i.e., in
presence of bearing clearances, because the cycloid disc is
floating with three degrees of freedom in planar kinematics.
Among the various types of contact pairs in the Cyclo-re-
ducer, the contact of bearing rollers is the most significant.

There are many bearing models for solving the bearing
loads with clearance, such as static bearing model, quasi-
static bearing model and numerical approach [3]. In the sig-
nification reference book [4], Harris offered useful princi-
ples for designing rolling bearings. The essential relation for
calculating loads in rolling bearing elements with bearing
clearances under external loads are also provided for refer-
ence. Ji [5] derived a static bearing analysis model based
on Stribeck’s model and simulated contact stress between
rollers and raceways with considering errors of roller diam-
eter. Filetti [6] studied on bearing load distribution based
on Jone’s contact model, and built a mathematical model
of outer race and fixed structure that are simplified in el-
ementary beams for application in finite element method.
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Fig. 1 AGV with Cyclo-type
gear drive [1]

The bearing load can be exactly calculated with considering
structural deformations and the results were also verified by
experiment. Bourdon [7] established finite element method
by introducing stiffness matrices based on Hertzian hy-
potheses to simulate the bearing nonlinear static behaviour
with variation of bearing clearance and other factors. Szu-
minski [8] built an analysis model for bearing roller based
on the Hertzian contact theory to determine the radial and
axial stiffness of rolling bearing that relate to adjustable
external load and the kinematic characteristic. Edwin [9]
applied a numerical approach in mechanical event simula-
tion based on the Harris-Jones model to analyse the con-
tact loading of cylindrical roller bearing with different load
types on shaft. Qian [10] used software SIMPACK to study
the dynamic behaviours of cylindrical roller bearings due to
the influence of cage center orbit with different clearances.
Unlike the models mentioned above, Kabus [11] established
a six-dof model of roller contact based on non-Hertizan the-
ory so as to analyse tapered roller bearings with considering
profile modification of rollers and axis misalignment.

Additionally, modelling the cycloid gear drive with con-
sidering bearing clearance is an essential study. Xu [12]
established a dynamic model for Cyclo-type gear drive
without considering bearing clearance. The analysis results
show that the presence of bearing does not affect the loaded
contact characteristics of cycloid tooth pairs. Apart from
this research, Xu [13] also proposed a dynamic contact
model for RV-type gear reducer with considering bearing
clearance. The results reveal that the bearing load will in-
crease and the contact force on pin-wheel decreases in most
rotation angle of the crank shaft if the radial bearing clear-
ances are present. According to the principle from Harris,

Huang [14] proposed an optimization approach consider-
ing bearing clearance for the RV-type gear drive, so as to
evaluate the modified parameters of roller profiles for better
fatigue life of the crank bearing.

The aim of the paper is to analyse the contact char-
acteristics of the relevant contact pairs in the “Cyclo-type”
gear reducer considering the effects of backlashes and clear-
ances. A new LTCA model is expanded from the developed
model proposed in the previous study [15–18]. Three con-
tact pairs are included herein: the pairs of the cycloid flank
with the pins of pin-wheel, the pairs of the crank bearing
rollers and the inner/outer race, as well as the pairs of the
holes on cycloid disc and the pins of the pin shaft. Not
only the clearances or the backlashes, but also the profile
modification of the cycloid flank are also considered in this
model. An algorithm for iterative calculation is developed
to solve the contact problem of the floating cycloid disc
due to the clearances, where the final position of the cy-
cloid disc and the angular displacement of the crank are
the variables for convergence. An example from industry
is studied in the paper using the proposed approach. Be-
sides the transmission errors, the variation of the shared
load and the contact stress on each individual contact pairs
are afterwards simulated considering the influences of dif-
ferent values of clearance. The influences of clearances on
the contact characteristics are studied systematically. Some
findings from the influence analysis results of clearances
are given.
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Fig. 2 Modification amount for
single cycloid tooth

2 Fundamentals for the cycloid gear drive

The contact analysis of the cycloid gear drive having rele-
vant clearances is based on the analysis methods under the
clearance-free condition. Related theoretical relations of the
model are introduced as follows.

2.1 Equations of themodified cycloid tooth profile

The flank modification of cycloid gear is necessary to form
the backlash in the cycloid gear drive. From the equations of
theoretical cycloid tooth profile [15–18], the cycloid flank
can be modified by the variation of the pin-wheel radius rP
and the pitch circle radius RC of the pin-wheel, i.e., so-called
equidistant offset and shifting offset modification types, re-
spectively, as shown in Fig. 2.

The equations of modified cycloid tooth profile can be
expressed as the equation [18]:

rC .�/ = .RC + �RC/ � ei� − e � ei.iC��/

− .rP + �rP / � ei.�+ .�//
(1)

2.2 Tooth contact analysis (TCA)

The first step to analyze the contact characteristics of the
cycloid gear drive is to determine the positions of the con-
tact points of the cycloid disc with the pin-wheel, the pin-
shaft and the bearing rollers, as well as the corresponding
transmission errors.

2.2.1 Pin-wheel contact conditions

The meshing relation is based on the relative motion of
the cycloid disc and each pin. As the relation shown in
Fig. 3, the cycloid disc is regarded as stationary, the pin-
wheel revolves relatively around the center of cycloid disc
with the angle φC, and also rotates around its center OCA,0

with an angle φP (= φC / u). Each pin i contacts the cycloid

Fig. 3 Determination of the
contact point of the modified
cycloid profile with the pin (φP

is given)

flank at point MPWi. The position of each pin can be thus
defined by two conditions due to the relative motion of the
pin-wheel:

� The locus due to the revolution. The center CPWi of each
pin moves in a circle with a radius e (equal to eccentricity
of the crank) around the center Cei due to the revolution
of the pin-wheel.

� The locus due to the tangency condition of contact. The
center CPWi of each pin must locate on the equidistant
curve of the cycloid profile with a distance equal to the
pin raius rP due to the tangency condition of tooth con-
tact.

The contact position of center CPWi of pin i is therefore
the intersecting point of both curves mentioned above. If
the rotating angle of the pin-wheel φP is given, the rotation
angle of the crankshafts φCi for each pin can be calculated
accordingly. In case of modified cycloid profile, however,
the angles φCi of each pin are not the same. More details
can be found in [18].

2.2.2 Hole-pin contact condition

Ideally, each pin of the pin-shaft is located evenly and con-
tacts the pin hole of cycloid disc simultaneously. In general,
only a half of pins are in working to transmit the motion.
This contact condition can be determined by using two vec-
tors, shown in Fig. 4:
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Fig. 4 Effective contact pair of
pin-shaft

� Normal vector nOCCPSH,i: The normal vector is perpendic-
ular to the center line of the cycloid disc center OC and
the pin-hole center CPSH,i. It is defined as:

nOCCPSH;i =
�
− sin �PSH;i ; cos �PSH;i

�T
(2)

with the corresponding azimuth angle θPSH,i:

�PSH;i = .i − 1/ � �PS = .i − 1/ � 2�=zPS (3)

� Position vector uOCAOC: This vector is defined as the po-
sition of the pin center of pin-shaft CPS,i relative to the
pin hole on the cycloid disc CPSH,i. In error-free case, it is
parallel to the position vector of the pin-wheel center OCA

relative to the cycloid disc center OC, namely:

uOCAOC = Œ− cos .� � 'C/ ;− sin .� � 'C/�T (4)

where the coefficient λ is equal to +1 when the crank shaft
rotates in counterclockwise direction, and –1 for clockwise
direction. Pin i of the pin-shaft is effective for transmission
if the inner product of these two vectors is positive, and
versa. The effective contact pair of hole-pin can be thus
determined accordingly.

2.2.3 Roller bearing contact condition

The contact points on bearing rollers can be determined
simply based on the geometric relation of the centers of
the roller CBR,i and the inner or outer race OC, respectively.
Details are not mentioned here. However, it is necessary to
determine which roller should be involved into the calcula-
tion in order to reduce the calculation time and to increase
the calculation accuracy.

With a predicted load Fpredict due to the radial δr and the
tangential δt displacements of the cycloid disc, the bearing
roller within the loaded zone with a range of ±θpredict can be
regarded as in contact. Although θpredict is 90° for ideal con-
dition, the angle θpredict in the paper will be selected as larger
than 90° due to deviation of the prediction direction from

Fig. 5 Predicting effective con-
tact pairs of rollers

the actual. The condition for effective roller is represented
as (Fig. 5):

cos
�
�predict

� � cos
�
�b;n − �F

�
(5)

2.2.4 Transmission error

In the case of actual condition, the relation between the out-
put and the input rotation angle is not linear any more. For
the convenience of analysis in the paper, the transmission
error TEφC is derived from the difference of actual rota-
tion angle φC,act and theoretical rotation angle φC,theor of the
crankshaft which is based on the given output rotation angle
φP.

TE'C = 'C;act − 'C;theor = 'C;act − u � 'P;given (6)

TEφC can be also easily converted to TEφP on the output
side by dividing the gear ratio u.

2.3 Loaded tooth contact analysis (LTCA)model

The LTCA model developed in the study is based on the
influence coefficient method and can solve not only the load
sharing among the multiple contact tooth pairs, but also the
contact stress on the engaged flanks. This model consists of
two equation types: equations of deformation-displacement
of each contact pair and equations of load equilibrium. Be-
cause of linear coefficients in equation, a converted matrix
equation is used for calculation, namely:

�
A −I
sJ 0

� �
P
ı

�
=

�
−H
F

�
(7)

More details can be found in the previous works [15–20].
The specific relations for the cycloid gear drive are men-
tioned as follows.
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Fig. 6 Displacement relation of
cycloid- pin-shaft contact pairs

2.4 Deformation-displacement relation

2.4.1 Cycloid-pinwheel contact pairs

In the case that the supporting bearing for cycloid disc is
regarded as flexible, three additional planar displacements
of the disc should be considered, i.e. two in translational
direction, δr and δt, and one in rotational direction δφ. As
the relation shows in Fig. 6, the effective displacement δC,j
between the contact tooth pair i along the contact normal
can be represented as:

ıC;j = qC;rır + qC;tıt + qC;®ı® (8)

The conversion factors, qC,r, qC,t, qC,φ, are derived from
the gerometric relation. More details can be found in [16,
17].

2.4.2 Cycloid-pin shaft contact pairs

In the error-free case, the deformation δPS,n between the
pin n of the pin-shaft and the pin-hole on the disc is affected
by the radial displacement δr and rotational displacement δφ
of the cycloid disc, see Fig. 7:

ıPS;n = −ır + qPS;®ı® (9)

where the conversion factor qPS,φ of rotation dis-placement
is calculated as:

qPS;® = RPSH � tCPSH � nCPSCPSH (10)

Fig. 7 Displacement relation of
pin-hole contact pairs

Fig. 8 Displacement relation of
roller bearing

2.4.3 Cycloid-roller bearing contact pairs

If the translational displacement δC,n, or δt and δr, of the
cycloid disc are present, the deformation δo,n due to the
contact of roller n with the outer race on the cycloid disc
can be determined from the relation in Fig. 8:

ıo;n = ır;n − ıC;n = ır;n − qB;rır − qB;tıt (11)

where δr,n is the displacement of bearing roller n along the
direction of contact normal. The conversion factors qB,r and
qB,t due to the translational displacements of the disc are
equal to:

qB;r = cos
�
�b;n − 'C

�
(12)

qB;t = sin
�
�b;n − 'C

�
(13)

The corresponding azimuth angle θb,n of bearing roller
in the above equations is affected by the rotation angle of
crank shaft φC, the radius ri, ro of the inner and the outer
race, and the number of roller nBR with the relation:

�b;n = �b;1 + �b;n =
ri � 'C

ri + ro
+
2� .n − 1/

nBR
(14)

2.4.4 Crank-Roller bearing contact pairs

Similarly, the deformation δi,n in Fig. 8 due to contact
roller n and the crank is caused by the displacement δr,n of
roller n and the angular displacement δS of the crank [16]:

ıi;n = ıS;n − ır;n = qS;n � e � ıS − ır;n (15)

where the conversion factor qS,n for the crank displacement
is equal to:

qS;n = sin
�
�b;n − 'C

�
(16)

2.5 Flank separation distance of contact tooth pairs

The discrete separation distances between the contact pair
are essential in the proposed LTCA for calculation of the
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Fig. 9 Flank separation distance relations for cycloid-pinwheel

distributed contact stress. Among the considered contact
pairs, the profile of the components, such as the bearing
roller, the pin of the pin-wheel and the pin-shaft, is cylin-
drical. The distance hC of a discrete point on the common
tangent to the cylindrical profile can be derived from the
geometrical relation in Fig. 9:

hC .l/ = r −
p

r2 − l2 (17)

where r is radius of the cylindrical element, and l is the dis-
tance from the contact point to the discrete point projected
on the common tangent plane. On the other hand, the sepa-
rate distance hMj between the contact cycloid flank and the
common tangent can be determined from vector calculation
with the normal vector nMi and tangential vector tMi on the
contact point Mi and the relative position vector rMji from
Mj to Mi. With a given distance lMj, the position of Mj can
be determined with aid of the equation:

rMj i � tMi = lMj (18)

The separation distance hMj is then calculated with the
determined variable θ from Eq. 18 as:

hMj = −rMj i � nMi (19)

2.6 Load equilibrium relation

2.6.1 Cycloid disk

Because the cycloid disc is flexibly supported by the pins
of the pin-shaft and the rollers of the crank bearing, the
forces from all contact pairs related to the cycloid disc must
be in load equilibrium in radial, tangential and rotational
direction, respectively (Fig. 10) as the following equations
represent.

Fig. 10 Load equilibrium rela-
tion of cycloid disc

� Force equilibrium in the tangential direction t:

X
FBO;t =

mX

i

�
qC;ti � FPWi

�
(20)

� Force equilibrium in the radial direction, r:

X �
qC;riFNi

�
−��FBO;r−

X �
kPS � �

ır − qPS;®ı®
��

= 0 (21)

The Eq. 21 can be simplified as:

X �
qC;riFNi

�
− � � FBO;r + QPS;r � ır + QPS;® � ı® = 0 (22)

The stiffness kPS of the pin of the pin-shaft is linearized
as a constant in the paper.

� Moment equilibrium of cycloid disc: Moment equilib-
rium of cycloid disc is contributed by the normal forces
FPW acting on the pinwheel and the forces FPS on pin-
shaft, namely:

X
.FPWi � QMOCPW/ −

X
.FPSi � QMOCPS/ = 0 (23)

The coefficient QMOCPW in the above equation is the ef-
fective lever arm of the normal forces FPW relative to the
pivot point OC, namely determined as:

QMOCPW = jnMi � rPWiOC j (24)

Since the force FPS from the pin-shaft acting on the cy-
cloid disc can be replaced by relative displacements, the
equation can be rewritten as:

X
.FPWi � QMOCPW/

=
X �

QMOCPS;r � ır + QMOCPS;® � ı®
� (25)

where the coefficient QMOCPS is the lever arm of the forces
FPS of the pin-shaft relative to the pivot point OC, and can
be divided in two directions:

QMOCPS;r =
X

kPS � jrCPSHOC � nCPSHCPS j (26)

QMOCPS;® = −
X

kPS � qPS;® jrCPSHOC � nCPSHCPS j (27)
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Fig. 11 Load equilibrium rela-
tion of roller bearing

Fig. 12 Force relation of contact
tooth pair with modified cycloid
flank for calculating output
torque

2.6.2 Roller bearing

For each roller n, the force Fn,outer acting from the cycloid
disc must be equal to that from the crank Fn,inner (Fig. 11):

Fn;outer = Fn;inner (28)

2.6.3 Output torque

The output torque Tout acting on the pin-wheel must be
equal to the sum of the moments due to all the individual
normal forces FPWi on the pin relative to the pivot point OCA

(Fig. 12). The lever arm is calculated by the cross product
of the contact normal vector nMi and the position vector of
pinwheel rPWiOCA:

Tout =
X

FPWi � jnMi � rPWiOCAj =
X

FPWi � QM;PWi (29)

2.7 LTCA model for cycloid gear drive without
clearances

With the deformation–displacement equations and the load
equilibrium equations for all contact tooth pairs derived
above, the basic model in Eq. 7 can be rewritten as:

2

6666
4

ACD 0 0 qCD 0
0 ABrg;O 0 qBrg CBO

0 0 ABrg;I 0 qBI
QCD QBrg 0 qPS 0
JCD JBrg;O JBrg;I 0 0

3

7777
5

2

6666
4

PCD

PBrg;O

PBrg;I

�CD

�Brg

3

7777
5

=
�
−HCD −HBrg;O −HBrg;I 0 T

�T

(30)

where the representation of each parameter are listed as
below.

� The sub-matrix qCD and qBrg associate with the equivalent
coefficients that transform displacements of cycloid disc
along the contact normal:

qCD =
�
qC;r qC;t qC;®

�

qBrg =
�
qB;r qB;t 0

� (31)

� The constant matrix CBO is equal to:

CBO =
�
1 0

�
(32)

� The sub-matrix qBI combines the factors that convert dis-
placement of each bearing roller and the crank shaft to
the contact normal:

qBI =
�
−1 qS;n

�
(33)

� The sub-matrix QCD integrate the matrixes to calculate
load equilibrium of the cycloid disc:

QCD =

2

4
Qr;CD Qr;Brg 0
Qt;CD Qt;Brg 0
Q®;CD 0 0

3

5 (34)

� The sub-matrix qPS collects the coefficients related to the
pin-shaft for load equilibrium calculation of the cycloid
disc:

qPS =

2

4
QPS;r 0 QPS;®

0 0 0
QMOCPS;r 0 QMOCPS;®

3

5 (35)

� The sub-matrix JCD is used for calculation of torque equi-
librium of output condition:

JCD =
�
0 QM;PW

�T
(36)

� The sub-matrix JBrg,O and JBrg,I are the matrixes for calcu-
lation of load equilibrium of bearing rollers:

JBrg;O =
�
SBrg;O 0

�T

JBrg;I =
�
SBrg;I 0

�T (37)

� The sub-matrix ΔCD collects three displacements of cy-
cloid gear:

�CD =
�
ır ıt ı®

�T
(38)
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� The sub-matrixΔBR collects the displacements of bearing
roller and the angular displacement of the crank shaft:

�BR =
�
�r;n ıS

�T
(39)

� The sub-matrix T is the boundary condition of the gear
drive:

T =
�
0 Tout

�T
(40)

The matrix can be solved by using LU-decomposition
method effectively. The solving process will be iteratively
repeated until all the stress is calculated as positive [17, 18].

3 Analysis model for cycloid gear drives
considering relevant clearances

3.1 Modified LTCAmodel

Considering the cycloid gear drive as a planar mechanism,
the cycloid disc owns three degrees of freedom in presence
of tooth pair backlash, bearing clearances and/or hole-pin
clearances. As a consequence, the contact position of each
element under static condition cannot be determined by us-
ing TCA approach mentioned above. However, the defor-
mation of each contact pair in the LTCA model mentioned
in Sect. 2 is derived exactly from the contact position and
the equivalent displacements. Therefore, the LTCA model
must be modified for the case of relevant clearances.

The concept based on determination of the final posi-
tions of all contact pairs in load equilibrium is considered
in the modified model. Those positions are affected by the
four forced displacements, i.e., the tangential δt, the radial
δr, and the rotational displacement δφCD of the cycloid disc,
and the rotational displacement δφC of the crank. The defor-
mation can be regarded as the interference of each contact
pair at the final position. As described above, the LTCA
model in Eq. 30 is composed of the relations of deforma-
tion-displacement and the equations of load equilibrium.
Because the four forced displacements are guess values, the
relations of load equilibrium related to the forced displace-
ments are removed from the matrix in Eq. 30, and chosen
as the convergence criterions for iterative calculation.

As a consequence, the loads PCD on the contact pairs
of cycloid-pin wheel and the loads PBrg,O and PBrg,I on the
contact pairs related to the bearing rollers can be calculated
independently by using the four unknown displacements as
guess values, namely:

ACD � PCD = −HCD;BC (41)

2

4
ABrg;O 0 1
0 ABrg;I −1
SBrg;O QBrg;I 0

3

5

2

4
PBrg;O

PBrg;I

�r;n

3

5 =

2

4
−HBrg;O−BC

−HBrg;I−BC

0

3

5 (42)

The required equations of load equilibrium are thus
checked if fulfilled or not. The sum of the loads in each
direction can be calculated by using the matrix equation:

2

66
4

FCY;r

FCY;t

MOC

TPW;OP

3

77
5 =

2

66
4

SCD;r SBrg;r kPS

SCD;t SBrg;t kPS

SCD;M 0 kPS

SCD;T 0 0

3

77
5

2

4
PCD

PBrg;O

ıintPS;i

3

5 (43)

The convergence conditions are thus:

jFCY;rj < "r; jFCY;tj < "t;

jMOC j < "'; jTPW;OP − Toutj < "T
(44)

where the deviation values ε are small so as acceptable. If
the convergence criterion is not met, a set of new guess
values are given. Those displacements are solved then iter-
atively. The loads and the contact positions of each com-
ponent can be also determined accordingly. The detailed
derivation of the parameters mentioned above will be ex-
plained in the subsequent sections.

3.2 The final position of the contact pairs

3.2.1 Model assumptions

The analysis model is affected by many factors. Some as-
sumptions are listed as follows:

� At beginning of the analysis, the bearing clearances only
exist between bearing rollers and the outer race, in order
to facilitate the analysis.

� Bearing rollers are constraint by the cage and only free
in the radial direction to achieve the load equilibrium.

� Bearing rollers do not affect each other.
� The bearing clearance have no effect on the revolution

speed of the bearing rollers.
� The influence of oil film on the clearance is not consid-

ered here.
� Friction and gravity are not considered.

3.2.2 Inner bearing race

Based on the fixed coordinate system (the same with the
coordinate system of the crank), the coordinates of the in-
ner bearing race center OBI is determined by the rotation
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Fig. 13 Definition the final position of each elements in the actual co-
ordinate with four forced displacements

angle φC and the leading angle δφC of crank due to system
deformation (Fig. 13):

xOBI = e cos
�
'C + ı®C

�

yOBI = e sin
�
'C + ı®C

� (45)

This forced displacement will cause either a clearance
or an interference between the inner race and each roller.

3.2.3 Cycloid disc

Because the cycloid disc owns three degrees of freedom,
three forced displacements, two in translational and one in
rotational, will be caused under loading. The new coordi-
nates of the cycloid disc center O’C are defined by the two
translational displacements δr and δt in the fixed coordinate
system (Fig. 13):

xO0

C
= .e + ırCD/ cos'C − ıtCD sin 'C

yO0

C
= .e + ırCD/ sin 'C + ıtCD cos'C

(46)

In addition, the coordinate system of the cycloid disc
is rotated with an angle δφCD (i.e., rotational displacement)
with respect to the fixed coordinate system.

Fig. 14 Definition the interfer-
ence amount between bearing
roller and inner/outer ring in the
actual coordinate

3.2.4 Bearing rollers

The bearing rollers are placed evenly around the center of
cage OC, which is defined as:

xOC = e cos'C

yOC = e sin 'C
(47)

The coordinates of each roller center CBR,n is (Fig. 14):

xCBR;n = e � cos'C + .rBR + ri/ cos �b;n
yCBR;n = e � sin 'C + .rBR + ri/ sin �b;n

(48)

where the azimuth angle θb,n is the same in Eq. 14.

3.2.5 Pin-wheel

The pin-wheel is chosen here as output. The coordinates of
each pin center are derived with a given output angle φP as:

xCPW;i
= RPW cos Œ'P + 2� .i − 1/ =zPW� ;

yCPW;i
= RPW sin Œ'P + 2� .i − 1/ =zPW� :

(49)

3.2.6 Pin-shaft

The coordinates of each pin center CPS,i of the pin-shaft are
not changed with rotation of the cycloid disc, if the pin-
shaft is regarded as fixed, namely from Fig. 13:

xCPS;i = RPS cos .2� .i − 1/ =zPS/

yCPS;i = RPS sin .2� .i − 1/ =zPS/
(50)
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3.2.7 Pin-hole

The pin-hole centers CPSH,i locate equally on a circle around
the cycloid disc center O’C in the ideal case. Their coordi-
nates are, as shown in Fig. 13:

xCPSH;i = xO0

C
+ RPSH cos .2� .i − 1/ =zPS/

yCPSH;i
= yO0

C
+ RPSH sin .2� .i − 1/ =zPS/

(51)

3.3 Flank separation distance of contact pairs with
forced displacements

The calculation process of the separation distances in pres-
ence of clearances is not different from the process ex-
plained in Sect. 2.4, only the interference due to the forced
displacement must be added into the separation distances.
If the calculated interference value is positive, the separa-
tion distances are reduced with this value. If it is negative,
there will be no load induced at this final position of the
contact pair. This contact pair must be excluded from the
LTCA calculation.

3.3.1 Bearing roller

The interference between the bearing roller and the inner
or outer race due to the forced displacements can be deter-
mined by using the relation of the roller center and the race
center. The interference in the contact pair is illustrated in
gray area (Fig. 14). The maximum value for inner race is
measured along the center line of OBI and CBR,i, i.e.:

ıintBI;i = ri + rBR − OBICBR;i > 0 (52)

Each contact point on the roller and inner race, i.e. MBIi

and MRIi, respectively, can be regarded as the point on the
center line OBI-CBR,i to determine the interference value
δintBI,i. The tangential plane can be drawn through the con-
tact points. Therefore, the separation distance hCBI,i-j of inner
race and hCBRI,i-j of roller are calculated based on the cor-
responding tangential plane as the mentioned calculation
method:

hCBRI;i−j = rBR −
q

r2BR − l2BI;i−j (53)

hCBI;i−j = ri −
q

r2i − l2BI;i−j (54)

The final separation distance hBI-BC,i between inner race
and bearing roller for LTCA model is equal to:

hBI-BC;i = hCBI;i−j + hCBRI;i−j − ıintBI;i (55)

Fig. 15 Definition the interfer-
ence amount between pin shafts
and cycloid disc in the actual
coordinate

or:

hBI-BC;i = OBICBR;i −
q

r2BR − l2BI;i−j −
q

r2i − l2BI;i−j (56)

In the same way, the maximum interference amount
δintBO,i between roller and outer race is:

ıintBO;i = OBOOR;i − .rO − rBR/ > 0 (57)

The final separation distance between the outer race and
the roller can be also obtained (Fig. 14) i.e.:

hBO-BC;i =
q

r2O − l2BO;i−j −
q

r2BR − l2BO;i−j −OBOCBR;i (58)

3.3.2 Hole-pin

The contact between the pin of the pin-shaft and the hole of
the cycloid disc is regarded as a spring. Thus, the load acting
on the pin can be derived from the interference amount
δintPS,i between the pin and the pin-hole (see Fig. 13), as the
relation shows in Fig. 15, which is:

ıintPS;i = CPS;iCPSH;i − .rPSH − rPS/ (59)

3.3.3 Cycloid-pin

Because of the complicate cycloid tooth profile, the cycloid
disc is regard as fixed here to avoid to use the coordinate
transformation. The pins of pin-wheel therefore move rela-
tively to the disc, as the relation illustrated in Fig. 16. The
center of the crank OCA is then changed to:

x
.CY/
OCA

= − .e + ır/ cos
�
'C + ı®CD

�
+ ıt sin

�
'C + ı®CD

�

y
.CY/
OCA

= − .e + ır/ sin
�
'C + ı®CD

�
− ıt cos

�
'C + ı®CD

� (60)

The contact points on the pin-cycloid pairs are also deter-
mined based on the geometric relation, that the line CPWi-
MPWi must be parallel to the normal vector nMi. In other
words, the normal vector nMi of the contact point MPWi on
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Fig. 16 Definition the interference amount of cycloid-pin contact tooth
pairs in the coordinate of cycloid disc

the cycloid disc must pass through the center of pin-wheel
CPW,i. The position vector rMiPi is:

rMiPi = MPWiCPWi � nMi
(61)

The pin-wheel center of CPW,i represented in the cycloid
coordinate system is described as:

x
.CY/
CPW;i

= x
.CY/
OCA

+ RPW cos �P;i

y
.CY/
CPW;i

= y
.CY/
OCA

+ RPW sin �P;i
(62)

where the angle θP,i of pin i is:

�P;i = 'P + ı®CD + 2� .i − 1/ =zPW (63)

The maximum interference amount δintP,i between the cy-
cloid disc and the pin-wheel is:

ıintP;i = rPW − MPWiCPWi (64)

The separation distance hMj between the cycloid profile
and the common tangent plane is the same with the calcu-
lation relations described in Sect. 2.4. In the same way, the
separation distance hCj is also obtained. The total distance
hCD-PW,i for LTCA calculation is equal to:

hCD-PW;i = hMj + hCj − ıintP;i (65)

3.4 Relation of load equilibrium

The relations of load equilibrium in the case of clearance
are not different from those in Sect. 2.5. Hence, the neces-

Fig. 17 Load equilibrium re-
lation of roller bearing in the
actual coordinate

sary equations of forces on each contact tooth pair for load
equilibrium is defined as follows.

3.4.1 Load equilibrium of bearing roller

For each roller, the force FBOi due to contact of the outer
race and roller i projected along the normal vector nBI,i of
the inner race must be equal to the force FBIi for inner race-
roller pair (Fig. 17), i.e.:

FBI;i = FBO;i � �
nBO;i � nBI;i

�
(66)

The force of inner race FBI,i and outer FBO,i are:

FBI;i =
mnX

j=1

sBrg;I−ipBrg;I−i−j (67)

FBO;i =
mnX

j=1

qBrg;O−ipBrg;O−i−j (68)

where the coefficient qBrg,O-i is equal to:

qBrg;O−i = sBrg;O−i � �
nBO;j � nBI;j

�
(69)

3.4.2 Load equilibrium of cycloid disc

The cycloid disc is influenced by the load of bearing roller,
pin shafts and pin-wheel. Those loads in the radial and the
tangential direction should be in equilibrium, so as the sum
of moments with respect to the center of cycloid disc. Be-
cause all forces are calculated based on the guess values of
the displacements, the equilibrium conditions represented
in the sum of forces are used for iterative calculation. The
radial force FCY,r and the tangential force FCY,t in Eq. 43 can
be determined as:

FCY;r =
X

FBO;r +
X

FPS;r +
X

FPW;r (70)

FCY;t =
X

FBO;t +
X

FPS;t +
X

FPW;t (71)
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Fig. 18 Equal load equilibrium
relation of roller bearing acting
on the center of outer ring

The total moment MOC is also:

MOC = MPW;OC + MPS;OC (72)

The individual components of the forces and the mo-
ments in the above equations are determined as follows,
see Fig. 18.

� Loads on rollers-cycloid pair. The forces can be decom-
posed into two components in different directions, i.e.,
tangential force FBO,t and radial force FBO,r. By using the
vector calculation with the vector nBO,i, nO’C,r and nO’C,t,
we have:

X
FBO;r =

X
FBO;i

�
nBO;i � nO0

C;r

	
(73)

X
FBO;t =

X
FBO;i

�
nBO;i � nO0

C;t

	
(74)

The radial vector nO’C,r and tangential vector nO’C,t in the
coordinate system of the cycloid disc are:

nO0

C;r
=

�
cos ı®CD;− sin ı®CD

�
(75)

nO0

C;t
=

�
sin ı®CD; cos ı®CD

�
(76)

� Loads on pin-hole pair. The force FPS,i is produced by
the interference amount δintPS,i (Eq. 58) and stiffness kPS:

FPS;i = kPS � ıintPS;i (77)

The force is directed to the center line of the pin CPS,i

and the hole CPSH,i, i.e., the coordinates of CPSH,i are:

x
.CY/
CPSH;i

= RPSH cos �PSH;i

y
.CY/
CPSH;i

= RPSH sin �PSH;i
(78)

where the angle θPSH,i is defined according to Eq. 3. The
coordinates of the pin center is:

x
.CY/
CPS;i

= x
.CY/
OCA

+ RPS cos �PS;i

y
.CY/
CPS;i

= y
.CY/
OCA

+ RPS sin �PS;i
(79)

Fig. 19 Load equilibrium relation of cycloid disc in the tangential and
radial direction in the coordinate of cycloid disc

where the crank center OCA can be taken from Eq. 59, the
angle θPS,i of the hole is:

�PS;i = ı®CD + .i − 1/ �PS = ı®CD + 2� .i − 1/ =zPS (80)

The direction vector nPS,i is:

nPS;i =
*

CPS;iCPSH;i=
ˇ̌
CPS;iCPSH;i

ˇ̌
(81)

The radial force FPS,r and tangential force FPS,t on the pin
is determined respectively as:

FPS;r =
X

FPS;i
�
nPS;i � i� (82)

FPS;t =
X

FPS;i
�
nPS;i � j� (83)

� Load on pin-cycloid pair. The force of each pin is:

FPW;i =
mnX

j=1

sipi−j (84)

And the radial force FPW,r and the tangential force FPW,t

of pin shaft (Fig. 19) can be expressed as:

FPW;r =
X

FPW;i
�
nM;i � i� (85)

FPW;t =
X

FPW;i
�
nM;i � j� (86)
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Fig. 20 Moment equilibrium relation of cycloid disc in the coordinate
of cycloid disc

Fig. 21 Output torque equilibrium relation of pin-wheels in the coor-
dinate of cycloid disc

� Moments on cycloid disc. The moment MPW,OC from the
pin wheel with respect to the center of cycloid disc OC is
equal to:

MPW;OC =
X

FPW;i jnMi � rMi j (87)

where nMi is the direction vector for force and rMi the po-
sition vector of point MPWi (Fig. 20). The moment MPS,OC

from the pin shaft is:

MPS;OC =
X

FPS;i jrPSHi � nPSi j (88)

3.4.3 Output torque equilibrium

The output torque is one boundary condition of cycloid gear
drive. As a result, torque of pin wheel TPW,OP with respect
to the center of crank shaft should be considered, shown in
Fig. 21. The torque TPW,OP in Eq. 43 is equal to:

TPW;OP =
X

FPW;i jrOCACPW � nMi j (89)

where rCPW,iOCA is the position vector from the center of
crank shaft OCA to of the pin wheel CPW,i, and nMi is the
force vector.

3.5 Convergence approach for analysis model

Because the four unknown displacements are solved itera-
tively by using different guess values in the analysis model,
it is very important to determine the new values for next
step, if the convergence conditions (Eq. 43) are not met.

At the beginning of the solving process, the guess values
of the displacements are obtained from the calculation of
LTCA model without considering clearances, see Sect. 2.
Then the sum of the loads, FCY,r, FCY,t, MOC, and TPW,OP, can
be calculated based on the proposed LTCA model by using
these displacements. Usually, the first convergence test will
not be successful. The new guess values are determined by
using the tangent stiffness approach, as the concept shown
in Fig. 22. The new displacement δi+1 can be defined as
δi+Δδ. The displacement difference Δδ can be thus com-
puted with the stiffness k and the load difference ΔF be-
tween the goal value FGoal and the calculated value Fi of the
force at this step:

�ı =
�F

k
(90)

Fig. 22 Simplified tangent stiff-
ness approach to determine
a new displacement for next
iteration
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The tangent stiffness k can be calculated by using the
finite difference method:

k =
F .ıi + "/ − Fi

"
(91)

This calculation approach will be repeated until |ΔF| less
than the given small value.

For the problem of four variables, the individual tangent
stiffness influenced by the individual displacement is ap-
plied. Thus the new displacement differences Δδ can be
calculated as:

2

66
4

kr;r kr;t kr;®CD kr;®C
kt;r kt;t kt;®CD kt;®C
kM;r kM;t kM;®CD kM;®C
kT;r kT;t kT;®CD kT;®C

3

77
5

2

66
4

�ır
�ıt
�ı®CD
�ı®C

3

77
5 =

2

66
4

−F0;r
−F0;t
−M0
−T0

3

77
5 (92)

where the individual tangent stiffness ki,j is defined as:

ki;j =
Fi;j

�
"ıj

�
− F0;i

"ıj
; i W r; t;M;TI j W r; t; ®CD; ®C (93)

The next guess displacement values can be thus calcu-
lated accordingly. The calculation process is then repeated
iteratively until the convergence criterion is met.

3.6 Loaded transmission error

In general, the (unloaded) transmission error is difficult to
calculate for the case in presence of bearing clearances
and/or hole-pin clearances. The rotational displacement of
the crank δφC, however, can be determined by using the pro-
posed LTCA model. It includes an additional rotation an-
gle due to clearances and a deformation angle. The loaded
transmission error is expanded from Eq. 6 as:

LTE'C = 'C;act − 'C;theor =
�
'C + ı'C

�
− u � 'P;given (94)

The unloaded transmission error can be also obtained by
using a slight torque to calculate the displacements based
on the proposed LTCA model.

4 Analysis results for cycloid gear drive
considering relevant clearances

4.1 Calculation data

The design data of the cyclo gear drive used in this paper
for analysis are listed in Table 1. The tooth number differ-
ence of the cycloid disc is selected as 1, and only one disc is
involved in the calculation. The equidistant and shifting off-

Table 1 Essential data for numerical analysis

Items/symbols Value Remarks

Pitch circle radius of pin wheel RC 88mm –

Tooth number of the cycloid disk zC 13 –

Tooth number of the pin wheel zP 14 –

Reduction ratio u (Pin-shaft fixed) 14 zP/Δz
Thickness of the cycloid disk t 11.8mm –

Radius of the bearing hole center rO 29.5mm –

Pitch circle radius of the pin shaft RPS 56mm –

Radius of the pin shaft hole rPSH 14.075mm –

Radius of the pin shaft rPS 10.075mm –

Number of pin shaft 8 –

Radius of the crank shaft ri 19.5mm –

Radius of the bearing roller rBR 5mm –

Number of bearing roller 11 –

Output torque T 377.3Nm –

Stiffness of the pin shaft 106N/mm –

Radius of the pin rP 6.5mm –

Eccentricity e 4 –

Equidistant offset 0.15mm –

Shifting offset 0.09mm –

Table 2 Data of relevant clearance

Case Value of bearing clear-
ance[mm]

Value of Pin-hole clear-
ance[mm]

CS-1 0 0

CS-2 0.01 0

CS-3 0.03 0

CS-4 0.03 0.01

CS-5 0.03 0.02

CS-6 0.03 0.03

set modification are used for the cycloid tooth profile which
yield about 10arcmin of backlash. Three different amounts
of bearing clearance and pin-hole clearance, Table 2, are
used to analyze their effects on the contact characteristics,
where six different cases of combination are considered for
analysis.

4.2 Loaded transmission error

The analysis results of transmission error (TE) considering
bearing and pin-hole clearances are shown in Fig. 23, where
a slight output torque in value of 10Nm, about 3% of full
output torque (377.3Nm), is applied for calculation. If only
the bearing clearance is considered, not only the variation of
TE, but the peak-to-peak value of TE (PTPTE) is changed
slightly with an enlarged bearing clearance (CS-1 to CS-3).
But the influence of the hole-pin clearance is significant.
The PTPTE value is enlarged as the pin-hole clearance, see
the variation in the cases CS-3 to CS-6. However, the trend
of the variation of TE due to the pin-hole clearance changes
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Fig. 23 Transmission error of cases of relevant clearances

Fig. 24 Shared loads on the cycloid flanks for cases of relevant clear-
ances

Fig. 25 Number of contacts pin-wheel-cycloid pairs under load

little, in comparison of the influence of bearing clearance.
In addition, the periods of TE due to the clearances (CS-2 to
CS-6) become larger than the case without clearance (CS-
1), here about 2deg (= 360°/13/14).

Fig. 26 Contact stress on the cycloid flanks for cases of relevant clear-
ances

Fig. 27 Contact area of pin-
wheel contact tooth pairs in dif-
ferent cases of bearing clearance

4.3 Shared loads of pin-wheel on cycloid flank

The variation of the normal load acting on the individual
cycloid flank during the mesh cycle, is illustrated in Fig. 24.
It is clearly to find that the begin of contact will be more de-
layed as the bearing clearance increases. This effect due to
the bearing clearance (CS-2 and CS-3) is stronger than that
due to the pin-hole clearance (CS-4 to CS-6). Addition-
ally, the maximum load on cycloid flank is reduced only
around 3% due to a larger bearing clearance (CS-3). How-
ever, this reduction is not significant in the cases with pin-
hole clearances. The reason for this effect is the variation of
the number of contact as the diagram illustrated in Fig. 25.
It can be seen clearly that the larger bearing clearance will
enlarge the contact ratio (CS-1 to CS-3), while the pin-hole
clearance has less influence (CS-4 to CS-6).

4.4 Contact stress of pin-wheel acting on an
individual cycloid flank

The variation of the contact stress on an individual flank
for the six cases is illustrated in Fig. 26. The difference
among the results of the various cases is small, especially
the influence of the pin-hole clearance is small enough to
be ignored. Although the maximum shared load in CS-3
is smaller than the other, the maximum contact stress in
CS-3 is slightly enlarged in 1% in comparison with CS-1
(clearance-free). This can be explained with aid the contact
zone on the modified flank (Fig. 27). The contact zone of
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Fig. 28 Bearing loads on the cranks of cases of relevant clearances

Fig. 29 Tangential bearing loads on the cranks of cases of bearing
clearance

the case CS-3 will be shifted towards to the tip of cycloid
tooth, where a larger curvature is expected.

4.5 Loaded characteristics on the crank

It is interesting to explore the influences of clearances on
the contact characteristics of the crank bearing.

4.5.1 Bearing loads

At first, it can be seen from Fig. 28 clearly that the av-
erage bearing load drops slightly as the bearing clearance
increases, while the peak-to-peak value is enlarged accord-
ingly. The difference between the case CS-1 and CS-3 is
about 550N (6.5% of 8460N). On the other hand, the pin-
hole clearance has less influences on the bear load. The
bearing load can be divided into the tangential and radial
force.

In general, the tangential bearing force remains constant
with a contact output torque Tout under ideal condition.
However, it varies with the rotating angle due to trans-
mission error (Fig. 29). Additionally, the average value of

Fig. 30 Radial bearing loads on the cranks of cases of bearing clear-
ance

the tangential bearing load remains with the various cases
of clearances, while the peak-to-peak value increases with
enlarged clearances. Especially the pin-hole clearance has
more influence than the bearing clearance, although the
maximal PTP-value in the analysis example is less than
45N (0.66% of 6737.5N).

On the other hand, the variation of the radial bearing
force (Fig. 30) shows a similar trend with the total load,
because the variation of the tangential loads is small.

4.5.2 Distribution of load and contact stress on individual
roller

In case of non-modified roller profile, the stress concentra-
tion can be found clearly near the end face of the roller,
as the saddle-shaped distribution of contact stress in the
diagram of Fig. 31 shows. The saddle-shape of stress dis-
tribution can be seen in all cases with different bearing and
pin-hole clearances. The diagrams of 3D-stress distribution
for the other cases are therefore not shown here. Instead, the
diagram in Fig. 32 shows the variation of the contact stress
along the major axis of the contact pattern for various cases
of clearances. And the variation of the contact stress along
the minor axis is shown in Fig. 33. The weak influences
of the pin-hole clearance on the contact stress of roller can
be clearly identified. Although the average bearing load is
reduced with larger clearances, refer to Fig. 28, the max-
imum load acting on an individual roller increases due to
reduced contact zone of the bearing roller (Fig. 34). The
contact stress of the case with a larger bearing clearance
(CS-6) is then larger than the other. However, the effect of
the pin-hole clearance is very small.

4.6 Pin shaft loads

The loads acting on the cycloid disc, which come from three
types of contact pairs, will affect each other. From this point

K



354 Forsch Ingenieurwes (2022) 86:337–356

Fig. 31 Contact stress distribution for bearing clearance= 0.03mm,
CS-3

Fig. 32 Contact stress distribution along the major axis for various
cases of clearances

of view, the influence of the bearing and pin-hole clearances
on the pin shaft loads can be clearly explained. Because the
clearances have less influences on the loads acting on the
cycloid flanks, the pin-hole loads have a strong relation-
ship with the bearing loads. Therefore, the maximum pin-
shaft load is enlarged as the bearing clearance increases,
i.e., from 5252N in CS-1 to 6256N in CS-3 (Fig. 35) while
the bearing load is reduced accordingly (Fig. 28). The pin-
hole clearances, on the other hand, have less effect, just like
the effect on the bearing loads. However, the pin-hole clear-
ances change the variation the shared load, as the plateau
range in the curve (Fig. 35) shows. In addition, the contact
range the pin is also reduced with a larger bearing and pin-
hole clearances, namely from about 98° in CS-1 to 62° in
CS-6. The reason for this effect can be explained based on
the variation of the contact number of pins (Fig. 36). The
contact ratio of the pins with the disc-hole is reduced with
a larger clearance. As the pin-hole clearance is present (CS-

Fig. 33 Contact stress distribution along the minor axis for cases of
clearances

Fig. 34 Load distribution of bearing rollers acting on the crank shaft
for cases of bearing clearance

4), the contact ratio drops drastically. But it is changed less,
as the pin-hole clearance increases (CS-5 and CS-6).

5 Conclusion and outlook

In order to explore the influence of relevant clearances
on the contact characteristics in so-called Cyclo-reducers,
a new computerized LTCA model based on influence co-
efficient method is proposed. The influence analysis of
the clearance is conducted with an example from industry.
Three different bearing clearances, 0, 0.01 and 0.03mm,
and three different hole-pin clearances, 0.01, 0.02 and
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Fig. 35 Shared load of pin shaft for cases of relevant clearances

Fig. 36 Number of contacts hole-pin-cycloid pairs under load

0.03mm, are used in the calculation. The analysis results,
including transmission error, loaded conditions in various
contact pairs, enable us to draw some conclusions:

� The bearing clearance has no significant effect on the
transmission error. The peak-to-peak value of loaded
transmission error in the case of bearing clearance
0.03mm slightly increase from about 3.2 arcsec to 3.7
arcsec. But the peak-to-peak value is affected signifi-
cantly by the pin-hole clearance. For example, the value
in the case with a pin-hole clearance 0.03mm and a bear-
ing clearance 0.03mm is about two times larger than that
only considering bearing clearance 0.03mm.

� The bearing clearance and the hole-pin clearance have
less effects on the shared load and the contact stress on
an individual cycloid flank. The maximum shared load is
reduced only about 3% in the case of bearing clearance
0.03mm, while the maximum contact stress is enlarged
about 1% in the same case.

� The contact of the pin with the cycloid tooth will de-
lay due to presence of clearance. In this example the de-
layed angle is about 10 degrees in the case of a bearing

clearance 0.03mm, and 2 degrees of a bearing clearance
0.01mm. But the influence of the pin-hole clearance is
very little.

� The bearing clearance has moderate effect on the bear-
ing loads. The average bearing load reduces about 6.5%
due to the bearing clearance of 0.03mm, while the tan-
gential load increases about 0.2%, and the radial load
reduces about 20% in the same case. However, the pin-
hole clearance has little influence. Although it can cause
a larger peak-to-peak value of the variation of the tangen-
tial bear load than the bearing clearance, the maximum
vale is only 0.66% of the average tangential bearing load.

� The maximum shared load and the maximum contact
stress on an individual roller are enlarged as the bearing
clearance increases, because the contact zone of the bear-
ing rollers is reduced accordingly. The pin-hole clearance
has also very little influence.

� The bearing clearance has strong effect on the loads act-
ing on the pin shaft. The shared load on an individual
pin increases about 20% due to the clearance with the
value of 0.03mm. However, as the pin-hole clearance
increases, the maximum load does not change signifi-
cantly, and is only enlarged with an increment of about
3%. A plateau range in the variation curve of the pin load
can be found.

The analysis results can verify that the proposed com-
puterized LTCA approach is an efficient simulation tool for
designing Cyclo-reducer with modified flanks considering
the bearing clearance and pin-hole clearance. It is thus ex-
pected to further develop a complete model considering all
the relevant errors.
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